高一数学函数定义域、值域、解析式题型

高一数学函数定义域、值域、解析式题型
高一数学函数定义域、值域、解析式题型

高一函数定义域、值域、解析式题型

一、 具体函数的定义域问题

例1 求下列函数的定义域

(1

)1

y = (2

)y =

(3

)若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤

二、

抽象函数的定义问题

(一)已知函数()f x 的定义域,求函数[()]f g x 的定义域 例2 已知函数()f x 的定义域为[0,1],求函数2(2)f x 的定义域。

(二)已知函数[()]f g x 的定义域,求函数()f x 的定义域 例3 已知函数(21)f x +的定义域为[1,2],求函数()f x 的定义域。

(三)已知函数[()]f g x 的定义域,求函数[()]f h x 的定义域

例4 已知函数2(1)f x -的定义域为(2,5),求函数1

()f x

的定义域。

练习:已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

三、 求函数解析式的方法

(一) 配凑法

例5 已知22113

(1)x f x x x

++=+,求()f x 的解析式。

(二) 换元法

例6已知(12f x +=,求()f x 的解析式。

(三) 特殊值法

例7 已知对一切,x y R ∈,关系式()()(21)f x y f x x y y -=--+且(0)1f =,求

()f x 。

练习1定义在R 上的函数()f x 满足()()()2f x y f x f y xy +=++(x y ∈R ,),

(1)2f =,则(3)f -=

(四) 待定系数法

例8 已知()f x 是二次函数,且2(1)(1)244f x f x x x ++-=-+,求()f x 。

(五) 转化法

例9 设()f x 是定义在(,)-∞+∞上的函数,对一切x R ∈,均有()(2)0f x f x ++=,当11x -≤≤时,()21f x x =-,求当13x <≤时,函数()f x 的解析式。

(六) 消去法

例10 已知函数()f x 21

()()x f x x

-=,求()f x ,并证明()f x ≥

(七) 分段求解法

例11 已知函数2,()21,()1,0x x o

f x x

g x x ?≥=-=?-

练习1.已知函数()f x ,()g x 分别由下表给出

则[(1)]f g 的值为

;满足[()][()]f g x g f x >的x 的值是

四、 求函数值域的方法

(1) 配方法 例12 求二次函数256(32)y x x x =-+-≤≤的值域。

(2) 图象法(数形结合法) 例13 求24

4([2,3])3

y x x =-+∈-的值域。

(3) 分离常数法

例14 求定义域在区间[1,1]-上的函数(0)a bx

y a b a bx

+=

>>-的值域。

(4) 换元法

例15

求函数y x =

(5) ▲判别式法

例16 求函数2222

1

x x y x x -+=++的值域。

例17、已知函数21

mx n

y x +=

+的最大值为4,最小值为 —1 ,则m = ,n =

练习:

1.求下列函数的值域:

(1)223y x x =+- [1,2]x ∈ (2)31

1

x y x -=+

(3)311x y x -=+ (5)x ≥ (4)y =

(5)22594

1

x x y x +=-+ (6)31y x x =-++

(7)2y x x =- (8) y =

(19) 4y = (10)y x =

2. 定义在R 上的函数()y f x =的值域为[a ,b ],则(1)f x +的值域为

A.[a ,b ]

B.[a +1,b +1]

C.[a -1,b -1]

D.无法确定

3. 定义在R 上的函数)(x f 满足关系式:2)21()21(=-++x f x f ,则+)81(f )8

2

(f

)87

(f ++ 的值等于_______

4.函数k n f =)((其中*N n ∈),k 是π的小数点后的第n 位数字,

1415926535.3=π,则=

f

f f f f 个100)]}10([{

5.函数()f x 对于任意实数x 满足条件()()

1

2f x f x +=

,若()15,f =-则()()5f f =__________

6.已知函数222()1

x ax b

f x x ++=+的值域为[1,3],求,a b 的值。

7. 已知函数2()f x x =的定义域为D ,值域为{}0,1 (1) 求满足条件的所以定义域; (2) 求满足条件的所以函数。

8. 已知映射:f A B →,其中:21f x y x →=+,若{}3,5,7B =,则满足条件的集

合A 共有多少个?

9.设函数2,0

()2,0

x bx c x f x x ?++≤=?>?满足(4)0f -=,(2)2f -=-。若()f x x =,则

()f x 的“不东点”,试求()f x 的不动点。()y f x =,并求其定义域。

10.(1)若函数a x x x f ++=4)(2的定义域和值域均为)2](,2[->-b b ,求实数b a 、

的值.

(2)24)(2++=x x x f 在区间]2,[+t t 上最小值为)(t g ,求)(t g 的表达式.

高一数学知识点总结之函数定义域 值域

高一数学知识点总结之函数定义域值域【】数学的学习不像文科要死记硬背,学好高中数学最主要的是要掌握好课本上的基本公式,熟练运用,才能解考试过程中的各种题型。 定义域 (高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(x),x属于集合A。其中,x叫作自变量,x的取值范围A叫作函数的定义域。 值域 名称定义 函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合。 常用的求值域的方法 (1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方 法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)基本不等式法等 “师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。其中“师傅”更早则意指春秋时国君的老师。《说文解字》中有注曰:“师教人以道者之称也”。“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习

者。“老师”的原意并非由“老”而形容“师”。“老”在旧语义中也是一种尊称,隐喻年长且学识渊博者。“老”“师”连用最初见于《史记》,有“荀卿最为老师”之说法。慢慢“老师”之说也不再有年龄的限制,老少皆可适用。只是司马迁笔下的“老师”当然不是今日意义上的“教师”,其只是“老”和“师”的复合构词,所表达的含义多指对知识渊博者的一种尊称,虽能从其身上学以“道”,但其不一定是知识的传播者。今天看来,“教师”的必要条件不光是拥有知识,更重于传播知识。 关于函数值域误区 其实,任何一门学科都离不开死记硬背,关键是记忆有技 巧,“死记”之后会“活用”。不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。定义域、对应法则、值域是函数构造的三个基本元件。平时数学中,实行定义域优先的原则,无可置疑。然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手硬一手软,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄

函数定义域、值域经典习题及答案

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = (2 )01(21)111 y x x = +-+- 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为 ________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取 值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈

⑶311x y x -=+ ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、 已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式

高中数学-函数定义域、值域求法总结

函数定义域、值域求法总结 一.求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元)(6)反函数法(逆求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 定义域的求法 1、直接定义域问题 例1 求下列函数的定义域: ① 2 1 )(-=x x f ;② 23)(+=x x f ;③ x x x f -+ +=211)( 解:①∵x-2=0,即x=2时,分式 2 1 -x 无意义, 而2≠x 时,分式 21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-32 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }.

③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ? ??≠-≥+0201x x ? ???≠-≥21 x x 例2 求下列函数的定义域: ①14)(2 --= x x f ②2 14 3)(2-+--= x x x x f ③= )(x f x 11111++ ④x x x x f -+= 0)1()( ⑤3 7 3132+++-=x x y 解:①要使函数有意义,必须:142 ≥-x 即: 33≤≤-x ∴函数14)(2--= x x f 的定义域为: [3,3-] ②要使函数有意义,必须:???≠-≠-≤≥?? ??≠-+≥--131 40210432x x x x x x x 且或 4133≥-≤<--

高一初等函数定义域值域

函数 例1、 已知函数f (x )=3+x + 21+x , (1) 求函数的定义域; (2) 求f (-3),f (32)的值; (3) 当a>0时,求f (a ),f (a-1)的值。 例2、中哪个与函数y=x 相等( )x 3 A 、y=(x )2 B 、y=33 x C 、y=2x D 、y=x x 2 例3、求下列函数的定义域 (1)f (x )= 741+x (2)f(x)=x -1+ 3+x -1 例4、已知函数f (x )=x 2+2x (1) 求f (2),f (-2),f (2)+f (-2)的值 (2) 求f (a ),f (-a ),f (a )+f (-a )的值 例5、某种笔记本的单价是5元,买x (x ∈{1,2,3,4,5})个笔记

本需要y元,试用函数的三种表示法表示函数y=f(x)。 例6、画出函数y=|x|的函数图象。 例7、如图,把截面半径为25cm的圆形木头锯成矩形木材,如果矩形木材的一边长为xcm,面积为ycm2,把y表示为x的函数。

1、求下列函数的定义域 (1)f (x )= 43-x x (2)f (x )=2x (3)f (x )= 2 362+-x x (4)f (x )=14--x x 2、下列那组中的函数f (x )与g (x )相等 (1)f (x )=x-1,g (x )=x x 2 -1; (2)f (x )=x 2,,g (x )=(x )4 (3)f (x )=x 2,g (x )=36x 3、已知函数f (x )=3x 2-5x+2,求f (-2),f (-a ),f (a+3),f (a )+f (3)的值. 4、已知函数f (x )=6 2-+x x (1)点(3,14)在f (x )的图象上吗 (2)当x=4时,求f (x )的值; (3)当f (x )=2,求x 的值。

高中函数定义域和值域的求法总结(十一种)

高中函数定义域和值域的求法总结 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 例1 求函数8 |3x |15 x 2x y 2-+--= 的定义域。 解:要使函数有意义,则必须满足 ?? ?≠-+≥--②① 8|3x |015x 2x 2 由①解得 3x -≤或5x ≥。 ③ 由②解得 5x ≠或11x -≠ ④ ③和④求交集得3x -≤且11x -≠或x>5。 故所求函数的定义域为}5x |x {}11x 3x |x {>-≠-≤ 且。 例2 求函数2 x 161 x sin y -+=的定义域。 解:要使函数有意义,则必须满足 ? ??>-≥②①0x 160 x sin 2 由①解得Z k k 2x k 2∈π+π≤≤π, ③ 由②解得4x 4<<- ④ 由③和④求公共部分,得 π≤<π-≤<-x 0x 4或 故函数的定义域为]0(]4(ππ--,, 评注:③和④怎样求公共部分?你会吗? 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 (1)已知)x (f 的定义域,求)]x (g [f 的定义域。 (2)其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例3 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 解:令21x 22≤-≤-,得3x 12≤≤-,即3x 02≤≤,因此3|x |0≤≤,从而 3x 3≤≤-,故函数的定义域是}3x 3|x {≤≤-。 (2)已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求 g(x)的值域,即所求f(x)的定义域。 例4 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 解:因为51x 234x 222x 1≤+≤≤≤≤≤,,。 即函数f(x)的定义域是}5x 3|x {≤≤。 三、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例5 已知函数8m m x 6m x y 2++-=的定义域为R 求实数m 的取值范围。 分析:函数的定义域为R ,表明0m 8mx 6mx 2≥++-,使一切x ∈R 都成立,由2x 项

高一数学《函数的定义域值域》练习题

函数值域、定义域、解析式专题 一、函数值域的求法 1、直接法: 例1:求函数y = 例2:求函数1y 的值域。 2、配方法: 例1:求函数242y x x =-++([1,1]x ∈-)的值域。 例2:求 函 数]2,1[x ,5x 2x y 2 -∈+-= 的 值域。 例3:求函数2256y x x =-++的值域。 3、分离常数法: 例1:求函数125 x y x -=+的值域。 例2:求函数1 22+--=x x x x y 的值域. 例3:求函数1 32 x y x -=-得值域. 4、换元法: 例1:求函数2y x = 例2: 求 函 数1x x y -+=的 值 域。 5、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。 例1:求函数y x = 例2:求函数()x x x f -++=11的值域。

例3:求 函 数1x 1x y --+=的 值 域。 6、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。 例1:求函数|3||5|y x x =++-的值域。 7、非负数法 根据函数解析式的结构特征,结合非负数的性质,可求出相关函数的值域。 例1、(1)求函数216x y -=的值域。 (2)求函数1 3 22+-=x x y 的值域。 二、函数定义域 例1:已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域. 例2:若()f x 的定义域为[]35-,,求()()(25)x f x f x ?=-++的定义域. 例3:求下列函数的定义域: ① 2 1 )(-= x x f ; ② 23)(+=x x f ; ③ x x x f -+ += 21 1)( 例4:求下列函数的定义域: ④ 14)(2--=x x f ⑤ ②2 14 3)(2-+--= x x x x f ⑥ 3 7 3132+++-= x x y ④x x x x f -+= 0)1()( 三、解析式的求法 1、配凑法 例1:已知 :23)1(2 +-=+x x x f ,求f(x);

函数的定义、定义域、值域

函数的概念 教学目的: 1.理解函数的定义;明确决定函数的定义域、值域和对应法则三个要素; 2.理解静与动的辩证关系,激发学生学习数学的兴趣和积极性 教学重点:理解函数的概念; 教学难点:函数的概念 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 函数是数学的重要的基础概念之一论、微分学、积分学、微分方程乃至泛函分析等高等学校开设的数学基础课程,其他学科如物理学等学科也是以丰富的辩证思想,是对学生进行辩证唯物主义观点教育的好素材法也广泛地诊透到中学数学的全过程和其他学科中 函数是中学数学的主体内容它与中学数学很多内容都密切相关,初中代数中的“函数及其图象”就属于函数的内容,高中数学中的指数函数、对数函数、三角函数是函数内容的主体,通过这些函数的研究,能够认识函数的性质、图象及其初步的应用后续内容的极限、微积分初步知识等都是函数的内容数列可 以看作整标函数,等差数列的通项反映的点对(n ,a n )都分布在直线y =kx+b 的图象上,等差数列的前n 项和公式也可以看作关于n(n ∈N)的二次函数关系式,等比数列的内容也都属于指数函数类型的整标函数与函数内容有关 本节的函数是用初中代数中“对应”来描述的函数概念,高一学生的数学知识较少,接受能力有限,用原始概念“对应”一词来描述函数定义是合适的 教学过程: 一、复习引入: 初中(传统)的函数的定义是什么?初中学过哪些函数? 设在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.并将自变量x 取值的集合叫做函数的定义域,和自变量x 的值对应的y 值叫做函数值,函数值的集合叫做函数的值域.这种用变量叙述的函数定义我们称之为函数的传统定义. 初中已经学过:正比例函数、反比例函数、一次函数、二次函数等 问题1:1=y (R x ∈)是函数吗?

求解函数定义域,值域,解析式讲义(精华版)

求解函数定义域、值域、解析式 【课堂笔记】 知识点一 定义域、值域的定义 在函数)(x f y =中,x 叫做自变量,x 的取值范围的集合A 叫作函数的定义域;与x 的值相对应的值y 叫作函数值,函数值的集合})({A x x f ∈叫作函数的值域。 下面我们就以求简单函数的定义域做一讲解。 (1)当函数是以解析式的形式给出的时候,其定义域是使函数解析式有意义的自变量的取值的集合。 (2)当函数是由实际问题给出时,其定义域不仅要考虑使其解析式有意义,还要有实际意义。 注意:(1)求函数的定义域,一般是转化为解不等式或不等式组的问题,要注意逻辑连接词的恰当使用。 (2)定义域是一个集合,其结果可用集合或区间来表示。 (3)若函数)(x f 是整式型函数,则定义域为全体实数。 (4)若函数)(x f 是分式型函数,则定义域为使分母不为零的实数构成的集合。 (5)若函数)(x f 是偶次根式,则定义域为使被开方式非负的实数构成的集合。 (6)由实际问题确定的函数,其定义域由自变量的实际意义确定。 (7)如果已知函数是由两个以上的数学式子的和、差、积、商的形式构成时,定义域是使其各部分有 意义的公共部分的集合。 (8)复合函数的定义域问题: ①若已知)(x f 的定义域为],[b a ,则复合函数))((x g f 的定义域可由不等式b x g a ≤≤)(解出; ②若已知))((x g f 的定义域为],[b a ,则函数)(x f 的定义域,即为当],[b a x ∈时函数)(x g 的值域。 【例1】求下列函数的定义域 (1)1+= x y (2)x y -= 21 (3)0)1(21-+-= x x y 【例2】 求下列函数的定义域 (1)x y ++ = 11 11; (2)1 42 --= x x y ;

高一函数值域定义域方法总结

函数定义域、值域求法总结 一、定义域是函数y=f(x)中的自变量x 的范围。 求函数的定义域需要从这几个方面入手: (1)分母不为零 (2)偶次根式的被开方数非负。 (3)对数中的真数部分大于0。 (4)指数、对数的底数大于0,且不等于1 (5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。 ( 6 )0x 中x 0≠ 二、值域是函数y=f(x)中y 的取值范围。 常用的求值域的方法: (1)直接法 (2)图象法(数形结合) (3)函数单调性法 (4)配方法 (5)换元法 (包括三角换元) (6)反函数法(逆 求法) (7)分离常数法 (8)判别式法 (9)复合函数法 (10)不等式法 (11)平方法等等 这些解题思想与方法贯穿了高中数学的始终。 三、典例解析 1、定义域问题 例1 求下列函数的定义域: ① 21)(-= x x f ;② 23)(+=x x f ;③ x x x f -++=21 1)( 解:①∵x-2=0,即x=2时,分式21 -x 无意义, 而2≠x 时,分式21 -x 有意义,∴这个函数的定义域是{}2|≠x x . ②∵3x+2<0,即x<-3 2 时,根式23+x 无意义, 而023≥+x ,即3 2 -≥x 时,根式23+x 才有意义, ∴这个函数的定义域是{x |3 2 -≥x }. ③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式 x -21 同时有意义, ∴这个函数的定义域是{x |1-≥x 且2≠x } 另解:要使函数有意义,必须: ?? ?≠-≥+0 201x x ? ???≠-≥21 x x 例2 求下列函数的定义域:

求函数定义域和值域方法和典型题归纳

<一>求函数定义域、值域方法和典型题归纳 一、基础知识整合 1.函数的定义:设集合A 和B 是非空数集,按照某一确定的对应关系f ,使得集合A 中任意一个数x,在集合B 中都有唯一确定的数f(x)与之对应。则称f:为A 到B 的一个函数。 2.由定义可知:确定一个函数的主要因素是①确定的对应关系(f ),②集合A 的取值范围。由这两个条件就决定了f(x)的取值范围③{y|y=f(x),x ∈A}。 3.定义域:由于定义域是决定函数的重要因素,所以必须明白定义域指的是: (1)自变量放在一起构成的集合,成为定义域。 (2)数学表示:注意一定是用集合表示的范围才能是定义域,特殊的一个个的数时用“列举法”;一般表示范围时用集合的“描述法”或“区间”来表示。 4.值域:是由定义域和对应关系(f )共同作用的结果,是个被动变量,所以求值域时一定注意求的是定义域范围内的函数值的范围。 (1)明白值域是在定义域A 内求出函数值构成的集合:{y|y=f(x),x ∈A}。 (2)明白定义中集合B 是包括值域,但是值域不一定为集合B 。 二、求函数定义域 (一)求函数定义域的情形和方法总结 1已知函数解析式时:只需要使得函数表达式中的所有式子有意义。 (1)常见要是满足有意义的情况简总: ①表达式中出现分式时:分母一定满足不为0; ②表达式中出现根号时:开奇次方时,根号下可以为任意实数;开偶次方时,根号下满足大于或等于0(非负数)。 ③表达式中出现指数时:当指数为0时,底数一定不能为0. ④根号与分式结合,根号开偶次方在分母上时:根号下大于0. ⑤表达式中出现指数函数形式时:底数和指数都含有x ,必须满足指数底数大于0且不等于1.(0<底数<1;底数>1) ⑥表达式中出现对数函数形式时:自变量只出现在真数上时,只需满足真数上所有式子大于0,且式子本身有意义即可;自变量同时出现在底数和真数上时,要同时满足真数大于0,底数要大于0且不等于 1. (2 ()log (1)x f x x =-) 注:(1)出现任何情形都是要注意,让所有的式子同时有意义,及最后求的是所有式子解集的交集。 (2)求定义域时,尽量不要对函数解析式进行变形,以免发生变化。(形

函数的定义域与求法讲解

函数 一、函数的定义域及求法 1、分式的分母≠0;偶次方根的被开方数≥0; 2、对数函数的真数>0;对数函数的底数>0且≠1; 3、正切函数:x ≠ kπ + π/2 ,k∈Z;余切函数:x ≠ kπ ,k ∈Z ; 4、一次函数、二次函数、指数函数的定义域为R; 5、定义域的相关求法:利用函数的图象(或数轴)法;利用其反函数的值域法; 6、复合函数定义域的求法:推理、取交集及分类讨论. [例题]: 1、求下列函数的定义域

3、已知函数y=lg(mx2-4mx+m+3)的定义域为R,求实数m的取值范围.[解析]:[利用复合函数的定义域进行分类讨论] 当m=0时,则mx2-4mx+m+3=3,→ 原函数的定义域为R; 当m≠0时,则 mx2-4mx+m+3>0, ①m<0时,显然原函数定义域不为R; ②m>0,且△=(-4m)2-4m(m+3)<0 时,即0<m<1,原函数定义域为R, 所以当m∈[0,1) 时,原函数定义域为R.

4、求函数y=log x + 1 (x≥4) 的反函数的定义域. 2 [解析]:[求原函数的值域] 由题意可知,即求原函数的值域, ∵x≥4,∴log x≥2∴y≥3 2 x + 1 (x≥4) 的反函数的定义域是[3,+∞).所以函数y=log 2 x)的定义域. 5、函数f(2x)的定义域是[-1,1],求f(log 2 [解析]:由题意可知2-1≤2x≤21→ f(x)定义域为[1/2,2] x≤2→ √ ̄2≤x≤4. → 1/2≤log 2 所以f(log x)的定义域是[√ ̄2,4]. 2 二、函数的值域及求法 1、一次函数y=kx+b(k≠0)的值域为R; 2、二次函数的值域:当a>0时,y≥-△/4a ,当a<0时, y≤-△/4a ; 3、反比例函数的值域:y≠0 ; 4、指数函数的值域为(0,+∞);对数函数的值域为R; 5、正弦、余弦函数的值域为[-1,1](即有界性);正切余切函数的值域为R; 6、值域的相关求法:配方法;零点讨论法;函数图象法;利用 求反函数的定义域法;换元法;利用函数的单调性和有界性法;分离变量法. [例题]::求下列函数的值域

高一初等函数定义域值域

高一初等函数定义域值 域 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

函数 例1、 已知函数f (x )=3+x + 21+x , (1) 求函数的定义域; (2) 求f (-3),f (32)的值; (3) 当a>0时,求f (a ),f (a-1)的值。 例2、中哪个与函数y=x 相等( )x 3 A 、y=(x )2 B 、y=33 x C 、y=2x D 、y=x x 2 例3、求下列函数的定义域 (1)f (x )= 7 41+x (2)f(x)=x -1+ 3+x -1 例4、已知函数f (x )=x 2+2x (1) 求f (2),f (-2),f (2)+f (-2)的值 (2) 求f (a ),f (-a ),f (a )+f (-a )的值

例5、某种笔记本的单价是5元,买x(x {1,2,3,4,5})个笔记本需要y元,试用函数的三种表示法表示函数y=f(x)。 例6、画出函数y=|x|的函数图象。 例7、如图,把截面半径为25cm的圆形木头锯成矩形木材,如果矩形木材的一边长为xcm,面积为ycm2,把y表示为x的函数。 x

1、求下列函数的定义域 (1)f (x )=43-x x (2)f (x )=2x (3)f (x )=236 2+-x x (4)f (x )=14--x x 2、下列那组中的函数f (x )与g (x )相等? (1)f (x )=x-1,g (x )=x x 2 -1; (2)f (x )=x 2,,g (x )=(x )4 (3)f (x )=x 2,g (x )=36x 3、已知函数f (x )=3x 2-5x+2,求f (-2),f (-a ),f (a+3),f (a )+f (3)的值. 4、已知函数f (x )=62 -+x x (1)点(3,14)在f (x )的图象上吗?

函数定义域值域及表示

函数定义域值域及表示 (1)函数的概念 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有 意义的实数的集合; 函数的定义域、值域要写成集合或区间的形式. 构成函数的三要素:定义域、对应关系和值域 再注意: 1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以, 如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数) 2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无 关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备) (2)区间的概念及表示法 设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <. (3)求函数的定义域时,一般遵循以下原则: ①()f x 是整式时,定义域是全体实数. ②()f x 是分式函数时,定义域是使分母不为零的一切实数. ③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合. ④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.

高一数学第五讲--函数的定义域与值域

第五讲 函数的定义域与值域 一、知识归纳: (一)函数的定义域与值域的定义: 函数y=f(x)中自变量x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 的值叫做函数值。函数值的集合{f(x)│x ∈A}叫做函数的值域。 (二)求函数的定义域一般有3类问题: 1、已知解析式求使解析式有意义的x 的集合常用依据如下: ①分式的分母不等于0; ②偶次根式被开方式大于等于0; ③对数式的真数大于0,底数大于0且不等于1; ④指数为0时,底数不等于0 [ 2、复合函数的定义域问题主要依据复合函数的定义,其包含两类: ①已知f[g(x)]的定义域为x ∈(a,b )求f(x)的定义域,方法是:利用a0且a,b≠1,k ∈R)

函数定义域 值域经典习题及答案

函数定义域值域经典习 题及答案 集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]

复合函数定义域和值域练习题 一、 求函数的定义域 1、求下列函数的定义域: ⑴y = 2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈ ⑶311x y x -=+ ⑷311x y x -=+ (5)x ≥ ⑸ y = 三、求函数的解析式 1、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且 1()()1 f x g x x +=-,求()f x 与()g x 的解析表达式 四、求函数的单调区间

高一数学函数的定义域与值域的常用方法

高一数学求函数的定义域与值域的常用法 一:求函数解析式 1、换元法:题目给出了与所求函数有关的复合函数表达式,可将函数用一个变量代换。 例1. 已知2211 ()x x x f x x +++= ,试求()f x 。 解:设1x t x +=,则11x t =-,代入条件式可得:2 ()1f t t t =-+,t ≠1。故得:2()1,1f x x x x =-+≠。 说明:要注意转换后变量围的变化,必须确保等价变形。 2、构造程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个程,联立求解。 例2. (1)已知21 ()2()345 f x f x x x +=++,试求()f x ; (2)已知 2 ()2()345f x f x x x +-=++,试求()f x ; 解:(1)由条件式,以1x 代x ,则得2111 ()2()345f f x x x x +=++,与条件式联立, 消去1f x ?? ???,则得: ()222845333x f x x x x =+--+ 。 (2)由条件式,以-x 代x 则得: 2 ()2()345f x f x x x -+=-+,与条件式联立,消去 () f x -,则得: ()2543f x x x =-+ 。 说明:本题虽然没有给出定义域,但由于变形过程一直保持等价关系,故所求函数的定义域由解析式确定,不需要另外给出。 例4. 求下列函数的解析式: (1)已知)(x f 是二次函数,且1)()1(,2)0(-=-+=x x f x f f ,求)(x f ; (2)已知x x x f 2)1(+=+,求)(x f ,)1(+x f ,)(2 x f ; (3)已知x x x x x f 1 1)1(22++=+,求)(x f ; (4)已知3)(2)(3+=-+x x f x f ,求)(x f 。 【题意分析】(1)由已知)(x f 是二次函数,所以可设)0()(2 ≠++=a c bx ax x f ,设法求出c b a ,,即可。 (2)若能将x x 2+适当变形,用1+x 的式子表示就容易解决了。 (3)设x x 1 +为一个整体,不妨设为t ,然后用t 表示x ,代入原表达式求解。 (4)x ,x -同时使得)(x f 有意义,用x -代替x 建立关于)(x f ,)(x f -的两个程 就行了。 【解题过程】⑴设)0()(2 ≠++=a c bx ax x f ,由,2)0(=f 得2=c , 由1)()1(-=-+x x f x f ,得恒等式12-=++x b a ax ,得2 3,21-==b a 。 故所求函数的解析式为22 3 21)(2+-= x x x f 。

高中数学 函数的定义域与值域教案 新人教版

函数的定义域与值域 例1.下列各组函数中,表示同一函数的是( ). A. 1,x y y x == B. 11,y x y +C. ,y x y == 2||,y x y == 解: 变式训练1:下列函数中,与函数 y=x 相同的函数是 ( ) A.y= x x 2 x ) 2x D.y=x 2lo g 2 解: 变式训练2:下列是映射的是………………………………………( ) (A)1、 2、 3 (B)1、 2、5 (C)1、 3、5 (D)1、2、3、5 变式训练3:下面哪一个图形可以作为函数的图象……………………( ) (A) (B) (C) (D) 变式训练4:如果(x ,y )在映射f 下的象为(x +y ,x -y ),那么(1,2)的原象是…………( ) (A )(-23,21) (B) (23,-21) (C) (-23,-21) (D) (23,2 1 ) 例2.给出下列两个条件:(1)f(x +1)=x+2x (2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式 解:(1)令t=x +1,∴t≥1,x=(t-1) 2 则f(t)=(t-1)2+2(t-1)=t 2-1,即f(x)=x 2 -1,x∈[1, (2)设f(x)=ax 2 ∴f(x+2)=a(x+2)2 +b(x+2)+c 则f(x+2)-

∴?? ?=+=2244 4b a a , ?? ?-==1 1b a ,又f(0)=3?c=3,∴f(x)=x 2 - 变式训练2:(1)已知f (12+x )=lgx ,求f (x ); (2)已知f (x )是一次函数,且满足3f (x+1)-2f (x-1)=2x+17,求f (x ) ; (3)已知f (x )满足2f (x )+f (x 1 )=3x ,求f (x ) 解:(1)令 x 2+1=t ,则x=12 -t , ∴f(t )=lg 12 -t ,∴f(x )=lg 1 2- x (2)设f (x )=ax+b ,则 3f (x+1)-2f (x-1)=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17, ∴a=2,b=7,故f (x )=2x+7. (3)2f (x )+f ( x 1 )=3x , ① 把①中的x 换成 x 1,得2f (x 1)+f (x )=x 3 ①×2-②得3f (x )=6x- x 3,∴f(x )=2x-x 1 . 变式训练3:求满足下列条件的函数解析式: ⑴2 1)11(x x x f -=+ ⑵)(,14))((x f x x f f -=是一次函数. 例3、已知函数f(x)=?? ?????<-=>. 0,1,0, 1,0,2x x x x x (1)画出函数的图象;(2)求f(1),f(-1),f [])1(-f 的值. 解:(1)分别作出f(x)在x >0,x=0,x <0段上的图象,如图所示,作法略. (2)f(1)=12 =1,f(-1)=-,11 1 =-f [])1(-f =f(1)=1. 变式训练:?? ???≥<<--≤+=2 221 1 |1|)(2 x x x x x x x f ,那么f (f (-2))= ;如果f (a)=3,那么实数 a= .

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法 引入: 自变量x 的取值范围为 定义域 因变量y 的取值范围为 值域 求函数的解析式、求函数的定义域、求函数的值域、求函数的最值 一、 求函数的解析式 (一)解析式的表达形式 (解析式的表达形式有一般式、分段式、复合式等。) 1、一般式 (是大部分函数的表达形式) 例:一次函数:b kx y +=)0(≠k 二次函数:c bx ax y ++=2)0(≠a 反比例函数:x k y = )0(≠k 正比例函数:kx y =)0(≠k 2、复合式 若y 是u 的函数,u 又是x 的函数,即),(),(),(b a x x g u u f y ∈==,那么y 关于x 的函数[]()b a x x g f y ,,)(∈=叫做f 和g 的复合函数。 例1、已知3)(,12)(2+=+=x x g x x f ,则[]=)(x g f ,[]=)(x f g 。 解:[]721)3(21)(2)(22+=++=+=x x x g x g f [][]4443)12(3)()(222 ++=++=+=x x x x f x f g (二)解析式的求法 (根据已知条件求函数的解析式,常用配凑法、换元法、待定系数法、赋值(式)法、方程法等。) 1. 配凑法 例1.已知 :23)1(2 +-=+x x x f ,求f(x); 解:因为15)1(23)1(22+-+=+-=+x x x x x f 65)(6)1(5)1(22+-=++-+=x x x f ,x x 所以 例2、已知:221)1(x x x x f +=+,求)(x f 。 解: 2)1(1)1(222-+=+=+x x x x x x f ∴ )22(2)(2-≤≥-=x x x x f 或 注意:使用配凑法也要注意自变量的范围限制。

映射,函数定义域,值域_解题办法归纳

一种特殊的对应:映射 (1) (2) (3) (4) 1.对于集合A 中的每一个元素,在集合B 中都有一个(或几个)元素与此相对应。 2.对应的形式:一对多(如①)、多对一(如③)、一对一(如②、④) 3.映射的概念(定义):强调:两个“一”即“任一”、“唯一”。 4.注意映射是有方向性的。 5.符号:f : A B 集合A 到集合B 的映射。 6.讲解:象与原象定义。 再举例:1?A ={1,2,3,4} B ={3,4,5,6,7,8,9} 法则:乘2加1 是映射 2?A =N + B ={0,1} 法则:B 中的元素x 除以2得的余数 是映射 3?A =Z B =N * 法则:求绝对值 不是映射(A 中没有象) 4? A ={0,1,2,4} B ={0,1,4,9,64} 法则:f : a b =(a -1)2 是映射

一一映射 观察上面的例图(2)得出两个特点: 1?对于集合A中的不同元素,在集合B中有不同的象(单射) 2?集合B中的每一个元素都是集合A中的每一个元素的象(满射)即集合B中的每一个元素都有原象。

从映射的观点定义函数(近代定义): 1?函数实际上就是集合A 到集合B 的一个映射 f :A B 这里 A , B 非空。 2?A :定义域,原象的集合 B :值域,象的集合( C )其中C ? B f :对应法则 x ∈A y ∈B 3?函数符号:y =f (x ) —— y 是 x 的函数,简记 f (x ) 函数的三要素: 对应法则、定义域、值域 只有当这三要素完全相同时,两个函数才能称为同一函数。 例:判断下列各组中的两个函数是否是同一函数?为什么? 1.3 ) 5)(3(1+-+= x x x y 52-=x y 解:不是同一函数,定义域不同 2。 111-+=x x y )1)(1(2-+=x x y 解:不是同一函数,定义域不同 3。 x x f =)( 2 )(x x g = 解:不是同一函数,值域不同 4. x x f =)( 33 )(x x F = 解:是同一函数 5.21)52()(-=x x f 52)(2-=x x f 解:不是同一函数,定义域、值域都不同

高一数学函数的定义域值域练习题

高一数学《函数的定义域值域》练习题 8.(2004.湖北理)已知)(,11)11(22 x f x x x x f 则+-=+-的解析式可取为 ( C ) A . 2 1x x + B .2 12x x +- C . 2 12x x + D .2 1x x +- 9.(2004.湖北理)函数]1,0[)1(log )(2 在++=x a x f a 上的最大值和最小值之和为a ,则a 的值为( B ) A . 4 1 B . 2 1 C .2 D .4 13.(2004. 重庆理) 函数y = ( D ) A .[1,)+∞ B .23(,)+∞ C .2 3[,1] D .23(,1] 18.(2004.湖南理)设函数,2)2(),0()4(.0, 2, 0,0,)(2-=-=-???>≤≤++=f f f x x x c bx x x f 若则关于x 的方程x x f =)(解的个数为 ( C ) A .1 B .2 C .3 D .4 20、(2004. 人教版理科)函数)1(log 22 1-= x y 的定义域为( ) A 、[ )(] 2,11,2Y -- B 、)2,1()1,2(Y -- C 、[)(]2,11,2Y -- D 、)2,1()1,2(Y -- 28、(2004. 人教版理科)设函数?????≥--<+=1 ,141 ,)1()(2 x x x x x f ,则使得1)(≥x f 的自变量x 的 取值范围为( ) A 、(][]10,02,Y -∞- B 、(][]1,02,Y -∞- C 、(][]10,12,Y -∞- D 、[)[]10,10,2Y - 9.(2006年陕西卷)为确保信息安全,信息需加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知加密规则为:明文,,,a b c d 对应密文 2,2,23,4.a b b c c d d +++例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为(C ) (A )7,6,1,4 (B )6,4,1,7 (C )4,6,1,7 (D )1,6,4,7 3.(2006年安徽卷)函数()f x 对于任意实数x 满足条件()() 1 2f x f x +=,若()15, f =-则()()5f f =__________。 解:由()()12f x f x += 得()() 1 4()2f x f x f x += =+,所以(5)(1)5f f ==-,则()()11 5(5)(1)(12)5 f f f f f =-=-= =--+

相关文档
最新文档