桁架机构的优化设计

桁架机构的优化设计
桁架机构的优化设计

空间桁架结构是将杆件按一定规律布置,通过节点连接瓤成的一种抒系结构,具有经济、跨越能力大以及形式活泼新颖等优点n3.由于是空间超静定结构,力学分析和结构设计都较为复杂,采用计算机辕韵优化设计,对减轻结构重遗、降低缕构造徐有饕重要意义.在桁架结构中根据锫杆件的受力,合理选择杆件截丽尺寸,使其在满足多种约束条件的前提下最大限凌缝承受骜载,就可以达裂减轻结构重量、降低结构造价的目的

桁架结构优化问题可以表述如下:以雄杆桁架结构系统蠹研究对象,该系统基本参数<包括弹性模量、材料密度、最大容许应力、最大允许位移等)已知;问题是在给定的荷载条件下,确定桁架的最优截瑟瑟积,使结搀夔量最轻。

设各杆截面积为设计变量:工=[x 1,x 2,...,X n ]T ,目标函数可写为:min ?(x)= ρn i =1x t L i ; 约束包括:σt ≤σt a (i 一1,2,?,刀)

“μj ≤μj a “; (j=1,2,?,n)

A min ≤x t ≤A max (i=1,2,?,n)

式中:x t 为第i 杆件的截面面积,

L t 为第i 杆件的长度,

ρ为材料密度,

σt 、σt a 分别为第i 杆的应力和允许应力,

μj 、μj a ;分别为第J 节点的位移和位移限值,

A min 、A max ;分别为杆件截面积的上、下限.

桁架与框架同属于杆系结构,在结构工程、工民建等有着广泛的应用,是常见但又 重要的结构形式。杆系结构的失效模式很多,其中有代表性的是结构的整体和局部届曲 失稳。随着设计和施工水平的不断进步,杆系结构正向着大跨度、轻柔化的方向发展, 因此对结构稳定性的要求越来越高,需要准确的稳定性理论分析和数值计算方法。 桁架结构的稳定性理论已有两种:几何非线性特征值稳定性理论和几何非线性临界 点理论。其中几何非线性特征值稳定性理论出现的最早。国内外的许多学者们一直沿用 这个理论来解决整体稳定性问题。但是,近些年来,人们发现,用这套稳定性理论时会 出现一些问题,比如应力过高,有时甚至会超过材料的许用应力.结构在整体失稳之前 已经局部欧拉失稳或发生材料屈服。于是线性欧拉理论和非线性欧拉理论这些新的计算 结构稳定性问题的方法被提出来。如何应用正确的理论解决桁架结构与框架结构的稳定 性问题交得更加具有实际意义。

本文通过大量算例对不同稳定性理论的应用进行了比较,得出了相应的结论。总结 起来,主要工作如下

1.应用线性欧拉稳定性理论对一般桁架结构的稳定性问题进行了分析,开展了桁 架结构临界荷我的计算和具有稳定约束的截面优化设计。

2.应用几何非线性欧拉稳定性理论分析了大变形情况下桁架结构的稳定性,开展 了桁架结构临界荷载的计算瓤具有稳定约柬的截面优化设计。

3.应用线性欧拉理论分析了框架结构的稳定性问题,开展了框架结构临界荷载的 计算和具有稳定约束的截面优化设计。

4.对两种等质量轻质筒状桁架结构进行了稳定性和力学性能的研究,包括对结构 进行建模、模态分析、不同工况下的受力及应力分析和不同工况下的屈曲分析。 在各种分析后对两释结构在不同工况下所表现的力学性能进行了相应的比较,

并得出了相应的结论。

本论文得到国家自然科学基金重点项目(编号:103320lo ,l0002005)的资助。

虽然在很早就有稳定性理论的研究,如经典特征值理论和临界点稳定性理论等。但 是经过近些年来一些学者的研究和演算,发现它们过高估计了结构的抗稳定能力,并不

符合工程实际的要求。还有一些学者提出了新的结构稳定性理论和计算方法,但任何一套稳定性理论和方法都无法去解决所有桁架结构的稳定性问题,于是怎样区分这些稳定性理论的差异、适用范围及其存在的问题和错误便成为一个重要的问题。解决了这一问题,就能针对不同的桁架和框架结构来应用适当的稳定性理论,进行正确的研究,从而更好地满足工程实际的需要。

配气机构整体系统仿真及优化

配气机构整体系统仿真及优化 康黎云司庆九 (重庆长安集团汽车工程研究院CAE所) 摘要:通过A VL EXCITE Timing Drive的仿真,对某机型的配气机构进行动力学计算以了解存在的问题和优化方向。拟定重新设计凸轮型线和调整弹簧参数的优化措施,并用EXCITE Timing Drive进行对比计算,结果表明凸轮型线的设计和弹簧参数的更改达到了优化目的。 关键词:配气机构;动力学;凸轮型线;气门弹簧 主要软件:A VL EXCITE Timing Drive;MSC/NASTRAN 1. 前言 某发动机的配气机构采用四气门单顶置凸轮轴摇臂驱动,其中进、排气侧分别为两同形式的指形从动件摇臂。摇臂驱动形式的配气机构刚度一般比挺柱直接驱动的配气机构要弱,相应其动力性也要差些。现实的问题是:如何从优化配气机构的角度出发,在不提高发动机转速的情况下增加该发动机的功率,同时还必须使配气机构的动力性也满足设计要求,如不出现飞脱、反跳及弹簧并圈等问题。 2. 分析过程 2.1 总体流程 为解决问题,制订以下分析流程,如图1所示: 图1 配气机构分析及优化流程图

2.2 优化前仿真分析 机构的主要全局参数如表1所示: 表1 配气机构主要技术参数 进气侧排气侧 15.5mm 基圆半径 15.5mm 气门正时 466°(曲轴转角) 258°(曲轴转角) 气门包角(含缓冲段) 170° 175° 气门倾角 16° 20° 0.25mm 气门间隙 0.15mm 弹簧预紧力 114N 工作段弹簧刚度 29N/mm 建立整个阀系的EXCITE Timing Drive模型:①. 从凸轮轴前端往后端看,凸轮的布置是排气门、两个进气门、排气门的形式;②. 由于发动机的点火顺序是1-3-4-2,所以对应缸的阀系相位要依次滞后90°;③. 忽略皮带传动对阀系的影响,而直接将转速加载到凸轮轴的最前段的SHPU单元上。整个模型如图2所示: 图2 阀系模型 以下为发动机优化前6000rpm下的动力学计算结果(图3~图6所示),从各曲线图可以看出,该配气机构在高转速下出现反跳、飞脱和并圈,因此,有必要对该套系统进行优化。优化的措施主要有以下几点: (1) 重新设计进、排气凸轮型线,以避免飞脱和反跳的产生。对于摇臂驱动的凸轮型线,使

配气机构

(一)发动机配气机构 一、实验目的 1 .熟悉发动机配气机构零件的构造特点和配气机构整个系统的特点 2 .熟练进行凸轮轴、气门组的拆装 3 .熟练进行不同发动机配气机构气门间隙的检查、调整方法与步骤 二、实验原理 配气机构的功用是按照发动机的工作顺序和各缸工作循环的要求,定时开启和关闭进排气门,使可燃混合气(汽油机)或新鲜空气(柴油机)准时进入气缸,使燃烧后的废气及时从气缸内排出。 根据气门在发动机上布置型式,分顶置式配气机构和侧置式配气机构。其中顶置式配气机构应用最广泛。它由气门组和气门传动组两部分组成。 气门组主要机件有气门、气门座、气门弹簧、气门导管等。 气门传动组根据凸轮轴的布置型式由摇臂、摇臂轴、调整螺钉、推杆、挺杆、凸轮轴和正时齿轮(链轮)等。 凸轮轴布置型式可分下置、中置、上置三种。 凸轮轴下置式配气机构中的凸轮轴位于曲轴箱中部。 凸轮轴中置式配气机构中的凸轮轴位于气缸体上部,省去推杆。 凸轮轴上置式配气机构中的凸轮轴位于气缸盖上,这种结构中的凸轮轴可通过摇臂来驱动气门,也可通过凸轮轴直接驱动气门。 三、实验仪器 四、实验内容和步骤 (一)顶置气门式配气机构气门组的拆卸 1、首先从发动机上拆去燃料供给系、点火系等有关部件。 2、拆下气缸拆下气缸盖罩,拆下摇臂机构及凸轮轴(凸轮轴上置式),取出推杆(凸轮轴下置式)。 3、拆下气缸盖(方法步骤同曲柄连杆机构)。 4、用气门弹簧钳拆卸气门弹簧,依次取出锁块、弹簧座、弹簧和气门。锁块应用尖嘴钳取出。将拆下的气门做好相应标记,按缸号顺序放置。 5、从缸盖下面向上平面方向用压床将气门导管压出(或用尺寸合适的冲头以手锤轻轻击出)。 6、将摇臂机构解体。 (二)气门传动组的拆卸(凸轮轴下置或中置) 1、取下气门挺杆(应保持各气门挺杆正确的存放顺序,以利于将来安装)。 2、取下驱动皮带和水泵皮带轮,取下曲轴皮带轮。 3、拆下正时链盖,取下正时链张紧器。

配气机构文献综述

文献综述 题目 168F汽油机设计——配气机构 二级学院车辆工程学院 专业能源与动力工程 班级 112040601 学生姓名彭元平学号 11204060117 指导教师屈翔职称副教授 时间 2016-3-20

摘要: 配气机构作为内燃机的重要组成部分其设计合理与否直接关系到内燃机的动力性、经济性能、排放性能及工作的可靠性、耐久性。本文综述了汽油机配气机构的发展现状,论述了对配气机构优化设计的必要性,阐述了发动机配气机构优化设计的发展方向。 关键词:配气机构、凸轮型线、配气相位、气门弹簧。 Abstract: As important part of the internal combustion engine, valve mechanism with right design is a must, for it is directly relevant to power, economic performance, emission performance, reliability and durability of the internal combustion engine. This paper reviewed the gasoline engine valve mechanism from the aspects of the state-of-the-art and the necessities of its optimization design, and set forth the development of engine valve mechanism optimization design. Key words:Air distribution mechanism Cam type line Gas distribution phase Valve spring 1.前言 配气机构是汽油机最重要的组成部分它的功能是实现换气过程,即根据气缸的工作次序,定时的开启和关闭进、排气门,以保证换气充分。一台汽油机的工作是否稳定可靠[1],噪声与振动是否控制在较低的水平,都与其配气机构设计合理的是密不可分的。配气机构要使各气缸都保持换气良好的状态,使充气系数尽可能的提高,按照工作的需要,科学的开启与关闭进气门和排气门。 随着人们的需求,发动机的设计趋于高速化、高功率化。人们对其性能的要求也越来越高,配气机构作为发动机的配给系统,很大程度的决定了发动机的优劣[2]。所以想要提高发动机的性能,配气机构的优化设计也是必不可少的。随着前人的不断积累,配气机构的供给能力及结构形式都发生了很多改观,下面我将介绍配气机构的发展现状及主要优化形式。 2.凸轮型线的优化 内燃机配气凸轮机构是由配气凸轮驱动的,所以配气机构的这些性能指标在很大程度上取决于配气凸轮的结构。尤其是当发动机转速提高以后,凸轮型线设计的好坏对发动机的充气性能和动力性能的影响更大[3]。最近,海马轿车有限公司的王艳芳、王少辉[4]等汽车工程师做了相应的实验,他们选择了三种不同型线的进气凸轮轴和同

大型桁架模板受力计算(版)

中交第一航务工程局第五工程有限公司 模板受力计算书 (胸墙模板) 单位工程:锦州港第二港池集装箱码头二期工程计算内容:胸墙模板计算 编制单位:主管:计算: 审批单位:主管:校核:

锦州港第二港池集装箱码头二期工程 胸墙模板计算书 一、设计依据 1.中交第一航务工程勘察设计院图纸 2.《水运工程质量检验标准》JTS257-2008 3.《水运工程混凝土施工规范》JTJ268-96 4. 《组合钢模板技术规范》(GB50214-2001) 5. 《组合钢模板施工手册》 6. 《建筑施工计算手册》 7. 《港口工程模板参考图集》 二、设计说明 1、模板说明 在胸墙各片模板中,1#模板位于码头前沿侧,浇筑胸墙高度为3.15m,承受的侧压力最大,同时胸墙外伸部分的重量也由三角托架来承受,因此选取1#模板来进行计算。 1#模板大小尺寸为17.9m(长)×3.15m(高)。采用横连杆、竖桁架结构形式大型钢模板 面板结构采用安装公司统一的定型模板,板面为5mm钢板制作,背后为50×5竖肋。 内外横连杆采用单[10制作,间距为75cm; 桁架宽度为650cm,最大水平间距75cm,上弦杆采用背扣双[6.3,下弦杆为双∠50×50×5,腹杆为方管50×5。 2、计算项目 本模板计算的项目 ⑴模板面板及小肋 ⑵模板横连杆的验算。 ⑶模板竖桁架的验算。 ⑷模板支立的各杆件的验算。

模板计算 1、混凝土侧压力计算 混凝土对模板的最大侧压力: Pmax = 8K S +24K t V 1/2=8×2.0+24×1.33×0.57? =40.1kN/m 2 式中: Pmax ——混凝土对模板的最大侧压力 Ks ——外加剂影响系数,取2.0 Kt ——温度校正系数 10℃时取Kt =1.33 V ——混凝土浇筑速度50m 3 /h ,取0.57m/h 砼坍落度取100mm ==倾倒侧P P P max 40.1+6×1.4=48.5 kN/m 2取50KN/ m 2 其中倾倒P 为倾倒砼所产生的水平动力荷载,取6kN/㎡×1.4=8.4kN/㎡。 2、板面和小肋验算 ⑴板面强度验算 取1mm 宽板条作为计算单元,计算单元均布荷载 q=0.05×1=0.05 N/mm q 5mm 钢板参数:I=bh 3/12=300×5×5×5/12=3125mm 4 ω= bh 2/6=300×5×5/6=1250mm 3 q=0.05×300=15 N/mm σ=M/ω=0.078 ql 2/ω=0.078×15×3002/1250=85 N/mm 2<[σ]=215 N/mm 2 f max =K f ×Fl 4 /B 0=0.00247×0.05×3004 /2358059=0.43mm <300/500=0.6mm , 钢板满足要求 其中K f 为挠度计算系数,取0.00247 B 0为板的刚度,B0=Eh 3x /12(1-γ2)=2.06×105×53/12(1-0.32)=2358059 γ钢板的泊松系数,取0.3 h 为钢板厚度,h=5mm

基于PROE的四缸内燃机凸轮配气机构的结构设计及运动仿真分析

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 湖北文理学院 毕业设计(论文)正文题目 基于PRO/E的四缸内燃机凸轮配气机构的结 构设计及运动仿真分析 专业机械设计制造及其自动化 班级机制0812班 姓名李旭东 学号08116249 指导教师 职称 李梅 副教授 2012年5 月23日

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊基于PRO/E的四缸内燃机凸轮配气机构的结构设计及运动仿 真分析 摘要:配气机构作为内燃机的重要组成部分,其设计合理与否直接关系到内燃机的动力性能、经济性能、排放性能及工作的可靠性、耐久性。随着内燃机高功率、高速化,人们对其性能指标的要求越来越高,要求其在高速运行的条件下仍然能够平稳、可靠地工作,因而对其配气机构提出了更高的要求。配气凸轮型线是配气机构的核心部分,配气凸轮型线设计是配气机构优化设计的重要途径之一。模拟计算和实验研究是内燃机配气机构研究两种重要手段。 运用多体力学的方法对配气机构进行了动态仿真分析,采用数字多体程 序的方法,建立了配气系统的理论模型,进行配气机构的运动学、动力学分析,除了得到气门的升程、速度、加速度外,还考虑了摇臂与气门之间的碰撞,以及摇臂支座的柔性。因此得到气门与摇臂之间的碰撞力,摇臂支座的柔性衬套的受力,气门弹簧力,凸轮轴支座反力,气门座反力及凸轮与摇臂之间的压力角等。为凸轮型线、摇臂形状和整个配气机构的设计改进提供了重要依据。 利用pro/e强大的分析仿真功能, 对凸轮式配气机构的运动特性以及弹簧刚度对系统运动的影响进行了仿真分析, 得出弹簧刚度与气门振动的关系图, 为改善系统动力学性能和关键零部件设计提供了依据。利用计算机软件仿真, 有利于降低研发成本并缩短产品的开发周期。 关键词:内燃机;配气机构;凸轮型线;优化设计;汽车;发动机;配气系统;顶置凸轮;动态仿真

ansys三根杆桁架优化问题命令流

问题描述: 一个由三根杆组成的桁架承受纵向和横向载荷,桁架的重量在最大应力不超过400PSI最小化(因此重量为目标函数)。三根梁的横截面面积和基本尺寸B在指定范围内变化。 结构的重量初始设计为109.10磅。 缺省允差(由程序计算)为初始重量的1%(11磅)。 分析中使用如下材料特性: E=2.1E6psi RHO=2.85E-41b/in3 (比重) 最大许用应力=400psi 分析中使用如下几何特性: 横截面面积变化范围=1到1000in2(初始值为1000) 基本尺寸B变化范围=400到1000in(初始值为1000) 命令流如下: /filnam,truss /title, optimization of a three-bar truss !初始化设计变量参数 B=1000 !基本尺寸 A1=1000 !第一个面积 A2=1000 !第二个面积 A3=1000 !第三个面积 ! !进入PREP7并建模

/prep et,1,link1 !二维单元 r,1,A1 !以参数形式的实参 r,2,A2 r,3,A3 mp,ex,1,2.1E6 !杨氏模量 n,1,-B,0,0 n,2,0,0,0 n,3,B,0,0 n,4,0,-1000,0 e,1,4 real,2 e,2,4 real,3 e,3,4 finish ! !进入求解器,定义载荷和求解 /solu d,1,all,0,,3 f,4,fx,200000 f,4,fy,-20000 solve finish ! !进入POST1并读出状态变量数值 /post1 set,last etable,evol,volu !将每个单元的体积放入ETABLE ssum !将单元表格内数据求和 *get,vtot,ssum,,item,evol !VTOT=总体积 rho=2.85e-4 wt=tho*vtot !计算总体积 etable,sig,ls,1 !将轴向应力放入ETABLE ! *get,sig,elem,1,etab,sig !SIG1=第一个单元的轴向应力*get,sig,elem,2,etab,sig !SIG2=二单元的轴向应力 *get,sig,elem,3,etab,sig !SIG3=三单元的轴向应力 ! sig1=abs(sig1) !计算轴向应力的绝值 sig2=abs(sig2) sig3=abs(sig3) ! /eshape,2 !以实体单元模式显示壳单元

凸轮优化设计

一.配气凸轮优化设计 1.1配气凸轮结构形式及特点 配气凸轮是决定配气机构工作性能的关键零件,如何设计和加工出具有合理型线的凸轮轴是整个配气系统设计中最为重要的问题。对内燃机气门通过能力的要求,实际上就是对由凸轮外形所决定的气门升程规律的要求,气门开启迅速就能增大时面值,但这将导致气门机构运动件的加速度和惯性负荷增大,冲击、振动加剧、机构动力特性变差。因此,对气门通过能力的要求与机构动力特性的要求间存在一定矛盾,应该观察所设计发动机的特点,如发动机工作转速、性能要求、配气机构刚度大小等,主要在凸轮外形设计中兼顾解决发动机配气凸轮外形的设计也就是对凸轮从动件运动规律的设计。从动件升程规律的微小差异会引起加速度规律的很大变动,在确定从动件运动规律时,加速度运动规律最为重要,通常用其基本工作段运动规律来命名,一般有下面几种: 1.1.1等加速凸轮 等加速凸轮的特点是其加速度分布采取分段为常数的形式,其中又可分为两类,一类可称为“正负零型”,指其相应的挺柱加速度曲线为正—负—零:另一类可称“正零负型”,指其加速度曲线为正一零一负。当不考虑配气机构的弹性变形时,对最大正负加速度值做一定限制且在最大升程、初速度相同的各种凸轮中,这种型式的凸轮所能达到的时面值最大。等加速型凸轮常常适用于平稳性易保证,而充气性能较差的中低速柴油机中。但就实际情况而言,配气机构并非完全刚性,等加速凸轮加速度曲线的间断性必然会影响机构工作平稳性,在高速内燃机中一般不采用等加速型凸轮[9]。 1.1.2组合多项式型 组合多项式型凸轮的基本段为一分段函数,它由几个不同的表达式拼接而成。通过调整各段所占角度及函数方程,获得不同斜率的加速度曲线。组合多项式型凸轮时面值大,而且能够方便地控制加速度变化率及确保正、负加速段间的圆滑过渡,可以较好地协调发动机充气性能及配气机构工作平稳性的要求[7]。由于凸轮从动件运动规律由若干函数组成,在各段间联结点处不易保证升程规律三阶以上导数的连续性,可能会影响配气机构工作的平稳性,组合多项式型凸轮主要应用在要求气门时面值大和较好动力性能的情形。 1

钢筋桁架模板施工方案

目录 一、编制说明及依据 (1) 二、工程概况 (1) 三、施工工艺 (1) 四、质量要求 (6) 五、安全要求 (6) 六、计算书 (7)

钢筋桁架模板施工方案 一、编制说明及依据 1、《商业中心区F区海德广场图纸》 2、《钢筋桁架模板施工手册》 3、《钢筋桁架模板设计手册》 二、工程概况 东莞市商业中心海德广场工程,34层以上全部为钢结构工程,其楼板采用钢筋桁架模板施工,钢筋桁架模板有共三种规格分别是:TD30-80, TD30-110,TD30-110a 。其中TD30-80型号模板应用于板厚为120mm部位,TD30-110型号和TD30-110a模板应用于板厚为150mm部位。 三、施工工艺 1、吊装前准备工作 1 检查现场是否符合下述作业条件要求: 1)钢结构构件安装完成并验收合格。 2)剪力墙支模及钢筋工程完成。 3)钢筋桁架模板构件进场并验收合格。 4)钢梁表面吊耳清除。 5) 检查钢筋桁架模板的拉钩是否变形。若变形影响拉钩之间的连接,必须用自制的矫正器械进行修理,保证板与板之间的搭钩连接牢固。矫正后的搭钩开口角度不应大于45 度,防止出现搭钩之间连接不牢,

造成漏浆。 6)底模的平直部分和搭接边的平整度每米不应大于1.5mm。 7) 按照企业标准《钢筋桁架模板》Q/HDB 01-2006 中相关规定对钢筋桁架模板外观质量进行检查。 2、吊装方法 钢筋桁架模板长度不超过12m,每沿米重量约3 kg ~16 kg,为避免钢筋桁架模板材进入楼层后再用人工倒运,要求每一节间配料准确无误。板材在地面配料后,分别吊入每一施工节间,起吊时应密切注意钢筋桁架模板布置图和包装标记,避免发生吊装放置位置交错现象。上层次梁安装前,先将下层钢筋桁架模板运输至安装位置,若次梁安装后再吊钢筋桁架模板,势必造成斜向进料,容易损坏钢筋桁架模板甚至发生危险;或由钢结构安装单位预留进料通道。 3、钢筋桁架模板安装要求 依照模板平面布置图铺设钢筋桁架模板、绑扎板底钢筋及部分附加钢筋。平面形状变化处,应将钢筋桁架模板切割,补焊端部支座钢筋后,再安装。切割可采用机械切割或氧气切割。钢筋桁架模板跨过横梁,钢筋桁架腹杆脚部未支撑在横梁上时,在横梁处应补焊支座钢筋。钢筋桁架模板伸入梁边的长度,必须满足设计要求。模板长度方向搭接长度(指钢梁的上翼缘边缘与端部竖向支座钢筋的距离)不宜小于5d(d 为钢筋桁架下弦钢筋直径)及50mm 中的较大值;模板宽度方向底模与钢梁的搭接长度不宜小于30mm,确保在浇注混凝土时不漏浆。严格按照图纸及相应规范的要求来调整钢筋桁架模板的位置,

桁架结构优化设计

桁架结构优化设计 一般所谓的优化,是指从完成某一任务所有可能方案中按某种标准寻找最佳方案。结构优化设计的基本思想是,使所设计的结构或构件不仅满足强度、刚度与稳定性等方面的要求,同时又在追求某种或某些目标方面(质量最轻,承载最高,价格最低,体积最小)达到最佳程度。 对于图1-1的结构,已知L=2m,x b=1m,载荷P=100kN,桁架材料的密度r=7.7x10-5N/mm3,[δt]=150Mpa,[δc]=100Mpa,y b的范围:0.5m≦y b≦1.5m。 图1-1 桁架结构 设计变量与目标函数(质量最小)

预定参数(设计中已确定,设计者不能任意修改的量):L , x b ,P ,r ,[δt ] ,[δc ] 设计变量(可由设计者调整的量)y b ,A 1,A 2 约束条件(对设计变量的约束条件) (1) 强度条件约束(截面、杆件的强度) (2) 几何条件约束(B 点的高度范围) 目标函数:桁架的质量W (最小) 解:1. 应力分析 0sin sin 02112=--=∑θθN N F x 0cos cos 02112=---=∑P N N F y θθ 由此得: )sin(sin 2111θθθ+= p N ) sin(sin 212 2θθθ+- =p N 由正弦定理得: l y l x p N B B 2 1) (2 -+=

l y x p N B B 2 22 += 由此得杆1和2横截面上的正应力 1 2 1) (2 lA y l x p B B -+= σ 2 2 22 lA y x p B B += σ 2.最轻质量设计 目标函数(桁架的质量) ))((2 2 2 1 2 2 B B y x A y l x A W B B ++-+=γ (1-1) 约束条件 [][]? ? ? ?? ????? ????≤+≤-+c B t B lA y x p lA y l x p B B σσ2 2 1 2 22 ) ( (1-2) 0.5≦y b ≦1.5(m ) (1-3) (于是问题归结为:在满足上述约束条件下,确定设计变量y b ,A 1,A 2,使目标函数W 最小。) 3.最优解搜索 采用直接实验法搜索。首先在条件(1-3)所述范围内选取一系列y b 值,由强度条件(1-2)确定A 1与A 2,最后根据式(1-2)计算相应W ,在y b -W 曲线中选取使W 最小的y b 与相应的A 1与A 2,即为本问题的最优解。 4.利用MA TLAB 编程 (1)分析目标函数和约束条件

发动机配气机构计算分析流程

文档编号 版本 发布日期发动机配气机构计算分析流程 编制:日期: 校对:日期: 审核:日期: 批准:日期:

目 录 1 参数定义 (3) 2 配气机构计算分析和优化流程框图 (7) 3 过程实施 (9) 3.1 AVL-workspace-TYCON软件介绍 (9) 3.1.1简介 (9) 3.1.2 AVL-Workspace Tycon的应用 (9) 3.1.3 AVL-Workspace Tycon主要菜单和主要模块介绍 (9) 3.2配气机构评价指标 (12) 3.2.1 运动学分析和评价 (12) 3.2.2 动力学分析和评价 (15) 3.3配气机构运动学动力学TYCON模型建立 (15) 3.4 凸轮型线评价及配气机构运动学分析 (16) 3.4.1凸轮型线及配气机构运动学分析界面的进入 (16) 3.4.2 Cam Design界面中数据的输入 (17) 3.4.3 凸轮型线评价及配气机构运动学分析 (20) 3.5 配气机构动力学分析 (21) 3.5.1动力学模型的文件和目录说明 (21) 3.5.2仿真计算、参数设置和结果控制 (22) 3.5.3动力学计算后处理 (24) 3.6 配气机构改进和优化 (25) 3.6.1 凸轮型线优化设计流程及界面 (26) 3.6.2 缓冲段设计 (26) 3.6.3 工作段设计 (29) 3.6.4 新凸轮型线的分析 (33) 致谢 (34)

1 参数定义 发动机配气机构计算分析所需参数如表1所示。 表1.1 发动机配气机构计算参数表 单元名称参数单位 旋转激励单元转速输入方式的选择 转速值 rpm或者rad 有无转速波动 凸轮单元基圆半径 mm 型线数据与实际位置偏移角度 deg 凸轮转角转转系数 凸轮升程数据单位与米的转换关系 凸轮型线数据类型 凸轮型线数据 凸轮轴承单元Y方向刚度 N/mm Z方向刚度 N/mm Y方向阻尼 N.s/mm Z方向阻尼 N.s/mm 机油动力粘度 N.s/mm2 相对间隙 轴瓦直径 mm 轴承宽度与轴瓦直径比值 带轮和链轮单元质量 t 转动惯量(扭转) t.mm2 转动惯量(弯曲) t.mm2 相对阻尼 杨氏模量 N/mm2 剪切模量 N/mm2 中截面面积 mm2 质心到第一轴距离 mm 剪切面积率 惯性矩(扭曲) mm4 惯性矩(弯曲) mm4 带的预紧力 N 传动力 N 带的阻尼 N.s/mm 带轮有效半径 mm 带刚度 N/mm 配气相位单元发火次序 deg 载荷数据时间偏移量 s 凸轮中心到接触点的距离矢量 mm

最新-基于PROE的进排气阀门的运动仿真分析

本科学生毕业设计 基于PRO/E的进排气阀门的运动仿真分析 院系名称: 专业班级: 学生姓名: 指导教师: 职称: 黑龙江工程学院 二○一二年六月

The Graduation Design for Bachelor's Degree Movement Simulation of Input Air and Outputair Valve of Engine based on Pro/e Candidate: Specialty: Class: Supervisor: Heilongjiang Institute of Technology 2012-06·Harbin

摘要 配气机构作为内燃机的重要组成部分,其设计合理与否直接关系到内燃机的动力性能、经济性能、排放性能及工作的可靠性、耐久性。随着内燃机高功率、高速化,人们对其性能指标的要求越来越高,要求其在高速运行的条件下仍然能够平稳、可靠地工作,因而对其配气机构提出了更高的要求。配气凸轮型线是配气机构的核心部分,配气凸轮型线设计是配气机构优化设计的重要途径之一。模拟计算和实验研究是内燃机配气机构研究两种重要手段。本文对配气机构给零件形状、尺寸进行了设计,并且应用pro-engineer进行了实体建模,得到了配气机构的三维装配图。再将配气机构模型导入ADAMS软件进行约束的建立以及驱动的添加,使得配气机构能够在ADAMS 软件中进行仿真,从而得到各种数据曲线对整个机构的性能进行分析,根据各种数据分析得到配气机构的最优设计。 关键词:内燃机;配气机构;虚拟样机技术;建模;仿真

ABSTRACT The valve train is one of the most important mechanisms in a internal combustion engine, whether the performances are good or bad, that affecting the power performance, economic performance, emissions performance of the engine, as well as affecting the reliability and wear performances of the whole engine. Along with the requests of the engine’s high power, super-speed, people demand a higher index. That is, when the engine runs under a high speed, it can still work steadily and dependably, which demand that the valve train system should have a high performance. Cam profile is the hard core of the valve train, which design is one of the important ways to carry out valve train optimal design. Simulation calculation and experimentation research are two important ways to carry out research and development on valve train of internal-combustion engine.This thesis devise the parts shape and dimension for the valve train, obtain the 3D assembly diagram base on model entities by pro-engineer. Importing the valve train to ADAMS software, then creating the constraints and adding drives. Sequentially, analyze the whole organization performance, after get the various data curve from valve train be capable simulation in ADAMS software. Finally, obtain the optimum design of valve train according to various data analysis. Key words: Internal combustion engine; Valve train VPT; Virtual prototyping technology; Modeling; Simulation

汽车内燃机配气机构的优化设计

汽车内燃机配气机构的优化设计 摘要 配气机构作为内燃机的重要组成部分,其设计合理与否直接关系到内燃机的动力性能、经济性能、排放性能及工作的可靠性、耐久性。随着内燃机高功率、高速化,人们对其性能指标的要求越来越高,要求其在高速运行的条件下仍然能够平稳、可靠地工作,因而对其配气机构提出了更高的要求。配气凸轮型线是配气机构的核心部分,配气凸轮型线设计是配气机构优化设计的重要途径之一。模拟计算和实验研究是内燃机配气机构研究两种重要手段。 关键词:内燃机;配气机构;凸轮型线;优化设计

ABSTRACT The valve train is one of the most important mechanisms in a internal combustion engine, whether the performances are good or bad, that affecting the power performance, economic performance, emissions performance of the engine, as well as affecting the reliability and wear performances of the whole engine. Along with the requests of the engine’s high power, super-speed, people demand a higher index. That is, when the engine runs under a high speed, it can still work steadily and dependably, which demand that the valve train system should have a high performance. Cam profile is the hard core of the valve train, which design is one of the important ways to carry out valve train optimal design. Simulation calculation and experimentation research are two important ways to carry out research and development on valve train of internal-combustion engine. Key words:Internal combustion engine; Valve train; Cam profile; Optimal design

发动机配气机构系统的动力学建模及仿真分析

发动机配气机构系统的动力学建模及仿真分析 罗卫平,陈曼华,姜小菁,王 (金陵科技学院机电工程学院,江苏南京211169) 摘要:针对发动机配气机构系统,在ADAM S/Engine软件中建立了其虚拟模型,在此基础上,对该机构进行了仿真分析,得到了气门的升程、速度、加速度和摇臂与挺柱的接触力等特性曲线,为配气机构动态性能的评价和优化提出了理论依据,从而为虚拟样机技术在新产品开发中的应用提供了有效方法。 关键词:配气机构;ADAM S/Engine;虚拟样机;多体动力学 中图分类号:U463.33;TP391.9文献标识码:A文章编号:1672-1616(2012)01-0051-04 配气机构的功用是根据发动机每一汽缸内进 行的工作循环顺序,定时地开启和关闭各汽缸的 进、排气门,以保证新鲜可燃混合气或空气得以及 时进入汽缸,并把燃烧后生成的废气及时排出汽 缸。配气机构的传统开发方法往往是多方案的比 较和试凑过程,这种基于物理样机的频繁的试验, 会延长研发周期和增加开发成本。虚拟样机技术 就是在这种情况下产生的一种数字化的研发模式, 即工程师在计算机上建立样机模型,对模型进行各 种动态性能的分析,然后改进样机设计方案,最后 投入生产。本文就是在这样的背景下,以多体动力 学为理论基础,采用美国MDI公司开发的 ADAM S软件。对发动机配气机构进行建模与仿 真,预测实际产品的特性,提供一个全面地研究产 品工作性能的方法。 1多体系统动力学研究的理论基础 随着多体动力学的发展,目前应用于多刚体系 统动力学的方法主要有以下几种:牛顿-欧拉法、 拉格朗日方法论、图论4法、凯恩法、变分法、旋量 法等。ADAMS用刚体i的质心迪卡儿坐标和反 映刚体方位的欧拉角作为广义坐标,即:q i=[x, y,z,W,H,<]T i,q=[q T1,,,q T n]T。采用拉格朗日 乘子法建立系统运动方程[1]: d d t 5T 5q# T - 5T 5q T +f T q Q+g T q#L=Q(1) 式中:T为系统动能;q为系统广义坐标列阵;Q 为广义力列阵;Q为对应于完整约束的拉氏乘子列阵,完整约束方程时,f(q,t)=0;L为对应于非完整约束的拉氏乘子列阵,非完整约束方程时,g(q, q#,t)=0。 2配气机构的动力学建模 配气机构是由凸轮轴、摇臂、气门、气门弹簧、挺柱、气门座等多个构件组成的机械系统,它是由凸轮的旋转带动驱动气门按预定的运动规律开启和关闭来实现配气的过程。ADAM S/Engine提供了多种配气机构部件模型的模板,因此在建立配气机构的模型时只需在ADAMS/Engine软件中选取 正确的模板,然后根据实际部件的特征,修改部件几何参数。如果模型库中不包含要建立的几何部件类型,则可以根据需要建立新的模板,然后导入标准界面进行分析[2]。本文利用ADAM S/Eng ine 模板建立了某柴油发动机顶置凸轮轴式配气机构的多刚体虚拟样机模型,如图1所示。 1)凸轮轴;2)摇臂;3)挺柱;4)气门弹簧; 5)气门;6)气门座 图1配气机构的虚拟样机模型 收稿日期:2011-08-10 作者简介:罗卫平(1973-),女,江苏南京人,金陵科技学院讲师,硕士,主要研究方向为虚拟技术和动力学仿真。

浅谈工业建筑中桁架结构的优化设计

浅谈工业建筑中桁架结构的优化设计 发表时间:2019-02-28T15:08:35.403Z 来源:《基层建设》2018年第36期作者:张明[导读] 摘要:随着我国工业化的进一步发展,桁架结构在工业建筑中的应用越来越广泛。 河钢股份有限公司唐山分公司发展规划部河北省唐山市 063000 摘要:随着我国工业化的进一步发展,桁架结构在工业建筑中的应用越来越广泛。除厂房屋盖结构外,桁架结构还应用于带式输送机的栈桥、通道、塔架等。它具有重量轻、跨度大、材料消耗经济、标准化程度高等优点,各种形状以满足不同用途。本文主要探讨在带式输送机栈桥的桁架中如何布置构件,使桁架结构受力更合理,使用更经济的材料。通过比较分析桁架在不同构件布置方案下的受力性能,达到优化桁架结构设计的目的。 关键词:平面桁架结构;杆件布置;优化设计 1 桁架基本情况 1.1 桁架的特点与组成 桁架结构是在简支梁基础上发展而来的,简支梁在均布荷载作用下,沿梁轴线弯曲,剪力的分布及截面正应力的分布在中和轴处为零,截面上下边缘处的正应力最大,随着跨度的增大,梁高增加根据正应力的分布特点,在先形成工字型梁后,继续挖空成空腹形式,中间剩下几根截面很小的连杆时,就发展成为“桁架”。由此可见,桁架是从梁式结构发展产生出来的。桁架的实质是利用梁的截面几何特征的几何因素—构件截面的惯性矩Ⅰ增大的同时,截面面积反而可以减小,从而减轻结构自重,达到节省材料的目的。 桁架结构是由直杆在杆端相互连接而组成的以抗弯为主的格构式体系,一般由上弦、下弦、腹杆组成,多应用于受弯构件。简支桁架在外荷载的作用下整体所产生的弯矩图和剪力图都与简支梁的情况相似,但桁架构件的受力性能与梁完全不同。桁架的上弦杆受压、下弦杆受拉,由此形成力偶来平衡外荷载所产生的弯矩,由斜腹杆轴力中的竖向分量来平衡外荷载所产生的剪力。 1.2 桁架结构计算的基本假定条件 (1)杆件与杆件之间相连接的节点均为绝对光滑无摩擦的铰结点。(2)所有杆件的轴线均是直线且在同一平面内,并通过铰的中心。(3)荷载和支座反力均作用在节点上,并位于桁架的平面内。通过分析可以看出:从整体来看,整个桁架相当于一个受弯杆件,而从局部看,桁架的每个杆件只承受轴力、拉力或压力,没有弯矩和剪力。 2 桁架在实际工程中的应用分析 这里以位于甘肃平凉某骨料生产线项目为例,分析桁架结构杆件布置。此桁架为皮带机运输栈桥桁架,跨度 18 m,宽度 3.2 m,高度2.7 m,全封闭结构,角度0°。 2.1 桁架结构建模 采用 PKPM 软件进行建模分析,取单榀桁架,高度 2.7 m,立杆间距取 3 m,荷载取宽度的一半,所有杆件按柱布置,所有节点设为较结点,荷载直接输在节点上。经计算上弦单个节点恒载 0.5 kN、活载7.5 kN,下弦单个节点恒载 3.5 kN、活载 24 kN,通过设置不同的杆件连接形式进行结果分析,桁架均对称布置。 2.2 桁架结构的对比分析 文章共进行四种连接形式的计算,在杆件和荷载均相同的情况下进行结果分析。 (1)由于桁架各杆件只有轴力,我们先将四种桁架结构的轴力图进行对比,如图 1 所示。从图中对比可以看出,桁架采取不同的杆件布置,桁架杆件的内力是不均匀的,整体近似梁内力分布,上下弦杆内力是两端小而向中间逐渐增大,腹杆内力是两端大而向中间逐渐减小的。但是明显3、4 形式下桁架的支座处节点荷载远远大于 1、2 形式,由此可见桁架结构边跨处腹杆直接与支座连接时,桁架整体受力更加合理,图中的 1、2 形式连接相对于 3、4 连接更加合理。 图1 恒载轴力 (2)将 1、2 两种桁架结构的应力图进行对比,如图 2 所示。从图中对比可以看出桁架杆件在 1、2 形式布置下虽然整体轴力分布都比较均匀,但是应力计算结果显示不同的布置下杆件所受内力不同,在相同的条件下 2 形式中间的杆件长细比(187>150)已经超限,1 形式杆件全部满足。由此可见桁架四种形式下最终比较结果 1 形式结构受力更合理。

基于MATLAB的桁架结构优化设计

基于MAT LAB 的桁架结构优化设计 林 琳 张云波 (华侨大学土木系福建泉州 362011) 【摘 要】 介绍了基于BP 神经网络的全局性结构近似分析方法,解决了结构优化设计问题中变量的非线性映射问题。在此基础上,利用改进的遗传算法,对桁架结构在满足应力约束条件下进行结构最轻优化设计。利用 Matlab 的神经网络工具箱,编程求解了三杆桁架优化问题。 【关键词】 改进遗传算法;BP 神经网络;结构优化设计;满应力准则 【中图分类号】 T U20114 【文献标识码】 A 【文章编号】 100126864(2003)01-0034-03 TRUSS STRUCTURA L OPTIMIZATON BASE D ON MAT LAB LI N Lin ZH ANG Y unbo (Dept.of Civil Engineering ,Huaqiao University ,Quanzhou ,362011) Abstract :Optimal structural design method based on BP neural netw ork and m odified genetic alg orithm were proposed in this paper.The high parallelism and non -linear mapping of BP neural netw ork ,an approach to the global structural approximation analysis was introduced.It can s olve the mapping of design variables in structural optimization problems.C ombining with an im proved genetic alg orithm ,the truss structure is optimized to satis fy the full stress criteria.Under the condition of MAT LAB 5.3,an exam ple of truss structure has been s olved by this method. K ey w ords :G enetic alg orithm ;BP neural netw ork ;Structural optimization design ;Full stress principle 结构优化设计,就是在满足结构的使用和安全要求的基础上,降低工程造价,更好地发挥投资效益。传统的优化方法有工程法和数学规划法,其难以解决离散变量问题,对多峰问题容易陷入局部最优,且对目标函数要求有较好的连续性或可微性。而近年来提出的基于生物自然选择与遗传机理的随机搜索遗传算法对所解的优化问题没有太多的数学要求,可以处理任意形式的目标函数和约束,对离散设计变量的优化问题尤为有效。进化算子的各态历经性使得遗传算法能够非常有效地进行概率意义下的全局搜索,能高效地寻找到全局最优点。但采用遗传算法时,进化的每一代种群成员必须要进行结构分析,因此所需的结构分析次数较多。 1 桁架结构优化设计问题的表述 在满足应力约束条件下的桁架重量最轻优化问题为: min w (A )=Σn i =1ρA i L i s.t 1 σi ≤[σi ] (i =1,2……n ) A min ≤A i ≤A max w (A )为结构总重量,ρ为材料密度,L i 为第i 杆的长度,A i 为第i 杆件面积,σi 为第i 杆的应力,[σi ]为第i 杆的许用 应力,A min 、A max 分别为杆件面积的下界与上界;n 为杆件总数。 2 神经网络结构近似分析方法 人工神经网络是由大量模拟生物神经元功能的简单处理单元相互连接而成的巨型复杂网络,它是一个具有高度非线 性的超大规模连续时间自适应信息处理系统,易处理复杂的非线性建模问题。文献[1]在K olm og orov 多层神经网络映射存在定理的基础上,针对近似结构分析问题提出的多层神经网络映射存在定理,确定了近似结构分析的神经网络的基本模型。从理论上证明一个三层神经网络可用来描述任一弹性结构的应力、位移等变量和结构设计变量之间的映射关系,为利用人工神经网络来进行结构近似分析提供理论基础。 211 BP 神经网络及其算法改进 BP 神经网络,即误差反向传播神经网络。其最主要的 特性就是具有非线性映射功能。1989年R obert Hecht -Niel 2 s on 证明了对于任何闭区间内的一个连续函数,都可用一个 隐含层的BP 网络来逼近。因而一个三层BP 网络可完成任意的n 维到m 维的映照,它由输入层、隐层和输出层构成。 传统的BP 网络存在着局部极小问题和收敛速度较慢的问题,因此本文采用了动量法和学习率自适应调整的策略,提高了学习速度并增加了算法的可靠性。 动量法考虑了以前时刻的梯度方向,降低了网络对误差曲面局部细节的敏感性,有效地抑制了网络陷于局部极小。 w (k +1)=w (k )+α[(1-η)D (k )+ηD (k -1)] α(k )=2λα(k -1)λ=stg n[D (k )D (k -1)] w (A )为权值向量,D (k )=- 5E 5w (k ) 为k 时刻的负梯度,D (k -1)为k -1时刻的负梯度,η为动量因子,α为学习率。 4 3 低 温 建 筑 技 术 2003年第1期(总第91期)

相关文档
最新文档