猪冠状动脉粥样硬化

猪冠状动脉粥样硬化
猪冠状动脉粥样硬化

Expert review

140-148 published online ahead of print March 2009

Porcine models of coronary atherosclerosis and vulnerable plaque for imaging and interventional research

Juan F. Granada 1*, MD, FACC; Greg L. Kaluza 1, MD, PhD, FACC; Robert L. Wilensky 2, MD; Barbara C. Biedermann

3, MD; Robert S. Schwartz 4, MD, FACC; Erling Falk 5, MD, PhD

1. Skirball Center for Cardiovascular Research, Cardiovascular Research Foundation, Orangeburg, NY, USA;

2. Hospital of the University of Pennsylvania, Philadelphia, PA, USA;

3. Department of Medicine, University Hospital Bruderholz, Bruderholz,Switzerland;

4.The Minneapolis Heart Institute, Abbott Northwestern Hospital, Minneapolis, MN, USA;

5.Atherosclerosis Research Unit, Aarhus University Hospital, Aarhus, Denmark

The authors have no conflict of interest to declare.

Abstract

Animal models facilitate our understanding of human disease by providing a controlled environment permitting testing of mechanisms of disease, diagnostic technologies and therapeutic interventions. The ideal animal model should display coronary lesions resembling those seen in human atherosclerosis. No suitable large animal model of high-risk (vulnerable) plaque exists. Lack of such a model has hampered studies designed to validate imaging technologies and to scrutinise the effects of therapeutic interventions in atherosclerotic arteries. Several porcine models of advanced human-like coronary atherosclerosis exist.In this review some of the most promising porcine models are discussed, focusing on their applicability in the development and validation of coronary imaging technologies and interventional devices. I n the evolving era of technological development, the availability and use of such animal models of advanced human-like coronary atherosclerosis and vulnerable plaque will become critically important in the preclinical testing of emerging technologies in interventional cardiology.

KEYWORDS

Angiogenesis, coronary artery disease, plaque rupture, complex lesions, imaging

* Corresponding author: Skirball Center for Cardiovascular Research, Cardiovascular Research Foundation, 8 Corporate Drive, Orangeburg, NY,10962, Orangeburg, NY, USA E-mail: jgranada@https://www.360docs.net/doc/2c300730.html,

? Europa Edition. All rights reserved.

coronary imaging technologies.

Swine models in biomedical research Genetically, the pig is relatively close to humans5. This also applies to the anatomy and physiology of the cardiovascular system and the arterial response to hypercholesterolaemia. The domestic crossbred farm pig, sus scrofa domestica, is the most commonly used swine in cardiovascular research today2,3,6. However, in situations in which significant growth would be problematic, miniature swine (Yucatan, Hanford, Gottingen and Sinclair Hormel breeds) are often used in chronic studies. Typically, swine achieve sexual maturity by six to eight months at which time their weight usually varies between 40 and 100kg. The heart of the pig is anatomically similar to the human

heart with the exception of having a left azygous vein draining the intercostal system into the coronary sinus7and a right coronary artery ostium situated substantially more cranially. The heart of a 40-50kg miniature pig is approximately the same size as an adult human heart8

. The coronary artery system is similar to 90% of the atheromatous lesions may eventually develop, but usually require long development times including months of severe hypercholesterolaemia. Although atherosclerotic plaque rupture and luminal thrombosis occur they are uncommon12-14. As in humans, diet-induced atherosclerosis in swine is multifactorial and results in the development of multifocal lesions of variable composition in unpredictable locations. A significant challenge facing animal model development is to shorten the typical 6-9month period required to develop complex atherosclerotic lesions. Through the appropriate selection of swine breed, animals highly sensitive to dietary manipulation have been shown to develop complex lesions in a slightly accelerated time period (Table 1).

Porcine inherited hyper-LDL-cholesterolaemia model

Rapacz et al originally described a strain of large domestic swine which develops elevated LDL cholesterol levels and spontaneous atherosclerosis while on a low-fat diet due to a mutation in genes

Table 1. Key developmental aspects of porcine atherosclerotic models.

HCD FHS without HCD Diabetes + HCD Injury + HCD Anatomical location Coronary, aorta, Coronary, aorta,Coronary, aorta, Injury-dependent iliofemoral iliofemoral iliofemoral Localised lesion(s) Advanced lesions>2 years12-18 months6-9 months9-12 months Advantages Easy Endogenous HS Accelated model Predictable location Universally available No costly diet Less weight gain Accelerated model Major limitations Long-term model Long-term model Failure to thrive Complicated Costly diet Limited availability Costly (STZ, healthcare) Costly procedures Unmanagable size*Unmanagable size#Not short-term model Not short-term model

HCD: High cholesterol diet; FHS: Familiar hypercholesterolemic swine; STZ: streptozotocin; * Does not apply to minipigs; #Does not apply to down-sized FHS pigs

- 141-

Figure 1. Natural history of atherosclerosis in the familiar hypercholesterolaemic swine (inherited hyper-LDL-cholesterolaemia). Lipid-rich lesions are stained by Oil Red O. A: Time-dependent development of lesions in the left main, left anterior descending (LAD) coronary artery and circumflex branch. At 16 months of age, advanced lesions are predominantly seen proximal in the coronary arteries. B: Disease distribution: At 18 months, lesion development is predominantly in the proximal thoracic aorta, distal abdominal aorta and its trifurcation, and proximal coronary arteries (arrows). (Figure courtesy of Chris Krueger and Jess Reed at the Department of Animal Sciences, University of Wisconsin, Madison).

- 143-

Expert review

in a >80% reduction in pancreatic beta cells. Following administration of a high cholesterol diet, accelerated atherosclerosis was observed. Diabetic only animals did not develop atherosclerosis 17but the combination of diabetes and hypercholesterolaemia led to accelerated development of more advanced lesions. Early atherosclerotic lesions developing within

three months are generally intimal xanthomas 18. By six months,96% of arteries harbour an atherosclerotic lesion with progression to 100% at nine months post induction. At 9-months many arteries demonstrated complex human-like lesions with the presence of fibroatheromas (17%) and calcific lesions (11%, Figure 3)17,18. As in humans, the most severe lesions were generally located in the proximal segment of the coronary arteries often at the side-branch points. Chatzizisis et al demonstrated that areas of low endothelial shear stress in coronary arteries were associated with subsequent development of lesions. These lesions had increased lipid accumulation, inflammation and expansive remodelling; all characteristics of high-risk (vulnerable) atherosclerotic lesions 19.Focal calcifications were noted at 6-9 months as well as thin-cap fibroatheromas in some arteries. More advanced lesions possessed acellular necrotic cores covered by fibrous caps with medial thinning, haemorrhage and calcification (11% thin-cap fibroatheromas)18. Treatment with darapladib, a selective inhibitor of Lp-PLA2 , an important mediator of vascular inflammation has been shown to reduce development of atherosclerosis but more importantly necrotic core development in this model 20.

Figure 2. Advanced human-like coronary lesions in familial hypercholesterolaemic swine (inherited hyper-LDL-cholesterolaemia). Left:Atheromatous lesion containing a large necrotic core (NC) covered by a fibrous cap (FC) that is very thin near the shoulder region (vulnerable plaque). Right: Complex stenotic lesion containing collagen, lipid, calcification, and inflammation, predominantly macrophage foam cells. Collagen is blue in left panel (Masson stain), green in right panel (Movat stain).

Figure 3. Advanced lesions in diabetic+hypercholesterolaemic (DM/HC) swine. Left, 6 months after DM/HC induction: Complex stenotic plaque in an iliac artery containing well-developed necrotic cores (N C) covered by a fibrous cap (FC). Intraplaque haemorrhage (H) is also seen. Arrow indicates a side-branch and tunica media (M). Right, 9 months after DM/HC induction: Coronary fibroatheroma with large necrotic cores (NC) and heavy calcifications near the internal elastic lamina which is destroyed from 8 to 10 o’clock and at 12 o’clock. The lumen (*) is severely narrowed.

Both Movat stain.

makes it less suitable for long-term studies compared to minipigs, not only because of the high maintenance costs but also because of

the continued growth (non-steady coronary dimensions) leading to a large and heavy pig that is difficult to image (loss of resolution) and handle. Some colonies of Yucatan minipigs have proved to be susceptible to both diet-induced hypercholesterolaemia and atherosclerosis, and they have been used for decades in atherosclerosis and restenosis research13,22-25. Complicated human-like atherosclerotic lesions displaying necrosis, cholesterol crystals, and calcification may develop relatively rapidly on

a cholesterol-rich atherogenic diet13. Furthermore, streptozotocin-induced diabetes has been described, and preliminary data indicate that it accelerates diet-induced coronary atherosclerosis and the development of vulnerable plaques in Yucatan minipigs as it does in Yorkshire swine21. Other minipigs, such as the G?ttingen, Hanford and Sinclair Hormel breeds, have also been used in atherosclerosis research but far less information concerning their use is available compared to the Yucatan mini/micro swine. Despite great enthusiasm a few years ago, human-like atherosclerosis has not yet been documented in the obese, insulin-resistant, mildly hypertensive, hypercholesterolaemic Ossabaw pig26.

Porcine vascular injury/hypercholesterolaemia models

In order to shorten the time required to develop lesions of interest and limit the high maintenance costs, multiple attempts have been made to accelerate the atherosclerotic process by combining diet-induced hypercholesterolaemia with a localised vascular injury such as external radiation27, wire-induced endothelial denudation28, barotrauma24,25,29, or haemodynamic manipulations30. I n 2001,Interestingly, due to the high cholesterol diet, staining of the surface of the vessels usually displays early atherosclerosis in the thoracic aorta, distal abdominal aorta and proximal coronary arteries. Compared to balloon injury or saline injection, the injected vascular segments demonstrate increased expression of chemokine mRNA and chemokine receptors important in macrophage recruitment34. An important feature of this model is that the anatomical distribution of the lesions is predictable as it follows the pattern of injury induced. Therefore, it provides an opportunity for selecting the anatomical targets and optimising the sample size. The major limitation of this model is the complexity of lesion induction requiring mechanical intervention and diet supplementation. Although the development time is reduced, it still takes up to one year until advanced coronary lesions are evident. Additionally, the barotrauma associated with the delivery device may produce a disproportionate component of neointimal hyperplasia35. In order to decrease the development time even further, several groups are attempting to accelerate the atherosclerotic process by inducing mechanical injury in the porcine inherited hyper-LDL-cholesterolaemic model.

Research applications of swine models of atherosclerosis

In this review we have tried to highlight the fact that pig models may develop humanlike coronary atherosclerosis if exposed to atherogenic stimuli for at least several months. Plaque size and composition depend on the method used to induce the lesion. High-risk plaque features assumed to confer “vulnerability” in humans are also seen in advanced porcine lesions, including a large necrotic core, a thin fibrous cap, inflammation,

Expert review

angiogenesis and plaque haemorrhage. The ultimate proof of “vulnerability” is, however, usually lacking, because plaque rupture is uncommon and luminal thrombosis is rare. Despite this deficiency, porcine models of coronary atherosclerosis and morphologically vulnerable plaques can provide meaningful information in the development, validation, and improvement of novel diagnostic and therapeutic technologies for use in interventional cardiology.

Novel imaging technologies to detect atherosclerosis, specifically high-risk (vulnerable) coronary artery lesions, are being evaluated in both humans and animal models. For validating non-invasive diagnostic technology, swine models provide suitable size, vascular anatomy and physiology similar to human disease. I ndeed, the majority of the initial validation work on CT angiography and contrast media injection and MRA compatible contrast agents36,37 has been developed in the normal porcine model38-41. In this field, porcine models have been previously used in studies requiring the presence of arterial obstructions42,43or the development of acute myocardial infarction44. Particularly, porcine models have been very useful in the evaluation of PET related technologies45-48and molecular tracers49-51. I n the field of invasive cardiovascular imaging, animal models are relevant as it is important to document and characterise morphology, location and presence of specific structural plaque components such as calcium. Most of the initial IVUS52and OCT technology development53,54involved the use of the normal porcine coronary model. However, as the endovascular imaging technology field evolves, the use of the normal porcine coronary model will be no longer viable. Specifically, the characterisation of specific biological components within the vessel wall including remodeling55, plaque strain56or tissue components57 have required the use of injury based animal models. These models may be critical during the validation process of imaging technologies designed to detect specific biological components (i.e., I VUS based tissue characterisation and vasa vasorum imaging) encountered in human atherosclerotic lesions (Figure5). Finally, in the area of cardiovascular interventions, healthy swine have been traditionally used as the animal model to test endovascular technology. In the evolving era of drug eluting stents, for example, a large animal with pre-existing metabolic and/or arterial disease may be needed to validate potential therapeutic strategies and their long-term consequences, such as demonstrating the effects of therapies directed toward limiting vascular inflammation and necrosis, preserving the endothelium, and promoting healing23,58,59.

Conclusions

Clinical implementation of innovative diagnostic and therapeutic technologies will ultimately depend on the successful development of large animal models of humanlike coronary atherosclerosis that permit preclinical validation of the technology in a controlled environment. General limitations in porcine model development are well recognised and include the need for significant infrastructure for animal maintenance, the long time period needed to induce and monitor the lesions, and development costs. In current models of “naturally” occurring atherosclerosis (genetic, diet-induced), significant coronary artery disease occurs late and is unpredictable in location. Hence, further model development is needed, including innovative ways to accelerate the atherosclerotic process in susceptible animals with or without pre-existing arterial disease. The current limitations notwithstanding, valuable porcine models of atherosclerosis are already available for development, validation, and improvement of imaging technologies. How reliably these porcine models mimic the chronic pathobiology and natural history of human atherosclerosis requires further exploration.Regardless, the availability of animal models of human-like atherosclerosis will become perhaps the most critical element of the preclinical validation of emerging diagnostic and therapeutic technologies developed for use in patients with coronary artery disease. Acknowledgements

The authors are thankful and extend gratitude for the research collaboration and support of Chris Krueger and Jess Reed at the Department of Animal Sciences, University of Wisconsin, Madison. The authors would like to thank David Wallace-Bradley for his assistance in the preparation and editing of this manuscript.

Figure 4. Advanced coronary lesions at predictable location (proximal coronary arteries) after local injury (lipid injection) in hypercholesterolaemic swine. As illustrated, coronary fibroatheromas with necrotic cores covered by fibrous caps are common in this model. Inflammatory cells, including

macrophage foam cells, are usually seen in the fibrous cap at high magnification (not shown). Collagen is green-blue in this polychrome staining.

- 145-

Porcine models of atherosclerosis

References

1.Rekhter MD. How to evaluate plaque vulnerability in animal mod-els of atherosclerosis? Cardiovasc Res. 2002;54(1):36-41.

2.Schwartz RS, Edelman ER, Carter A, Chronos N, Rogers C, Robinson KA, Waksman R, Weinberger J, Wilensky RL, Jensen DN, Zuckerman BD, Virmani R. Drug-eluting stents in preclinical studies: rec-ommended evaluation from a consensus group. Circulation. 2002;106(14):1867-187

3.

3.Schwartz RS, Edelman ER, Carter A, Chronos NA, Rogers C, Robinson KA, Waksman R, Machan L, Weinberger J, Wilensky RL, Goode JL, Hottenstein OD, Zuckerman BD, Virmani R. Preclinical evaluation of drug-

eluting stents for peripheral applications: recommendations from an expert consensus group. Circulation. 2004;110(16):2498-2505.

4.Granada JF, Kaluza GL, Raizner AE, Moreno PR. Vulnerable plaque paradigm: prediction of future clinical events based on a morphological definition.

Catheter Cardiovasc Interv.2004;62(3):364-374.

5.Wernersson R, Schierup MH, Jorgensen FG, Gorodkin J, Panitz F, Staerfeldt HH, Christensen OF, Mailund T, Hornshoj H, Klein A, Wang J, Liu B, Hu S, Dong W, Li W, Wong GK, Yu J, Bendixen C, Fredholm M, Brunak S, Yang H, Bolund L. Pigs in sequence space: a 0.66X coverage pig genome survey based on shotgun sequencing. BMC Genomics. 2005;6(1):70.

6.Schook L, Beattie C, Beever J, Donovan S, Jamison R, Zuckermann F, Niemi S, Rothschild M, Rutherford M, Smith D. Swine in biomedical research: creating the building blocks of animal models. Anim Biotechnol. 2005;16(2):183-190.

7.Swindle MM, Horneffer PJ, Gardner TJ, Gott VL, Hall TS, Stuart RS, Baumgartner WA, Borkon AM, Galloway E, Reitz BA. Anatomic and anes-thetic considerations in experimental cardiopulmonary surgery in swine. Lab Anim Sci.1986;36(4):357-361.

8.Smith AC, Spinale FG, Swindle MM. Cardiac function and morphol-ogy of Hanford miniature swine and Yucatan miniature and micro swine. Lab Anim Sci. 1990;40(1):47-50.

Figure 5. IVUS-based tissue characterisation performed in swine. A non-obstructive lesion is visualised in the proximal segment of the RCA located in a previously injured segment. After injury, swine were maintained on a high cholesterol diet for 9 months. Plaque evaluation by QCA (A), IVUS (B), IVUS-based tissue characterisation (C) and histology (D).

Am J Pathol. 1991;139(1):139-147.

17.Gerrity RG, Natarajan R, Nadler JL, Kimsey T. Diabetes-induced

accelerated atherosclerosis in swine. Diabetes. 2001;50(7):1654-1665.

18.Mohler ER, 3rd, Sarov-Blat L, Shi Y, Hamamdzic D, Zalewski A,

Macphee C, Llano R, Pelchovitz D, Mainigi SK, Osman H, Hallman T,

Steplewski K, Gertz Z, Lu MM, Wilensky RL. Site-specific atherogenic

gene expression correlates with subsequent variable lesion development

in coronary and peripheral vasculature. Arterioscler Thromb Vasc Biol.

2008;28(5):850-855.

19.Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL,

Stone PH. Role of endothelial shear stress in the natural history of coro-

nary atherosclerosis and vascular remodeling: molecular, cellular, and

vascular behavior. J Am Coll Cardiol. 2007;49(25):2379-2393.

20.Wilensky RL, Shi Y, , Mohler ER, III, Hamamdzic D, Burgert ME, Li JU,

Postle A, Fenning RS, Bollinger JG, Hoffman BE,Pelcovitz D, Yang J,

Webb C, Zhang L, Zhang P, Gel b MH, Walker MC, Zalewski A, Macphee CH.

I nhibition of lipoprotein-associated phospholipase A2 reduces complex

coronary atherosclerotic plaque development. Nat Med 2008; 14:1059-

1068.

21.Wang YX, Fitch R, Li W, Werner M, Halks-Miller M, Lillis B, Vergona R,

Post J, Sullivan ME, Verhallen PF. Reduction of cardiac functional reserve

and elevation of aortic stiffness in hyperlipidemic Yucatan minipigs with

systemic and coronary atherosclerosis. Vascul Pharmacol. 2002;39(1-

2):69-76.

22.Barbeau ML, Klemp KF, Guyton JR, Rogers KA. Dietary fish oil.

I nfluence on lesion regression in the porcine model of atherosclerosis.

Arterioscler Thromb Vasc Biol. 1997;17(4):688-694.

23.Carter AJ, Bailey L, Devries J, Hubbard B. The effects of uncon-

trolled hyperglycemia on thrombosis and formation of neointima after

coronary stent placement in a novel diabetic porcine model of restenosis.

Coron Artery Dis. 2000;11(6):473-479.

Neuroradiol. 2006;27(9):1893-1899.

31.Keelan P, Bayes-Genis A, Kantor B, Singh R, Carlson P, Lewis D,

Schwartz RS. A novel porcine model for in vivo detection of vulnerable

plaque: deposition and localization of lipid-rich lesions in the coronary

arterial wall [abstract]. Circulation. 2001;104:II-67.

32.Granada JF, Moreno PR, Burke AP, Schulz DG, Raizner AE, Kaluza

GL. Endovascular needle injection of cholesteryl linoleate into the arterial

wall produces complex vascular lesions identifiable by intravascular ultra-

sound: early development in a porcine model of vulnerable plaque. Coron

Artery Dis. 2005;16(4):217-224.

33.Granada JF, Wallace-Bradley D, Win HK, Alviar CL, Builes A, Lev EI,

Barrios R, Schulz DG, Raizner AE, Kaluza GL. In vivo plaque characteri-

zation using intravascular ultrasound-virtual histology in a porcine model

of complex coronary lesions. Arterioscler Thromb Vasc Biol.

2007;27(2):387-393.

34.Tellez A, Alviar C, Builes A, Lopez-Berestein G, Sanguino A,

Wallace-Bradley D, Ballantyne C, Perrard X, Schulz D, Kleiman N, Lev E,

Frangogiannis N, Kaluza G, Granada J. Pro-Inflammatory Chemokines are

Expressed in the Pig Model of Complex Coronary Lesions I nduced by

I ntramural I njection of Lipids (TCT E-Abstract 603). Am J Cardiol. Oct

2007;100 (suppl):232L.

35.Schwartz RS, Murphy JG, Edwards WD, Camrud AR, Vliestra RE,

Holmes DR. Restenosis after balloon angioplasty. A practical proliferative

model in porcine coronary arteries. Circulation. 1990;82(6):2190-2200.

36.Lin W, Abendschein DR, Celik A, Dolan RP, Lauffer RB, Walovitch

RC, Haacke EM. I ntravascular contrast agent improves magnetic reso-

nance angiography of carotid arteries in minipigs. J Magn Reson Imaging.

1997;7(6):963-971.

37.Spuentrup E, Ruebben A, Mahnken A, Stuber M, Kolker C, Nguyen TH,

Gunther RW, Buecker A. Artifact-free coronary magnetic resonance

angiography and coronary vessel wall imaging in the presence of a new,

- 147-

44.McFalls EO, Ward H, Fashingbauer P, Gimmestad G, Palmer B.

Myocardial blood flow and FDG retention in acutely stunned porcine

myocardium. J Nucl Med. 1995;36(4):637-643.

45.Chareonthaitawee P, Schaefers K, Baker CS, T urkheimer F, Stegger L,

Banner NR, Yacoub M, Bonser RS, I ozzo P, Camici PG, Rimoldi O.

Assessment of infarct size by positron emission tomography and [18F]2-

fluoro-2-deoxy-D-glucose: a new absolute threshold technique. Eur J Nucl

Med Mol Imaging. 2002;29(2):203-215.

46.Schafers KP, Spinks TJ, Camici PG, Bloomfield PM, Rhodes CG,

Law MP, Baker CS, Rimoldi O. Absolute quantification of myocardial blood

flow with H(2)(15)O and 3-dimensional PET: an experimental validation. J

Nucl Med. 2002;43(8):1031- 1040.

47.Wagner B, Anton M, Nekolla SG, Reder S, Henke J, Seidl S,

Hegenloh R, Miyagawa M, Haubner R, Schwaiger M, Bengel FM.

Noninvasive characterization of myocardial molecular interventions by

integrated positron emission tomography and computed tomography. J

Am Coll Cardiol. 2006;48(10):2107-2115.

48.Chareonthaitawee P, Christenson SD, Anderson JL, Kemp BJ,

Hodge DO, Ritman EL, Gibbons RJ. Reproducibility of measurements of

regional myocardial blood flow in a model of coronary artery disease:

55.Maeng M, Olesen PG, Emmertsen NC, Thorwest M, Nielsen TT,

Kristensen BO, Falk E, Andersen HR. Time course of vascular remodel-

ing, formation of neointima and formation of neoadventitia after angio-

plasty in a porcine model. Coron Artery Dis. 2001;12(4):285-293.

56.de Korte CL, van der Steen AF. Intravascular ultrasound elastogra-

phy: an overview. Ultrasonics. 2002;40(1-8):859-865.

57.Hamilton AJ, Huang SL, Warnick D, Rabbat M, Kane B, Nagaraj A,

Klegerman M, McPherson DD. Intravascular ultrasound molecular imag-

ing of atheroma components in vivo. J Am Coll Cardiol. 2004;43(3):453-

460.

58.Frohlich G, Strehblow C, Sperker W, Yahya N, Shirazi M, Hevesi A,

Garamvolgyi R, Hadjiev J, Scherzer T, Glogar D, Gyongyosi M. Serial

intravascular ultrasonographic measurements after implantation of

biodegradable polymer-coated stents in porcine coronary arteries. Coron

Artery Dis. 2003;14(5):409-412.

59.Zhang Q, Lu L, Pu L, Zhang R, Shen J, Zhu Z, Hu J, Yang Z, Chen Q,

Shen W. Neointimal hyperplasia persists at six months after sirolimus-elut-

ing stent implantation in diabetic porcine. Cardiovasc Diabetol.

2007;6:16.

冠状动脉粥样硬化性心脏病

【概念】冠状动脉粥样硬化性心脏病,是指冠状动脉粥样硬化,使血管腔狭窄、阻塞,导致心肌缺血缺氧,甚至坏死而引起起的心脏病,它和冠状动脉功能性改变一起,统称冠状动脉性心脏病,筒称冠心病,亦称缺血性心脏病。临床分型:隐匿型冠心病、心绞痛型心病、心肌梗死型冠心病、缺血性心肌病型冠心病、猝死型冠冠心病。 【病因】引起动脉粥样硬化的原因是多方面的,目前认为主要和下列因素有关:血脂异常、高血压、吸烟、糖尿病、肥胖、缺少活动、家族史,其他如年龄在40岁以上,男性或女性绝经后,进食许多的动物性脂肪、胆固醇、糖和钠盐,性情急躁竞争性过强,工作专心而不注意休息、强制自己为成就而奋斗的A型性格者均易患冠心病。 一、心绞痛 【概念】心绞痛是一种由于冠状动脉供血不足,导致心肌急剧的、暂时的缺血与缺氧所引起的临床综合征。 【病因】最基本的病因是冠状动脉粥样硬化引起血管狭窄和(或)痉挛,当冠状动脉的供血与心肌的需血之间发生矛盾,冠状动脉血流量不能满足心肌代谢的需要,引起心肌急剧的、暂时缺血缺氧时,心肌内积聚过多的代谢产物,如乳酸、丙酮酸等酸性物质或类似激肽的多肽类物质,刺激心脏内自主神经的传入纤维末梢、传至大脑,产生痛觉。常因体力劳动或情绪激动而诱发,也可在饱餐、寒冷、阴雨天气、吸烟酗酒时发病。

【临床表现】临床主要表现为胸痛,其特点是阵发性的前胸压榨性疼痛,主要位于胸骨后部,可放射至心前区和左肩、左譬内侧达无名指和小指或至咽、颈、背、上囊部等。胸痛常发生于劳累或情绪激动时,疼痛出现后常逐步加重,煞后在3—5分钟内逐渐消失,一般在停止诱发症状的活动后缓解,舌下含服硝酸甘油也能在几分钟内缓解,可数天或数周发作一次,也可一日内多次发作。临床上男性多与女性,多发生于40岁以上的男性和绝经期的女性,有高血压、高血脂和糖尿病、肥胖、吸烟史者,发病率更高。 【实验室及其它辅助检查】心电图检查:静息时,约半数患者为正常,也可出现非特异性ST段和T波异常,也可有陈旧性心肌梗死的改变。发作时,可出现暂时性心肌缺血性ST段压低,有时可出现T波倒置。变异性心绞痛发作时可出现ST波抬高,运成形术或冠脉内支架植入术等介入治疗。也可行外科手术冠状动脉搭桥术。 【健康教育指导】 1.饮食指导合理的饮食可使病情得到控制,预防并发症的发生。饮食宜低盐、低脂、清淡、易消化、高纤维素饮食,多食新鲜蔬菜和水果,保持大便通畅,有利于心肌及血管功能的恢复;忌饱餐,宜少食多餐,每顿七八分饱,每日可增至五餐,两餐之间可增加些水果;伴有糖尿病及肥胖者要控制热量,减轻体重,食用低脂、低胆固醇饮食,并控制蔗糖及含糖食物的摄入。要选用多元不饱和脂肪酸含量高的烹调油。如豆油、菜籽油等。避免胆固醇含量高的食物,如肥肉、肝、脑、肾、肺等内脏以及蛋黄、奶油等;戒烟、戒酒、戒饮浓茶、

冠状动脉粥样硬化性心脏病病人的观察与护理

冠状动脉粥样硬化性心脏病病人的观察与护理 单位: 摘要:冠状动脉粥样硬化性心脏病病人的观察与护理 ` 关键词:冠状动脉粥样硬化性心脏病病人的观察与护理

冠状动脉粥样硬化性心脏病,系指冠状动脉粥样硬化,使血管腔狭窄、阻塞,导致心肌缺血缺氧,甚至坏死而引起的心脏病,它和冠状动脉功能性改变(痉挛)一起,统称冠状动脉性心脏病,简称冠心病,亦称缺血性心脏病。非冠状动脉性原因引起心脏生理需求超过冠状动脉释氧或心肌灌注不足,如贫血、严重心肌肥厚、主动脉瓣狭窄或严重关闭不全、主动脉夹层动脉瘤破裂、冠状动脉栓塞等则不包括在内。本病多发生在40岁以后,男性多于女性,脑力劳动者较多。 【病因】引起动脉粥样硬化的原因是多方面的,目前认为主要和下列因素有关: 1.血脂异常目前认为和动脉粥样硬化形成关系最密切的血脂异常为总胆固醇、甘油三酯、低密度脂蛋白(LDL)或极低密度脂蛋白(VLDL)增高;高密度脂蛋白尤其是它的亚组分Ⅱ(HDLⅡ)减低,载脂蛋白A(Apo A)降低和载脂蛋白B(Apo B)增高也被认为是致病因素。新近研究认为脂蛋白(a)增高是独立的致病因素。 2.高血压血压增高与本病关系密切。高血压病人患本病者较血压正常者高3-4倍,冠状动脉粥样硬化病人60%一70%有高血压。收缩压和舒张压增高都与本病密切相关。 3.吸烟吸烟可造成动脉壁氧含量不足,促进动脉粥样硬化的形成。吸烟者与不吸烟者比较,本病的发病率和病死率增高2-6倍,且与每日吸烟的支数呈正比。吸烟者戒烟后发病危险可减少。 4.糖尿病糖尿病多伴有高脂血症、血Ⅷ因子增高及血小板活力增高,使动脉粥样硬化的发病率明显增加。糖尿病病人心肌梗死发病率比正常人高2倍。 5.肥胖肥胖者(超标准体重10%为轻、20%为中、30%为重度肥胖)易患本病,体重迅速增加者尤其如此。 6.缺少活动缺少体力活动者冠心病发病率较高,而经常体力锻炼者血脂常较低,较少发生动脉粥样硬化。 7.家族史有高血压、糖尿病、冠心病家族史者,动脉粥样硬化的发病率比无此类家族史者明显增高。 8.其他年龄在40岁以上,男性或女性绝经期后,进食过多的动物性脂肪、胆固醇、糖和钠盐,性情急躁、竞争性过强、工作专心而不注意休息、强制自己为成就而奋斗的A型性格者均易患冠心病。 近年发现的危险因素还有:饮食中缺少抗氧化剂;存在胰岛素抵抗;血中一些凝血因子增高等。 【临床分型】根据冠状动脉病变的部位、范围及病变严重程度、心肌缺血程度,可将冠心病分为以下各型: 1.隐匿型冠心病亦称为无症状型冠心病。病人无自觉症状,而静息时或负荷试验后心电图有心肌缺血性改变(ST段压低、T波低平或倒置),心肌无明显组织形态改变。 2.心绞痛型冠心病有发作性胸骨后疼痛,为一时性心肌供血不足引起,心肌可无组织形态改变或有纤维化改变。 3.心肌梗死型冠心病由于冠状动脉闭塞以致心肌急性缺血坏死,症状严重,常伴有心力衰竭、心律失常、心源性休克、猝死等严重并发症。 4.缺血性心肌病型冠心病临床表现与原发性扩张型心肌病类似,表现为心脏增大、心力衰竭和心律失常。为长期心肌缺血导致心肌纤维化所致。 5.猝死型冠心病因原发性心脏骤停而死亡,多为缺血心肌局部发生电生理紊乱引起严重室性心律失常所致。 新近文献中常提到“急性冠状动脉综合征”,被认为是冠状动脉粥样斑块破裂、表面破损或出现裂纹,继而出血和血栓形成,引起冠状动脉不完全或完全性阻塞所致。约占所有冠心病病人的30%,可表现为不稳定型心绞痛、急性心肌梗死或心源性猝死。 心绞痛 心绞痛是一种由于冠状动脉供血不足,导致心肌急剧的、暂时的缺血与缺氧所引起的,以发作性胸痛或胸部不适为主要表现的临床综合征。 【病因与发病机制】最基本的原因是冠状动脉粥样硬化引起血管腔狭窄和(或)痉挛。其他病因以重度主动脉瓣狭窄或关闭不全较为常见,肥厚型心肌病、先天性冠状动脉畸形、冠状动脉扩张症、冠状动脉栓塞等亦可是本病病因。 心肌平时能最大限度地利用冠状动脉中的氧,当氧的需求量增加时,只能依靠增加冠脉血流量来提供。在正常情况下,冠脉循环有很大的储备力量,运动、心动过速使心肌氧耗量增加时,可通过神经体液的调节,扩张冠状动脉,增加冠脉血流量以进行代偿,故正常人不出现心绞痛。 当冠状动脉病变导致管腔狭窄或扩张性减弱时,限制了血流量的增加,使心肌的供血量相对地比较固定。一旦心脏负荷突然增加,如体力活动或情绪激动等使心肌氧耗量增加时,心肌对血液的需求增加;或当冠状动脉发生痉挛时,其血流量减少;或在突然发生循环血流量减少的情况下,冠脉血液灌注量突降,其结果均导致心肌血液供求之间矛盾加深,心肌血液供给不足,引起心绞痛发作。 在缺血缺氧的情况下,心肌内积聚过多的代谢产物如乳酸、丙酮酸等酸性物质或类似激肽的多肽类物质,刺激心脏内自主神经的传入纤

动脉粥样硬化和冠状动脉粥样硬化性心脏病

题目:冠状动脉粥样硬化性心脏病 Coronary atherosclerotic heart disease 课时安排(3学时) 教学课型(理论课) 教学目的要求: 1、了解病因及发病机制 2、了解本病的病理生理过程 3、掌握临床表现 4、掌握实验室检查 5、掌握诊断方法 6、熟悉本病的治疗方法 教学重点:冠心病的临床表现及治疗方法 教学难点:冠心病的病理生理过程 教学方法、手段、媒介:(教科书、板书、多媒体) 教学过程与教学内容 一、概念:指冠状动脉粥样硬化使血管腔阻塞,导致心肌缺血、缺氧而引起的心脏病。它和冠状动脉功能改变(痉挛)一起统称为冠状动脉性心脏病(Coronary heart disease CHD),简称冠心病、亦称缺血性心脏病(ischemic heart disease)。 二、流行病学epidemiology 1:冠心病是危害身体健康的常见病 2:年龄:多发生在40岁以后; 3:男性多于女性; 4:脑力劳动者多。 发病率:①我国近年呈上升趋势,占心脏病死亡数的10%-20%。 ②欧美国家本病极为常见,美国占心脏病死亡数的50%-70%。

三、分型 (一)无症状型冠心病(亦称隐匿性冠心病Latent CHD)无症状,但静息时或负荷试验后有心肌缺血心电图改变。 病理学检查:心肌无明显组织形态改变。 (三)心肌梗死型冠心病(m y o c a r d i a l i n f a r c t i o n C H D)症状严重,由冠状动脉闭塞致心肌急性缺血性坏死所致。 (四)缺血性心肌病型冠心病:表现为心脏增大,心力衰竭和心律失常。为长期心肌缺血导致心肌纤维化所致。临床表现与原发性扩张型心肌病类似。(三)心肌梗死型冠心病(m y o c a r d i a l i n f a r c t i o n C H D)症状严重,由冠状动脉闭塞致心肌急性缺血性坏死所致。 (四)缺血性心肌病型冠心病:表现为心脏增大,心力衰竭和心律失常。为长期心肌缺血导致心肌纤维化所致。临床表现与原发性扩张型心肌病类似。(五)猝死型冠心病(Sudden death CHD)因原发性心脏骤停而猝然死亡。多为缺血心肌局部发生电生理紊乱引起严重的室性心律失常所致。上述五种临床类型可以合并出现。 附:急性冠状动脉综合征是指由于冠状动脉内粥样斑块破裂,表面破损或出现裂纹,继而出血和血栓形成引起的冠状动脉不完全或完全阻塞所致。其临床表现可为不稳定型心绞痛、急性心肌梗死或心源性猝死。四、病因 主要病因:冠状动脉粥样硬化(器质性) 其次:冠状动脉痉挛(功能性改变)少见:冠状动脉的其他病变:如梅毒、炎症、栓塞、结缔组织病、创伤、先天畸形等。 第一节:心绞痛Angina pectoris 一、概念心绞痛是冠状动脉供血不足,心肌急剧的、暂时的缺血与缺

主动脉及冠状动脉粥样硬化治疗方法介绍

主动脉及冠状动脉粥样硬化治疗方法介绍 其实随着现在日新月异的生活环境,很多人都步入了亚健康的队伍之中,也不注意平时好好的休息,只顾着拼自己的事业,忽略了身体的健康,就会导致自己有可能得主动脉及冠状动脉粥样硬化,下面我就为大家介绍一下这种疾病的治疗方法。 治疗方法: 1.经皮冠状动脉腔内成形术(PTCA)经皮穿刺周围动脉将带球囊的导管送人冠状动脉到达狭窄节段,扩张球囊使狭窄管腔扩大,其主要作用机制为球囊扩张时:①斑块被压回管壁;②斑块局部表面破裂;③偏心性斑块处的无病变血管壁伸展。在此过程中内皮细胞被剥脱,它的再生需1周左右,此时中膜平滑肌细胞增生并向内膜游移,使撕裂的斑块表面内膜得到修复。 2.冠状动脉内支架植入术将以不锈钢或合金材料刻制或绕制成管状而其管壁呈网状带有间隙的支架(裸支架),置入冠状动脉内已经或未经PTCA扩张的狭窄节段支撑血管壁,维持血流畅通,是弥补PTCA的不足特别是减少术后再狭窄发生率的PCI。

其作用机制为支架植入后满意的结果是所有支架的网状管壁完 全紧贴血管壁,支架管腔均匀地扩张,血流畅通,可减少PTCA 后的血管壁弹性回缩,并封闭PTCA时可能产生的夹层,可使术 后残余狭窄程度降低到20%以下。术后支架逐渐被包埋在增厚的动脉内膜之中,内膜在1~8周内被新生的内皮细胞覆盖。支架 管壁下的中膜变薄和纤维化。药物洗脱支架又称为药物涂层支架,是在金属支架表面涂上了不同的药膜,此种支架植入后,平滑肌细胞的增生被抑制,使再狭窄率进一步降低,但药物洗脱支架使血管内皮化过程延迟而造成支架内血栓发生率较裸支架为高。 3.PCI术前、术后处理PCI术前需作碘过敏试验,查血小 板计数、出凝血时间、凝血酶原时间、肝肾功能、电解质。择期手术者,术前禁食4~6小时,术前3~5天开始服用氯吡格雷 75mg/d,阿司匹林100~150mg/d;如为急诊手术,术前未用抗 凝药者,应于术前嚼服阿司匹林300mg,口服氯吡格雷300mg。 术中常规使用肝素抗凝,急诊PCI时有时需加用血小板糖蛋白Ⅱb/Ⅲa受体拮抗剂,以抑制血小板聚集。术中及术后鞘管拔出前应检测活化凝血时间(activated clotting time,ACT)。鞘管 拨出后局部压迫止血15~20分钟,如无出血则可加压包扎,包 扎后仍应密切观察,防止局部出血。

冠状动脉粥样硬化性心脏病讲课教案

冠状动脉粥样硬化性心脏病的健康教育指导 【概念】冠状动脉粥样硬化性心脏病,是指冠状动脉粥样硬化,使血管腔狭窄、阻塞,导致心肌缺血缺氧,甚至坏死而引起起的心脏病,它和冠状动脉功能性改变一起,统称冠状动脉性心脏病,筒称冠心病,亦称缺血性心脏病。临床分型:隐匿型冠心病、心绞痛型心病、心肌梗死型冠心病、缺血性心肌病型冠心病、猝死型冠冠心病。 【病因】引起动脉粥样硬化的原因是多方面的,目前认为主要和下列因素有关:血脂异常、高血压、吸烟、糖尿病、肥胖、缺少活动、家族史,其他如年龄在40岁以上,男性或女性绝经后,进食许多的动物性脂肪、胆固醇、糖和钠盐,性情急躁竞争性过强,工作专心而不注意休息、强制自己为成就而奋斗的A型性格者均易患冠心病。 一、心绞痛 【概念】心绞痛是一种由于冠状动脉供血不足,导致心肌急剧的、暂时的缺血与缺氧所引起的临床综合征。 【病因】最基本的病因是冠状动脉粥样硬化引起血管狭窄和(或)痉挛,当冠状动脉的供血与心肌的需血之间发生矛盾,冠状动脉血流量不能满足心肌代谢的需要,引起心肌急剧的、暂时缺血缺氧时,心肌内积聚过多的代谢产物,如乳酸、丙酮酸等酸性物质或类似激肽的多肽类物质,刺激心脏内自主神经的传入纤维末梢、传至大脑,产生痛觉。常因体力劳动或情绪激动而诱发,也可在饱餐、寒冷、阴雨天

气、吸烟酗酒时发病。 【临床表现】临床主要表现为胸痛,其特点是阵发性的前胸压榨性疼痛,主要位于胸骨后部,可放射至心前区和左肩、左譬内侧达无名指和小指或至咽、颈、背、上囊部等。胸痛常发生于劳累或情绪激动时,疼痛出现后常逐步加重,煞后在3—5分钟内逐渐消失,一般在停止诱发症状的活动后缓解,舌下含服硝酸甘油也能在几分钟内缓解,可数天或数周发作一次,也可一日内多次发作。临床上男性多与女性,多发生于40岁以上的男性和绝经期的女性,有高血压、高血脂和糖尿病、肥胖、吸烟史者,发病率更高。 【实验室及其它辅助检查】心电图检查:静息时,约半数患者为正常,也可出现非特异性ST段和T波异常,也可有陈旧性心肌梗死的改变。发作时,可出现暂时性心肌缺血性ST段压低,有时可出现T波倒置。变异性心绞痛发作时可出现ST波抬高,运成形术或冠脉内支架植入术等介入治疗。也可行外科手术冠状动脉搭桥术。 【健康教育指导】 1.饮食指导合理的饮食可使病情得到控制,预防并发症的发生。饮食宜低盐、低脂、清淡、易消化、高纤维素饮食,多食新鲜蔬菜和水果,保持大便通畅,有利于心肌及血管功能的恢复;忌饱餐,宜少食多餐,每顿七八分饱,每日可增至五餐,两餐之间可增加些水果;伴有糖尿病及肥胖者要控制热量,减轻体重,食用低脂、低胆固醇饮食,并控制蔗糖及含糖食物的摄入。要选用多元不饱和脂肪酸含量高的烹调油。如豆油、菜籽油等。避免胆固醇含量高的食物,如肥肉、

(推荐)冠状动脉粥样硬化性心脏病人的护理查房

护理查房 病例简介 患者,陈国强,男,78岁,因“反复胸闷胸痛5+年,复发加重1+天。”入院于2015年9月4日 23:08。 主要表现:因反复胸闷胸痛发作,我院住院,经冠脉CT等检查诊断“冠状动脉粥样硬化性心脏病”,长期服用相关药物治疗。本次入院主要因患者活动后出现阵发性前胸骨下段及心前区胸闷,胸痛1+天,多为隐痛,持续10+分钟,频繁发作,精神不佳,肢体乏力,胸痛无放射及转移,症状与进食无明显关系,无心悸,无心前区频死感,无呼吸困难;患者交替含化速效救心丸及硝酸甘油片,症状有减轻,为进一步诊治入院。 既往史:有“高血压3极极高危,左房增大”,前列腺增生,胆囊结石,病毒性脑膜炎,2型糖尿病,糖尿病伴皮肤溃疡,糖尿病下肢动脉病变,糖尿病周围神经病变,“Ⅰ度房室传导阻滞,完全性右束支传导阻滞,下肢静脉曲张及动脉粥样硬化症,阑尾切除术等病史。 查体 T36.1℃,P80次/分,R22次/分,BP166/78mmHg ;步入病房,神志清楚,语言清晰,精神欠佳,口唇发绀,伸舌居中,双肺呼吸音清晰,未闻及确切干湿罗音,心界饱满,心率80次/分,律齐,心音低,未闻及杂音;腹部区阳性体征右下腹可见陈旧手术瘢痕;右下肢小腿外侧可见纱布覆盖,内见大小约1*2.0cm部分结痂皮肤溃疡,未见明显渗液及渗血,双下肢可见多条曲张静脉,双下肢略肿。 辅助检查 2015.08 川医心脏彩超:左房增大,室间隔增厚,升主动脉稍增宽。 2015.09.04 门诊心电图:窦性心律,Ⅰ度房室传导阻滞,完全性右束支传导阻滞。 2015.9.05 血常规WBC8.8*109/L,N70.4%,Hgb151g/L,C反应蛋白1.1mg/l。 生化:ALT,AST,肾功能,电解质未见异常,心肌酶CK,心肌肌钙蛋白异常。 凝血三项及D二聚体未见异常。 2015.9.06

冠状动脉粥样硬化性心脏病

冠状动脉粥样硬化性心脏病 一、定义和病理学基础 (一)定义 冠心病(coronary heart disease,CHD)全称冠状动脉粥样硬化性心脏病(coronary atheroselerotic heart disease),有时又被称为冠状动脉病(coronary artery disease,CAD)或缺血性心脏病(ischemic heart disease,IHD)。指由于冠状动脉硬化使管腔狭窄或阻塞导致心肌缺血、缺氧而引起的心脏病。 (二)动脉粥样硬化的自然病变过程 冠心病主要的病理基础是冠状动脉粥样硬化,使冠状动脉血流减慢、狭窄或阻塞导致心肌缺血缺氧而引起的心脏病。动脉粥样硬化有3种基本的病理改变:脂肪条纹形成;纤维斑块形成,导致管腔狭窄、变形、血流缓慢,是进展性动脉粥样硬化的特征性病变和各种临床症状的最主要原因;进展性斑块形成,大量的脂质聚集、逐渐坏死、崩解,并引起结缔组织的增生和炎症,发生钙化,使冠状动脉管腔严重狭窄或完全性闭塞。冠心病的发生发展是一个缓慢渐进的过程,患者从青少年起即开始有血管壁的脂肪条纹形成,至40岁左右病变的血管逐渐明显变窄,冠状动脉供血减少,并可能发生出血、溃疡、血栓等改变,导致相应的临床症状:如心绞痛、心肌梗死、冠状动脉猝死等。 二、流行病学 全球疾病负担研究资料表明,每年死亡的4000余万例(发达国家1200余万,发展中国家2800余万)中有1000多万例死于心血管疾病,其中发达国家和发展中国家各占1/2。 三、膳食营养因素与冠心病的危险性 心血管疾病的危险因素包括:吸烟、总胆固醇(Tc)和低密度脂蛋白胆固醇(LDL-c)水平升高、超重和肥胖、高血压、糖尿病、久坐少动的生活方式、高密度脂蛋白胆固醇(HDL-c)水平降低、甘油三酯(TG)升高、载脂蛋白(a)水平增加等。其中许多可以通过膳食和生活方式来调控,膳食营养因素无论是在冠心病的发病和防治方面都具有重要作用。

冠状动脉硬化

冠状动脉硬化能否逆转 动脉硬化调理简介 动脉粥样硬化是动脉硬化中最常见而重要的类型。本病主要累及大型及中型的肌弹力型动脉,以主动脉、冠状动脉及脑动脉为多见,常导致管腔闭塞或管壁破裂出血等严重后果。动脉粥样硬化多见于40岁以上的男性和绝经期后的女性。本病常伴有高血压、高胆固醇血症或糖尿病等。脑力劳动者较多见,对人类健康危害甚大,为老年人主要病死原因之一。症状主要决定于血管病变及受累器官的缺血程度,主动脉粥样硬化常无症状,冠状动脉粥样硬化者,若管径狭窄达75%以上,则可发生心绞痛、心肌梗塞、心律失常,甚至猝死。脑动脉硬化可引起脑缺血、脑萎缩,或造成脑血管破裂出血,肾动脉粥样硬化常引起夜尿、顽固性高血压、严重者可有肾功能不全。肠系膜动脉粥样硬化可表现为饱餐后腹痛便血等症状。下肢动脉粥样硬化引起血管腔严重狭窄者可出现间歇性跛行、足背动脉搏动消失,严重者甚至可发生坏疽。 营养原则 1、控制总热能摄入,保持理想体重。 2、限制脂肪和胆固醇的摄入。 3、提高植物性蛋白质的摄入,少吃甜食。 4、保证充足的膳食纤维.

5、饮食清淡、少盐。 6、适当多吃保护性食品,少饮酒。 7、供给充足的矿物质和维生素。 适宜食物 1、主食及豆类的选择 各类谷物均可,建议多食粗粮,如燕麦、糙米、粳米、小米、玉米、大豆和大豆制品等。 2、肉蛋奶类的选择 多食用深海鱼类、贝类如干贝、海蜇、海蚌、带鱼等。 3、蔬菜的选择 芹菜、木耳、洋葱、香菇、冬瓜、百合、蚕豆、黄瓜、菠菜、油菜等。 4、水果的选择 猕猴桃、橘子、菠萝、草莓、葡萄等。 饮食禁忌 猪脑、猪肝等动物内脏、肥肉、油脂、腌制食品、饮酒低于6g 参考膳食 早餐:燕麦、大米、芹菜、腐竹、豆浆1杯、如燕麦粥、芹菜拌腐竹; 午餐:小麦粉、鲤鱼、金针菇、如馒头、清蒸鲤鱼、炒金针

冠状动脉粥样硬化性心脏病的食疗

一、饮食 冠状动脉粥样硬化性心脏病的食疗(以下资料仅供参考,详细需咨询医生) 方1:豆浆1碗,粳米100克,冰糖适量。将粳米洗净,放锅内加水煮粥,等粥半熟时倒入豆浆,煮至粳米开花,插手冰糖化开即成。可时常食用。 方2:银耳、黑木耳各10克,冰糖适量。将银耳、黑木耳用温水泡发并洗净,放入碗中,加水和冰糖,隔水蒸1小时,分数次食用。 方3:白扁豆20克,韭菜、山楂各30克,白糖适量。将前几味加水煎熟,用白糖调味服食。每一日1剂,可常服。 方4:花生米和米醋、桂花各适量。把花生米、桂花放入醋中浸泡24小时,每一天起床后服15粒。可常食用。 方5:大蒜30克,放沸水中煮1~2分钟捞出,然后将粳米100克,放入煮蒜水中煮成粥。早晚温食。 方6:香菇50克,大枣10枚,共煮汤食用。每一日1次。可常食用。 冠状动脉粥样硬化性心脏病患者吃什么对身体好? 1、宜低脂、低钠清淡饮食。 2、常喝苹果汁会降低心脏病的患病率。这是因为苹果汁中的抗氧化剂有利于心脏的健康运转。 3、多补充膳食纤维素,纤维素主要存在于蔬菜中,以竹笋、梅干菜、芹菜、韭菜为代表,粮食作物中以黄豆、燕麦含量较多。 冠状动脉粥样硬化性心脏病患者吃什么对身体不好? 二、忌烟酒。 2、避免摄入辛辣刺激性食物。 三、少吃油炸食品。 四、忌食肥腻食物。 心肌缺血,是指心脏的血液灌注减少,导致心脏的供氧减少,心肌能量代谢不正常,不能支持心脏正常工作的一种病理状态。心脏的供血不是一成不变的,而是始终存在着波动,但这种波动经过机体自身调节,促使血液供需相对恒定,保证心脏正常工作。如果任何一种原因引起心肌缺血,经机体调节不能满足心脏工作需要,这就构成

冠状动脉粥样硬化

冠状动脉粥样硬化性心脏病 定义 ?冠状动脉粥样硬化使血管腔狭窄、阻塞,导致心肌缺血、缺氧,甚至坏死而引起的心脏病; ?冠状动脉功能性改变(痉挛); 统称冠状动脉性心脏病,简称冠心病,亦称缺血性心脏病 定义:冠状动脉粥样硬化使血管腔狭窄、阻塞,导致心肌缺血、缺氧,甚至坏死而引起的心脏病,和冠状动脉功能性改变(痉挛),统称冠状动脉性心脏病,简称冠心病,亦称缺血性心脏病 一、病因----易患因素、危险因素 .年龄 >40y .性别男:女(2:1) .职业 .饮食西方>东方 .血脂 HDL,Apo A有保护作用 .血压收缩压、舒张压 .吸烟与吸烟支数正相关 .糖尿病

.肥胖 . 遗传 . 其他:高尿酸、胰岛素抵抗、高半胱氨酸血症 二、临床分型(5型) 二、临床分型(5型) 1.无症状型冠心病(silent--隐匿型冠心病) 2.心绞痛型冠心病 3.心肌梗死型冠心病 4.缺血性心肌病型冠心病 5.猝死型冠心病 急性冠状动脉综合征(ACS) ?包括不稳定性心绞痛、非Q波心肌梗死、急性Q波心肌梗死和心源性猝死。 ?冠状动脉内动脉粥样硬化斑块破裂后,随之触发的血小板激活和凝血酶形成,最终导致血栓形成是ACS是主要发病机制。?但近来已肯定炎症也是ACS发病的重要因素。 X综合征: 典型心绞痛症状 运动负荷试验阳性 麦角新碱试验前后冠状动脉造影阴性 心绞痛

定义:冠状动脉供血不足,心肌急剧的、暂时的缺血、缺氧所引起的临床综合征。表现为阵发性前胸压榨性疼痛,主要位于胸骨后部,可放射至心前区与左上肢,常发生于劳动或情绪激动时,持续数分钟,休息或用硝酸酯制剂后消失。 一、发病机制 心肌缺血、缺氧引起疼痛 心肌供血、氧--心肌需血、氧产生矛盾 缺血缺氧--心肌内代谢产物(乳酸、丙酮酸、磷酸等酸性物质;或类似激肽的多肽类物质)积聚--刺激心脏内植物神经的传入纤维末梢,产生疼痛感觉。 这种痛觉反映在与植物神经进入水平相同脊髓段(T1-5)的脊神经所分布的皮肤区域,即胸骨后及两臂的前两侧与小指,尤 其是在左侧,而多不在心脏解剖位臵处。 心肌氧耗影响因素 由心肌张力、心肌收缩力和心率决定。用心率╳收缩压(二重乘积)来评估 二、临床表现 1.症状:典型的心绞痛发作常有以下特点

冠状动脉粥样硬化的病理解剖

病理解剖:冠状动脉粥样硬化病变大多数发生在冠状动脉主要分支的近段,距主动脉开口约5cm的范围内,常位于房室沟内,四周包绕以脂肪组织的冠状动脉主支,病变部位为手术治疗提供有利条件。伴有高血压或糖尿病者,则病变范围广,可累及冠状动脉小分支。粥样硬化病变主要累及冠状动脉内膜,在病变早期内膜和中层细胞内出现脂质和含脂质的巨吞噬细胞浸润,内膜增厚呈现黄色斑点。随着多种原因引起的内膜细胞损伤和内膜渗透性增高,脂质浸润增多,斑点也逐渐增多扩大,形成斑块或条纹。内膜也出现局灶性致密的层状胶原,病变累及内膜全周即引致血管腔狭窄或梗阻。病变的冠状动脉血流量减少,运动时甚或静息时局部心肌供血供氧量不足,严重者可产生心肌梗死。冠状动脉粥样硬化病灶可并发出血、血栓形成和动脉瘤。粥样硬化病灶破裂出血时脂质进入血管腔,易引起远侧血管栓塞和诱发血栓形成,血管壁血肿又可逐渐形成肉芽组织和纤维化。内膜出血急性期可能促使冠状动脉和侧支循环分支痉挛,加重心肌缺血的程度。血栓形成常与出血合饼存在,亦可引致远侧血管栓塞和血管壁纤维化。冠状动脉内膜粥样硬化斑块下血管壁中层坏死并发动脉瘤者非常罕见,大多数病例仅一处血管发生动脉瘤,直径可达 2.5cm,腔内可含有血块,但血管腔仍保持通畅。粥样硬化病变引致的冠状动脉狭窄,如仅局限于冠状动脉一个分支,且发展过程缓慢,则病变血管与邻近冠状动脉之间的交通支显著扩张,可建立有效的侧支循环,受累区域的心肌仍能得到足够的血液供应。病变累及多根血管,或狭窄病变进展过程较快,侧支循环未及充分建立或饼发出血、血肿、血栓形成、血管壁痉挛等情况,则可引致严重心肌缺血,甚或心肌梗塞。病变区域心肌组织萎缩,甚或坏死以至于破裂或日后形成纤维疤痕,心肌收缩功能受到严重损害,则可发生心律失常或心脏泵血功能衰竭。心肌缺血的范围越大,造成的危害逾严重。左冠状动脉供应的冠循环血流量最多,因此,左冠状动脉及其分支梗阻造成的心脏病变较右冠状动脉更为严重。

冠状动脉粥样硬化性心脏病

冠状动脉粥样硬化性心脏病 概述描述 冠状动脉粥样硬化性心脏病是冠状动脉血管发生动脉粥样硬化病变而引起血管腔狭窄或阻塞,造成心肌缺血、缺氧或坏死而导致的心脏病,常常被称为“冠心病”。但是冠心病的范围可能更广泛,还包括炎症、栓塞等导致管腔狭窄或闭塞。世界卫生组织将冠心病分为5大类:无症状心肌缺血(隐匿性冠心病)、心绞痛、心肌梗死、缺血性心力衰竭(缺血性心脏病)和猝死5种临床类型。临床中常常分为稳定性冠心病和急性冠状动脉综合征。 病因 冠心病的危险因素包括可改变的危险因素和不可改变的危险因素。了解并干预危险因素有助于冠心病的防治。 可改变的危险因素有:高血压,血脂异常(总胆固醇过高或低密度脂蛋白胆固醇过高、甘油三酯过高、高密度脂蛋白胆固醇过低)、超重/肥胖、高血糖/糖尿病,不良生活方式包括吸烟、不合理膳食(高脂肪、高胆固醇、高热量等)、缺少体力活动、过量饮酒,以及社会心理因素。不可改变的危险因素有:性别、年龄、家族史。此外,与感染有关,如巨细胞病毒、肺炎衣原体、幽门螺杆菌等。 冠心病的发作常常与季节变化、情绪激动、体力活动增加、饱食、大量吸烟和饮酒等有关。症状 典型症状 突感心前区疼痛,多为发作性绞痛或压榨痛。 常见症状 因体力活动、情绪激动等诱发,突感心前区疼痛,多为发作性绞痛或压榨痛,也可为憋闷感。疼痛从胸骨后或心前区开始,向上放射至左肩、臂,甚至小指和无名指,休息或含服硝酸甘油可缓解。胸痛放散的部位也可涉及颈部、下颌、牙齿、腹部等。胸痛也可出现在安静状态下或夜间,由冠脉痉挛所致。疼痛逐渐加剧、变频,持续时间延长,祛除诱因或含服硝酸甘油不能缓解,此时有可能发生心肌梗死。 其他症状 可伴有全身症状,如发热、出汗、惊恐、恶心、呕吐等。 常用检查 心电图、心电图负荷试验、动态心电图、核素心肌显像、超声心动图、血常规检查、生化检查、冠状动脉CT。 诊断 冠脉造影及血管内成像是诊断的“金标准”。 诊断依据 冠心病的诊断主要依赖典型的临床症状,再结合辅助检查发现心肌缺血或冠脉阻塞的证据,以及心肌损伤标志物判定是否有心肌坏死。 治疗原则 包括生活习惯改变、药物和血运重建治疗。 治疗方针 治疗包括内科药物治疗、介入治疗和外科手术(冠状动脉搭桥手术)治疗等。 一般治疗 生活习惯改变:戒烟限酒,低脂低盐饮食,适当体育锻炼,控制体重等。 药物治疗 1.硝酸酯类药物主要有:硝酸甘油、硝酸异山梨酯、5-单硝酸异山梨酯、长效硝酸甘油制剂等。硝酸酯类药物是稳定型心绞痛患者的常规用药。

冠状动脉粥样硬化的形成机制

动脉粥样硬化的发病机制 动脉粥样硬化是一种慢性动脉疾病,可引起冠心病和脑梗塞。对动脉粥样硬化的病因和发病机制的了解,进展仍然较慢。其主要原因是动脉粥样硬化的病因复杂,病变发展缓慢且在早期无症状。故研究中所能得到的人体数据多是横断面的,难以肯定其因果关系;多种动物模型的动脉粥样硬化病变又都是“速成”的。尽管近年来有了遗传性高脂血兔的模型,但在动物模型中,仍难观察到类似人的多年来自然形成病变时那种细微而重要的变化。近年来,虽然很多实验室用了细胞培养等技术,但也与在体的情况有一定差距。临床和流行病学多年来随访观察所用的指标为急性心肌梗塞或猝死发生率,这类指标的影响因素极为复杂,不易确切地推测到动脉粥样硬化的程度。目前尚缺乏无创地、能比较准确地重复测量动脉壁(特别是冠状动脉及脑动脉)粥样硬化病变程度的可靠方法,因而对诸多危险因子的确定也是根据其并发病的症状或体征,而不是根据粥样硬化的程度。在动脉粥样硬化的研究中,过去多是对危险因子(特别是高脂血症、高血压)、人体尸检材料或动物模型动脉粥样硬化的形态以及生物化学等进行研究,后来才逐渐转向对动脉壁的有关细胞成分(内皮、平滑肌及单核/巨噬细胞)和细胞因子、生长因子及其受体的细胞和分子生物学方面的研究。近年来这方面的研究发展迅速。 为便于理解,下面简要复习一下正常动脉壁的基本结构、功能、动脉粥样硬化病变分类,然后简述动脉粥样硬化的病因学说和病变形成的机制。 一、正常动脉壁的主要结构与功能 正常动脉 (肌型和弹力型)壁从形态上可清楚地分为三层,即内膜、中膜及外膜。 (一)内膜 内膜位于动脉腔面,包括一连续的单层内皮细胞(EC)与其下一层断续的弹力纤维称内弹力膜。在内皮与内弹力膜之间,有结缔组织(胶原、弹性蛋白、细胞外基质)和平滑肌细胞(SMC,小儿偶有)。随着年龄的增长,其基质和SMC渐增,内膜变厚。内膜并非仅为循环血液与动脉壁之间的屏障。EC的代谢十分活跃,它参与血液-血管壁的许多重要生理功能,包括凝血、纤溶、血小板粘附和聚集、白细胞粘附和迁移,以及通过其合成与分泌的多肽、糖蛋白或直接的细胞间信息交流,调控动脉壁平滑肌细胞的功能(如增殖,舒张和收缩)。现将其与动脉粥样硬化密切有关者简述如下。 1.在动脉腔面形成“非血栓表面”。已知主要由于内膜上的硫酸乙酰肝素蛋白聚糖(HSPG)和前列环素(PGI 2 )能抑制血小板的粘附和聚集。前者还能加速抗凝血酶Ⅲ对凝血酶的灭活作用以及EC表面的thrombospondin与凝血酶结合后,激活C蛋白;后者再与EC合成的S 蛋白,形成复合物,灭活血液中某些凝血因子,从而防止血小板、单核细胞等在血管腔面粘附和血栓的形成;

相关文档
最新文档