复用计算的虚拟肝脏体纹理合成与映射方法-论文

复用计算的虚拟肝脏体纹理合成与映射方法-论文
复用计算的虚拟肝脏体纹理合成与映射方法-论文

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

数值分析_数值计算小论文

Runge-Kutta 法的历史发展与应用 摘要Runge-Kutta 法是极其重要的常微分方程数值解法,本文仅就其起源及发展脉络加以简要研究。对Runge 、Heun 以及Kutta 等人的贡献做出适当评述,指出Runge-Kutta 方法起源于Euler 折线法。同时对Runge-Kutta 法的应用做简要研究。 关键词 Euler 折线法 标准四阶Runge-Kutta 法 应用 一、发展历史[1] 1.1 Euler 折线法 在微分方程研究之初,瑞士数学家L.Euler(1707.4—1783.9)做出了开创性的工作。他和其他一些数学家在解决力学、物理学问题的过程中创立了微分方程这门学科。在常微分方程方面,Euler 在1743年发表的论文中,用代换kx y e =给出了任意阶常系数线性微分方程的古典解法,最早引入了“通解”和“特解”的概念。 1768年,Euler 在其有关月球运行理论的著作中,创立了广泛用于求初值问题 00 (,), (1.1)() (1.2)y f x y x x X y x a '=<≤??=? 的数值解的方法,次年又把它推广到二阶方程。欧拉的想法如下:我们选择0h >,然后在00x x x h ≤≤+情况下用解函数的切线 0000()()(,)l x y x x f x y =+- 代替解函数。这样对于点 10x x h =+ 就得到 1000(,)y y hf x y =+。 在11(,)x y 重复如上的程序再次计算新的方向就会得到所谓的递推公式: 11, (,),m m m m m m x x h y y hf x y ++=+=+

数值计算方法试题及答案

数值计算方法试题一 一、填空题(每空1分,共17分) 1、如果用二分法求方程在区间内的根精确到三位小数,需对分()次。 2、迭代格式局部收敛的充分条件是取值在()。 3、已知是三次样条函数,则 =( ),=(),=()。 4、是以整数点为节点的Lagrange插值基函数,则 ( ),( ),当时( )。 5、设和节点则 和。 6、5个节点的牛顿-柯特斯求积公式的代数精度为,5个节点的求积公式最高代数精度为。 7、是区间上权函数的最高项系数为1的正交多项式族,其中,则。 8、给定方程组,为实数,当满足,且时,SOR迭代法收敛。 9、解初值问题的改进欧拉法是 阶方法。 10、设,当()时,必有分解式,其中为下三角阵,当其对角线元素满足()条件时,这种分解是唯一的。 二、二、选择题(每题2分) 1、解方程组的简单迭代格式收敛的充要条件是()。(1), (2) , (3) , (4) 2、在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 (1),(2),(3),(4), (1)二次;(2)三次;(3)四次;(4)五次 4、若用二阶中点公式求解初值问题,试问为保证该公式绝对稳定,步长的取值范围为()。 (1), (2), (3), (4)

三、1、 2、(15 (1)(1) 试用余项估计其误差。 (2)用的复化梯形公式(或复化 Simpson公式)计算出该积分的近似值。 四、1、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。选一种迭代格式建立Steffensen迭代法,并进行计算与前一种结果比较,说明是否有加速效果。 2、(8分)已知方程组,其中 , (1)(1)列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。 (2)(2)求出Jacobi迭代矩阵的谱半径,写出SOR 迭代法。 五、1、(15分)取步长,求解初值问题用改进的欧拉法求的值;用经典的四阶龙格—库塔法求的值。 2、(8分)求一次数不高于4次的多项式使它满足 ,,,, 六、(下列2题任选一题,4分) 1、1、数值积分公式形如 (1)(1)试确定参数使公式代数精度尽量高;(2)设,推导余项公式,并估计误差。 2、2、用二步法 求解常微分方程的初值问题时,如何选择参数使方法阶数尽可能高,并求局部截断误差主项,此时该方法是几阶的。 数值计算方法试题二 一、判断题:(共16分,每小题2分) 1、若是阶非奇异阵,则必存在单位下三角阵和上三角阵,使唯一成立。()

数值分析小论文

“数值分析”课程 第一次小论文 郑维珍2015210459 制研15班(精密仪器系)内容:数值分析在你所在研究领域的应用。 要求:1)字数2500以上;2)要有摘要和参考文献;3)截至10.17,网络学堂提交,过期不能提交! 数值分析在微流控芯片研究领域的应用 摘要: 作者在硕士期间即将参与的课题是微流控芯片的研制。当前,微流控芯片发展十分迅猛,而其中涉及到诸多材料学、电子学、光学、流体力学等领域的问题,加上微纳尺度上的尺寸效应,理论研究和数值计算都显得困难重重。发展该领域的数值计算,成为重中之重。本文从微流体力学、微传热学、微电磁学、微结构力学等分支入手,简要分析一下数值分析方法在该领域的应用。 微流控芯片(Microfluidic Chip)通常又称芯片实验室(Lab-On-a-Chip ),它是20世纪90年代初由瑞士的Manz和Widmer提出的[1-2],它通过微细加工技术,将微管道、微泵、微阀、微电极、微检测元件等功能元件集成在芯片材料(基片)上,完成整个生化实验室的分析功能,具有减少样品的消耗量、节省反应和分析的时间、高通量和便携性等优点。 通常一个微流控芯片系统都会执行一个到多个微流体功能,如泵、混合、热循环、扩散和分离等,精确地操纵这些流体过程是微流控芯片的关键。因此它的研究不仅需要生命科学、MEMS、材料学、电子学、光学、流体力学等多学科领域的基础理论的支持,还需要很多数学计算。

1)微流体力学计算[3]: 对微管里的流体动力的研究主要包含了以下几个方面:(1)微管内流体的粘滞力的研究;(2)微管内气流液流的传热活动;(3)在绝热或传热的微管内两相流的流动和能量转换。这三方面的研究涵盖了在绝热、传热和多相转换条件下,可压缩和不可压缩流体在规则或不规则的微管内的流动特性研究。 由此,再结合不同的初值条件和边界条件,我们可以得到各种常微分方程或偏微分方程,而求解这些方程,就是需要很多数值分析的知识。例如,文献[4]里就针对特定的初值和边界条件,由软件求解了Navier-Stodes方程: 文献[4]专门有一章节讨论了该方程的离散化和数值求解。 微流体力学主要向两个方面发展:一方面是研究流动非定常稳定特性、分叉解及微尺寸效应下的湍流流动的机理,更为复杂的非定常、多尺度的流动特征,高精度、高分辨率的计算方法和并行算法;另一方面是将宏观流体力学的基本模型,结合微纳效应,直接用于模拟各种实际流动,解决微纳芯片生产制造中提出来的各种问题。 2)微传热方程计算: 常微分、偏微分方程的数值求解应用较为广泛的另一问题就是微流体传热问题。由传热学的相关知识,我们可以达到如下的传热学基本方程: 该方程在二维情况下经过简化和离散,可以得到如教材第三章所讲的“五点差分格式”的方程组,从而采取数值方法求解[5]。 除此之外,微结构芯片在加工和制造过程中也会有很多热学方面的问题,例如文献[6]所反映的注塑成型工艺中,就有大量的类似问题的解决。 3)微电磁学计算: 由于外加电场的作用,电渗流道中会产生焦耳热效应。许多研究者对电渗流道中的焦耳热效应进行了数值模拟研究。新加坡南洋理工大学的G. Y. Tang等在电渗流模型的基础上,考虑了与温度有关的物理系数,在固一液祸合区域内利用

计算机图形学课程设计--圆柱面图像纹理映射算法

计算机图形学课程设计--圆柱面图像纹理映射算法

《计算机图形学》 课程学习报告 项目题目:圆柱面图像纹理映射算法

目录 一、项目描述............................................................................... .. (1) 1.1圆柱面的建立和二维图像纹理的绑定 (1) 1.2坐标系的建立............................................................................... (1) 二、项目需求............................................................................... .. (1) 2.1 几何构造的原理............................................................................... . (1) 2.2、动画的设计 (2) 2.3 纹理的设计 (2) 2.3.1 纹理映射的原理 (2) 2.3.2 纹理定义 (2) 三、项目设计...............................................................................

(3) 3.1、窗口设计以及各项功能的实现 (3) 3.1.1 窗口设计函数 (3) 3.1.2 点表函数 (4) 3.1.3 面表函数 (4) 3.1.4 绘制圆柱函数 (6) 3.1.5 透视变换函数 (8) 3.1.6 读入纹理函数 (8) 3.1.7 背景函数 (9) 3.1.8 时间函数............................................................................... . (9) 3.1.9 动画控制函数............................................................................... .. (10) 四、项目效果............................................................................... (10) 4.1构造图形分析以及坐标系变换的效果.....................................错误!未定义书签。 五、项目总

实验六凹凸纹理映射技术样本

实验六: 凹凸纹理映射技术 一、实验目的 掌握凹凸纹理映射的原理, 熟悉Ogre中纹理映射的使用方法。 二、实验仪器 pc、 vs 三、实验原理及过程 1、网上检索凹凸纹理映射相关技术 凹凸纹理映射是一种纹理混合方法, 它能够创立三维物体复杂的纹理外观表面。普通的纹理映射只能模拟比较平滑的三维物体表面, 难以显示表面高低起伏、凹凸不平的效果。凹凸纹理映射能够经过一张表示物体表面凹凸程度的高度图( 称为凹凸纹理) , 对另一张表示物体表面环境映射的纹理图的纹理坐标进行相应的干扰, 经过干扰的纹理坐标将应用于环境映射,从而产生凹凸不平的显示效果。凹凸纹理映射一般由三张纹理映射图组成, 第一张纹理图表示物体表面原始纹理颜色, 第二张凹凸纹理图表示物体表面凹凸的高度起伏值, 用来对下一张环境纹理图坐标进行干扰, 第三张纹理图表示周围镜面反射或漫反射光照的环境光照映射图。让我们来看看一个粗糙的表面。 从远处看, 你判断这个物体是粗糙的的唯一证据是在它表面上下的亮度有改变。你的大脑能够获得这些亮暗不一的图案信息, 然后判断出它们是表面中有凹凸的部位。左边的一幅图就说明了这一点。你能够发现它是一个浮雕式的表面。一些矩型和字母被印入表面, 可是它们摸上去就像是一个隐藏的监控器的玻璃。如果这个图像是在适当的位置上, 那么它除了改变亮度, 不需要再做任何其它的工作。那么你可能会问: 我是怎么知道哪些点要亮, 哪些点要暗呢? 这不难。绝大多数人生活在这样一种环境下——这个环境的大多数光源来自上方( 译者注: 比如白天主要的光来自太阳, 夜晚主要的光来自天花板上的日光灯) 。因此向上倾的

地方就会更亮, 而向下倾的地方就会更暗。因此这种现象使你的眼睛看到一个物体上亮暗区域时, 能够判断出它的凹凸情况。相对亮的块被判断是面向上的, 相对暗的块被判断是面向下的。因此我只需要给物体上的线条简单得上色。如果你想要更多的证据, 这里还有一幅几乎相同的图, 不同于前的是它旋转了180度。因此它是前一幅图倒转的图像。那些先前看起来是凹进去的区域, 现在看起来是凸出来的了。 凹凸映射(凹凸纹理)Bump Mapping 这个时候你的大脑并没有被完全欺骗, 你脑中存留的视觉印象使你依然有能力判断出这是前一幅图, 只是它的光源变了, 是从小往上照的你的大脑可能强迫性地判断出它是第一幅图。事实上, 你只要始终盯着它, 而且努力地想像着光是从右下方向照射的, 你就会理解它是凹的( 译者注: 因为日常生活的习惯, 你会很容易把这些图形判断成凸出的图形, 可是因为有了上一幅对照图的印象, 你可能才会特别注意到这些图块其实还是凹入的, 只是判断方法不符合我们日常生活习惯, 因为这时大多数光不是从上方照射, 而是从下往上照射) 。凹凸纹理映射技术能够用来模拟粗糙物体表面凹凸不平的细节, 如: 橘子、草莓、树皮等。凹凸纹理映射最早只能用于离线绘制系统, 随着图形硬件的发展, 她已经成为游戏引擎中不可缺少的部分。最早的凹凸纹理映射使用一个高度图和曲面参数( 一般是纹理坐标) 的偏导数计算扰动后的法向。这个偏导数表明了物体表面改变的尺度。理论上, 凹凸映射中涉及的法向操作实在像素层次上的。 凹凸纹理映射的步骤如下: ( 1) 计算每个顶点处的T、 B、 N, 并计算切平面坐标的矩阵。 ( 2) 根据该矩阵将光源变换到切平面空间, 变换后光源的x、 y即顶点的相邻点。

计算机图形学大作业报告记录(灯光纹理映射)

计算机图形学大作业报告记录(灯光纹理映射)

————————————————————————————————作者:————————————————————————————————日期:

大作业报告 实验课程名称:计算机图形学 学生姓名: 班级: 学院(系):学生学号: 指导教师:成绩:

一、目的 这次大作业是作为这学期的最后的一个考核,所以必须要用到所有的本学期学过的知识,比如怎样画出三维图形,怎样在图像上在图像上添加纹理光照,怎样使用鼠标和键盘进行人机交互等。 二、主要功能模块设计 1 矩阵运算模块的设计: 功能描述:程序启动后,这部分功能模块会为整个应用程序提供算法支持,具体是矩阵直接的相互运算,在2D向3D转化过程中会起到很重要的作用。 代码设计: float vv(float * v1, float * v2){ return v1[0] * v2[0] + v1[1] * v2[1] + v1[2] * v2[2]; } void vxv(float * n, float * v1, float * v2){ n[0] = v1[1] * v2[2] - v1[2] * v2[1]; n[1] = v1[2] * v2[0] - v1[0] * v2[2]; n[2] = v1[0] * v2[1] - v1[1] * v2[0]; } void loadIdentity(Matrix m){ Matrix identity = {{1.0,0.0,0.0,0.0}, {0.0,1.0,0.0,0.0}, {0.0,0.0,1.0,0.0}, {0.0,0.0,0.0,1.0}}; for(int i = 0;i < 4; i++) for(int j = 0;j < 4; j++) m[i][j] = identity[i][j]; } void preMultiply(Matrix p, Matrix m){

中北大学数值分析小论文

中北大学 《数值分析》 常微分方程初值问题的数值解法 专业: 班级: 学号: 姓名: 日期: 2012.12.26

常微分方程初值问题的数值解法 摘 要 微分方程的数值解法在科学技术及生产实践等多方面应用广泛. 文章分析了构造常微分方程初值问题数值解法的三种常用基本方法,差商代替导数法,数值积分法及待定系数法,推导出了Euler 系列公式及三阶龙格-库塔公式,指出了各公式的优劣性及适用条件,并对Euler 公式的收敛性、稳定性进行了分析。 Abstract The numerical solution of differential equations is widely used in science, technology, production practices and many other fields. This paper analyzed three kinds of basic methods for constructing numerical solutions for initial value problem of ordinary differential equations :difference quotient instead of derivative method, numerical integral method and undetermined coefficients method. At the same time, the paper deduces the Euler series formula and the classical third order Runge-Kutta formula. In addition, the paper pointed out the advantages and disadvantages of each formula and application condition, it also analyzed the convergence and stability of the Euler formula. 1.引言 科学技术及实际生产实践中的许多问题都可归结为微分方程的求解问题,使用较多的是常微分方程初值问题的求解。对于一阶常微分方程的初值问题 000dy /dx f (x,y),y(x )y ,x x b ==<<,其中f 为已知函数,0y 是初始值。如 果函数f 关于变量y 满足Lipschitz 条件,则初值问题有唯一解。只有当f 是一些特殊类型的函数时,才能求出问题的解析解,但一般情况下都满足不了生产实践与科学技术发展的需要,因此通常求其数值解法。 2.主要算法 数值解法是一种离散化的方法,可以求出函数的精确解在自变量一系列离散点处的近似值。基本思想是离散化,首先要将连续区间离散化,对连续区域[]0x ,b 进行剖分01n 1n x x x x b -<<Λ<<=,n n 1n h x x +=-为步长;其次将其函离散

数值分析习题与答案

第一章绪论 习题一 1.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。解:求lnx的误差极限就是求f(x)=lnx的误差限,由公式(1. 2.4)有 已知x*的相对误差满足,而 ,故 即 2.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。 解:直接根据定义和式(1.2.2)(1.2.3)则得 有5位有效数字,其误差限,相对误差限 有2位有效数字, 有5位有效数字, 3.下列公式如何才比较准确? (1) (2)

解:要使计算较准确,主要是避免两相近数相减,故应变换所给公式。 (1) (2) 4.近似数x*=0.0310,是 3 位有数数字。 5.计算取,利用:式计算误差最小。 四个选项: 第二、三章插值与函数逼近 习题二、三 1. 给定的数值表 用线性插值与二次插值计算ln0.54的近似值并估计误差限. 解:仍可使用n=1及n=2的Lagrange插值或Newton插值,并应用误差估计(5.8)。线性插值时,用0.5及0.6两点,用Newton插值 误差限,因

,故 二次插值时,用0.5,0.6,0.7三点,作二次Newton插值 误差限 ,故 2. 在-4≤x≤4上给出的等距节点函数表,若用二次插值法求的近似值,要使误差不超过,函数表的步长h 应取多少? 解:用误差估计式(5.8), 令 因 得 3. 若,求和.

解:由均差与导数关系 于是 4. 若互异,求 的值,这里p≤n+1. 解:,由均差对称性 可知当有 而当P=n+1时 于是得 5. 求证. 解:解:只要按差分定义直接展开得 6. 已知的函数表

数值分析论文

插值方法总结 摘 要:本文是对学过的插值方法进行了总结使我们更清楚的知道那一种方法适合那一种型。 关键词:插值;函数;多项式;余项 (一)Lagrange 插值 1.Lagrange 插值基函数 n+1个n 次多项式 ∏≠=--= n k j j j k j k x x x x x l 0)( n k ,,1,0 = 称为Lagrange 插值基函数 2.Lagrange 插值多项式 设给定n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠,满足插值条件 )()(k k n x f x L =,n k ,,1,0 = 的n 次多项式 ∏∏ ∏=≠==--==n k n k j j j k j k k n k k n x x x x x f x l x f x L 0 00 ))(()()()( 为Lagrange 插值多项式,称 ∏=+-+=-=n j j x n n x x n f x L x f x E 0)1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商 )(][i i x f x f = )(x f 关于i x ,j x 的一阶差商 i j i j j i x x x f x f x x f --= ][][],[ 依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商

i k i k i i k i i k i i i x x x x f x x f x x x f --= +-+++++] ,,[],,[],,,[111 2.Newton 插值多项式 设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件 )()(k k n x f x N =,n k ,,1,0 = 的n 次多项式 )()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,称 ],[,)(],,,[)()()(0 10b a x x x x x x f x N x f x E n j j n n ∈-=-=∏= 为插值余项。 (三)Hermite 插值 设],[)(1b a C x f ∈,已知互异点0x ,1x ,…,],[b a x n ∈及所对应的函数值为 0f ,1f ,…,n f ,导数值为'0f ,' 1f ,…,' n f ,则满足条件 n i f x H f x H i i n i i n ,,1,0,)(,)(' '1212 ===++ 的12+n 次Hermite 插值多项式为 )()()(0 '12x f x f x H j n j j j n j i n βα∏∏=++= 其中 )())((,)]()(21[)(2 2'x l x x x l x l x x x j j j j j j j j ---=βα 称为Hermite 插值基函数,)(x l j 是Lagrange 插值基函数,若],[22b a C f n +∈,插值误差为 220) 22(12)()()! 22() ()()(n x n n x x x x n f x H x f --+= -++ ξ,),()(b a x x ∈=ξξ (四)分段插值 设在区间],[b a 上给定n+1个插值节点 b x x x a n =<<<= 10 和相应的函数值0y ,1y ,…,n y ,求作一个插值函数)(x ?,具有性质

立方体纹理映射

1问题描述与算法思想 1.1纹理映射简介 纹理映射(Texture Mapping)是将纹理空间中的纹理像素映射到屏幕空间中的像素的过程。在三维图形中,纹理映射(Texture Mapping)的方法运用得最广,尤其描述具有真实感的物体。比如绘制一面砖墙,就可以使用一幅具有真实感的图像或者照片作为纹理贴到一个矩形上,这样,一面逼真的砖墙就画好了。如果不用纹理映射的方法,这墙上的每一块砖都要作为一个独立的多边形来绘制。另外,纹理映射能够保证在变换多边形时,多边形上的纹理也会随之变化。例如,用透视投影模式观察墙面时,离视点远的墙壁的砖块的尺寸就会缩小,而离视点近的就会大些,这些是符合视觉规律的。此外,纹理映射也被用在其他一些领域。如飞行仿真中常把一大片植被的图像映射到一些大多边形上用以表示地面,或者用大理石、木材等自然物质的图像作为纹理映射到多边形上表示相应的物体。纹理对象通过一个单独的数字来标识。这允许硬件能够在内存中保存多个纹理,而不是每次使用的时候再加载它们,从而减少了运算量,提高了速度。纹理映射是真实感图像制作的一个重要部分,运用它可以方便的制作出极具真实感的图形而不必花过多时间来考虑物体的表面细节。然而纹理加载的过程可能会影响程序运行速度,当纹理图像非常大时,这种情况尤为明显。如何妥善的管理纹理,减少不必要的开销,是系统优化时必须考虑的一个问题。还好,相关软件提供了纹理对象对象管理技术来解决上述问题。与显示列表一样,纹理对象通过一个单独的数字来标识。 立方体映射(cube-map)纹理是一种特殊类型的纹理,用于环境映射,使用一组图像并把他们作为立方体的面。立方体映射的6个面用正方形并且大小相同的6个子纹理表示。要从立方体纹理中采样的时候,使用的纹理坐标是3维,并且被看做来自原点的方向。方向指向用来读取纹理的立方体映射表面的位置。立方体纹理映射主要思想是通过观察向量和表面的法向量反射来确定采样的纹理坐标。 1.2实验目的 1) 掌握位图纹理读入方法; 2)掌握立方体纹理映射算法。 1.3功能要求 1)建立三维坐标系Oxyz,远点位于屏幕客户区中心,x轴水平向右为正,y轴垂直向上为正,z轴垂直于屏幕指向观察者。 2)设置屏幕背景色为黑色。 3)读入六张构成天空盒的位图作为纹理映射到立方体的可见表面上。 4)按下鼠标左键缩小立方体,按下鼠标右键增大立方体。 5)使用键盘方向旋转纹理立方体。 6)使用动画按钮播放或停止立方体动画。 1.4算法原理(算法思想) 立方体进行纹理映射是纹理对象并不是直接绑定到着色器,而是绑定到一个

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

纹理映射论文

对于纹理映射的学习报告 摘要: 本文主要对于2d纹理图的纹理映射方法展开描述。其中颜色纹理、几何纹理为两大讨论方向,对于颜色纹理的构造,我们通过函数纹理或图像纹理;对于几何纹理,我们可以通过凹凸映射法或位移映射法来实现。 正文: 在计算机图形学中,纹理映射技术的意义是非常重大的,对于纹理映射的定义,我在不同书本上看到了不同的描述,大致表述的内容却是大同小异的,比较容易理解的一种定义是“纹理映射是为三维物体表面添加纹理的技术”,纹理映射的过程可以表述为“将纹理空间的二维坐标(u,v)映射为物体空间的三维坐标(x,y,z),再进一步映射为图像空间的二维坐标(x,y)的过程”。通过纹理映射技术,我们可以改变物体表面的颜色、图案,增强立体感、真实感。原本死气沉沉的图形通过纹理映射处理瞬间像是一个真实的物体展现在你眼前。当然,其中过程处理的技术也是复杂多样的,大致来说,对于2d纹理图(纹理空间坐标是二维的)的纹理映射,主要有颜色纹理、几何纹理等。颜色纹理是通过颜色色彩或明暗度的变化体现出来的物体表面细节,取决于物体表面的光学属性;而几何纹理则是由不规则的细小凹凸构成的,取决于物体表面的微观几何形态。接下来我就对颜色纹理以及几何纹理做以展开。 首先,颜色纹理的出现是在1974年,由Catmull采用二维图像来定义物体表面材质的漫反射率而产生。实现颜色纹理主要有两种方法,一种是直接用纹理的颜色替代物体表面的颜色,另一种是将纹理数据经过光照计算,物体表面的纹理会显示出光照效果。颜色纹理并不 是简单的把图片覆盖住物体表面,这样会导致物体移动的时候,纹理图片没有移动而漂浮在原地,为了避免这种情况,我们还需要将颜色纹理绑定到物体表面,即建立物体空间坐标(x,y,z)与纹理空间坐标(u,v)之间的对应关系。颜色纹理本身难以构造,于是我们又采用函数纹理(连续纹理)或图像纹理(离散纹理)来进行描述。 通过函数纹理映射技术,我们先要计算出物体空间坐标与纹理空间坐标之间的关系函数表达式,例:P(x,y,z)=Au+Bv+C,这样就可以在纹理坐标上的每一点找

数值计算方法设计论文

课程设计(论文) 题目: 三次样条插值问题 学院: ___ 理学院 _ 专业: __ _ 数学与应用数学 班级:数学08-2班 学生姓名: 魏建波 学生学号: 080524010219 指导教师:李文宇 2010年12月17日

课程设计任务书

目录 摘要……………………………………………………………………… 一、前言………………………………………………………………… (一)Lagrange插值的起源和发展过程……………………………………… (二)本文所要达到的目的……………………………………………………… 二、插值函数…………………………………………………………… (一)函数插值的基本思想…………………………………………………… (二)Lagrange插值的构造方法……………………………………………… 三、MATLAB程序………………………………………………………… (一)Lagrange程序…………………………………………………………… (二)龙格程序………………………………………………………………… 四、理论证明…………………………………………………………… 五、综述……………………………………………………………………谢辞………………………………………………………………………参考文献…………………………………………………………………

摘要

前言 要求:500字以上,宋体小四,行距20磅,主要内容写该算法的产生及发展、应用领域等。 题目 整体要求:报告页数,正文在8页以上 字体:宋体小四(行距20磅) 内容:1、理论依据 2、问题描述 3、问题分析 4、求解计算(程序) 5、结论 注:(1)页码编号从正文页开始 (2)标题可根据情况自己适当改动 示例见下: 2判别…………………… 2.1 判……………… 2.1.1 判别……………… 所谓的判别分析,………………………………………………方法[3]。 2.1.2 判………………………… 常用的有四种判别方法:…………………………………………………步判别法[6]。 1. 马氏………………

数值分析作业答案

数值分析作业答案 插值法 1、当x=1,-1,2时,f(x)=0,-3,4,求f(x)的二次插值多项式。 (1)用单项式基底。 (2)用Lagrange插值基底。 (3)用Newton基底。 证明三种方法得到的多项式是相同的。 解:(1)用单项式基底 设多项式为: , 所以: 所以f(x)的二次插值多项式为: (2)用Lagrange插值基底 Lagrange插值多项式为: 所以f(x)的二次插值多项式为: (3) 用Newton基底: 均差表如下: xk f(xk) 一阶均差二阶均差 1 0 -1 -3 3/2 2 4 7/ 3 5/6 Newton插值多项式为: 所以f(x)的二次插值多项式为: 由以上计算可知,三种方法得到的多项式是相同的。 6、在上给出的等距节点函数表,若用二次插值求ex的近似值,要使截断误差不超过10-6,问使用函数表的步长h应取多少? 解:以xi-1,xi,xi+1为插值节点多项式的截断误差,则有 式中 令得 插值点个数

是奇数,故实际可采用的函数值表步长 8、,求及。 解:由均差的性质可知,均差与导数有如下关系: 所以有: 15、证明两点三次Hermite插值余项是 并由此求出分段三次Hermite插值的误差限。 证明:利用[xk,xk+1]上两点三次Hermite插值条件 知有二重零点xk和k+1。设 确定函数k(x): 当或xk+1时k(x)取任何有限值均可; 当时,,构造关于变量t的函数 显然有 在[xk,x][x,xk+1]上对g(x)使用Rolle定理,存在及使得 在,,上对使用Rolle定理,存在,和使得 再依次对和使用Rolle定理,知至少存在使得 而,将代入,得到 推导过程表明依赖于及x 综合以上过程有: 确定误差限: 记为f(x)在[a,b]上基于等距节点的分段三次Hermite插值函数。在区间[xk,xk+1]上有 而最值 进而得误差估计: 16、求一个次数不高于4次的多项式,使它满足,,。

二维纹理映射

二维纹理映射 一、实验目的和要求 掌握纹理映射的基本原理,利用VC++ OpenGL实现纹理映射技术。 二、实验原理 纹理映射是真实感图形制作的一个重要部分,运用纹理映射可以方面地制作真实感图形,而不必花更多的时间去考虑物体的表面纹理。如一张木制桌子其表面的木纹是不规范的,看上去又是那么自然,如果在图形制作中不用纹理映射,那么只是这张桌面纹理的设计,就要花费很大精力,而且设计结果也未必能像现实中那么自然。如果运用纹理映射就非常方便,可以用扫描仪将这样的一张桌子扫成一个位图。然后的具体的操作中,只需把桌面形状用多边形画出来,把桌面纹理贴上去就可以了。 另外,纹理映射能够在多边形进行变换时仍保证纹理的图案与多边形保持一致性。例如,以透视投影方式观察墙面时,远端的砖会变小,而近处的砖就会大一些。 此外,纹理映射也可以用于其他方面。例如,使用一大片植被的图像映射到一些连续的多边形上,以模拟地貌,或者以大理石、木纹等自然物质的图像作为纹理映射到相应的多边形上,作为物体的真实表面。 在OpenGL中提供了一系列完整的纹理操作函数,用户可以用它们构造理想的物体表面,可以对光照物体进行处理,使其映射出所处环境的景象,可以用不同方式应用到曲面上,而且可以随几何物体的几何属性变换而变化,从而使制作的三维场景和三维物体更真实更自然。 在OpenGL中要实现纹理映射,需要经历创建纹理、指定纹理应用方式、启用纹理映射、使用纹理坐标和几何坐标绘制场景几个过程。 用于指定一维、二维和三维纹理的函数分别为: Void glTexImage1D(GLenum target, Glint level, Glint components, GLsizei width, Glint border, GLenum format, GLenum type, const GLvoid *texels); Void glTexImage2D(GLenum target, Glint level, Glint components, GLsizei width, GLsizei height, GLint border, GLenum format, GLenum type, const GLvoid *texels); Void glTexImage3D(GLenum target, Glint level, Glint components, GLsizei width, GLsizei height, GLsizei depth, Glint border, GLenum format, GLenum type, const GLvoid *texels); 其中,参数target取值一般为GL_TEXTURE_1D, GL_TEXTURE_2D和GL_TEXTURE_3D,分别与一维、二维和三维的纹理相对应。参数Level表示纹理多分辨率层数,通常取值为0,表示只有一种分辨率。参数components的可能取值为1~4的整数以及多种符号常量(如GL_RGBA),表示纹理元素中存储的哪些分量(RGBA颜色、深度等)在纹理映射中被使用,1表示使用R颜色分量,2表示使用R和A颜色分量,3表示使用RGB颜色分量,4表示使用RGBA颜色分量。参数width,height,depth分别指定纹理的宽度、高度、深度。参数format和type表示给出的图像数据的数据格式和数据类型,这两个参数的取值都是符号常量(比如format指定为GL_RGBA,type指定为GL_UNSIGNED_BYTE,参数texels指向内存中指定的纹理图像数据。 在定义了纹理之后,需要启用纹理的函数: glEnable(GL_TEXTURE_1D);

数值分析小论文

基于MATLAB曲线拟合对离散数据的处理和研究 摘要:曲线拟合是数值分析中的一种普遍且重要的方法,求解拟合曲线的方法也有很多,这里主要介绍利用MATLAB曲线拟合工具箱对离散数据点做你和处理,并与利用最小二乘法求相应的拟合曲线的方法做对比,突出MATLAB曲线拟合工具箱的优点,并阐述了其适用的范围,最后通过利用MATLAB曲线拟合工具箱对实例中离散数据点的拟合来具体说明它的使用方法和优点。 关键字:数值分析;MATLAB;曲线拟合;最小二乘法 一问题探究 在很多的实际情况中,两个变量之间的关系往往很难用具体的表达式把它表示出来,通常只能通过实际测量得到一些互不相同的离散数据点,需需要利用这些已知的数据点估计出两个变量的关系或工件的具体轮廓,并要得到任意未知数据点的具体数据,这个过程就需要用到拟合或差值方法来实现,这里主要讨论拟合的方法。 曲线拟合可以通过MATLAB编程来完成,通常为了达到更好的讷河效果需要做多次重复修改,对于非线性曲线拟合还需要编写复杂的M-文件,运用MATLAB曲线拟合工具箱来实现离散数据点的曲线拟合是一种直观并且简洁的方法。 二曲线拟合的最小二乘法理论 假设给定了一些数据点(Xi,Yi),人们总希望找到这样的近似的函数,它既能反映所给数据的一般趋势,又不会出现较大的偏差,并且要使构造的函数与被逼近函数在一个给定区间上的偏差满足某种要求。这种思想就是所谓的“曲线拟合”的思想。 曲线拟合和差值不同,若要求通过所有给定的数据点是差值问题,若不要求曲线通过所有给定的数据点,而只要求反映对象整体的变化趋势,拟合问题,曲线拟合问题最常用的解决方法是线性最小二乘法[1],步骤如下: 第一步:先选定一组函数r1(x),r2(x),…,rm(x),m

相关文档
最新文档