音圈电机技术原理

音圈电机技术原理
音圈电机技术原理

音圈电机技术原理

音圈电机技术原理

2011年05月25日

音圈电机(Vo ice Co il A ctuato r) 是一种特殊形式的直接驱动电机. 具有结构简单、体积小、高速、

高加速、响应快等特性. 其工作原理是, 通电线圈(导体) 放在磁场内就会产生力, 力的大小与施加在线

圈上的电流成比例. 基于此原理制造的音圈电机运动形式可以为直线或者圆弧.

近年来, 随着对高速、高精度定位系统性能要求的提高和音圈电机技术的迅速发展, 音圈电机不仅

被广泛用在磁盘、激光唱片定位等精密定位系统中[ 1 ] , 在许多不同形式的高加速、高频激励上也得到广

泛应用.如, 光学系统中透镜的定位; 机械工具的多坐标定位平台; 医学装置中精密电子管、真空管控

制; 在柔性机器人中, 为使末端执行器快速、精确定位, 还可以用音圈电机来有效地抑制振动[ 2 ].

但有关音圈电机详细技术原理的文献还不多见, 为此, 本文将系统讨论音圈电机的基本原理, 并阐

述其选型方法和应用场合.

1 音圈电机的基本原理

1. 1 磁学原理

音圈电机的工作原理是依据安培力原理, 即通电导体放在磁场中, 就会产生力F , 力的大小取决于

磁场强弱B , 电流I , 以及磁场和电流的方向(见图1). 如果共有

长度为L 的N 根导线放在磁场中, 则作用在导线上的力可表示为

F = kB L IN , (1)

式中 k 为常数.

由图1 可知, 力的方向是电流方向和磁场向量的函数, 是二者

的相互作用. 如果磁场和导线长度为常量, 则产生的力与输入电流

成比例. 在最简单的音圈电机结构形式中, 直线音圈电机就是位于

径向电磁场内的一个管状线圈绕组(见图2). 铁磁圆筒内部是由永

久磁铁产生的磁场, 这样的布置可使贴在线圈上的磁体具有相同的

极性. 铁磁材料的内芯配置在线圈轴向中心线上, 与永久磁体的一端相连, 用来形成磁回路. 当给线圈

通电时, 根据安培力原理, 它受到磁场作用, 在线圈和磁体之间产生沿轴线方向的力. 通电线圈两端电

压的极性决定力的方向.

将圆形管状直线音圈电机展开, 两端弯曲成圆弧, 就成为旋转音圈电机. 旋转音圈电机力的产生方

式与直线音圈电机类似. 只是旋转音圈电机力是沿着弧形圆周方向产生的, 输出转矩见图3.

1. 2 电子学原理

音圈电机是单相两极装置. 给线圈施加电压则在线圈里产生电流, 进而在线圈上产生与电流成比例

的力, 使线圈在气隙内沿轴向运动. 通过线圈的电流方向决定其运动方向. 当线圈在磁场内运动时,会

在线圈内产生与线圈运动速度、磁场强度、和导线长度成比例的电压(即感应电动势). 驱动音圈电机的

电源必须提供足够的电流满足输出力的需要, 且要克服线圈在最大运动速度下产生的感应电动势, 以及

通过线圈的漏感压降.

1. 3 机械系统原理

音圈电机经常作为一个由磁体和线圈组成的零部件出售. 线圈与磁体之间的最小气隙通常是

直线音圈电机结构设计与数学建模分析

直线音圈电机结构设计与数学建模分析 音圈直线电机是一种将电能直接转化为直线运动而不需要任何中间转换机构的特种电机,由于具有体积小、质量轻、高响应等一系列优点,因而在一些精密领域及快速响应场合得到了广泛的应用。文章重点介绍了一种自主设计的音圈电机的结构,并且在分析动态特征的基础上通过数学推导建立了比较精确的数学模型。 标签:音圈直线电机;结构;工作原理;数学模型 引言 音圈电机(V oice Coil Motor)是一种特殊形式的直接驱动电机,因其工作原理与扬声器类似而得名。其工作原理就是安培力原理,通电线圈(导体)放在磁场内就会产生力,力的大小与施加在线圈上的电流成比例。音圈电机将电能直接转换成机械能,省去了中间转换机构,在一些精密定位系统、高加速领域中得到了广泛的应用,如磁盘定位、光学透镜定位等[1,2]。 根据运动部件的不同,音圈电机可以分为动铁式与动圈式;根据运动方式的不同,音圈电机可分为直线型与旋转型;根据音圈电机内线圈的长短可分为长音圈型与短音圈型;根据磁通源的不同,音圈电机可分为永磁式与电磁式[3,4]。文章所研究的音圈电机为动圈型永磁式直线音圈电机,将电能直接转换为直线运动的机械能。 1 直线音圈电机的结构 文章所设计的音圈电动机为直线电机的一种,动线圈型永磁式直线直流电动机,这种直流直线电机由以下几部分组成,主要包括外壳、环形磁铁、铁芯、底座、电枢骨架和电枢线圈。图1所示就是音圈电机的结构示意图。 图1 音圈电机结构示意图 本设计在结构上非常简单。动子部分包括电枢骨架及缠绕在上面的金属线圈,定子部分主要由四部分组成,外壳是圆柱形的,使用的是钢性材料;铁芯中间部分采用空心结构,这样可以使电机的重量大大减轻;磁场是由永磁铁产生的,永磁铁紧贴着外壳内壁,与铁芯之间构成气隙;铁芯是与外壳的底部连接在一起的,在外壳和铁芯的气隙之间形成固定的磁场,线圈通直流电后,线圈上就会产生电磁力,推动线圈沿轴线方向直线移动。 当动子线圈沿轴线来回做直线运动的时候,它所受到的电磁力必须要大于运动时所产生的惯性力与摩擦力。 2 音圈电机的数学模型

音圈电机技术原理

音圈电机技术原理 音圈电机技术原理 2011年05月25日 音圈电机(Vo ice Co il A ctuato r) 是一种特殊形式的直接驱动电机. 具有结构简单、体积小、高速、 高加速、响应快等特性. 其工作原理是, 通电线圈(导体) 放在磁场内就会产生力, 力的大小与施加在线 圈上的电流成比例. 基于此原理制造的音圈电机运动形式可以为直线或者圆弧. 近年来, 随着对高速、高精度定位系统性能要求的提高和音圈电机技术的迅速发展, 音圈电机不仅 被广泛用在磁盘、激光唱片定位等精密定位系统中[ 1 ] , 在许多不同形式的高加速、高频激励上也得到广 泛应用.如, 光学系统中透镜的定位; 机械工具的多坐标定位平台; 医学装置中精密电子管、真空管控 制; 在柔性机器人中, 为使末端执行器快速、精确定位, 还可以用音圈电机来有效地抑制振动[ 2 ]. 但有关音圈电机详细技术原理的文献还不多见, 为此, 本文将系统讨论音圈电机的基本原理, 并阐 述其选型方法和应用场合. 1 音圈电机的基本原理 1. 1 磁学原理 音圈电机的工作原理是依据安培力原理, 即通电导体放在磁场中, 就会产生力F , 力的大小取决于 磁场强弱B , 电流I , 以及磁场和电流的方向(见图1). 如果共有 长度为L 的N 根导线放在磁场中, 则作用在导线上的力可表示为 F = kB L IN , (1)

式中 k 为常数. 由图1 可知, 力的方向是电流方向和磁场向量的函数, 是二者 的相互作用. 如果磁场和导线长度为常量, 则产生的力与输入电流 成比例. 在最简单的音圈电机结构形式中, 直线音圈电机就是位于 径向电磁场内的一个管状线圈绕组(见图2). 铁磁圆筒内部是由永 久磁铁产生的磁场, 这样的布置可使贴在线圈上的磁体具有相同的 极性. 铁磁材料的内芯配置在线圈轴向中心线上, 与永久磁体的一端相连, 用来形成磁回路. 当给线圈 通电时, 根据安培力原理, 它受到磁场作用, 在线圈和磁体之间产生沿轴线方向的力. 通电线圈两端电 压的极性决定力的方向. 将圆形管状直线音圈电机展开, 两端弯曲成圆弧, 就成为旋转音圈电机. 旋转音圈电机力的产生方 式与直线音圈电机类似. 只是旋转音圈电机力是沿着弧形圆周方向产生的, 输出转矩见图3. 1. 2 电子学原理 音圈电机是单相两极装置. 给线圈施加电压则在线圈里产生电流, 进而在线圈上产生与电流成比例 的力, 使线圈在气隙内沿轴向运动. 通过线圈的电流方向决定其运动方向. 当线圈在磁场内运动时,会 在线圈内产生与线圈运动速度、磁场强度、和导线长度成比例的电压(即感应电动势). 驱动音圈电机的 电源必须提供足够的电流满足输出力的需要, 且要克服线圈在最大运动速度下产生的感应电动势, 以及 通过线圈的漏感压降. 1. 3 机械系统原理 音圈电机经常作为一个由磁体和线圈组成的零部件出售. 线圈与磁体之间的最小气隙通常是

电动机的工作原理及其在生活中的应用

电动机是第二次科技革命中的最重要的发明之一,它至今仍在我们的社会生产、生活中起着极为重要的作用,机床、水泵,需要电动机带动;电力机车、电梯,需要电动机牵引。家庭生活中的电扇、冰箱、洗衣机,甚至各种电动玩具都离不开电动机。电动机已经应用在现代社会生活的各个方面。 对于电动机的工作原理,我引用了中学课本中的以下内容。我们知道,磁体在磁场中会受到力的作用。通电螺线管有磁性,像一个磁体,也会受到磁场的作用力。电动机就是利用这一原理制成的。 实际的直流电动机都有多个线圈,每个线圈都接在一对换向片上。有的直流电动机还用电磁铁来产生强磁场。 电动机构造简单、控制方便、体积小、效率高、功率可大可小,广泛地应用在社会生活中。以下我简单地说明一下电梯、手机震动以及冰箱压缩机的工作原理。 电梯在工作时,曳引绳两端分别连着轿厢和对重,缠绕在曳引轮和导向轮上,曳引电动机通过减速器变速后带动曳引轮转动,靠曳引绳与曳引轮摩擦产生的牵引力,实现轿厢和对重的升降运动,达到运输目的。 手机震动利用的是偏心电动机,也就是普通电动机头上装了一个凸轮,而凸轮的重心并不在电动机的转轴上,在转动时,由于离心力的作用,拿在手机里的手机就感觉是振动了。 冰箱和空调都是利用制冷压缩机达到制冷目的的。制冷系统内制冷剂的低压蒸汽被压缩机吸入并压缩为高压蒸汽后排至冷凝器。同时轴流风扇吸入的室外空气流经冷凝器,带走制冷剂放出的热量,使高压制冷剂蒸汽凝结为高压液体。高压液体经过过滤器、节流机构后喷入蒸发器,并在相应的低压下蒸发,吸取周围的热量。同时贯流风扇使空气不断进入蒸发器的肋片间进行热交换,并将放热后变冷的空气送向室内。如此室内空气不断循环流动,达到降低温度的目的。而压缩机的核心部件就是电动机。 电动机从发明之日起,一个多世纪以来,对人类社会的发展产生了极大的推动作用,大大提高了社会生产力水平,至今仍在整个社会机器大生产时代发挥着极为重要的作用。 科技的发展总是带动社会的变革,从而推动整个人类社会的发展。今天,我们仍然要大力发展科学技术,使有益于社会向更好的方向发展的科技成果更快、更好地应用于社会生产中,更大程度地促进社会的发展。 艾驰商城是国内最专业的MRO 工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上

轮廓测量仪原理及应用

轮廓测量仪概述 SJ5700轮廓测量仪是一款集成表面粗糙度和轮廓测量的测量仪器;采用进口高精度光栅测量系统、高精度研磨导轨、高性能非接触直线电机、音圈电机测力系统、高性能计算机控制系统技术,实现对各种工件表面粗糙度和轮廓进行测量和分析。通过高精度研磨导轨、高性能直线电机保证测量的高稳定性及直线度,采用进口高精度光栅测量系统建立工件表面轮廓的二维坐标,计算机通过修正算法对光栅数据进行修正,最终还原出工件轮廓信息并以曲线图显示出来,通过软件提供的分析工具可对轮廓进行各种参数分析。 轮廓仪为全自动测量设备,操作者只需装好被测工件,在检定软件上设定扫描的开始、结束位置,点击“开始”按钮,测针会自动接 触工件表面,并按设定的位置扫描;可高精度地测量精密加工零部件的粗糙度和轮廓形状,再选择所需评价参数即可进行评价。 系统软件为简体中文操作系统,操作方便。

轮廓测量仪功能 SJ5700 轮廓测量仪可测量各种精密机械零件的素线轮廓形状参数,角度处理(坐标角度,与 Y 坐标的夹角,两直线夹角)、圆处理(圆弧半径,圆心到圆心距离,圆心到直线的距离,交点到圆心的距离,直线到切点的距离)、点线处理(两直线交点,交点到直线距离,交点与交点距离,交点到圆心的距离)、直线度、凸度、对数曲线、槽

深、槽宽、沟曲率半径、沟边距、沟心距、轮廓度、水平距离等形状参数。 轮廓测量仪性能特点 1、高精度、高稳定性、高重复性:完全满足被测件测量精度 要求。 1) 选用国际领先的高精度光栅测量系统和高精度电感测量系 统,测量精度高; 2) 自主研发高精度研磨导轨系统,导轨材料耐磨性好、保证 系统稳定可靠工作; 3) 高性能直线电机驱动系统,保证测量稳定性高、重复性好; 2、智能化管理与检测软件系统: 仪器操作界面友好,操作者很容易即可基本掌握仪器操作,使用十分简便。 1) 10多年积累的实用检定软件设计经验,向客户提供简洁、 实用、快速的操作体验; 2) 功能强大、自动处理数据、打印各种格式的检定报告,自 动显示、打印、保存、查询测量记录; 3) 测量围广,可满足绝大多数类型的工件粗糙度轮廓测量; 4) 可自动和手动选取被测段进行评定,可依据客户要求进行 软件功能的定制; 5) 纯中文操作软件系统,更好的为国用户服务; 6) 打印格式正规、美观。检定数据可存档,或集中打印,不 占用检定操作时间;

电机分类 结构和原理

电机知识学习总结 1基本知识介绍 1.1直流、单相交流、三相交流 1.2交流下有“同步和异步”的区别 同步异步指的是转子转速与定子旋转磁场转速是同步(相同)还是异步(滞后),因而只有交流能产生旋转磁场,只有交流电机有同步异步的概念。 同步电机——原理:靠“磁场总是沿着磁路最短的方向上走”实现转子磁极与定子旋转磁场磁极逐一对应,转子磁极转速与旋转磁场转速相同。特点:同步电机无论作为电动机还是发电机使用,其转速与交流电频率之间将严格不变。同步电机转速恒定,不受负载变化影响。 异步电机——原理:靠感应来实现运动,定子旋转磁场切割鼠笼,使鼠笼产生感应电流,感应电流受力使转子旋转。转子转速与定子旋转磁场转速必须有转速差才能形成磁场切割鼠笼,产生感应电流。 区别:(1)同步电机可以发出无功功率,也可以吸收;异步电机只能吸收无功。(2)同步电机的转速与交流工频50Hz电源同步,即2极电机3000转、4极1500、6极1000等。异步电机的转速则稍微滞后,即2极2880、4极1440、6极960等。(3)同步电动机的电流在相位上是超前于电压的,即同步电动机是一个容性负载。同步电动机可以用以改进供电系统的功率因素。 同步电机无法直接启动:刚通电一瞬间,通入直流电的转子励磁绕组是静止的,转子磁极静止;定子磁场立即具有高速。假设此瞬间正好定子磁极与转子磁极一一对应吸引,在定子磁极在极短的时间内旋转半周的时间之内,会对转子产生吸引力,半周之后将会产生排斥力。由于转子有转动惯量,转子不会转动起来,而是在接近于0的速度下左右震动。因此同步电机需要鼠笼绕组启动。转速差使其产生感应电流,而感应电流具有减小转速差的特性(四根金属棒搭成井形,内部磁场变密会减小面积,变疏会增加面积,阻止其变化趋势),因而会使转子转动起来,直到感应电流与转速差平衡(没有电流就不会有力,因而不会消除转速差,猜测与旋转阻力有关)。 1.3永磁、电磁、感磁(构成定子、转子) 永磁——永磁铁 电磁——通电线圈 感磁——无电闭合绕组、鼠笼 永磁和电磁大多数情况下可以互换,感磁需要有旋转磁场的场合才能用,在三相同步电机中经常作为启动与电磁/永磁共用于转子。 1.4有刷无刷 电机有刷和无刷对电机结构影响很大,刷指的是转子通电时的电刷换向器、或者滑环。

音圈电机原理及应用

音圈电机的原理及应用 音圈电机(Voice Coil Motor)是一种特殊形式的直接驱动电机。具有结构简单、体积小、高速、高加速、响应快等特性。近年来,随着对高速、高精度定位系统性能要求的提高和音圈电机技术的迅速发展,音圈电机不仅被广泛用在磁盘、激光唱片定位等精密定位系统中,在许多不同形式的高加速、高频激励上也得到广泛应用。如:光学系统中透镜的定位、机械工具的多坐标定位平台、医学装置中精密电子管、真空管控制等。本文将系统讨论音圈电机的工作原理、结构及其应用场合。 1. 音圈电机的工作原理 1.1 磁学原理 音圈电机的工作原理是依据安培力原理,即通电导体放在磁场中,就会产生力F,力的大小取决于磁场强弱B、电流I、以及磁场和电流的方向(见图1)。如果共有长度为L的N根导线放在磁场中,则作用在导线上的力可表示为 kNBIL F (1) 式中k为常数。 由图1可知,力的方向是电流方向和磁场向量的函数,是二者的相互作用,如果磁场和导线长度为常量,则产生的力与输入电流成比例,在最简单的音圈电机结构形式中,直线音圈电机就是位于径向电磁场内的一个管状线圈绕组(见图2),铁磁圆筒内部是由永久磁铁产生的磁场,这样的布置可使贴在线圈上的磁体具有相同的极性,铁磁材料的内芯配置在线圈轴向中心线上,与永久磁体的一端相连,用来形成磁回路。当给线圈通电时,根据安培力原理,它受到磁场作用,在线圈和磁体之间产生沿轴线方向的力,通电线圈两端电压的极性决定力的方向。 将圆形管状直线音圈电机展开,两端弯曲成圆弧,就成为旋转音圈电机。旋转音圈电机力的产生方式与直线音圈电机类似,只是旋转音圈电机力是沿着弧形圆周方向产生的,输出转矩见图3。 1.2电子学原理 音圈电机是单相两极装置。给线圈施加电压则在线圈里产生电流,进而在线圈上产生与电流成比例的力,使线圈在气隙内沿轴向运动,通过线圈的电流方向决定其运动方向。当线圈在磁场内运动时,会在线圈内产生与线圈运动速度、磁场强度、和导线长度成比例的电压(即感应电动势)。驱动音圈电机的电源必须提供足够的电流满足输出力的需要,且要克服线圈在最大运动速度下产生的感应电动势,以及通过线圈的漏感压降。 1. 3 机械系统原理 音圈电机经常作为一个由磁体和线圈组成的零部件出售。线圈与磁体之间的最小气隙通常是(0. 254~0. 381) mm,根据需要此气隙可以增大,只是需要确定引导系统允许的运动范围,同时避免线圈与磁体间摩擦或碰撞。多数情况下,移动载荷与线圈相连,即动音圈结构。其优点是固定的磁铁系统可以比较大,因而可以得到较强的磁场;缺点是音圈输电线处于运动状态,容易出现断路的问题。同时由于可运动的支承,运动部件和环境的热接触很恶劣,动音圈产生的热量会使运动部件的温度升高,因而音圈中所允许的最大电流较小,当载荷对热特别敏感时,可以把载荷与磁体相连,即固定音圈结构。该结构线圈的散热不再是大问题,

H桥电机驱动原理与应用

H 桥电机驱动原理与应用 我们首先来看马达是如何转动的呢?举个例子: 你手里拿着一节电池,用导 线将马达和电池两端对接,马达就转动了;然后如果你把电池极性反过来会怎么 样呢?没有错,马达也反着转了。 OK 这个是最基本的了。现在假设你想用一块指甲盖大小的微控制芯片 (MCU >你又如何控制马达的呢?首先,你手上有一个固态的状态开关——一个 晶体管一一来控制马达的开关。 提示:如果你用继电器连接这些电路的时候, 要在继电器线圈两端并一个二 极管。这是为了保护电路不被电感的反向电动势损坏。二极管的正极(箭头)要 接地,负极要接在MCI 连接继电器线圈的输出端上。 电路连接好后,你可以用一个逻辑输出的信号来控制马达了。 高电平(逻辑 1)让继电器导通,马达转动;低电平(逻辑 0)让继电器断开,马达停止。 在电路相同的情况下,把马达的“极性”反过来接,我们可以控制马达的翻 转和停止。 问题来了:如果我们要同时需要马达能够正转好反转, 怎么办?难道每次都 要把马达的连线反过来接? 我们先来看另一个概念:马达速度。当我们在其中一种状态下,频繁的切换 开关状态的时候,马达的转速就不再是匀速,而是变化的了,相应的扭矩也会改 变。 通常反应出来的是马达速度的变化。 +JS

我们想要同时控制正反向的话,就需要更多的电路——没错,就是H桥电路。H桥电路的“ H'的意思是它实际电路在电路图上是一个字幕H的样式。下图就是一个用继电器连接成的H桥电路。 处于“高”位置的继电器是控制电源流入的方向,称之为“源”电路;处于“低”位置的继电器是控制电源流入地的方向,称之为“漏”电路。 现在,你将左上电路(A)和右下电路(D)接通,马达就正转了(如下图)此时各个端口的逻辑值为A-1、B-0、C-0、D-1. 1| i c) ARID ran-st ia-n

音圈电机的基本结构与工作原理001

音圈电机的电磁场计算与分析 音圈电机是一种将电信号转换成直线位移的直流伺服电机。以音圈电机为动力的直线定位系统具有整体结构简单、驱动速度快、定位精度高等优点,已广泛应用于计算机磁盘驱动器、激光微调机、六自由度机器人手臂等高新技术设备中。 评价音圈电机的指标包括出力大小和“力一位移”曲线的平滑度。在音固电机设计中,需要合理确定各个尺寸和电磁参数,以得到理想的出力和“力一位移”曲线。尽管音圈电机的结构比较简单,但是设计方法有其特殊性,目前关于该电机设计计算的参考文献仍较少,仅有国外的产品介绍可供参考。音圈电机的出力和“力一位移”曲线的计算应以电磁场计算为基础。 音圈电机的结构主要由定子和动子组成。其中定子包括外磁轭、环形磁钢、隔磁环和内磁轭,动子由音圈绕组和绕组支架组成。 音圈电机的工作原理与电动式扬声器类似,即在磁场中放入一环形绕组,绕组通电后产生电磁力,带动负载作直线运动;改变电流的强弱和极性,即可改变电磁力的大小和方向。 音圈电机的设计应遵循以下几个基本原则: (1)在电机体积给定的情况下,应尽可能增加气隙磁密与线圈总长度的乘积,以提高单位电流产生的磁推力。 (2)减小漏磁,降低磁路的饱和程度,从而减小电机的体积。 (3)合理设计电机定子和动子的轴向长度,以得到平滑的“力-位移”曲线。 电磁场计算 音圈电机的设计与分析应以电磁场计算为基础。由于音圈电机内的磁场是一个轴对称场,所以可采用二维有限元法进行计算。 影响音圈电机性能的结构参数主要包括磁钢厚度、音圈厚度、外磁轭厚度、极间距离和定动子长度。 磁钢厚度越大,则气隙磁场越强,电机的出力也越大,但在电机外径一定的条件下,音圈的直径要减小。因此须适当选择磁钢厚度,才能使电机出力最大。 音圈厚度不但影响电机绕组的安匝数,同时影响气隙磁密,两者相互矛盾。而电机的出力与这两项乘积成正比,因此存在最优厚度使电机出力最大。可以看出,音圈厚度对电机出力的影响较为明显,音圈厚度过大过或小都会使电机的出力降低。 外磁轭厚度主要影响磁路的饱和程度。厚度过小,饱和程度增加,电机的漏磁将增大;反之,厚度太大,音圈直径将减小。所以必须合理地设计外磁轭厚度。 音圈电机的两个环形磁极之间存在着较大的漏磁。漏磁场将使外磁轭的磁通增加,饱和程度增加;为了减小极问漏磁,在极间设计一个隔磁环,从而降低外磁轭部分的饱和程度,减小磁轭的厚度。但是极间距离必须合理设计,否则会影响电机的总磁通,反而降低电机的出力。可以看出,极间距离对电机的出力也有较明显的影响。 定子和动子长度的选取主要影响电机“力-位移”曲线的平滑度。定子长度一定时,适当改变动子长度,可以使“力-位移”曲线更平滑,但是应以满足电机的行程要求为主,否则会造成电机体积的增加和成本的浪费。 通过本文的分析,可得出以下结论: (1)数值计算是进行音圈电机设计的有效方法,可以准确地计算出电机的出力和特性。 (2)影响音固电机的结构参数包括磁钢厚度、音圈厚度、外磁轭厚度、极间距离以及定子和动子长度,其中影响较大的是磁钢厚度和音圈厚度。 (3)为了减小漏磁并降低磁路的饱和程度,在磁极之间设计隔磁环是非常必要的。影响音圈电机的结构参数包括磁钢厚度、音圈厚度、外磁轭厚度、极间距离以及定子和动子长度,其中影响较大的是磁钢厚度和音圈厚度。 (4)底部磁极对应的气隙磁场略大于外部磁极对应的磁场,这是由于电机内磁路的不对称而

大推力音圈电机的探究

大推力音圈电机的探究 【摘要】音圈电机是一种性能非常好的直线电机。在介绍音圈电机的同时本文提出了一种音圈电机的设计概念。通过有限元分析,否决了这种概念。 【关键词】音圈电机;大推力;设计 1.引言 音圈电机是直线电机的一种,因其具有与扬声器相同的“音圈”结构,以及与扬声器相同的工作原理而得名。音圈电机高频响应很好,精度高,可以应用于许多场合。目前市面上出售的音圈电机可以提供0.7—1000N左右的推力。它的这些优点引起了国内外研究者的兴趣,近年来对于音圈电机的研究逐渐增多。 1.1音圈电机的工作原理 音圈电机的工作原理与扬声器的工作原理相似,二者都应用了通电导体与磁场的相互作用原理。通电导体在磁场中要受到安培力的作用。扬声器线圈内部的电流大小反映了它所记载的声音信息,线圈因为电流大小的不同可以产生振幅不同的振动。扬声器通过线圈的振动来达到还原声音甚至放大声音的目的。而音圈电机则是利用音圈受力与其内部所通电流大小成正比的特性,使电能转换为机械能,达到输出功率的目的。 1.2音圈电机的分类 从总体来说,按照音圈电机的输出方式,可以分为直线型和摆动型。直线型的动子沿直线运动,输出的是推力;摆动型的动子做圆周运动,输出的是扭矩。二者的工作原理大致相同,本文只讨论直线型音圈电机。 按照磁场的提供方式不同来区分,音圈电机可以分为永磁励磁和电励磁两种。电励磁的音圈电机应用很少,因为通过电流来产生的磁场很难利用。本文后文会讨论一种电励磁的方案,会通过一些实际的仿真支出电励磁的难点。随着近些年永磁材料的发展,人们可以通过很小的代价很轻松地获得高表磁的永磁体。这更加剧了永磁励磁型音圈电机的优势。所以几乎所有的音圈电机都采用永磁励磁。 按照可动部分不同来区分,音圈电机可以分为“动圈式”和“动铁式”两种。牛顿第三定律指出,力的作用是相互的。当固定住音圈电机的“铁”时,它的“圈”就会动,反之亦然。动圈和动铁本质上是相同的。不过二者又有很明显的差异:动圈式音圈电机因为动子“音圈”的质量很小,所以可以产生很好的高频响应以及很高的加速度(高达300g)。同时因为永磁的部分是固定的,可以减少很多磁路设计方面的限制,从而方便设计出更好的磁路。同时,也正是因为音圈的可动性,导致与电源相连部分的导线疲劳磨损严重,很容易产生断路甚至短路等电力系统

步进电机工作原理特点及应用

步进电机工作原理,特点及应用 - 步进电机工作原理,特点及应用 一、前言 步进电机是将电脉冲信号转变为角位移或线位移的开环控制元件。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,即给电机加一个脉冲信号,电机则转过一个步距角。这一线性关系的存在,加上步进电机只有周期性的误差而无累积误差等特点。使得在速度、位置等控制领域用步进电机来控制变的非常的简单。 虽然步进电机已被广泛地应用,但步进电机并不能象普通的直流电机,交流电机在常规下使用。它必须由双环形脉冲信号、功率驱动电路等组成控制系统方可使用。因此用好步进电机却非易事,它涉及到机械、电机、电子及计算机等许多专业知识。 目前,生产步进电机的厂家的确不少,但具有专业技术人员,能够自行开发,研制的厂家却非常少,大部分的厂家只一、二十人,连最基本的设备都没有。仅仅处于一种盲目的仿制阶段。这就给户在产品选型、使用中造成许多麻烦。签于上述情况,我们决定以广泛的感应子式步进电机为例。叙述其基本工作原理。望能对广大用户在选型、使用、及整机改进时有所帮助。 二、感应子式步进电机工作原理 (一)反应式步进电机原理 由于反应式步进电机工作原理比较简单。下面先叙述三相反应式步进电机原理。 1、结构: 电机转子均匀分布着很多小齿,定子齿有三个励磁绕阻,其几何轴线依次分别与转子齿轴线错开。 0、1/3て、2/3て,(相邻两转子齿轴线间的距离为齿距以て表示),即A与齿1相对齐,B

与齿2向右错开1/3て,C与齿3向右错开2/3て,A'与齿5相对齐,(A'就是A,齿5就是齿1)下面是定转子的展开图: 2、旋转: 如A相通电,B,C相不通电时,由于磁场作用,齿1与A对齐,(转子不受任何力以下均同)。 由此可见:电机的位置和速度由导电次数(脉冲数)和频率成一一对应关系。而方向由导电顺序决定。 不难推出:电机定子上有m相励磁绕阻,其轴线分别与转子齿轴线偏移1/m,2/m……(m-1)/m,1。并且导电按一定的相序电机就能正反转被控制——这是步进电机旋转的物理条件。只要符合这一条件我们理论上可以制造任何相的步进电机,出于成本等多方面考虑,市场上一般以二、三、四、五相为多。 3、力矩: 这样经过A、B、C、A分别通电状态,齿4(即齿1前一齿)移到A相,电机转子向右转过一个齿距,如果不断地按A,B,C,A……通电,电机就每步(每脉冲)1/3て,向右旋转。如按A,C,B,A……通电,电机就反转。不过,出于对力矩、平稳、噪音及减少角度等方面考虑。往往采用A-AB-B-BC-C-CA-A这种导电状态,这样将原来每步1/3て改变为1/6て。甚至于通过二相电流不同的组合,使其1/3て变为1/12て,1/24て,这就是电机细分驱动的基本理论依据。电机一旦通电,在定转子间将产生磁场(磁通量Ф)当转子与定子错开一定角度产生力F与(dФ/dθ)成正比 S

工业检测之音圈电机检测技术

工业检测之音圈电机检测技术 音圈电机因其具有高频响、高精度的特点在市场上广泛应用,尤其是在医疗、半导体、航空、汽车、自动化设备等领域。当然这只是音圈电机的部分应用,其实它还可以应用到检测技术上,具体是怎样实现的呢? 什么是音圈电机? 所谓音圈电机(V oice Coil Motor)因其结构类似于喇叭的音圈而得名。是一种特殊形式的直接驱动电机,能将电能直接转化成直线运动机械能而不需要任何中间转换机构的传动装置。 音圈电机有什么特点? 其具有高响应、高速度、高加速度、结构简单、体积小、力特性好、控制方便等优点。近年来,随着音圈电机技术的迅速发展,音圈电机被广泛用在精密定位系统和许多不同形式的高加速、高频率、快速和高精度定位运动系统中。 音圈电机的结构 它首先是一个音圈电机,其次它又是集音圈电机、光栅读头、光栅尺、导轨内置气路和电子线路等的组合体。直线型执行器。1)直线运动,只需要一轴的控制器控制。2)位置反馈是闭环的。3)可以内置气路。4)可以安装回复弹簧。5)双线圈。6)轴端。7)接口。 什么是执行器“软着落” 软着陆指的是执行器的轴或者夹指以可程序化的高速度、低力量的方式接近

物体表面。类似于运动员跳伞、宇宙飞船月球登陆。这种独特的功能对精密易碎或高价值的零件的组装相当有帮助。那么音圈电机如何实现软着陆呢?在速度模式下控制较低力量接近物体表面,同时持续地监控位置误差,一旦接触到物体表面时,位置误差增大到预先设置的值时,执行轴就会保持在物体表面那个位置。“软着落”的好处是按照物体表面的位置,接触表面;由于表面位置的误差,会过冲和不及;所用时间太长,影响生产效益;保证速度、确保精度。 音圈电机的另一个好处是可以控制力量。在同一位置上,电机可以输出不同的力量;在任何位置上,电机可以输出恒定的力量。力的波动可以被控制在±2克;力的重复性也可以控制在±2克。如果安装力的传感器可形成力的闭环。目前主要应用于检测和测量行业,例如:汽车零部件的100%检测、手机按键的检测、手机触摸屏检测等。 音圈电机按键测试 据富贸商城了解,按键测试技术已经广泛应用于手机按键测试、电源开关手感测试、汽车的音像按键测试、汽车的自动窗开关测试、弹簧片的测试、阀门的测试、传感器的测试、继电器的测试、电脑键盘测试等等。已经要求做到在线100%的检测。如下图:

电动机的基本结构及工作原理

电动机的基本结构及工作原理 交流电机分异步电机和同步电机两大类。异步电机一般作电动机使用,拖动各种生产机械作功。同步电机分分为同步发电机和同步电动机两类。根据使用电源不同,异步电机可分为三相和单相两种型式。 一、异步电动机的基本结构 三相异步电动机由定子和转子两部分组成。因转子结构不同又可分为三相笼型和绕线式电机。 1、三相异步电动机的定子: 定子主要由定子铁心、定子绕组和机座三部分组成。定子的作用是通入三相对称交流电后产生旋转磁场以驱动转子旋转。定子铁心是电动机磁路的一部分,为减少铁心损耗,一般由0.35~0.5mm厚的导磁性能较好的硅钢片叠成圆筒形状,安装在机座内。定子绕组是电动机的电路部分,安嵌安在定子铁心的内圆槽内。定子绕组分单层和双层两种。一般小型异步电机采用单层绕组。大中型异步电动机采用双层绕组。机座是电动机的外壳和支架,用来固定和支撑定子铁心和端盖。 电机的定子绕组一般采用漆包线绕制而成,分三组分布在定子铁心槽内(每组间隔120O),构成对称的三相绕组。三相绕组有6个出线端,其首尾分别用U1、U2;V1、V2;W1、W2表示,连接在电机机壳上的接线盒中,一般3KW以下的电机采用星形接法(Y接),3KW以上的电机采用三角形接法(△接)。当通入电机定子的三相交流电相序改变后,因定子的旋转磁场方向改变,所以电机的转子旋转方向也改变。 2、三相异步电动机的转子:

转子主要由转子铁心、转子绕组和转轴三部分组成。转子的作用是产生感应电动势和感应电流,形成电磁转矩,实现机电能量的转换,从而带动负载机械转动。转子铁心和定子、气隙一起构成电动机的磁路部分。转子铁心也用硅钢片叠压而成,压装在转轴上。气隙是电动机磁路的一部分,它是决定电动机运行质量的一个重要因素。气隙过大将会使励磁电流增大,功率因数降低,电动机的性能变坏;气隙过小,则会使运行时转子铁心和定子铁心发生碰撞。一般中小型三相异步电动机的气隙为0.2~1.0mm,大型三相异步电动机的气隙为1.0~1.5mm。 三相异步电动机的转子绕组结构型式不同,可分为笼型转子和绕线转子两种。笼型转子绕组由嵌在转子铁心槽内的裸导条(铜条或铝条)组成。导条两端分别焊接在两个短接的端环上,形成一个整体。如去掉转子铁心,整个绕组的外形就像一个笼子,由此而得名。中小型电动机的笼型转子一般都采用铸铝转子,即把熔化了的铝浇铸在转子槽内而形成笼型。大型电动机采用铜导条;绕线转子绕组与定子绕组相似,由嵌放在转子铁心槽内的三相对称绕组构成,绕组作星形形联结,三个绕组的尾端连结在一起,三个首端分别接在固定在转轴上且彼此绝缘的三个铜制集电环上,通过电刷与外电路的可变电阻相连,用于起动或调速。 3、三相异步电动机的铭牌: 每台电动机上都有一块铭牌,上面标注了电动机的额定值和基本技术数据。铭牌上的额定值与有关技术数据是正确选择、使用和检修电动机的依据。下面对铭牌中和各数据加以说明: 型号异步电动机的型号主要包括产品代号、设计序号、规格代号和特殊环境代号等。产品代号表示电动机的类型,用汉语拼音大写字母表示;设

音圈电机(微特电机)

华侨大学厦门工学院 电气工程系 课程设计报告 课程名称:音圈电机的应用 院系:电气工程系 专业:电气工程及其自动化 班级: 2009级电气工程及其自动化7班 学号: 090210700 姓名: 指导老师: 2012 年12月9 日

目录 一、课程设计的意义 (3) 1.1研究意义 (3) 1.2研究内容 (3) 二、音圈电机的主要结构 (4) 2.1传统结构形式 (4) 2.2集中通量结构形式 (4) 2.3磁力交叉存取结构形式 (5) 三、音圈电机的工作原理 (6) 3.1 磁学原理 (6) 3.2电子学原理 (7) 3.3机械原理 (7) 四、实例:基于音圈电机的力_位控制及应用 4.1 引言 (8) 4.2 芯片的放置控制要求 (8) 4.3 软着陆实现方式 (8) 4.4 基于LAC-1控制器的音圈电机软着陆的实现 (10) 4.5 基于Tutbo PMAC的音圈电机软着陆的实现 (11) 4.6 本章小结 (12)

一、课程设计的意义 1. 1研究意义 《微特电机及系统》的学习,重在学习各种各样的电能、机械能相互转换的实现方法。学完之后,应该能用所学的知识分析生产生活中的各种应用,甚至在以后的工作中,研制更先进的电机来解决一些实际应用难题。 随着我国精密仪器制造、测量的发展,其相关技术的要求也不断提高。其中低频微振动是其中极其重要的一个研究课题,它对精密仪表的正常工作有着重要的影响。世界许多国家均高度重视,并投入大量的人力物力加以研究。在主动抗振领域,采用音圈电机对低频微振动具有明显的优势。它具有结构简单、体积小、高速、高加速度、响应快、线性力一行程优良等特性,在精密仪表领域有着广泛地研究前景。 1. 2研究内容 在本文中,主动隔振系统对于低频、微幅振动的控制,振动信号的测量,选用PCB公司的型号为M355BO4测量高频信号,型号为M393B31测量低频信号。 在国内外将音圈电机用于精密隔振系统作为控制器并不多见。由于受到传 感器低频测量范围的限制,在低频精密主动隔振技术方面的研究较少。音圈电机 (VoiceCoilActuator)是一种将电信号转换成直线位移的直流伺服电机,具有结构简单、体积小、高速、高加速度、响应快等特性16一,“]。为此,本文提出 了利用音圈电机作为控制器,将被动和主动隔振技术结合应用,利用被动隔振系统作为隔振平台的音圈电机低频精密主动隔振系统。基于上述的思想,本文将在以下几个方面进行研究: 1、对被动隔振及主动隔振的隔振机理进一步深入地研究。被动隔振系统为 传统的隔振手段,具有方法简单,可靠性高的特点。常用的被动隔振系统多为单级或两级隔振系统,当所选隔振器件的参数相同时,两级隔振系统的隔振性能要优于单级隔振系统。不论是单级隔振系统还是两级隔振系统,所选隔振器件的自振频率对隔振系统的隔振性能具有决定性的作用。 2、研究提出针对微纳米测量对环境振动要求振动的隔离方案,采用音圈电 机作为驱动器实现主动隔振。 3、对所设计的隔振系统进行了被动隔振隔离效果的测试与分析和主动隔振 效果仿真与分析。 4、对用于施加振动主动控制力的音圈电机及其安装方式进行了研究。 5、分别采用模糊PID控制算法、小波变换算法,对隔振系统进行主动隔 振的仿真分析研究。 6、针对主动隔振系统选型的音圈电机,设计驱动电路。

音圈电机驱动系统

音圈电机驱动系统 摘要 近年来,随着我国科技的发展与进步,直线驱动技术以及其控制方法也在不断的改进。音圈电机是一种具有特殊结构的新型直接驱动电机,它具有体积小、结构简单、快速响应、高加速度等特性。由于对快速速、高精度定位系统性能要求的提高和音圈电机技术的快速发展,音圈电机不但被广泛应用在激光唱片、磁盘定位等精确定位系统中,在很多其他形式的高速度、高频激励中起到了广泛的应用。如,机械工具的多坐标定位系统、光学系统中透镜的快速定位、减小振动对隔振技术平台的影响、以及医学领域精密电子管的控制等。 本文从音圈电机的工作原理以及其PID控制方法角度对音圈电机的驱动系统展开研究。 关键字:音圈电机;直接驱动;PID控制 Abstract In recent years,as the development and progress of our country’s science and technology, linear drive technology and its control method is also in constant improvement.V oice coil motor is a new type direct drive motor with special structure.It has small volume,simple structure,fast response,high acceleration and other features.Due to the rapid speed,the improvement of high precision positioning system performance requirements and the rapid development of voice coil motor technology.V oice coil motor is widely used not only in the CD,disk positioning accurate positioning system,but also in many other form of high speed and high frequency excitation.Such as machine tool coordinate positioning system,the lens in the optical system of fast positioning,and reduce the influence of vibration on

钕铁硼有哪些用途

一、钕铁硼有哪些应用 钕铁硼永磁体是一种储能材料,可以在一定空间内产生恒定磁场。由于其极高的矫顽力和磁能积,特别是在20℃~150℃环境下 相对于其它永磁体的优异表现,使得钕铁硼永磁材料在多种领域特别是现代高科技领域获得了广泛应用。其应用从物理原理上我们可以分为以下几种: 1、电能--机械能转换,如:电动机,扬声器,VCM音圈电机等; 2、机械能--电能转换,如:发电机,受话器,测量仪表等; 3、机械能--机械能,如:磁分离,磁悬浮,磁传动,磁吊磁吸盘等; 4、利用磁场的物理效应,如:磁共振,磁化除蜡,磁化节油等. 二、钕铁硼由哪些材料组成 钕铁硼永磁体的主要原材料有稀土金属钕,金属元素铁和非金属元素硼(有时会添加铝,钴,镨,镝,铽,镓等),一般表达式为: RE2TM14B(RE=Nd,Pr,Dy TM=Fe,Co) 钕铁硼三元系永磁材料是以Nd2Fe14B化合物作为基体的,其成分应与化合物Nd2Fe14B分子式相近。但完全按Nd2Fe14B成分配比时,磁体的磁性能很低,甚至无磁,只是实际的磁体当中钕和硼的含量比Nd2Fe14B化合物的钕和硼含量多时(即形成富钕相和富硼相)才能获得较好的永磁性能。 基体Nd2Fe14相 这个相是磁体的主相,它的体积百分数(在炼完钢锭后已基本固定)决定了磁体的剩磁(Br)。最大磁能积((BH)m),而成型时磁场取向就是

实现它的排列分布使这一分子结构的易磁化轴(C)都沿取向方向有序排列,从而实现更高的磁性能. 富B相 富B相在基体中以一定的化合物存在,它是一个非磁性相,对磁性能一般是有害的,但有富B相的存在反而使的钢锭容易破碎. 富Nd相 富Nd相的存在大部分以Nd-Fe化合物存在,它对在烧结过程中提高磁体的密度有十分重要的作用.由于它的性质非常活泼,所以很容易氧化形成氧化物相,对磁体的抗腐蚀性非常不利.但富Nd相相对多时,对钢锭的长晶有好处,可以减少α-Fe的析出。 大量的组织观察表明,烧结钕铁硼系的合金显微组织具有以下特征: (1)基体相(主相)的晶粒呈多边形; (2)富B相以孤立块状或颗粒状存在; (3)富Nd相沿晶界或晶界交耦处分布; (4)另外在基体中还有其他杂质,氧化物相和空洞等。 三,钕铁硼如何制造的 烧结钕铁硼永磁体是用粉末冶金工艺制造的。主要工序有:熔炼,制粉,成型取向,烧结,机械加工,表面处理等.其中氧含量的控制是衡量工艺水平高低的重要指标. 四,钕铁硼的磁性能可以持续多久 如果保存在适当的温度,湿度且无强外磁场,辐射和其它影响磁性

直线音圈电机结构设计与数学建模分析

龙源期刊网 https://www.360docs.net/doc/263396644.html, 直线音圈电机结构设计与数学建模分析 作者:周喜张得龙 来源:《科技创新与应用》2014年第21期 摘要:音圈直线电机是一种将电能直接转化为直线运动而不需要任何中间转换机构的特 种电机,由于具有体积小、质量轻、高响应等一系列优点,因而在一些精密领域及快速响应场合得到了广泛的应用。文章重点介绍了一种自主设计的音圈电机的结构,并且在分析动态特征的基础上通过数学推导建立了比较精确的数学模型。 关键词:音圈直线电机;结构;工作原理;数学模型 引言 音圈电机(Voice Coil Motor)是一种特殊形式的直接驱动电机,因其工作原理与扬声器类似而得名。其工作原理就是安培力原理,通电线圈(导体)放在磁场内就会产生力,力的大小与施加在线圈上的电流成比例。音圈电机将电能直接转换成机械能,省去了中间转换机构,在一些精密定位系统、高加速领域中得到了广泛的应用,如磁盘定位、光学透镜定位等[1,2]。 根据运动部件的不同,音圈电机可以分为动铁式与动圈式;根据运动方式的不同,音圈电机可分为直线型与旋转型;根据音圈电机内线圈的长短可分为长音圈型与短音圈型;根据磁通源的不同,音圈电机可分为永磁式与电磁式[3,4]。文章所研究的音圈电机为动圈型永磁式直线音圈电机,将电能直接转换为直线运动的机械能。 1 直线音圈电机的结构 文章所设计的音圈电动机为直线电机的一种,动线圈型永磁式直线直流电动机,这种直流直线电机由以下几部分组成,主要包括外壳、环形磁铁、铁芯、底座、电枢骨架和电枢线圈。图1所示就是音圈电机的结构示意图。 图1 音圈电机结构示意图 本设计在结构上非常简单。动子部分包括电枢骨架及缠绕在上面的金属线圈,定子部分主要由四部分组成,外壳是圆柱形的,使用的是钢性材料;铁芯中间部分采用空心结构,这样可以使电机的重量大大减轻;磁场是由永磁铁产生的,永磁铁紧贴着外壳内壁,与铁芯之间构成气隙;铁芯是与外壳的底部连接在一起的,在外壳和铁芯的气隙之间形成固定的磁场,线圈通直流电后,线圈上就会产生电磁力,推动线圈沿轴线方向直线移动。 当动子线圈沿轴线来回做直线运动的时候,它所受到的电磁力必须要大于运动时所产生的惯性力与摩擦力。

刹车电机原理及其应用分析

刹车电机原理及其应用分析 刹车电机又名电磁失电制动电机、制动异步电动机,是全封闭、自扇冷、鼠笼型,附加直流电磁铁制动器的异步电机,目前刹车电机的需求在不断增加,刹车电机用途非常广泛,机械设备各个领域都能见到其身影。天津市金安达主要从事电机传动产品,经过多年接触传动行业逐渐发展成了台湾各种传动产品在中国大陆代理商中的佼佼者,更是成为台湾明椿的总代理。 刹车电机分为:直流刹车电机,交流刹车电机。直流刹车电机需要安装整流器,整流后的电压为99V,170V或90-108V,直流刹车电机因为要经过整流电压,最快刹车时间在0.6秒左右。交流刹车电机因为直接380V电压,不需整流,刹车时间可以在0.2秒内完成。直流刹车电机结构简单,造价便宜,发热比较快容易烧毁电机。交流刹车电机结构复杂,造价比较高,刹车效果明显,经久耐用,是自动化控制比较理想的动力。但是直流刹车电机,交流刹车电机的刹车部分(即制动器)都不可以接变频电压,需要另外接线同步控制! 刹车电机的原理是在电机的尾部有一个电磁抱刹,电机通电时它也通电吸合,这时它对电机不制动,当电机断电时它也断电,抱刹在弹簧的作用下刹住电机。两根线是将一个整流全桥的两交流输入端并接在电动机的任意两进线端上与电机同步输入380伏的交流,两直流输出端接到刹车励磁线圈。工作原理就是电机通电时线圈得直流电产生吸力将尾部两摩擦面分开,电机自由旋转,反之通过弹簧回复力让电机制动。根据电机功率不同,线圈电阻在几十至几百欧之间。 刹车电机有高精度的定位要求。作为刹车电机应该具备:刹车迅速,定位准确,安全可靠,刹车系统可互换使用,结构要简单,更换维修简便等特点。很多工厂需要刹车电机来控制电机惯性,达到要求的准确定位,来实现机械的自动工作。如:提升机械,陶瓷印花机械,涂装机械,皮革机械等,刹车电机用途非常广泛,机械设备各个领域都能见到其身影。

相关文档
最新文档