实验八 连续信号与系统频域分析的MATLAB实现2

实验八 连续信号与系统频域分析的MATLAB实现2
实验八 连续信号与系统频域分析的MATLAB实现2

实验八 连续时间信号的采样与重构.抽样定理

一、实验目的

1.通过连续时间信号的采样与重构,验证抽样定理。 2.了解队连续时间信号进行取样和恢复的基本方法。 3. 进一步熟悉matlab 中的各种函数。

二、实验原理

1.抽样定理

取样定理(也称抽样定理)论述在一定条件下连续时间信号完全可以用该信号在等时间间隔上的瞬时值(样本值)来表示。这些样本值包含了该连续信号的全部信息,利用这些样本值可以没有失真地恢复原信号。取样定理为连续时间信号与离散时间信号相互转换提供了理论依据。

冲击抽样:

()()

s n s t t nT δ∞

=-∞

=

-∑

1n s

F T =

()()

s

s n S n ωωδωω∞

=-∞

=-∑

1()()()

21

()()1()

s s

s n s n s s n s

F F n F n T F n T ωωωδωωπωδωωωω∞

=-∞

=-∞∞

=-∞

=

*-=

*-=

-∑

抽样定理是信号处理中的重要理论,它主要阐述了对连续信号的抽样频率不能低于信号频率的2倍以上,否则将会发生混叠现象。

2.采样信号的重构

一个带限信号在满足取样定理的情况下,可以通过理想低通滤波器从取样信号f s (t ) 中恢复原来的连续信号f (t ) 。这一结论是从频域中考察取样信号的频谱直观的得到的:由于f (t)的频带有限,而时域取样必导致频域周期。在周期重复时,为保证m ω内为()F ω,则重复周期应满足s m ωω≥,将取样信号通过截止频率为c m ωω>的理想低通滤波器,便能从中恢复()s F ω,也就是说,能从取样信号f s (t )中恢复。

11, ||()()()

0, ||c F

c c c H h t Sa t ωωωωωωωπ-?

()()()s F H F ωωω=??

()()()()()()

c s c s s n f t h t f t Sa t f nT t nT ωωδπ

=-∞

=*=

*

-∑

s i n [()]

()[()]

(

)

()

c c c s

s c s

s n n c s t nT f nT Sa t nT f nT t nT ωωωωπ

π

ω∞

=-∞

=-∞

-=

-=-∑

上式表明f (t)可以展

开为正交的取样函数的无穷级数。且级数的系数等于抽样值f (nT s ),这样,若在取样信号f s (t)的每个抽样值上画一个峰值为f (nT s )的Sa 函数的波形,合成的波形就是f (t).另外,我们知道:Sa 函数的波形就是理想低通滤波

器的冲激响应h (t),这样,若f s (t)

通过理想低通滤波器,那么每一个取样值产生

一个冲激响应h (t),这些响应进行叠加便得到f (t),从而达到恢复信号的目的。

例1.⑴对给定的信号2

()cos()

(040)

3

f t t t π=≤≤:求得其奈奎斯特频率,以

不同的采样频率对该信号进行采样,绘出信号采样前和采样后信号的频谱。对比观察和分析信号临界采样、过采样和欠采样情况下,信号频谱的变化,验证采样定理。

⑵对上面不同采样频率下得到的样本信号重构()f t ,并求两者的误差,分析不同采样频率下的抽样信号()s f t 和原信号()f t 之间的关系。 [仿真程序] %时域采样定理

%绘制有限长余弦信号y=cos(2/3*pi*t) t = 0:0.01:40; y = cos(2/3*pi*t); subplot(221);plot(t,y);

axis([0 6 -1.1 1.1]);xlabel('t 单位:s');title('f(t)');line([0 6],[0 0]);

%数值求解余弦信号的频谱

N = 300;W = 2*pi*5;k = -N:N;w = k*W/N;

Y = 0.01*y*exp(-j*t'*w); %求y(t)的傅里叶变换F1(ω) %数值方式的傅里叶变换. Y = abs(Y);

subplot(222);plot(w/pi,Y)

axis([-2,2,0,pi*7+0.2]);title('F(j\omega)');xlabel('\omega 单位:pi');

display('奈奎斯特周期1.5秒,Ts<1.5,过采样,Ts>1.5,欠采样'); Ts = input('请输入采样周期Ts = '); %采样间隔 %采样后的余弦信号

subplot(223);plot(t,y,'b:'); %绘制包络 hold on

t2=0:Ts:40; %采样时间序列

y2=cos(2/3*pi*t2);

stem(t2,y2);

axis([0 6 -1.1 1.1]);xlabel('t 单位:s');title('fs(t)');

%采样后余弦信号的频谱

Y2 = Ts*y2*exp(-j*t2'*w);

Y2 = abs(Y2);

subplot(224);plot(w/pi,Y,'b') %蓝色绘制原信号频谱xlabel('\omega 单位:pi');title('Fs(j\omega)');

hold on

plot(w/pi,Y2,'r'); %红色绘制采样信号频谱axis([-2,2,0,pi*7+0.2]);

figure

%重构;y=cos(2/3*pi*t)

wm=2*pi/3; %信号带宽

ws=2*pi/Ts; %采样角频率

wc=ws/2; %为了简单,取滤波器截止频率wc=ws/2

fa=y2*Ts*wc/pi*sinc((wc/pi)*(ones(length(t2),1)*t-t2'*ones(1,length(t )))); %此步骤较难理解,可直接理解为在频域中用一个门形滤波器

%对取样信号频谱滤波后,将其转换为时域的还原信号.

subplot(211);

plot(t,fa,'b',t,y,'r');xlabel('t');ylabel('fa(t)');title('信号重构'); error=abs(fa-cos(2/3*pi*t)); %计算原信号和重构信号之间的误差subplot(212);

plot(t,error);xlabel('t');ylabel('error(t)');title('欠采样信号与原信号的误差error(t)');

仿真结果如下图所示:

三.实验内容

1. 对给定的信号:()52cos(2)cos(4)f t t t ππ=++,重复例1中信号的采样和

重构的分析步骤。

四. 实验报告要求

列出M 文件和运行结果。

总结连续时间信号的采样与重构,抽样定理的matlab 实现方法。

信号与系统matlab实验及答案

产生离散衰减正弦序列()π0.8sin 4n x n n ?? = ??? , 010n ≤≤,并画出其波形图。 n=0:10; x=sin(pi/4*n).*0.8.^n; stem(n,x);xlabel( 'n' );ylabel( 'x(n)' ); 用MATLAB 生成信号()0sinc at t -, a 和0t 都是实数,410t -<<,画波形图。观察并分析a 和0t 的变化对波形的影响。 t=linspace(-4,7); a=1;

t0=2; y=sinc(a*t-t0); plot(t,y); t=linspace(-4,7); a=2; t0=2; y=sinc(a*t-t0); plot(t,y);

t=linspace(-4,7); a=1; t0=2; y=sinc(a*t-t0); plot(t,y);

三组对比可得a 越大最大值越小,t0越大图像对称轴越往右移 某频率为f 的正弦波可表示为()()cos 2πa x t ft =,对其进行等间隔抽样,得到的离散样值序列可表示为()()a t nT x n x t ==,其中T 称为抽样间隔,代表相邻样值间的时间间隔,1 s f T = 表示抽样频率,即单位时间内抽取样值的个数。抽样频率取40 Hz s f =,信号频率f 分别取5Hz, 10Hz, 20Hz 和30Hz 。请在同一张图中同时画出连续信号()a x t t 和序列()x n nT 的波形图,并观察和对比分析样值序列的变化。可能用到的函数为plot, stem, hold on 。 fs = 40; t = 0 : 1/fs : 1 ; % ?μ?ê·?±e?a5Hz,10Hz,20Hz,30Hz f1=5; xa = cos(2*pi*f1*t) ; subplot(1, 2, 1) ;

matlab信号与系统实验报告

实验一 基本信号的产生与运算 一、 实验目的 学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算。 二、 实验原理 MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等。这些信号是信号处理的基础。 1、 利用MATLAB 产生下列连续信号并作图。 (1)51),1(2)(<<---=t t u t x (2)300),3 2sin()(3.0<<=-t t e t x t (3)1.01.0,3000cos 100cos )(<<-+=t t t t x (4)2000),8.0cos()1.0cos()(<<=t t t t x ππ 答:(1)、 >> t=-1:0.02:5; >> x=(t>1); >> plot(t,-2*x); >> axis([-1,5,-3,1]); >> title('杨婕婕 朱艺星'); >> xlabel('x(t)=-2u(t-1)'); (2)、 >> t=0:0.02:30; >> x=exp(-0.3*t).*sin(2/3*t); >> plot(t,x);

>> title('杨婕婕朱艺星'); >> xlabel('x(t)=exp(-0.3*t).*sin(2/3*t)'); 因为原函数在t=15后x(t)取值接近于零,所以将横坐标改成0到15,看得更清晰 axis([0,15,-0.2,0.6]); (3)>> t=-0.1:0.01:0.1;x=cos(100*t)+cos(3000*t);plot(t,x); >> title('杨婕婕朱艺星'); >>xlabel('x=cos(100*t)+cos(3000*t)'); 因为t的间隔取太大,以至于函数不够准确,缩小t的间隔: t=-0.1:0.002:0.2;x=cos(100*t)+cos(3000*t); plot(t,x);title('杨婕婕') >> t=-0.1:0.0001:0.1; x=cos(100*t)+cos(3000*t); >> plot(t,x);title('杨婕婕朱艺星'); >> xlabel('x=cos(100*t)+cos(3000*t)');

数字信号处理实验-采样的时频域分析

实 验 报 告 学生姓名: 学 号: 指导教师: 一、实验室名称:数字信号处理实验室 二、实验项目名称:采样的时域及频域分析 三、实验原理: 1、采样的概念:采样是将连续信号变化为离散信号的过程。 1. A 、理想采样:即将被采样信号与周期脉冲信号相乘 B 、实际采样:将被采样信号与周期门信号相乘,当周期门信号的宽度很小,可近似为周期脉冲串。 根据傅里叶变换性质 00 0()() ()() ??()()()()()()(()) FT FT a a T n n FT a a T a T a a n n x t X j T j x t x t T x nT t nT X j X j n ωδωδδδω=+∞=+∞=-∞ =-∞ ←?→Ω←?→Ω==-←?→Ω=Ω-Ω∑ ∑式中T 代表采样间隔,01 T Ω= 由上式可知:采样后信号的频谱是原信号频谱以0Ω为周期的搬移叠加 结论:时域离散化,频域周期化;频谱周期化可能造成频谱混迭。 ) (t T δ^ T ^)t

C 、低通采样和Nyquist 采样定理 设()()a a x t X j ?Ω且()0,2a M M X j f πΩ=Ω>Ω=当, 即为带限信号。则当采样频率满足2/22s M M f f π≥Ω=时,可以从采样后的 ^ ()()()a a s s n x t x nT t nT δ∞ =-∞ = -∑信号无失真地恢复()a x t 。称2M f 为奈奎斯特频率, 1 2 N M T f = 为奈奎斯特间隔。 注意: 实际应用中,被采信号的频谱是未知的,可以在ADC 前加一个滤波器(防混迭滤波器)。 2、低通采样中的临界采样、欠采样、过采样的时域及频域变化情况。 低通采样中的临界采样是指在低通采样时采样频率2s M f f = 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≤ 低通采样中的欠采样是指在低通采样时采样频率2s M f f ≥ 设一带限信号的频谱如下: ) () a G j Ω0 m -ΩΩ m Ω0 T T

信号(MATLAB)实验指导书

《信号与系统》实验指导书 张建奇骆崇编写 浙江工业大学之江学院信息工程分院 2012年2月

目录 实验一MATLAB的基本使用 (1) 一、实验目的 (1) 二、实验原理 (1) 三、实验内容与要求 (8) 四、实验报告 (9) 实验二时域波形的MATLAB实现 (10) 一、实验目的 (10) 二、预习要求 (10) 三、实验原理 (10) 四、实验内容与要求 (18) 五、实验报告 (19) 实验三用MATLAB对系统时域分析 (20) 一、实验目的 (20) 二、预习要求 (20) 三、实验原理 (20) 四、实验内容与要求 (29)

实验一MATLAB的基本使用 一、实验目的 1、了解和掌握MATLAB的基本操作 2、了解MATLAB的库函数 3、会用MATLAB进行简单的操作。 二、实验原理 1、界面操作 MATLAB是“MATrix LABoratory”的缩写(矩阵实验室),它是由美国Mathworks公司于1984年正式推出的一种科学计算软件,由于其强大的功能,在欧美的一些大学里MATLAB已经成为许多诸如数字信号处理、自动控制理论等高级教程的主要工具软件,同时也成为理工科学生,必须掌握的一项基本技能。 当需要运行程序时,只需选择桌面上(或开始)中的MATLAB6.5应用程序图标即可 通常情况下,MATLAB的工作环境主要由一下几个窗口组成: 命令窗口(Command Window)

工作区间浏览器(Workspace) 历史命令窗口(Command History) 图形窗口(Figure) 文本编辑窗口(Editor) 当前路径窗口(Current Directory) MATLAB的命令窗与命令操作 当用户使用命令窗口进行工作时,在命令窗口中可以直接输入相应的命令,系统将自动显示信息。 例如在命令输入提示符“>>”后输入指令: >>t=[1,2,3;4,5,6;7,8,9]; 按回车键(Enter)后,系统即可完成对变量t的赋值。 MATALB提供了非常方便的在线帮助命令(help),它可提供各个函数的用法指南,包括格式、参数说明、注意事项及相关函数等内容。 2、图形窗 MATLAB图形窗(Figure)主要用于显示用户所绘制的图形。 通常,只要执行了任意一种绘图命令,图形窗就会自动产生。

MATLAB实验报告

MATLAB程序设计语言 实 验 报 告 专业及班级:电子信息工程 姓名:王伟 学号:1107050322 日期 2013年6月20日

实验一 MATLAB 的基本使用 【一】 实验目的 1.了解MATALB 程序设计语言的基本特点,熟悉MATLAB 软件的运行环境; 2.掌握变量、函数等有关概念,掌握M 文件的创建、保存、打开的方法,初步具备将一般数学问题转化为对应计算机模型处理的能力; 3.掌握二维图形绘制的方法,并能用这些方法实现计算结果的可视化。 【二】 MATLAB 的基础知识 通过本课程的学习,应基本掌握以下的基础知识: 一. MATLAB 简介 二. MATLAB 的启动和退出 三. MATLAB 使用界面简介 四. 帮助信息的获取 五. MATLAB 的数值计算功能 六. 程序流程控制 七. M 文件 八. 函数文件 九. MATLAB 的可视化 【三】上机练习 1. 仔细预习第二部分内容,关于MATLAB 的基础知识。 2. 熟悉MATLAB 环境,将第二部分所有的例子在计算机上练习一遍 3. 已知矩阵???? ??????=??????????=123456789,987654321B A 。求A*B ,A .* B ,比较二者结果是否相同。并利用MATLAB 的内部函数求矩阵A 的大小、元素和、长度以 及最大值。 程序代码: >> A=[1 2 3;4 5 6;7 8 9]; >> B=[9 8 7;6 5 4;3 2 1]; >> A*B ans =

30 24 18 84 69 54 138 114 90 >> A.*B ans = 9 16 21 24 25 24 21 16 9 两者结果不同 >> [m,n]=size(A) m = 3 n = 3 >> b=sum(A) b = 12 15 18 >> a=length(A) a = 3 >>max(A) ans =

信号与系统MATLAB实验报告

《信号与系统》MATLAB实验报告 院系:专业: 年级:班号: 姓名:学号: 实验时间: 实验地点:

实验一 连续时间信号的表示及可视化 实验题目: )()(t t f δ=;)()(t t f ε=;at e t f =)((分别取00<>a a 及); )()(t R t f =;)()(t Sa t f ω=;)2()(ft Sin t f π=(分别画出不同周期个数 的波形)。 解题分析: 以上各类连续函数,先运用t = t1: p:t2的命令定义时间范围向量,然后调用对应的函数,建立f 与t 的关系,最后调用plot ()函数绘制图像,并用axis ()函数限制其坐标范围。 实验程序: (1) )()(t t f δ= t=-1:0.01:3 %设定时间变量t 的范围及步长 f=dirac(t) %调用冲激函数dirac () plot(t,f) %用plot 函数绘制连续函数 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (2) )()(t t f ε= t=-1:0.01:3 %设定时间变量t 的范围及步长 f=heaviside(t) %调用阶跃函数heaviside () plot(t,f) %用plot 函数绘制连续函数 title('f(t)=heaviside(t)') %用title 函数设置图形的名称 axis([-1,3,-0.5,1.5]) %用axis 函数规定横纵坐标的范围 (3) at e t f =)( a=1时: t=-5:0.01:5 %设定时间变量t 的范围及步长 f=exp(t) %调用指数函数exp ()

信号时域与频域分析

信号时域与频域分析 实验报告 姓名:杨 班级:机械 学号: 213

实验数据中,电机转速为1200r/min,采样频率为1280Hz。Hz3为X位移振幅数据,Hz4为Y位移振幅数据,Hz5为速度振幅数据。 Matlab中信号特征对应函数编程 ma = max(Hz) %最大值 mi = min(Hz) %最小值 me = mean(Hz) %平均值 pk = ma-mi %峰-峰值 va = var(Hz); %方差 st = std(Hz); %标准差 ku = kurtosis(Hz); %峭度 rm = rms(Hz); %均方根 一、X轴位移测量分析 plot(Fs3,Hz3)时域图: ma =52.0261 mi =56.7010 me =1.8200 pk =108.7271 va =1.3870e+03 st =37.2431 ku =1.5462 rm =37.2693 频域图: fs=1280; x=Hz3; N=length(Hz3); df=fs/N; f=0:df:N*df-df; y=fft(x); y=abs(y)*2/N; figure(1); plot(f,y); xlabel('频率/Hz') ylabel('幅值') 频谱幅值取得最大值51.9847um,频率为20Hz,与电机转速对应频率一致,应为电机轴未动平衡所致;二倍频处有较大振幅,可能为轴承间隙过大所致。

二、Y轴位移测量分析 plot(Fs4,Hz4)时域图: ma =61.3987 mi =-74.6488 me =-1.1948 pk =136.0475 av =42.6109 va =2.2428e+03 st =47.3582 ku =1.5135 rm =47.3501 频域图: fs=1280; x=Hz4; N=length(Hz4); df=fs/N; f=0:df:N*df-df; y=fft(x); y=abs(y)*2/N; figure(1); plot(f,y); xlabel('频率/Hz') ylabel('幅值') 频谱幅值取得最大值66.6319um,频率为20Hz,与电机转速对应频率一致,应为电机轴未动平衡所致;二倍频处有较大振幅,可能为轴承间隙过大所致。

实验1 用MATLAB进行信号频谱分析(推荐文档)

实验1 用MATLAB 进行信号频谱分析 一、实验目的 ㈠ 初步掌握MATLAB 产生常用离散时间信号的编程方法。 ㈡ 学习编写简单的FFT 算法程序,对离散信号进行幅频谱分析。 ㈢ 观察离散时间信号频谱的特点。 二、实验原理 ㈠ 常用的离散时间信号 在 MATLAB 语言主要是研究离散信号的。常用的离散信号有: 1.单位取样序列 ???≠==000 1)(n n n δ 2.单位阶跃序列 ?? ?<≥=0 01 )(n n n u 3.实指数序列 R a n a n x n ∈?=;)( 4.复指数序列 n e n x n j ?=+)(0)(ωσ 5.正(余)弦序列 )c o s ()(0θω+=n n x n ? 6.周期序列 n N n x n x ?+=)()( ㈡ 离散信号的产生 离散信号的图形显示使用stem 指令。 在 MATLAB 中的信号处理工具箱中,主要提供的信号是离散信号。

由于MATLAB 对下标的约定为从1开始递增,例如x=[5,4,3,2,1,0],表示x(1)=5,x(2)=4,X(3)=3… 因此要表示一个下标不由1开始的数组x(n),一般应采用两个矢量,如 n=[-3,-2,-1,0,l ,2,3,4,5]; x=[1,-l ,3,2,0,4,5,2,1]; 这表示了一个含9个采样点的矢量:X(n)={x(-3),x(-2),x(-1),x(0),x(1),x(2),x(3),x(4),x(5)}。 1.单位取样序列 ?? ?≠==δ0 001)(n n n 这一函数实现的方法有二: 方法一:可利用MATLAB 的zeros 函数。 x=zeros(1,N); %建立一个一行N 列的全零数组 x(1)=1; %对X (1)赋1 方法二:可借助于关系操作符实现 n=1:N; x=[n==1]; %n 等于1时逻辑关系式结果为真,x=1;n 不等于1时为假,x=0 如要产生 ?????≤<<=≤≤=-δ2 0210 100)(10)(n n n n n n n n n n n n 则可采用MATLAB 实现: n=n1:n2; x=[(n-n0)==0];%n=n0时逻辑关系式结果为真,x=1;n ≠n0时为

MATLAB实验报告实验二

实验二 MATLAB矩阵及其运算 学号:3121003104 姓名:刘艳琳专业:电子信息工程1班日期:2014.9.20 一实验目的 1、掌握Matlab数据对象的特点以及数据的运算规则。 2、掌握Matlab中建立矩阵的方法以及矩阵处理的方法。 3、掌握Matlab分析的方法。 二实验环境 PC_Windows 7旗舰版、MATLAB 7.10 三实验内容 4、1. (1)新建一个.m文件,验证书本第15页例2-1; (2)用命令方式查看和保存代码中的所有变量;

(3)用命令方式删除所有变量; (4)用命令方式载入变量z。 2. 将x=[4/3 1.2345e-6]在以下格式符下输出:短格式、短格式e方式、长格式、长格式e方式、银行格式、十六进制格式、+格式。 短格式 短格式e 长格式

长格式e方式 银行格式 十六进制格式 3.计算下列表达式的值 (1)w=sqrt(2)*(1+0.34245*10^(-6)) (2)x=(2*pi*a+(b+c)/(pi+a*b*c)-exp(2))/(tan(b+c)+a) a=3.5;b=5;c=-9.8; (3)y=2*pi*a^2*((1-pi/4)*b-(0.8333-pi/4)*a) a=3.32;b=-7.9; (4)z=0.5*exp(2*t)*log(t+sqrt(1+t*t)) t=[2,1-3i;5,-0.65];

4. 已知A=[1 2 3 4 5 ;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20],对其进行如下操作:(1)输出A在[ 7, 10]范围内的全部元素; (2)取出A的第2,4行和第1,3,5列; (3)对矩阵A变换成向量B,B=[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20]; (4)删除A的第2,3,4行元素; (1) (2)

(完整word版)信号与系统matlab实验

习题三 绘制典型信号及其频谱图 1.更改参数,调试程序,绘制单边指数信号的波形图和频谱图。观察参数a对信号波形 及其频谱的影响。 程序代码: close all; E=1;a=1; t=0:0.01:4; w=-30:0.01:30; f=E*exp(-a*t); F=1./(a+j*w); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|';

E=1,a=1,波形图频谱图更改参数E=2,a=1;

更改参数a,对信号波形及其频谱的影响。(保持E=2)上图为a=1图像 a=2时

a=4时 随着a的增大,f(t)曲线变得越来越陡,更快的逼近0,而对于频谱图,随着a增大,图像渐渐向两边张开,峰值减小,陡度减小,图像整体变得更加平缓。 2.矩形脉冲信号 程序代码: close all; E=1;tao=1; t=-4:0.1:4; w=-30:0.1:30;

f=E*(t>-tao/2&tao/2)+0*(t<=-tao/2&t>=tao/2); F=(2*E./w).*sin(w*tao/2); plot(t,f);xlabel('t');ylabel('f(t)'); figure; plot(w,abs(F));xlabel('\omega');ylabel('|F(\omega)|') ; figure; plot(w,20*log10(abs(F))); xlabel('\omega');ylabel('|F(\omega)| in dB'); figure; plot(w,angle(F));xlabel('\omega');ylabel('\phi(\omega )');

matlab信号与系统实验报告

实验一 基本信号的产生与运算 一、 实验目的 学习使用MATLAB 产生基本信号、绘制信号波形、实现信号的基本运算。 二、 实验原理 MATLAB 提供了许多函数用于产生常用的基本信号:如阶跃信号、脉冲信号、指数信号、正弦信号和周期方波等等。这些信号是信号处理的基础。 1、 利用MATLAB 产生下列连续信号并作图。 (1)51),1(2)(<<---=t t u t x (2)300),3 2 sin()(3.0<<=-t t e t x t (3)1.01.0,3000cos 100cos )(<<-+=t t t t x (4)2000),8.0cos()1.0cos()(<<=t t t t x ππ 答:(1)、 >> t=-1:0.02:5; >> x=(t>1); >> plot(t,-2*x); >> axis([-1,5,-3,1]); >> title('杨婕婕 朱艺星'); >> xlabel('x(t)=-2u(t-1)');

(2)、 >> t=0:0.02:30; >> x=exp(-0.3*t).*sin(2/3*t); >> plot(t,x); >> title('杨婕婕朱艺星'); >> xlabel('x(t)=exp(-0.3*t).*sin(2/3*t)');

因为原函数在t=15后x(t)取值接近于零,所以将横坐标改成0到15,看得更清晰 axis([0,15,-0.2,0.6]);

(3)>> t=-0.1:0.01:0.1;x=cos(100*t)+cos(3000*t);plot(t,x); >> title('杨婕婕朱艺星'); >>xlabel('x=cos(100*t)+cos(3000*t)'); 因为t的间隔取太大,以至于函数不够准确,缩小t的间隔:t=-0.1:0.002:0.2;x=cos(100*t)+cos(3000*t); plot(t,x);title('杨婕婕')

matlab实验二

本科实验报告 课程名称:Matlab电子信息应用实验项目:矩阵和数组的操作 实验地点:电机馆跨越机房 专业班级:学号: 学生姓名: 指导教师: 2014年3月26 日

一、实验目的 1.掌握矩阵和数组的一般操作,包括创建、保存、修改和调用等。 2.学习矩阵和数组的加减运算与乘法。 3.掌握对数组中元素的寻访与赋值,会对数组进行一般的操作。 二、预备知识 1.常用的产生特殊矩阵的函数 ?eye(m,n) 单位阵 ?rand(m,n) 随机矩阵 ?randn(m,n) 正态分布的随机矩阵 ?zeros(m,n) 零矩阵 ?ones(m,n) 全部元素都为1的矩阵 ?compan(A) 矩阵A的伴随矩阵 ?bankel(m,n) n维Hankel矩阵 ?invhilb(n) n维逆Hilbert矩阵 ?magic(n) n维Magic矩阵 ?toeplitz(m,n) Toeplitz矩阵 ?wilkinson(n) n维Wilkinson特征值测试矩阵 ?handamard(n) n维Handamard矩阵 ?hilb(n) n维Hilbert矩阵 ?kron(A,B) Kronecker张量积 ?pascal(n) n维Pascal矩阵 ?vander(A) 由矩阵A产生Vandermonde矩阵 2.通过矩阵的结构变换,获得新矩阵 表2 矩阵结构变化产生新矩阵 L=tril(A) L主对角线及以下元素取矩阵A 的元素,其余为0 L=tril(A,k) L及第k条对角线及以下元素取矩阵A的元素,其余为 U=triu(A) U主对角线及以上的元素取矩阵A的元素,其余为0 U=triu(A,k) U第k条对角线及以上的元素取矩阵A的元素,其余为

信号与系统MATLAB实验

2016-2017学年第一学期 信号与系统实验报告 班级: 姓名: 学号: 成绩: 指导教师:

实验一常见信号的MATLAB 表示及运算 一.实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二.实验原理 信号一般是随时间而变化的某些物理量。按照自变量的取值是否连续,信号分为连续时间信号和离散时间信号,一般用()f t 和()f k 来表示。若对信号进行时域分析,就需要绘制其波形,如果信号比较复杂,则手工绘制波形就变得很困难,且难以精确。MATLAB 强大的图形处理功能及符号运算功能,为实现信号的可视化及其时域分析提供了强有力的工具。 根据MATLAB 的数值计算功能和符号运算功能,在MATLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MATLAB 语句表示出信号后,就可以利用MATLAB 中的绘图命令绘制出直观的信号波形了。下面分别介绍连续时间信号和离散时间信号的MATLAB 表示及其波形绘制方法。 1.连续时间信号 所谓连续时间信号,是指其自变量的取值是连续的,并且除了若干不连续的点外,对于一切自变量的取值,信号都有确定的值与之对应。从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t 的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 说明:plot 是常用的绘制连续信号波形的函数。 严格说来,MATLAB 不能表示连续信号,所以,在用plot()命令绘制波形时,要对自变量t 进行取值,MATLAB 会分别计算对应点上的函数值,然后将各个数据点通过折线连接起来绘制图形,从而形成连续的曲线。因此,绘制的只是近似波形,而且,其精度取决于t 的取样间隔。t 的取样间隔越小,即点与点之间的距离越小,则近似程度越好,曲线越光滑。例如:图1-1是在取样间隔为p=0.5时绘制的波形,而图1-2是在取样间隔p=0.1时绘制的波形,两相对照,可以看出图1-2要比图1-1光滑得多。

连续时间信号与系统的频域分析

第3章连续时间信号与系统的频域分析3.1 学习要求 1、掌握周期信号的频谱及其特点; 2、了解周期信号的响应问题; 3、掌握非周期信号的频域描述——傅立叶变换; 4、熟练掌握傅立叶变换的性质与应用; 5、掌握系统的频域特性及响应问题; 6、了解系统的无失真传输和理想滤波。 3.2 本章重点 1、频谱的概念及其特性; 2、傅里叶变换及其基本性质; 3、响应的频域分析方法; 4、系统频率响应的概念。 3.3 知识结构

3.4内容摘要 3.4.1信号的正交分解 两个矢量1V 和2V 正交的条件是这两个矢量的点乘为零,即: o 1212cos900?=?=V V V V 若有一个定义在区间()12,t t 的实函数集{}()(1,2,,)i g t i n =L ,在该集合中所有的函数满足 ?????=≠===??2 1 21,,2,1,0)()(,,2,1)(2t t j i t t i i n j j i dt t g t g n i k dt t g ΛΛ 则称这个函数集为区间()12,t t 上的正交函数集。式中i k 为常数,当1i k =时,称此函数集为归一化正交函数集。 若实函数集{}(),1,2,,i g t i n =L 是区间()12,t t 内的正交函数集,且除()i g t 之外 {}(),1,2,,i g t i n =L 中不存在()x t 满足下式 2 1 20()t t x t dt <<∞?且2 1 ()()0t i t x t g t dt =? 则称函数集{}(),1,2,,i g t i n =L 为完备正交函数集。 若在区间()12,t t 上找到了一个完备正交函数集{}(),1,2,,i g t i n =L ,那么,在此区间的信号()x t 可以精确地用它们的线性组合来表示 11221 ()()()()()n n i i i x t C g t C g t C g t C g t ∞ ==++++=∑L L 各分量的标量系数为 2 1 21 2 ()()d ()d t i t i t i t x t g t t C g t t = ?? 系数i C 只与()x t 和()i g t 有关,而且可以互相独立求取。 3.4.2周期信号的傅里叶级数 1、三角形式的傅里叶级数 0001 ()(cos sin )n n n x t a a n t b n t ωω∞ ===++∑

实验二 MATLAB程序设计 含实验报告

实验二 MATLAB 程序设计 一、 实验目的 1.掌握利用if 语句实现选择结构的方法。 2.掌握利用switch 语句实现多分支选择结构的方法。 3.掌握利用for 语句实现循环结构的方法。 4.掌握利用while 语句实现循环结构的方法。 5.掌握MATLAB 函数的编写及调试方法。 二、 实验的设备及条件 计算机一台(带有MATLAB7.0以上的软件环境)。 M 文件的编写: 启动MATLAB 后,点击File|New|M-File ,启动MATLAB 的程序编辑及调试器(Editor/Debugger ),编辑以下程序,点击File|Save 保存程序,注意文件名最好用英文字符。点击Debug|Run 运行程序,在命令窗口查看运行结果,程序如有错误则改正 三、 实验内容 1.编写求解方程02=++c bx ax 的根的函数(这个方程不一定为一元二次方程,因 c b a 、、的不同取值而定) ,这里应根据c b a 、、的不同取值分别处理,有输入参数提示,当0~,0,0===c b a 时应提示“为恒不等式!”。并输入几组典型值加以检验。 (提示:提示输入使用input 函数) 2.输入一个百分制成绩,要求输出成绩等级A+、A 、B 、C 、D 、E 。其中100分为A+,90分~99分为A ,80分~89分为B ,70分~79分为C ,60分~69分为D ,60分以下为E 。 要求:(1)用switch 语句实现。 (2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。 (提示:注意单元矩阵的用法) 3.数论中一个有趣的题目:任意一个正整数,若为偶数,则用2除之,若为奇数,则与3相乘再加上1。重复此过程,最终得到的结果为1。如: 2?1 3?10?5?16?8?4?2?1 6?3?10?5?16?8?4?2?1 运行下面的程序,按程序提示输入n=1,2,3,5,7等数来验证这一结论。 请为关键的Matlab 语句填写上相关注释,说明其含义或功能。 4. 的值,调用该函数后,

语音信号采集与时频域分析正文

第一章引言 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和频域等处理方法。语音信号可以认为在短时间内(一般认为在 10~30ms 的短时间内)近似不变,因而可以将其看作是一个准稳态过程, 即语音信号具有短时平稳性。任何语音信号的分析和处理必须建立在“短时”的基础上, 即进行“短时分析”。 时域分析:直接对语音信号的时域波形进行分析,提取的特征参数有短时能量,短时平均过零率,短时自相关函数等。 频域分析:对语音信号采样,并进行傅里叶变换来进行频域分析。主要分析的特征参数:短时谱、倒谱、语谱图等。 本文采集作者的声音信号为基本的原始信号。对语音信号进行时频域分析后,进行加白噪声处理并进行了相关分析,设计滤波器并运用所设计的滤波器对加噪信号进行滤波, 绘制滤波后信号的时域波形和频谱。整体设计框图如下图所示: 图1.1时频域分析设计图 图1.2加噪滤波分析流程图

第二章 语音信号时域分析 语音信号的时域分析可直接对语音信号进行时域波形分析,在此只只针对语音信号的短时能量、短时平均过零率、短时自相关函数进行讨论。 2.1窗口选择 由人类的发生机理可知,语音信号具有短时平稳性,因此在分析讨论中需要对语音信号进行加窗处理进而保证每个短时语音长度为10~30ms 。通常选择矩形窗和哈明窗能得到较理想的“短时分析”设计要求。两种窗函数的时域波形如下图2.1所示: sample w (n ) sample w (n ) 图2.1 矩形窗和Hamming 窗的时域波形 矩形窗的定义:一个N 点的矩形窗函数定义为如下 {1,00,()n N w n ≤<=其他 (2.1) 哈明窗的定义:一个N 点的哈明窗函数定义为如下 0.540.46cos(2),010,()n n N N w n π-≤<-??? 其他 = (2.2) 这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;哈明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。因此在语音频谱分析时常使用哈明窗,在计算短时能量和平均幅度时通常用矩形窗。表2.1对比了这两种窗函数的主瓣宽度和旁瓣峰值。

实验二MATLAB程序设计含实验报告

实验二M A T L A B程序设计含实验报告 集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#

实验二 MATLAB 程序设计 一、 实验目的 1.掌握利用if 语句实现选择结构的方法。 2.掌握利用switch 语句实现多分支选择结构的方法。 3.掌握利用for 语句实现循环结构的方法。 4.掌握利用while 语句实现循环结构的方法。 5.掌握MATLAB 函数的编写及调试方法。 二、 实验的设备及条件 计算机一台(带有以上的软件环境)。 M 文件的编写: 启动MATLAB 后,点击File|New|M-File ,启动MATLAB 的程序编辑及调试器 (Editor/Debugger ),编辑以下程序,点击File|Save 保存程序,注意文件名最好用英文字符。点击Debug|Run 运行程序,在命令窗口查看运行结果,程序如有错误则改正 三、 实验内容 1.编写求解方程02=++c bx ax 的根的函数(这个方程不一定为一元二次方程,因c b a 、、的不同取值而定),这里应根据c b a 、、的不同取值分别处理,有输入参数提示,当0~,0,0===c b a 时应提示“为恒不等式!”。并输入几组典型值加以检验。 (提示:提示输入使用input 函数) 2.输入一个百分制成绩,要求输出成绩等级A+、A 、B 、C 、D 、E 。其中100分为A+,90分~99分为A ,80分~89分为B ,70分~79分为C ,60分~69分为D ,60分以下为E 。 要求:(1)用switch 语句实现。

(2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。 (提示:注意单元矩阵的用法) 3.数论中一个有趣的题目:任意一个正整数,若为偶数,则用2除之,若为奇数,则与3相乘再加上1。重复此过程,最终得到的结果为1。如: 21 3105168421 63105168421 运行下面的程序,按程序提示输入n=1,2,3,5,7等数来验证这一结论。 请为关键的Matlab 语句填写上相关注释,说明其含义或功能。 4. y 5. (Root Mean Square)的计算(1(2)x=rand(1,200),得到的x 为200个(0,1)之间均匀分布的随机数。 6.根据2 2222 1......3121116n ++++=π,求π的近似值。当n 分别取100、1000、10000时,结果是多少 思考题:

信号与系统MATLAB实验总汇

实验一、MATLAB 编程基础及典型实例 一、实验目的 (1)熟悉MATLAB 软件平台的使用; (2)熟悉MATLAB 编程方法及常用语句; (3)掌握MATLAB 的可视化绘图技术; (4)结合《信号与系统》的特点,编程实现常用信号及其运算。 示例一:在两个信号进行加、减、相乘运算时,参于运算的两个向量要有相同的维数,并且它们的时间变量范围要相同,即要对齐。编制一个函数型m 文件,实现这个功能。function [f1_new,f2_new,n]=duiqi(f1,n1,f2,n2) a=min(min(n1),min(n2)); b=max(max(n1),max(n2)); n=a:b; f1_new=zeros(1,length(n)); f2_new=zeros(1,length(n)); tem1=find((n>=min(n1))&(n<=max(n1))==1); f1_new(tem1)=f1; tem2=find((n>=min(n2))&(n<=max(n2))==1); f2_new(tem2)=f2; 四、实验内容与步骤 (2)绘制信号x(t)=)3 2sin(2t e t ?的曲线,t 的范围在0~30s ,取样时间间隔为0.1s 。t=0:0.1:30; y=exp(-sqrt(2)*t).*sin(2*t/3); plot(t,y);

(3)在n=[-10:10]范围产生离散序列:?? ?≤≤?=Other n n n x ,033,2)(,并绘图。n=-10:1:10; z1=((n+3)>=0); z2=((n-3)>=0); x=2*n.*(z1-z2); stem(n,x);(4)编程实现如下图所示的波形。 t=-2:0.001:3; f1=((t>=-1)&(t<=1)); f2=((t>=-1)&(t<=2)); f=f1+f2; plot(t,f); axis([-2,3,0,3]);

实验二连续时间信号的频域分析

实验二 连续时间信号的频域分析 一、实验目的 1、掌握连续时间周期信号的傅里叶级数的物理意义和分析方法; 2、观察截短傅里叶级数而产生的“Gibbs 现象”,了解其特点以及产生的原因; 3、掌握连续时间傅里叶变换的分析方法及其物理意义; 4、掌握各种典型的连续时间非周期信号的频谱特征以及傅里叶变换的主要性质; 5、学习掌握利用Matlab 语言编写计算CTFS 、CTFT 和DTFT 的仿真程序,并能利用这些程序对一些典型信号进行频谱分析,验证CTFT 、DTFT 的若干重要性质。 基本要求:掌握并深刻理傅里叶变换的物理意义,掌握信号的傅里叶变换的计算方法,掌握利用Matlab 编程完成相关的傅里叶变换的计算。 二、原理说明 1、连续时间周期信号的傅里叶级数CTFS 分析 任何一个周期为T 1的正弦周期信号,只要满足狄利克利条件,就可以展开成傅里叶级数。 三角傅里叶级数为: ∑∞ =++=1 000)]sin()cos([)(k k k t k b t k a a t x ωω 2.1 或: ∑∞=++=1 00)cos()(k k k t k c a t x ?ω 2.2 其中1 02T πω=,称为信号的基本频率(Fundamental frequency ),k k b a a ,和,0分别是信号)(t x 的直流分量、 余弦分量幅度和正弦分量幅度,k k c ?、为合并同频率项之后各正弦谐波分量的幅度和初相位,它们都是频率0ωk 的函数,绘制出它们与0ωk 之间的图像,称为信号的频谱图(简称“频谱”),k c -0ωk 图像为幅度谱,k ?-0ωk 图像为相位谱。 三角形式傅里叶级数表明,如果一个周期信号x(t),满足狄里克利条件,就可以被看作是由很多不同频率的互为谐波关系(harmonically related )的正弦信号所组成,其中每一个不同频率的正弦信号称为正弦谐波分量 (Sinusoid component),其幅度(amplitude )为k c 。也可以反过来理解三角傅里叶级数:用无限多个正弦谐波分量可以合成一个任意的非正弦周期信号。 指数形式的傅里叶级数为:

基带信号眼图实验——matlab仿真

基带信号眼图实验——matlab 仿真

————————————————————————————————作者:————————————————————————————————日期: ?

数字基带信号的眼图实验——matla b仿真 一、实验目的 1、掌握无码间干扰传输的基本条件和原理,掌握基带升余弦滚降系统的实现方法; 2、通过观察眼图来分析码间干扰对系统性能的影响,并观察在输入相同码率的NRZ 基带信号下,不同滤波器带宽对输出信号码间干扰大小的影响程度; 3、熟悉MATL AB 语言编程。 二、实验预习要求 1、复习《数字通信原理》第七章7.1节——奈奎斯特第一准则内容; 2、复习《数字通信原理》第七章7.2节——数字基带信号码型内容; 3、认真阅读本实验内容,熟悉实验步骤。 三、实验原理和电路说明 1、基带传输特性 基带系统的分析模型如图3-1所示,要获得良好的基带传输系统,就应该 () n s n a t nT δ-∑() H ω() n s n a h t nT -∑基带传输抽样判决 图3-1?基带系统的分析模型 抑制码间干扰。设输入的基带信号为()n s n a t nT δ-∑,s T 为基带信号的码元周期,则经过基 带传输系统后的输出码元为 ()n s n a h t nT -∑。其中 1 ()()2j t h t H e d ωωωπ +∞ -∞ = ? ?(3-1) 理论上要达到无码间干扰,依照奈奎斯特第一准则,基带传输系统在时域应满足: 10()0,s k h kT k =?=? ? , 为其他整数 ?? ?(3-2) 频域应满足:

相关文档
最新文档