蓝光LED光子晶体技术原理及制

蓝光LED光子晶体技术原理及制

蓝光LED光子晶体技术原理及制

为回避日亚化学的蓝光LED 加萤光粉制技术专利,各业者纷纷投入其它能达到散发出白光的LED 技术,目前最被期待的技术是利用UV LED 来达到白光的目的,但是,UV LED 仍旧有着光外漏及低亮度两个不易克服的困难。使得除了继续努力来解决相关的问题外,不得不再去寻求其它的材料或技术来达到散发出白光的LED 技术。

在1987 年,国籍相异且分居不同地点的两位学者,Eli Yablonovitch 与Sajeev John 几乎同一时间在理论上发现,电磁波在周期性介电质中的传播状态具有频带结构,利用两种以上不同折射率(或介电常数)材料做周期性变

化来达成光子能带的物质。所以光子晶体(PhotonicCrystal)被发现已将近20

年后的今天,在各领域的应用有着相当令人激赏的表现,一直是备受研发者所关心的一项技术。

目前利用二次元光子晶体来达到完成白光LED 的技术,已陆续出现突破性的发展,使得未来Photonic Crystal LED 已成为众所瞩目的焦点与摆脱日亚化学专利的期望寄托。

晶体生长方法

晶体生长方法 一、提拉法 晶体提拉法的创始人是J. Czochralski,他的论文发表于1918年。提拉法是熔体生长中最常用的一种方法,许多重要的实用晶体就是用这种方法制备的。近年来,这种方法又得到了几项重大改进,如采用液封的方式(液封提拉法,LEC),能够顺利地生长某些易挥发的化合物(GaP等);采用导模的方式(导模提拉法)生长特定形状的晶体(如管状宝石和带状硅单晶等)。所谓提拉法,是指在合理的温场下,将装在籽晶杆上的籽晶下端,下到熔体的原料中,籽晶杆在旋转马达及提升机构的作用下,一边旋转一边缓慢地向上提拉,经过缩颈、扩肩、转肩、等径、收尾、拉脱等几个工艺阶段,生长出几何形状及内在质量都合格单晶的过程。这种方法的主要优点是:(a)在生长过程中,可以方便地观察晶体的生长情况;(b)晶体在熔体的自由表面处生长,而不与坩埚相接触,这样能显著减小晶体的应力并防止坩埚壁上的寄生成核;(c)可以方便地使用定向籽晶与“缩颈”工艺,得到完整的籽晶和所需取向的晶体。提拉法的最大优点在于能够以较快的速率生长较高质量的晶体。提拉法中通常采用高温难熔氧化物,如氧化锆、氧化铝等作保温材料,使炉体内呈弱氧化气氛,对坩埚有氧化作用,并容易对熔体造成污杂,在晶体中形成包裹物等缺陷;对于那些反应性较强或熔点极高的材料,难以找到合适的坩埚来盛装它们,就不得不改用其它生长方法。 二、热交换法

热交换法是由D. Viechnicki和F. Schmid于1974年发明的一种长晶方法。其原理是:定向凝固结晶法,晶体生长驱动力来自固液界面上的温度梯度。特点:(1) 热交换法晶体生长中,采用钼坩埚,石墨加热体,氩气为保护气体,熔体中的温度梯度和晶体中的温度梯度分别由发热体和热交换器(靠He作为热交换介质)来控制,因此可独立地控制固体和熔体中的温度梯度;(2) 固液界面浸没于熔体表面,整个晶体生长过程中,坩埚、晶体、热交换器都处于静止状态,处于稳定温度场中,而且熔体中的温度梯度与重力场方向相反,熔体既不产生自然对流也没有强迫对流;(3) HEM法最大优点是在晶体生长结束后,通过调节氦气流量与炉子加热功率,实现原位退火,避免了因冷却速度而产生的热应力;(4) HEM可用于生长具有特定形状要求的晶体。由于这种方法在生长晶体过程中需要不停的通以流动氦气进行热交换,所以氦气的消耗量相当大,如Φ30 mm的圆柱状坩埚就需要每分钟38升的氦气流量,而且晶体生长周期长,He气体价格昂贵,所以长晶成本很高。 三、坩埚下降法 坩埚下降法又称为布里奇曼-斯托克巴格法,是从熔体中生长晶体的一种方法。通常坩埚在结晶炉中下降,通过温度梯度较大的区域时,熔体在坩埚中,自下而上结晶为整块晶体。这个过程也可用结晶炉沿着坩埚上升方式完成。与提拉法比较该方法可采用全封闭或半封闭的坩埚,成分容易控制;由于该法生长的晶体留在坩埚中,因而适于生长大块晶体,也可以一炉同时生长几块晶体。另外由于工艺条件

光子晶体基本原理

光子晶体 2.1光子晶体的基本原理 大家都知道,许多研究都因类似的现象作出的假设。这是因为宇宙具有相同的模式,其中有一个高度一致的内部规则,即使拥有千变万化的外观。光子晶体也是这样,这是第一先假设光子也具有类似于电子的传输性质,不同的是电子是在普通晶体中传输,而光子是在光子晶体中传输,然后在半导体的基础上发展起来的。 另外,晶体的原子是周期性的,有序排列的,由于这个周期势场,电子的运动收到周期性布拉格散射效应,从而形成一个能带结构,带隙存在于带与带之间。如果电子波带隙能量落到带隙中,就不能继续传播。事实上,无论什么电磁波,只要受到周期性调制,就会产生一个能带结构,也有可能出现带隙。 简而言之,由于半导体中离子的周期性排列引起了能带结构的产生,而能带控制着载流子(半导体中的电子或者空穴)在半导体中运动。同样的,在光子晶体由周期性变化所产生的光的光带隙结构,从而由光带隙结构控制着光在光子晶体中的移动。 2.2光子晶体的制备 人们已广泛认识到光子晶体具有的巨大应用前景, 这是光子晶体得以应用的必要条件———光子晶体的制备工艺得到世界上众多研究人员的深入研究,在此后的时间里,关于光子晶体的理论研究和实际应用的探索得到突飞猛进的发展,已然成为国际信息科技领域的一个热点问题。 从光子晶体的维数上看,光子晶体可以分为一维光子晶体, 二维光子晶体和三维光子晶体。一维光子晶体,顾名思义,就是在一个维度上周期性排布的光子晶体,它是由两种介质块构成的,而且这两种介质块须具有不同的介电常数,并在空间上交替排列。二维光子晶体是不同介电常数的介质柱(或其他规则介质)在二维空间上周期性排列的结构,如石墨结构,在某一平面上具有周期性,而在垂直这个平面的方向上是连续不变的。三维光子晶体是在三个方向上均具有周期性结构,因此与一维、二维光子晶体在某一个或两个方向上具有光子带隙不同,它在三个方向也都具有光子禁带,也被称为全方位光子带隙。

半导体能带理论(精)

一. 前言 光子晶体也许现在的你对光子晶体这个名字并不熟悉,然而正如20世纪初人们对硅这种半导体材料的懵懂一样,也许在21世纪末的时候,你将对这个名词耳熟能详。因为,到时从你的书桌上摆着的高速个人电脑(上百甚至上千G Hz 的运算速度),到快速而便捷的网络设施,甚至直至你家中能够根据室内实际温度自动开关调节的空调系统,都可能要得益于这种前途光明的新型材料的伟大功劳。光子晶体是一个很前沿的话题,同时它也是一个很深奥的物理概念。要想把光子晶体解释清楚,并不是一件容易的事。但是要想了解它,可以先从它产生的背景说起。我们现在都知道,半导体在我们的生活中充当了重要的角色。利用它的一些区别于导体和绝缘体的特殊的性质,人们制造出了许多的现代固体电子与光电子器件。收音机、电视、计算机、电话、手机等等无一不再应用着半导体制成的芯片、发光二极管(LED)等等元件。而给我们带来这么多便利的半导体材料大多是一些晶体。 二.晶体知识. 晶体和半导体中所谓的晶体,是指内部原子有序排列,形成一种周期性的重复结构,而往往就是这些重复性的结构存在,才决定了半导体的特殊性质。晶体又分单晶和多晶:单晶——在一块材料中,原子全部作有规则的周期排列,由于内部的有序性和规则性,其外形往往是某种规则的立体结构。多晶——只在很小范围内原子作有规则的排列,形成小晶粒,而晶粒之间有无规则排列的晶粒界[j ,HSOv) 隔开。我们熟悉的硅、锗等晶体就属于单晶。半导体分类:半导体可分为本征半导体、P型半导体、N型半导体。本征半导体:硅和锗都是半导体,而纯硅和锗晶体称本征半导体。硅和锗为4价元素,其晶体结构稳定。 P型半导体:P型半导体是在4价的本征半导体中混入了3价原子,譬如极小量(一千万之一)的铟合成的晶体。由于3价原子进入4价原子中,因此这晶体结构中就产生了少一电子的部分。由于少一电子,所以带正电。P型的“P”正是取“Positve(正)”一词的第一个字母。N型半导体:若把5价的原子,譬如砷混入4价的本征半导体,将产生多余1个电子的状态结晶,显负电性。这N是从“Negative(负)”中取的第一个字母。二极管的原理:如图一是未加电场(电压)的情况P型载流子和N型载流子随机地在晶体中。若在图二中的N端施加正电压,在P端施加负电压,内部的载流子,电子被拉到正电压方,空核被拉到负电压方,从而结合面上的载流子数量大大减少,电阻便增大了。如图三加相反电压,此时内部载流子通过结合面,变得易于流动。换言之电阻变小,电流正向流动。请记住:二极管的正向导通是从P型指向N型,国际的标法是:三角形表示P型,横线是N型。二极管在0.6V以 上的电压下电流可急剧移动,反向则无! 三.能带理论能级(Enegy Level) 在孤立原子中,原子核外的电子按照一定的壳层排列,每一壳层容纳一定数量的电子。每个壳层上的电子具有分立的能量值,也就是电子按能级分布。为简明起见,在表示能量高低的图上,用一条条高低不同的水平线表示电子的能级,此图称为电子能级图。能带(Enegy Band):晶体中大量的原子集合在一起,而且原子之间距离很近,以硅为例,每立方厘米的体积内有5×1022个原子,原子之间的最短距离为0.235nm。致使离原子核较远的壳层发生交叠,壳层交叠使电子不再局限于某个原子上,有可能转移到相邻原子的相似壳层上去,也可能从相邻原子运动到更远的原子壳层上去,这种现象称为电子的共有化。从而使本来处于同一能量状态的电子产生微小的能量差异,与此相对应的能级扩展为能带。禁带(Forbidden Band):允许被电子占据的能带称为允许带,允许带之间的范围是不允许电子占据的,此范围称为禁带。原子壳层中的内层允许带总是被电子先占满,然后再占据能量更高的外面一层的允许带。被电子占满的允许带称为满带,每一个能级上都没有电子的能带称为空带。价带(Valence Band):原子中最外层的电子称为价电子,与价电带。导带(Conduction Band):价带以上能量最低的允许带称为导带。导带的底能级表示为Ec,价带的顶能级表示为Ev,Ec与Ev之间的能量间隔为禁带Eg。导体或半导体的导电作用是通过带电粒子的运动(形成电流)来实现的,这种电流的载体称为载流子。导体中的载流子是自由电子,半导体中的载流子则是带负电的电子和带正电的空穴。对于不同的材料,禁带宽度不同,导带中电子的数目也不同,从而有不同的导电性。例如,绝缘材料SiO2的Eg约为5.2eV,导带中电子极少,所以导电性不好,电阻率大于1012Ω·cm。半导体Si的Eg约为1.1eV,导带中有一定数目的电子,从而有一定的导电性,电阻率为10-3—1012Ω·cm。金属的导带与价带有一定程度的重合,Eg=0,价电子可以在金属中 自由运动,所以导电性好,电阻率为10-6—10-3Ω·cm。 四.其它知识原理.

光子晶体简介及应用

光子晶体及其应用的研究 (程立锋物理电子学) 摘要:光子晶体(PbmDftic Crystal)是一种新型的人工材料,其最显著的特点就是具有光子禁带(Photonic B锄d.G £lp,简称PBG),频率落在光子禁带内的电磁波是禁止传播的,因而具有光子带隙的周期性奔电结构就称为光子晶体。近几年,光子晶体被广泛地应用于微波、毫米波的电路设计中。的滤波特性,加以优化,则可以实现带通滤波器。迄今为止,已有多种基于光子晶体的全新光子学器件被相继提出,包括无阈值的激光器,无损耗的反射镜和弯曲光路,高品质因子的光学微腔,低驱动能量的非线性开关和放大器,波长分辨率极高而体积极小的超棱镜,具有色散补偿作用的光子晶体光纤,以及提高效率的发光二极管等。光子晶体的出现使光子晶体信息处理技术的"全光子化"和光子技术的微型化与集成化成为可能,它可能在未来导致信息技术的一次革命,其影响可能与当年半导体技术相提并论。 关键词:光子晶体;算法;应用;

1光子晶体简介 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路。推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。半导体的工作载体是电子,因此半导体的研究围绕着怎样利用和控制电子的特性。但近年来,电子器件的进一步小型化以及在减小能耗下提高运行速度变得越来越困难。人们感到了电子产业发展的极限,转而把目光投向了光子。与电子相比,以光子作为信息和能量的载体具有优越性。光子是以光速运动的微观粒子,速度快;它的静止质量为零,彼此间不存在相互作用,即使光线交汇时也不存在相互干扰:它还有电子所不具备的频率和偏振等特征。电子能带和能隙结构是电子作为一种波的形式在凝聚态物质中传播的结构,而光子和电子一样具有波动性,那么是否存在这样一种材料,光子作为一种波的形式在其中传播也会产生光子能带和带隙。近来大量的理论和实验表明确实存在这样一种材料,其典型的结构是一个折射率周期变化的三维物体,它的周期为光的波长,折射率变化比较大时,会出现类似于电子情况的光子能带和带隙。这种具有光子能带和带隙的材料被称为光子晶体。 在半导体材料中,电子在晶体的周期势场中传播时,由于电子波会受到周期势场的布拉格散射而形成能带结构,带与带之间可能存在

光子晶体原理及应用

一、绪论 1.1光子晶体的基本概念 光子晶体是由不同介电常数的介质材料在空间呈周期排布的结构,当电磁波受到调制而形成类似于电子的能带结构,这种能带结构称为光子能带。在合适的晶格常数和介电常数比的条件下,类似于电子能带隙,在光子晶体的光子能带间可出现使某些频率的电磁波完全不能透过的频率区域,将此频率区域称为光子带隙或光子禁带。人们又将光子晶体称为光子带隙材料。 与一般的电子晶体类似,光子晶体也有一维、二维、三维之分。一维光子晶体是介电常数不同的两种介质块交替堆积形成的结构。实际上,一维光子晶体已经被广泛应用,如法布里-珀罗腔光学多层的增反/透膜等。二维光子晶体是介电常数在二维空间呈周期性排列的结构。 光子晶体中存在光子禁带的物理机理是基于固体物理的布洛赫理论。 1.2光子带隙 光子在光子晶体中的行为类似于电子在半导体晶体中的行为,通过独特的光子禁带可改变光的行为。研究表明,光子带隙有完全光子带隙与不完全光子带隙的区分。所谓完全光子带隙,是指在一定频率范围内,无论其偏振方向及传播方向如何,光都禁止传播,或者说光在整个空间的所有传播方向上都有能隙,且每个方向上的能隙能互相重叠。所谓不完全光子带隙,则是相应于空间各方向上的能隙并不能完全重叠,或只在特定的方向上有能低折射率的介质在晶格中所占比率以及它们在空间的排列结构。总的来说,折射率差别越大带隙越大,能够达到的效率也就越高。 二、光子晶体的晶体结构和能带结构特性研究 2.1一维光子晶体的传输矩阵法 设一维光子晶体由两种材料周期性交替排列构成,通常称一维二元光子晶体,类似固体能带理论中的Kroning-penney模型,在空气中由A、B薄层交替构成一维人工周期性结构材料,其中A材料的折射率是na,厚度为ha,B材料的

一维光子晶体的能带结构研究开题报告

科研文献调研报告 题目:一维光子晶体的能带结构研究 学院:__理学院_ 专业:__光信息科学与技术__ 班级:_2008级 学号:_ 080701110083 学生姓名:__李辉_____指导教师:__徐渟_____ 2012年3月14日

一维光子晶体的能带结构研究 摘要: “光子晶体"的概念是1987年S.John和E.Yabloncvitch分别提出来的。而在当今世界,科学家们在不断研究电子控制的同时发现由于电子的特性,半导体器件的集成快到了极限,而光子有着电子所没有的优越特性:传输速度快,没有相互作用。所以科学家们希望能得到新的材料,可以像控制半导体中的电子一样,自由地控制光子。与此同时随着科学技术的发展特别是制造工艺技术的发展,使得光子晶体的制造不仅变得可能,还得到了长足的进步,在可见光及红外波段可以制成具有所需能带结构的光子晶体,实现对光的控制。因此近年来光子晶体得到深入广泛的研究与应用。 关键字:光子晶体能带结构半导体器件 The Investigation on the Band Structures of one-dimensional photonic crystal Abstract: The concept of"Photonic crystals" was put forward byS.John and E.Yabloncvitch in 1987.But nowScientists constantly study electronic control and find that the integration of semiconductor devices has been the limit because of the characteristics of the electronic.And the photon has the advantage of high speed,no interaction, which electron does not have.So scientists want to get

关于培养晶体一些理论

1 对于分子量比较大的物质(比如说普通配体),一般用极性相 差较大的,比如三氯甲烷和乙醇;对于分子量较大的如杯芳烃,一般用极性相差较小的,比如三氯甲烷和甲苯 2 选择的比例一般是惰性溶剂:良性溶剂=2:1 晶体是在物相转变的情况下形成的。物相有三种,即气相、液相和固相。只有晶体才是真正的固体。由气相、液相转变成固相时形成晶体,固相之间也可以直接产生转变。 晶体生成的一般过程是先生成晶核,而后再逐渐长大。一般认为晶体从液相或气相中的生长有三个阶段:①介质达到过饱和、过冷却阶段; ②成核阶段;②生长阶段。 在某种介质体系中,过饱和、过冷却状态的出现,并不意味着整个体系的同时结晶。体系内各处首先出现瞬时的微细结晶粒子。这时由于温度或浓度的局部变化,外部撞击,或一些杂质粒子的影响,都会导致体系中出现局部过饱和度、过冷却度较高的区域,使结晶粒子的大小达到临界值以上。这种形成结晶微粒子的作用称之为成核作用介质体系内的质点同时进入不稳定状态形成新相,称为均匀成核作 用。在体系内的某些局部小区首先形成新相的核,称为不均匀成核作用。均匀成核是指在一个体系内,各处的成核几宰相等,这要克服相当大的表面能位垒,即需要相当大的过冷却度才能成核。非

均匀成核过程是由于体系中已经存在某种不均匀性,例如悬浮的杂质微粒,容器壁上凹凸不平等,它们都有效地降低了表面能成核时的位垒,优先在这些具有不均匀性的地点形成晶核。因之在过冷却度很小时亦能局部地成核在单位时间内,单位体积中所形成的核的数目称成核速度。它决定于物质的过饱和度或过冷却度。过饱和度和过冷却度越高,成核速度越大。成核速度还与介质的粘度有关,轮度大会阻碍物质的扩散,降低成核速度晶核形成后,将进一步成长。下面介绍关于晶体生长的两种主要的理论。 一、层生长理论 科塞尔(Kossel,1927)首先提出,后经斯特兰斯基(Stranski)加以发展的晶体的层生长理论亦称为科塞尔—斯特兰斯基理论。 它是论述在晶核的光滑表面上生长一层原子面时,质点在界面上进入晶格"座位"的最佳位臵是具有三面凹入角的位臵。质点在此位臵上与晶核结合成键放出的能量最大。因为每一个来自环境相的新质点在环境相与新相界面的晶格上就位时,最可能结合的位臵是能量上最有利的位臵,即结合成键时应该是成键数目最多,释放出能量最大的位臵。质点在生长中的晶体表面上所可能有的各种生长位臵: k为曲折面,具有三面凹人角,是最有利的生长位臵;其次是S阶梯面,具有二面凹入角的位臵;最不利的生长位臵是A。由此可以得出如下的结论即晶体在理想情况下生长时,先长一条行列,然后长相邻的行列。在长满一层面网后,再开始长第二层面网。晶面(最外的

光子晶体的应用与研究

光子晶体的应用与研究 IsSN1009—3044 Compu~rKnowledgeandTechnology电脑知识与技术 V o1.7,No.22.August2011. 光子晶体的应用与研究 陆清茹 (东南大学成贤学院,江苏南京210000) E—mail:kfyj@https://www.360docs.net/doc/2f316566.html,.ell https://www.360docs.net/doc/2f316566.html, Tel:+86—551~56909635690964 摘要:光子晶体是指具有光子带隙(PhotonicBand~Gap,简称为PBG)g~性的人造周期性电介质结构.有时也称为PBG光子晶体结 构.该文系统的阐述了光子晶体的产生,制备及应用. 关键词:光子晶体;光子频率禁带;激光全息: 中图分类号:TN364文献标识码:A 光子晶体激光器:微波天线 文章编号:1009—3044(2011)22—5468—02 进入2O世纪后半叶以来,全球迎来了电子时代,电子器件被极其广泛的应用于工作和生活的各个领域,尤其是促进了计算机 和通讯行业的发展.但是进入21世纪以后,伴随着电子器仲不断深入的小型化,低耗能,高速度,其进一步的提升也越来越困难.人 们感到了电子器件发展的瓶颈,开始把目光转向了光子,有人提出了使用光子代替电子作为新一代信息载体的设想.电子器件的基 础是电子在半导体中的运动,类似的,光子器件的基础是光子在光子晶体中的运动.光子的性质决定了光子器件的主要特点是能量 损耗小,运行速度快,所以工作效率高.光子器件在高效率发光二极管,光子开关,光波导器件,光滤波器等方面都具备巨大的应用

潜力.近年来,光子晶体相关的理论研究,实验科学以及实际应用都已经得到了迅速的发展,光子晶体领域已经成为现在世界范围 的研究热点.1999年l2月17日,《科学》杂志就已经把光子晶体的研究列为全球十大科学进展之一. 1光子晶体的由来 1987年S.John和E.Yablonovitch等人分别提出了光子晶体的概念:光子晶体是指具有光子带隙(PhotonicBand—Gap,简称为 PBG)特性的人造周期性电介质结构,有时也称为PBG光子晶体结构.它是根据电子学上的概念类比得出的.我们知道,在固体物理 学的研究中,晶体中的呈周期性排列的原子产生的周期性电势场会对其中电子有特殊的约束作用.在介电常数周期性分布的介质 中的电磁波的一些频率是被禁止的,光子晶体也类似.通常这些被禁止的频率区间为光子带隙,也叫光子频率禁带,而将具有"光子 频率禁带"的材料称作为光子晶体 2光子晶体的分类与结构 我们可以根据光子晶体的结构进行分类根据其能隙空间分布的不同,我们把光子晶体分为一维光子晶体,二维光子晶体,三 维光子晶体. 3光子晶体的制造 光子晶体在自然界中几乎不存在,它是一种人造做结构,其制备工艺主要有以下几种: 3.1机械加工法 机械加工法又叫精密机械加工法.这种加工法是存光子晶体的早期研究中发展起来的方法.机械加工法通过在集体材料上进 行机械接卸钻孑L,利用空气介质和集体材料的折射率差束获得光子晶体,这种方法可以用于制备制作起来比较容易的晶格常熟在 厘米至毫米量级的微波波段光子晶体. 3.2半导体微制造法 半导体制备技术中的"激光刻蚀","反应离子束刻蚀","电子束刻蚀"以及"化学汽相

晶体生长机理研究综述

晶体生长机理研究综述 摘要 晶体生长机理是研究金属材料的基础,它本质上就是理解晶体内部结构、缺陷、生长条件和晶体形态之间的关系。通过改变生长条件来控制晶体内部缺陷的形成从而改善和提高晶体的质量和性能使材料的强度大大增强开发材料的使用潜能。本文主要介绍了晶体生长的基本过程和生长机理,晶体生长理论研究的技术和手段,控制晶体生长的途径以及控制晶体生长的途径。 关键词:晶体结构晶界晶须扩散成核 一、晶体生长基本过程 从宏观角度看,晶体生长过程是晶体-环境相、蒸气、溶液、熔体、界面向环境相中不断推移的过程,也就是由包含组成晶体单元的母相从低秩序相向高度有序晶相的转变从微观角度来看,晶体生长过程可以看作一个基元过程,所谓基元是指结晶过程中最基本的结构单元,从广义上说,基元可以是原子、分子,也可以是具有一定几何构型的原子分子聚集体所谓的基元过程包括以下主要步骤:(1)基元的形成:在一定的生长条件下,环境相中物质相互作用,动态地形成不同结构形式的基元,这些基元不停地运动并相互转化,随时产生或消失(2)基元在生长界面的吸附:由于对流~热力学无规则的运动或原子间的吸引力,基元运动到界面上并被吸附 (3)基元在界面的运动:基元由于热力学的驱动,在界面上迁移运动 (4)基元在界面上结晶或脱附:在界面上依附的基元,经过一定的运动,可能在界面某一适当的位置结晶并长入固相,或者脱附而重新回到环境相中。 晶体内部结构、环境相状态及生长条件都将直接影响晶体生长的基元过程。环境相及生长条件的影响集中体现于基元的形成过程之中;而不同结构的生长基元在不同晶面族上的吸附、运动、结晶或脱附过程主要与晶体内部结构相关联。不同结构的晶体具有不同的生长形态。对于同一晶体,不同的生长条件可能产生不同结构的生长基元,最终形成不同形态的晶体。同种晶体可能有多种结构的物相,即同质异相体,这也是由于生长条件不同基元过程不同而导致的结果,生长机理如下: 1.1扩散控制机理从溶液相中生长出晶体,首要的问题是溶质必须从过饱和溶液中运送到晶体表面,并按照晶体结构重排。若这种运送受速率控制,则扩散和对流将会起重要作用。当晶体粒度不大于1Oum时,在正常重力场或搅拌速率很低的情况下,晶体的生长机理为扩散控制机理。 1.2 成核控制机理在晶体生长过程中,成核控制远不如扩散控制那么常见但对于很小的晶体,可能不存在位错或其它缺陷。生长是由分子或离子一层一层

光子晶体及其器件的研究进展

深圳大学研究生课程论文题目光子晶体及其器件的研究进展成绩 专业 课程名称、代码 年级姓名 学号时间2016年12月 任课教师

子晶体及其器件的研究进展 摘要:光子晶体是一种具有光子带隙的新型材料,通过设计可以人为调控经典波的传输。由 于光子晶体具有很多新颖的特性,使其成为微纳光子学和量子光学的重要研究领域。随着微加工技术的进步和理论的深入研究,光子晶体在信息光学以及多功能传感器等多个学科中也得到了广泛应用。本文介绍了光子晶体及其特征,概述了光子晶体器件的设计方法和加工制作流程,论述现阶段发展的几种光子晶体器件,并对光子晶体器件的发展趋势做了展望。 关键词:光子晶体;光子晶体的应用;发展趋势 Research progress of photonic crystals and devices Abstract:Photonic crystal is a new material with photonic band gap, which can regulate the transmission of classical wave artificially. Because it has many novel properties of photonic crystal, which is becoming an important research field of micro nano Photonics and quantum optics. With the progress of micro machining technology and theoretical research, photonic crystals have been widely used in many fields such as information optics and multifunction sensors. This paper introduces the photonic crystals and its characteristics, summarizes the design method and process of the photonic crystal devices in the production process, discusses several kinds of photonic crystal devices at this stage of development, and the development trend of photonic crystal devices is prospected. Key words:Photonic crystal; application of photonic crystal; development trend 1引言 在过去的半个世纪里,随着人们对电子在物质尤其是半导体中运动规律的研究,使得对电子控制能力的增加,从而产生了各种微电子器件以及大规模的集成电路,推动了电子工业和现代信息产业的迅猛发展,半导体技术在人们生活中扮演着越来越重要的角色。目前半导体技术正向着高速化和高集成化方向的发展,不可避免地引发了一系列问题。当信息处理的频率和信号带宽越来越高时,通过金属线传输电子会带来难以克服的发热问题和带宽限制;而线宽减小到深纳米尺度时,相邻导线的量子隧穿效应成为电子器件发展的重要瓶颈。这迫使人们越来越关注光信息处理技术,并尝试用光器件来替代部分传统电子器件,以突破上述瓶颈限制。实现这一目标的关键在于如何将光子器件尺寸降低至微纳米量级,并能与微电子电路集成在同一芯片上。 目前比较有效的方法有三种:纳米线波导,表面等离子体和光子晶体。其中,光子晶体具有体积小、损耗低和功能丰富等多种优点,被认为是最有前途的光子集成材料,称为光子半导体[1],它是1987年才提出的新概念和新材料。这种材料有一个显著的特点是它可以如人所愿地控制光子的运动。由于其独特的特性,光子晶体可以制作全新原理或以前所不能制作的高性能光学器件,在光通讯上也有重要的用途,如用光子晶体器件来替代传统的电子器件,信息通讯的速度快得

光子晶体理论与器件课程背景

光子晶体理论与器件课程背景 关键词:光子晶体,禁带,晶体,材料,光子学 Key words : photonic crystals, band gap, crystals, materials, photonics 1 光子晶体概念的历史由来 光子晶体的概念首先由光子晶体的概念是在1987年分别由S. John [1] 和E. Yablonovitch [2] 各自独立提出。20多年来,光子晶体的理论和应用研究在全世界掀起了一股热潮,取得了一系列重要进展,已经发展成为一个世人瞩目的学科。光子晶体作为一种新型的光子器件材料,能够控制光子的运动,在提高发光二极管的发光效率,改善太阳能电池的光电转换效率,制作体积仅为光波波长的立方的数量级的微型激光器,实现无阈值激光振荡,控制原子的自发辐射,制造高增益、低损耗的天线,高增益光子频率滤波器,光子晶体空间波滤波器,光子晶体功率分配器/合成器,光子晶体相位补偿器、相移器,光子晶体偏振分离集成光路,光子晶体传感器,光子晶体负折射率器件,光子晶体自准直器件,光子晶体光束成形,光子晶体微透镜,光子晶体光脉冲压缩器件,光子晶体平板波导,光子晶体定向耦合器,光子晶体光纤,光子晶体非线性器件,光子晶体超连续谱产生,光子晶体混频器,光子晶体倍频器,光子晶体光开关,波分复用集成光路器件,光调制/解调集成光路,光二极管集成光路,光隔离器集成光路,光环行器集成光路,光子逻辑集成光路,光子存储、光子频率变换,光子信息处理,光子晶体光声器件,光子晶体光力器件、光子晶体太赫兹器件等方面均有着广泛的应用,因此引起了国际上广泛的注意。[1-77] 光子晶体的概念是根据传统的晶体概念类比而来的。在固体物理研究中发现,晶体中的周期性排列的原子所产生的周期性电势场结构对电子会产生一个特殊的约束作用。在这样的空间周期性电势场中的电子的运动所遵守的规律是由如下的薛定谔方程决定的: 0),())]((2[22=ψ-+?t r r V E m (1) 其中)(r V 是电子的势能函数,它具有空间周期性。求解以上方程式(1)可以发现,电子的能量E 只能取某些特殊值,在某些能量区间内该方程无解,也就是说电子的能量不可能落在在这样的能量区间,通常称之为能量禁带。研究发现,电子在这种周期性结构中的德布罗意波长与晶体的晶格常数具有大致相同的数量级。 从电磁场理论知道,在介电系数呈空间周期性分布的介质中,电磁场所服从的规律是如下所示的Maxell 方程: 0),(]))(([022 2=???-++?t C εεω (2) 其中,0ε为平均相对介电常数,)(r ε为相对介电常数的调制部分,它随空间位置做周期性变化,C 为真空中的光速,ω为电磁波的频率,),(t r E 是电磁波的电场矢量。可以看到方程式(1)和(2)具有一定的相似性。事实上,通过对方程式(2)的求解可以发现,该方程式只有在某些特定的频率ω处才有解,而在某些频率ω取值区间该方程无解。这也就是说,在介电常数呈周期性分布的介质结构中的电磁波的某些频率是被禁止的,通常称这些被禁止的频率区间为“光子频率禁带”(Photonic Band Gap ),而将具有“光子频率禁带”的材料称作为光子晶体。

综述光子晶体的研究进展

光子晶体的最新研究进展 (学号:SA12231016 姓名:陈飞虎) 摘要:光子晶体(Photonic Crystal)是在1987年由S.john[1]和E.Yablonovitch[2]分别独立提出,是由不同折射率的介质周期性排列而成的人工微结构。在这二十多年的发展当中,光子晶体已在光通信技术、材料科学和激光与光电子学等方面都取得了相应的进展。本文阐述了光子晶体在各方面所取得的相应进展,并探讨光子晶体在各个领域的最新研究状况。 关键词:光子晶体研究进展 1 引言 自光子晶体这一概念提出以来,它就成为各个学科领域的科学家们关注的热点。光子晶体(Photonic crystals)材料又称为光子带隙(Photonic band gap,PBG)材料,指介电常数(折射率)周期性变化的材料。电子在固态晶体的周期性势垒下能形成电子带隙,光子晶体的周期性晶格对光的布拉格散射可以形成光子带隙, 频率处在光子带隙中的光被禁止进入光子晶体。若光子晶体中某个地方不满足周期性,即引入了缺陷,禁带中就会出现缺陷态,缺陷态具有很高的光子态密度。采用各种材料,设计不同的光子晶体结构和引入不同的缺陷类型以及缺陷组合,可以制作出功能和特性各异的微纳光子器件。因光子晶体具有光子带隙和光子局域两大优越特点,所以它在发光二极管、多功能传感器、光通讯、光开关、光子晶体激光器等现代高新技术领

域[3-4]有着广泛应用。当前所制备的光子晶体大多不可调,但对于可调制光子晶体的带隙可以调控,电介质的折射率和光子晶体的晶格常数决定了光子带隙的宽度和位置,故改变外部环境,如加电场、磁场、压力或温度等,均能对光子禁带进行调制。因此可调控的光子晶体成为各个应用领域的研究热点和方向。 2 光通信技术方向的研究进展 传统波导利用的是全内反射原理,当波导弯曲较大时,电磁波在其中的传播不再符合全反射原理,以至于弯曲损耗较大。而光子晶体波导采用的是不同方向缺陷模共振匹配原理,因而光子晶体波导不受转角限制,有着极小的弯曲损耗。理论上,当波导弯曲 90°时,传统波导会有 30%的损失,而光子晶体波导的损耗只有 2%[5]。另外,光子晶体波导的尺度可以做得很小,达到波长量级;因此,光子晶体波导不仅在光通信中有着十分重要的应用,在未来大规模光电集成、光子集成中也将具有极其重要的地位。 光子晶体光纤(PCF) 由于它的包层中二维光子晶体结构能够以从前没有的特殊方式控制纤芯中的光波,使其具有诸多优异的光学特性,如无截止单模传输特性、可调节的色散特性、高双折射特性、大模面积和高非线性特性等,因此PCF的研究一直是光通信和光电子领域科学家们关注的热点。目前,世界各国对PCF的研究如火如荼,在PCF的色散、带隙、非线性特性及应用方面均有了长足进展。PCF的

晶体生长理论发展现状

晶体生长理论发展现状 人造晶体是一种重要的材料,随着科技的进步,合成手段不断的发展,晶体在精密光学仪器,激光武器,甚至日常生活等方面扮演越来越重要的角色。近些年来,基础学科(如物理学,化学)和制备技术的不断进步,晶体生长理论的研究无论是研究手段、研究对象,还是研究层次都得到了很快的发展,已经成为一门独立的学科。晶体生长理论在经历了Bravais法则、负离子配位多面体生长基元模型等理论后日趋发展完善。但近些年来的研究,特别是对空心晶体的研究显示了晶体生长理论新的迹象。周午纵等提出的逆向晶体生长理论不仅完善了晶体生长的理论,同时也为我们更好地认识空心晶体,研究制备晶体提供了新的途径。传统晶体生长理论 传统晶体生长理论认为,晶体的形成是由晶体的成核和生长两个过程组成。完美的多面体外形是以晶核为中心逐渐长大形成的,经历基元的形成、基元在生长界面上的吸附、基元在界面的运动和基元在界面上结晶和脱附等过程。传统晶体生长理论自开始研究,主要经历了以下5个阶段: 1.晶体平衡形态理论:主要包括布拉维法则(Law of Bravais)、Curie-Wulff 生长定律、BFDH法则(或称为Donnay-Harker原理)以及Frank运动学理论等。晶体平衡形态理论从晶体内部结构、应用结晶学和热力学的基本原理来探讨晶体的生长,注重于晶体的宏观和热力学条件。以晶体平衡形态理论解释晶体生长形态--晶面的发育。但它们共同的局限性是:没有考虑外部因素(环境相和生长条件)变化对晶体生长的影响,无法解释晶体生长形态的多样性。 2.界面生长理论:主要有完整光滑界面模型、非完整光滑界面模型、粗糙界面模型、弥散界面模型、粗糙化相变理论等理论或模型。界面生长理论重点讨论晶体与环境的界面形态在晶体生长过程中的作用。以界面生长理论解释晶核长大的动力学模型。现有的界面结构模型有以下局限性:晶体结构过于简单;没有考虑环境相(溶液、熔体或气体)的结构;在界面上吸附的基元限定为单个原子。 3.PBC(周期键链)理论:1952年,P.Hartman、W.G.Perdok提出,把晶体划分为三种界面:F面、K面和S面。BC理论主要考虑了晶体的内部结构——周期性键链,而没有考虑环境相对于晶体生长的影响。对于环境相结构效应的忽

单晶生长原理

直拉法:直拉法即切克老斯基法(Czochralski: Cz), 直拉法是半导体单晶生长用的最多的一种晶体生长技术。 直拉法单晶硅工艺过程 -引晶:通过电阻加热,将装在石英坩埚中的多晶硅熔化,并保持略高于硅熔点的温度,将籽晶浸入熔体,然后以一定速度向上提拉籽晶并同时旋转引出晶体; -缩颈:生长一定长度的缩小的细长颈的晶体,以防止籽晶中的位错延伸到晶体中; -放肩:将晶体控制到所需直径;-等径生长:根据熔体和单晶炉情况,控制晶体等径生长到所需长度;-收尾:直径逐渐缩小,离开熔体; -降温:降底温度,取出晶体,待后续加工 直拉法-几个基本问题 最大生长速度 晶体生长最大速度与晶体中的纵向温度梯度、晶体的热导率、晶体密度等有关。提高晶体中的温度梯度,可以提高晶体生长速度;但温度梯度太大,将在晶体中产生较大的热应力,会导致位错等晶体缺陷的形成,甚至会使晶体产生裂纹。为了降低位错密度,晶体实际生长速度往往低于最大生长速度。 熔体中的对流 相互相反旋转的晶体(顺时针)和坩埚所产生的强制对流是由离心力和向心力、最终由熔体表面张力梯度所驱动的。所生长的晶体的直径越大(坩锅越大),对流就越强烈,会造成熔体中温度波动和晶体局部回熔,从而导致晶体中的杂质分布不均匀等。实际生产中,晶体的转动速度一般比坩锅快1-3倍,晶体和坩锅彼此的相互反向运动导致熔体中心区与外围区发生相对运动,有利于在固液界面下方形成一个相对稳定的区域,有利于晶体稳定生长。 生长界面形状(固液界面) 固液界面形状对单晶均匀性、完整性有重要影响,正常情况下,固液界面的宏观形状应该与热场所确定的熔体等温面相吻合。在引晶、放肩阶段,固液界面凸向熔体,单晶等径生长后,界面先变平后再凹向熔体。通过调整拉晶速度,晶体转动和坩埚转动速度就可以调整固液界面形状。 生长过程中各阶段生长条件的差异 直拉法的引晶阶段的熔体高度最高,裸露坩埚壁的高度最小,在晶体生长过程直到收尾阶段,裸露坩埚壁的高度不断增大,这样造成生长条件不断变化(熔体的对流、热传输、固液界面形状等),即整个晶锭从头到尾经历不同的热历史:头部受热时间最长,尾部最短,这样会造成晶体轴向、径向杂质分布不均匀。 直拉法-技术改进: 一,磁控直拉技术 1,在直拉法中,氧含量及其分布是非常重要而又难于控制的参数,主要是熔体中的热对流加剧了熔融硅与石英坩锅的作用,即坩锅中的O2, 、B、Al等杂质易于进入熔体和晶体。热对流还会引起熔体中的温度波动,导致晶体中形成杂质条纹和旋涡缺陷。 2,半导体熔体都是良导体,对熔体施加磁场,熔体会受到与其运动方向相反的洛伦兹力作用,可以阻碍熔体中的对流,这相当于增大了熔体中的粘滞性。在生产中通常采用水平磁场、垂直磁场等技术。 3,磁控直拉技术与直拉法相比所具有的优点在于: 减少了熔体中的温度波度。一般直拉法中固液界面附近熔体中的温度波动达10 C以上,而施加0.2 T 的磁场,其温度波动小于 1 ℃。这样可明显提高晶体中杂质分布的均匀性,晶体的径向电阻分布均匀性也可以得到提高;降低了单晶中的缺陷密度;减少了杂质的进入,提高了晶体的纯度。这是由于在磁场作用下,熔融硅与坩锅的作用减弱,使坩锅中的杂质较少进入熔体和晶体。将磁场强度与晶体转动、坩锅转动等工艺参数结合起来,可有效控制晶体中氧浓度的变化;由于磁粘滞性,使扩散层厚度增大,可提高杂

蓝光LED光子晶体技术原理及制程详解

蓝光LED光子晶体技术原理及制程详解 为回避日亚化学的蓝光LED 加萤光粉制技术专利,各业者纷纷投入其它能达到散发出白光的LED 技术,目前最被期待的技术是利用UV LED 来达到白光的目的,但是,UV LED 仍旧有着光外漏及低亮度两个不易克服的困难。使得除了继续努力来解决相关的问题外,不得不再去寻求其它的材料或技术来达到散发出白光的LED 技术。 ?在1987 年,国籍相异且分居不同地点的两位学者,Eli Yablonovitch 与Sajeev John 几乎同一时间在理论上发现,电磁波在周期性介电质中的传播状态具有频带结构,利用两种以上不同折射率(或介电常数)材料做周期性变化来达成光子能带的物质。所以光子晶体(PhotonicCrystal)被发现已将近 20 年后的今天,在各领域的应用有着相当令人激赏的表现,一直是备受研发者所关心的一项技术。 ?目前利用二次元光子晶体来达到完成白光LED 的技术,已陆续出现突破性的发展,使得未来Photonic Crystal LED 已成为众所瞩目的焦点与摆脱日亚化学专利的期望寄托。 ?1、光子晶体特性与结构 ?光子晶体随着波长不同,会出现于周期性的结构,可以分别发展出一次元、二次元及三次元的光子晶体。而在这些结构当中,最出名的应该是属于三次元的光子晶体结构,但是,三次元的光子晶体在制造上及商品化,就今天的技术而言是非常困难的。原因是目前主要研究的领域还是保留在二次元的光子晶体,所以,今天在LED 领域各业者相竞开发的光子晶体LED,也是二次元的光子晶体。 ?一般的材料构造是属于固定构造,所以材料本身会具有的一定的折射率。

晶体的能带理论

晶体的能带理论 一、能带理论(Energy band theory )概述 能带理论是讨论晶体(包括金属、绝缘体和半导体的晶体)中电子的状态及其运动的一种重要的近似理论。它首先由 F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出,它把晶体中每个电子的运动看成是独立的在一个等效势场中的运动,即是单电子近似的理论;对于晶体中的价电子而言,等效势场包括原子实的势场、其他价电子的平均势场和考虑电子波函数反对称而带来交换作用,是一种晶体周期性的势场。 即认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动的;由此得出,共有化电子的本征态波函数是Bloch函数形式,能量是由准连续能级构成的许多能带。 二、能带的形成 图1 1.电子共有化 对于只有一个价电子的简单情况:电子在离子实 电场中运动,单个原子的势能曲线表示如图1。 图2 当两个原子靠得很近时:每个价电子将同时受到两个离子实电场的作用,这时的势能曲线表示为图2。

当大量原子形成晶体时,晶体内形成了周期性势场,周期性势场的势能曲线具有和晶格相同的周期性!(如图3所示) 即:在N 个离子实的范围内,U 是以晶格间距d 为周期的函数。实际的晶体是三维点阵,势场也具有三维周期性。 图3 分析: 1.能量为E1的电子,由于E1小,势能曲线是一种势阱。因势垒较宽,电子穿透势垒的概率很微小,基本上仍可看成是束缚态的电子,在各自的原子核周围运动; 2.具有较大能量E3 的电子,能量超过了势垒高度,电子可以在晶体中自由运动; 3.能量E2 接近势垒高度的电子,将会因隧道效应而穿越势垒进入另一个原子中。 这样在晶体场内部就出现了一批属于整个晶体原子所共有的电子,称为电子共有化。价电子受母原子束缚最弱,共有化最为显著!

相关文档
最新文档