绕线式电动机转子回路串频敏变阻器启动电路原理图

绕线式电动机转子回路串频敏变阻器启动电路原理图
绕线式电动机转子回路串频敏变阻器启动电路原理图

绕线式电动机转子回路串频敏变阻器启动电路原理图

YRKK系列高压绕线转子三相异步电动机

YR、YRKS、YRKK系列高压绕线转子三相异步电动机SERIES YR, YRKS &YRKK HIGH-VOLTAGE WOUND-ROTOR THREE-PHASE INDUCTION MOTRS 1概述 YR、YRKS、YRKK系列高压绕线转子三相异步电动机(机座号355~630),是我公司研制生产的具有九十年代先进水平的最新产品。 该系列电动机可用于驱动多种通用机械,如压缩机、水泵、破碎机、切削机床、运输机械及喜风机、磨煤机、轧钢机、卷扬机、皮带机等。 本系列电动机用料考究、制造精良,具有性能指标高,器械声振动小,可靠性高,使用安装维修方便等优点。 本系列电动机的功率等级、安装尺寸、电气性能均符合行业标准JB/T7594《YR系列高压绕线转子三相异步电动机技术条件》以及其它相关标准,其安装尺寸、功率等级也符合IEC72—2标准要求。 本系列电动机的冷却方法根据GB1993和IEC34—6《电机冷却方法》的标准,为IC01、IC81W、IC611三种;本系列电动机安装方式为卧式底脚安装(!MB3)结构,符合GB997和IEC34—7《电机结构及安装型式代号》的规定。如用户有其它要求,可另行协商。 1 Gerenal Description Series YR, YRKS & YRKK high-voltage wound-rotor three-phase induction motors (frame size 355~630) are the newest products, being of the 1990’s advanced technique levels, developed and famufctured by our company. These series motors can be used to drive various commonly used machines, such as compressors, water pumps, crushers, cutting lathes, conveyors, air-blowers, coal-grinders, rolling mills, and belt conveyers etc. With the material chosen exquisitely and the products excellent workmanship, these series motors are engineered with many remakble features, such as high torque index, low noise, small vibration, high reliability, easy operation, mounting and maintenance etc. For these series motor, the output rating, mounting dimensi ons and electric properties conform to China Industry Standard JB/T7594 Series YR High-Voltage Wound-Rotor Three-Phase Induction Motors Specfications, and specifications specified in other relative standards and IEC Standard 72—2. For these series motors, the cooling rorm is IC01, IC81W and IC611 according to China National Standard GB1993 and IEC Standard 34—6 Cooling Form of Motors, and the mouting arrangement is horizental foot-mounted (IMB3), conforming to GB997 and IEC34—7 Code of Motor Construction and Mounting Arrangement. For the other requirements, consult with our company further. 本系列电动机按防护等级和冷却方式可分为以下三个系列: These series motors can be divided into three series types according to protection type and protection degree.

三相绕线转子异步电动机的起动控制

第三节三相绕线转子异步电动机的起动控制转子回路通过滑环在外串电阻以减小起动电流、提高转子电路的功率因数和起动转矩。 (请注意主电路中电动机的画法) 1)转子回路串接电阻起动控制线路 串接在三相转子回路中的起动电阻,一般接成Y形。起动前,起动电阻全部接入电路,随着起动过程的结束,起动电阻被逐段短接。 短接方式:三相电阻不平衡短接法——每相的起动电阻轮流被短接 三相电阻平衡短接法——三相的起动电阻同时被短接 1)依靠时间继电器自动短接起动电阻的控制线路:教材P38 Fig 2-10(平衡短接法)控制过程:SB2合上→KM1线圈得电→主触头闭合→电机串电阻起动 常开触点闭合→KT1线圈得电→KT1整定时间到→ KT1常开闭合→KM2得电→主触头闭合→切除第一段起动电阻1R 常开触点闭合→KT2线圈得电→KT2整定时间到→ KT2常开闭合→KM3得电→主触头闭合→切除第二段起动电阻2R 常开触点闭合→KT3线圈得电→KT3整定时间到→ KT3常开闭合→KM4得电→主触头闭合→切除第三段起动电阻3R→起动电阻全部切除 常开触点闭合→自锁 优点:线路中只有KM1、KM4长期通电,而所有的时间继电器和KM2、KM3的通电时间均被压缩到最低限度。节省电能,延长了器件寿命。 缺点:1. 万一时间继电器损坏,线路即无法实现电动机的正常起动和运行。 2. 电动机起动过程中逐段减小电阻时,电流及转矩突然增大,会产生不必要的机械冲 击。 2)利用电动机转子电流大小的变化来控制电阻切除的控制线路:教材P39~P40 Fig 2-11 (同样有上述的缺点2)请同学们自学该线路。 二、转子回路串频敏变阻器起动控制线路:控制线路:教材P40 Fig 2-13 (略) *第四节三相异步电动机的调速控制 三相异步电动机的调速方法变更定子绕组极对数 改变转子电路的电阻

绕线转子异步电动机

幻灯片1 第二章绕线转子异步电动机串级调速谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢谢 幻灯片2 第一节串级调速的原理与基本类型 第二节低同步串级调速系统的机械特性 第三节串级调速系统的效率和功率因数 第四节串级调速的闭环控制系统 第五节串级调速应用中的几个问题 第六节串级调速系统应用实例 第二章绕线转子异步电动机串级调速系统 幻灯片3 第一节串级调速的原理与基本类型 一、串级调速的原理 二、串级调速的基本运行状态及功率关系 三、串级调速系统的基本类型

一. 串级调速的原理 转子串电阻调速方法有什么缺点? 对于绕线转子异步电动机,可以在其转子回路串入电阻来减小电流,增大转差率,从而改变转速。这种方法就是转子串电阻调速方法。 转子串电阻调速方法的主要缺点:大量转差功率将在转子所串电阻上变成热量被消耗掉,因此不适合对大容量电机降速,对小容量电机也因效率太低而不适宜长期运行。 转子串电阻调速方法的能量关系如图所示。 参照电动机内部各项功率表达式,对照能量关系图,可以估算出电动机的效率情况。 基本结论是: 串入电阻越大,转速越低,转差就越大,机械功率在电磁功率中所占的比率就越低,效率越低。 幻灯片 5 *转速越低,转差越大,电阻发热越多,效率越低。 幻灯片 6 串级调速的基本原理是什么? 引入一种新的调速方法,基本思路: 转子不串入附加电阻 -----改为串入附加电动势来调速,并将调速引起的转差功率损耗,回馈回电网或电动机本身。 这种,既提高效率、又实现变转差率调速的方法,该方法被称为绕线转子异步电动机的串级调速控制方案。 工作原理: 三相异步电动机的转子感应电压为: 式中: 20 2sE E ? ? =转子电流为:

绕线转子感应电动机结构

绕线转子感应电动机结构 Wound Rotor Induction Motor 绕线转子感应电动机是三相交流异步电动机的一种,其定子铁心与绕组与笼型感应电动机相同,在铁芯内圆有许多槽,用来嵌放定子绕组,见图1。 图1--定子铁心 定子铁芯的槽内嵌放着定子绕组,即三相交流绕组,三相绕组按2极绕制,连接成星形,接入三相交流电源就可产生旋转磁场,见图2,绕组的三个引出端线通过机座上的接线盒引出(图中未显示)。 图2--定子铁心与绕组

绕线转子感应电动机的转子铁芯也由硅钢片叠成,在铁芯外圆有许多槽,用来嵌放转子绕组,见图3。 图3--绕线转子铁心 转子铁芯的槽内嵌放着转子绕组,也是2极的三相交流绕组,连接成星形,接入三相交流电源也可产生旋转磁场,见图4。不管定子与转子的槽数各为多少,定子绕组与转子绕组的极数必须相同,例如同为2极、4极、6极等。 图4--转子铁心与绕组

转子绕组线端通过集电环与电刷引出,下面通过一套较简单的电刷与集电环装置介绍其基本结构。 电刷由润滑性与导电性好的石墨质材料压制而成,电刷装在刷握内,刷握上有压紧电刷的弹簧压片;刷握安装在刷杆上,刷杆是绝缘的,刷杆上安装3套独立的刷握,位置对应3个集电环,每套刷握有2个电刷,共有6个电刷。 图5中左图是该电刷装置的轴向视图,中图是该电刷装置的径向视图,右图是该电刷装置的立体图。 图5--电刷结构图 集电环较多采用黄铜或锰钢等导电良好、润滑耐磨的材料制成,3个独立的集电环紧固在绝缘套筒上,保证环与环,环与转轴之间都是互相绝缘的。每个集电环通过一根导电杆引出作为接线端,导电杆穿过其他集电环时由绝缘套管隔开,3个导电杆分别连接3个集电环,相互绝缘。 图6左图是剖开的集电环,表示导电杆与集电环的连接或绝缘,A导电杆直接连接集电环1,B导电杆穿过集电环1连接集电环2,C导电杆穿过集电环1与2连接集电环3。图6中图是完整的集电环;图6右图是集电环与电刷的组合图,电刷被弹簧压片压向集电环,保证电刷与集电环的良好接触。

绕线式异步电动机的串级调速

绕线式异步电动机的串级调速 一课程设计目的 专业课程设计是学生基本完成全部理论课学习之后,综合运用所学知识、结合工程实际的实践教学。通过设计使学生加深对所学专业课程内容的理解和掌握,了解工程设计的一般方法和步骤,培养理论联系实际、综合考虑问题和解决问题的能力。 二课程设计的内容 从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转速两种。 在生产机械中广泛使用不改变同步转速的调速方法有:绕线式电动机的转子串电阻调速、斩波调速、串级调速以及应用电磁转差离合器、液力偶合器、油膜离合器等调速。改变同步转速的有:改变定子极对数的多速电动机,改变定子电压、频率的变频调速及无换向电动机调速等。 从调速时的能耗观点来看,有高效调速方法与低效调速方法两种:高效调速指转差率不变,因此无转差损耗,如多速电动机、变频调速以及能将转差损耗回收的调速方法(如串级调速等)。有转差损耗的调速方法属低效调速,如转子串电阻调速方法,能量就损耗在转子回路中;电磁离合器的调速方法,能量损耗在离合器线圈中;液力偶合器调速,能量损耗在液力偶合器的油中。一般来说转差损耗随调速范围扩大而增加,如果调速范围不大,能量损耗是很小的。 转子电路串电阻调速,能量消耗大,不经济。转子电路的损耗为sPem称为转差功率。为使调速时这转差功率大部分能回收利用,可采用串级调速方法。所谓串级调速,串级调速是指绕线式电动机转子回路中串入一个与E2频率相同而相位相同或相反的附加电动势Ef,通过改变Ef的大小来实现调速。大部分转差功率被串入的附加电势所吸收,再利用产生附加的装置,把吸收的转差功率返回电网或转换能量加以利用。 串级调速的效率高,平滑性好,设备比变频调速简单,特别时调速范围较小时更为经济,缺点是功率因数较低。 根据转差功率吸收利用方式,串级调速可分为电机串级调速、机械串级调速及晶闸管串级调速形式,多采用晶闸管串级调速,其特点为: 1)可将调速过程中的转差损耗回馈到电网或生产机械上,效率较高。 2)装置容量与调速范围成正比,投资省,适用于调速范围在额定转速70%一90%的生产机械上。 3)调速装置故障时可以切换至全速运行,避免停产; 4)晶闸管串级调速功率因数偏低,谐波影响较大; 本方法适合于风机、水泵及轧钢机、矿井提升机、挤压机上使用。 三、串级调速原理及基本类型 3.1、原理 假定异步电动机的外加电源电压U1及负载转矩M L都不变.则电动机在调速前后转子电流近似保持不变。若在转子回路中引入一个频率与转子电势相同,而相位相同或相反的附电势E f 则转子电流为

绕线式异步电动机转子串电阻的调速控制

一课题背景 2 1启动前的准备 (2) 2启动控制 (2) 3制动控制 (3) 4调速控制过程 (3) 二任务要求 (3) 三设计思路 (4) 1主电路 (4) 2.PLC接线图 (5) 3. I/O分配 (5) 4.程序梯形图 (6) 5.程序调试 (7) 6.调试完成 (8) 总结 (8)

一课题背景 绕线式异步电动机转子串电阻的调速控制线路,对调速无特殊要求的生产机械,可以采用绕线式异步电动机拖动,绕线式转子异步电动机转子串电阻调速控制电路,按照时间原则启动、能耗制动的控制线路如图所示: 工作原理分析如下 1启动前的准备

先讲主令控制器SA的手柄置到“0”位,再合上电源开关QS1,QS2,则有:(1)零位继电器KV线圈通电并自锁。 (2)KT1,KT2线圈得电,其延时闭合的动断触点瞬时打开,确保KM1,KM2线圈断电。 2启动控制 将SA的手柄推向3位,SA的触点SA1,SA2,SA3,均接通,KM线圈通电。则有: (1)KM的主触点闭合,电动机接入交流电源,电动机在转子串两段电阻的情况下启动。同时,KT线圈得电,KT延时断开的动合触点闭合。 (2)KM的动断触点打开,KT1线圈断点开始延时,当延时结束时,KT1动断触点闭合,KM1线圈通电,KM1的动合触点闭合切除一段电阻R1,同时KM1的动断触点断开,KT2线圈断电开始延时,当延时结束时,KT2的动断触点闭合,KM2线圈通电切除电阻R2,启动结束。 3制动控制 进行制动时,将主令控制器SA的手柄扳回“0”位,KM,KM1,KM2线圈均断电,电动机切除交流电源。同时,KT1,KT2线圈得电。则有: (1)KM的动断触点闭合,KM3线圈通电,电动机接入直流电源进行能耗制动;同时,KM2线圈通电,电动机在转子短接全部电阻的情况下进行能耗制动。(2)KM的动合辅助触点断开,KT线圈断电开始延时,当延时结束时,KT延时断开的动合触点断开,KM2,KM3线圈均断电,制动结束。 4调速控制过程 当需要电动机在低速下运行时,可将主令控制器SA手柄推向“1”位或“2”位,则电动机的转子在串入一段电阻或不串入电阻的情况下以较高速度运转 二任务要求 绕线式转子异步电动机转子串电阻调速控制电路的PLC程序设计。具体的接触器-继电器控制系统详见《工厂电气控制设备》P91页电路。试将其进行PLC改造。要求列出输入输出分配表,画出PLC硬件接线图,列出PLC程序清单及注释。

鼠笼式三相异步电动机和绕线式三相异步电机区别

鼠笼式三相异步电动机和绕线式三相异步电机区别和应用 1、结构的区别: 1)鼠笼绕组; 2)绕线绕组,有滑环; 2、机械性能的区别: 1)结固; 2)高速不结固; 3、安全性的区别: 1)安全; 2)电刷有火花,有火灾、爆炸危险; 4、机械特性的区别: 1)机械应特性,即恒速; 2)软特性,可小范围调速; 5、启动性能: 1)启动电流大,转矩小; 2)启动转矩大,可以达到最大转矩,启动电流小; 6、应用: 1)适用恒速要求硬特性的场合; 2)使用调速软特性的场合,如起重机! 7、起动原理: 1)减压启动; 2)改变转差率调速起动; 绕线电机和鼠笼电机有什么区别 ? 三相异步电动机由定子和转子两个基本部分组成.定子是电动机的固定部分,用于产生旋转磁场,主要由定子铁芯、定子绕组和基座等部件组成.转子是电动机的转动部分,由转子铁芯.转子绕组和转轴等部件组成.其作用是在旋转磁场作用下获得转动力矩.转子按其结构的不同分为鼠笼式转子和绕线式转子。 1.鼠笼式转子:转子绕组由插入转子槽中的多根导条和两个环行的端环组成.若去掉转子铁心,整个绕组的外形像一个鼠笼,故称笼型绕组.中小型转子一般采用铸铝方式。对于100KW以上的电动机采用铜条和铜端环焊接而成。 鼠笼型异步电机转子相数就是鼠笼转子上的导条数,每相匝数等于1/2匝.转子绕组不用对地绝缘.转子极对数是靠定子绕组磁动势异步而得的,因此它始终与定子绕组的极对数相等,与鼠笼转子的导条数无关。 鼠笼型异步电动机常用启动方法: 直接启动.降压启动.变频启动.或软启动器启动. 2. 绕线式转子:绕线式转子的绕组和定子绕组相似,中型电动机多采用双层绕组,三相绕组连接成星形,三根端线连接到装在转轴上的三个铜(或钢)滑环上,通过电刷与外电路相连接. 绕线型异步电机转子绕组的相数、极对数总是跟定子相同,每相的匝数相对较多,感应电势较大,转子绕组对地绝缘需绝缘. 绕线式异步电动

绕线式异步电动机转子串电阻启动的计算

绕线式异步电动机转子串电阻启动的计算 摘要:串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。它属于变转差率来实现串级调速的。与转子串电阻的方式不同,串级调速可以将异步电动机的功率加以应用(回馈电网或是转化为机械能送回到电动机轴上),因此效率高。它能实现无级平滑调速,低速时机械特性也比较硬。特别是晶闸管低同步串级调速系统,技术难度小,性能比较完善,因而获得了广泛的应用。 关键词:异步电动机串级调速原理基本类型 串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。它属于变转差率来实现串级调速的。与转子串电阻的方式不同,串级调速可以将异步电动机的功率加以应用(回馈电网或是转化为机械能送回到电动机轴上),因此效率高。它能实现无级平滑调速,低速时机械特性也比较硬。特别是晶闸管低同步串级调速系统,技术难度小,性能比较完善,因而获得了广泛的应用。 一、串级调速原理及基本类型 1. 1原理 假定异步电动机的外加电源电压U1及负载转矩M L都不变.则电动机在调速前后转子电流近似保持不变。若在转子回路中引入一个频率与转子电势相同,而相位相同或相反的附电势E f则转子电流为 (式—1 ) 式中:R2:转子回路电阻; sX20:转子旋转时转子绕组每相漏抗 E20:转子开路相电势 电动机在正常运行时,转差率s很小,故R2≥sX20。忽略sX20有 (式—2 )

上式中,E20为取决于电动机的一个常数,所以,改变附加电势E f可以改变转差率s,从而实现调速。 设当E f = 0时电动机运行于额定转速,即n = n N, s = s N ,由(式—2 )可见,当附加电动势与转子相电势相位相反时(E f前取负号),改变E f 的大小,可在额定转速以下调速,这种调度方式称为低同步串级调速,且附加电势与转子相电势相位相同时(E f前取正号),改变E f 的大小,可在额定转速以上调速,这种调度方式称为超同步串级调速(即s <0)。 串级调速四种基本状态方式下能量传递方式如下图示,图中不计电动机内部各种损耗,即认定定子输入功率P即为转子输出功率。 晶闸管低同步串级调速系统是在绕线转子异步电动机转子侧用大功率的晶闸管或二极管,将转子的转差频率交流电变为直流电,再用晶闸管逆变器将转子电流返回电源以改变电机转速的一种调速方式。 晶闸管低同步串级调速系统主回路见下图

时间原则控制绕线式异步电动机转子串电阻起动控制线路

时间原则控制绕线式异步电动机转子串电阻起动控制线路图3.15所示电路是基于时间原则的起动控制线路。KT1、KT2、KT3为通电延时时间继电器,其延时时间与起动过程所需时间时间原则控制绕线式异步电动机转子串电阻起动控制线路 相对应。R1、R2、R3为转子外接电阻,起动后随着起动时间的增加,转子回路三段起动电阻的短接是靠三个时间继电器KT1、KT2、KT3与三个接触器KM1、KM2、KM3相互配合来完成的。由接触器的线圈通电,触点动作,不仅通过主触点短接部分起动电阻,而且使对应时间继电器 时间原则控制绕线式异步电动机转子串电阻起动控制线路 图3.15所示电路是基于时间原则的起动控制线路。KT1、KT2、KT3为通电延时时间继电器,其延时时间与起动过程所需时间相对应。R1、R2、R3为转子外接电阻,起动后随着起动时间的增加,转子回路三段起动电阻的短接是靠三个时间继电器KT1、KT2、KT3与三个接触器KM1、KM2 、KM3相互配合来完成的。 由接触器的线圈通电,触点动作,不仅通过主触点短接部分起动电阻,而且使对应时间继电器的线圈通电,经过延时后,其延时触点接通下一个接触器线圈,接触器的主触点又短接另一部分起动电阻,……依次类推,直至转子起动电阻被全部短接,起动过程结束,电动机进入全压运行。 图3.15 时间原则控制绕线式异步电动机转子串电阻起动控制线路 串频敏变阻器起动中通过了解频敏变阻器的组成和调整因素,懂得频敏变阻器的频率特性非常适合控制绕线式异步电动机的起动过程,完全可以取代转子绕组串电阻起动控制线路中的各段起动电阻,起动过程中其阻抗随转速升高而自动减小,因而可以实现平滑无级的起动。串接频敏变阻器构成的起动控制线路中,从起动到运行的过程是由频敏变阻器自身的特性而平滑完成的。手动或自动的控制方式只是为了在起动过程完成后,完全切除转子绕组中的频敏变阻器

同步电动机和绕线式异步电动机使用分析

同步电动机与绕线式异步电动机分析 10月2日,我平陆项目人员前往平果铝对平果铝4期3组磨机主电机进行考察: 平果铝个第四期采用3组磨机,球磨机和棒磨机主电机采用湘潭电机股份有限公司同步机 棒磨机型号: TMW900-36/2150 900千瓦,定子电压10000伏,定子额定电流62安励磁电压165伏,励磁电流18安167转/分 球磨机型号: TMW2500-32/2600 2500千瓦, 定子电压10000伏,定子额定电流167安励磁电压208伏,励磁电流23安187转/分. 主电机和磨机连接采用空气囊抱闸直接和磨机连接,不用减速机,在保证磨矿细度合格前提下,实际运行电流棒磨机34.3安,球磨机115安,总下料量180吨/小时。 第三期采用异步绕线式电动机, 棒磨机: YRKK630-8 630 kW,定子电压10000伏,定子额定电流47.8安,球磨机: 主电机YRKK800-8 N=1800 kW 定子电压10000伏定子额定电流131安, 保证磨矿细度合格前提下,运行电流棒磨机36安,球磨机100安,总下料量100吨/小时。

采用同步机和绕线式异步电动机优点缺点分析: 1、采用同步电动机提高氧化铝厂电力系统功率因素,功率因素得 到就地补偿,功率因素由85%补偿到95%以上,降低供电系统视在功率,使主变视在功率及过载能力提高: 我厂一期三组磨机主电机总功率为7290KW ,补偿前功率因数为0.85, 补偿后功率因数为0.95, S=P/COS(∮) 补偿前后实在功率之差为△S: △S=S2-S1= P/COS(∮2)-P/ COS(∮1)=7290(1/0.85-1/0.95)=900KVA 补偿后主变容量可以增加900KVA 优点:系统功率因数提高,使我厂主变容量增加900KVA,使主变负荷可以在选型上偏小选择余量,同等容量变压器过载能力强。 2、功率因数增加后供电电缆线损,变压器铜损损耗减少,根据行 业经验数值,占功率2%。就三组磨机节约损耗为磨机容量2%。 每小时节省电损耗△P=7290x0.02X0.75=108千瓦时(度) 每年节约电量;365X24X108=946080度 每度电按0.5元计算 优点:每年节省47.2万元。氧化铝厂整体损耗降低。 3、同步电动机运转效率提高,因同步电动机采用直连,减少减速 机机械损耗,2% 每小时节省电损耗△P=7290x0.02X0.75=108千瓦时(度) 每年节约电量;365X24X108=946080度

绕线式异步电动机调速控制

浅谈绕线式异步电动机的调速控制 摘要:串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。它属于变转差率来实现串级调速的。与转子串电阻的方式不同,串级调速可以将异步电动机的功率加以(回馈电网或是转化为机械能送回到电动机轴上),因此效率高。它能实现无级平滑调速,低速时机械特性也比较硬。特别是晶闸管低同步串级调速系统,技术难度小,性能比较完善,因而获得了广泛的应用。 关键词:异步电动机串级调速原理基本类型 串级调速是通过绕线式异步电动机的转子回路引入附加电势而产生的。它属于变转差率来实现串级调速的。与转子串电阻的方式不同,串级调速可以将异步电动机的功率加以应用(回馈电网或是转化为机械能送回到电动机轴上),因此效率高。它能实现无级平滑调速,低速时机械特性也比较硬。特别是晶闸管低同步串级调速系统,技术难度小,性能比较完善,因而获得了广泛的应用。 一、串级调速原理及基本类型 1. 1原理 假定异步电动机的外加电源电压U1及负载转矩ML都不变.则电动机在调速前后转子电流近似保持不变。若在转子回路中引入一个频率与转子电势相同,而相位相同或相反的附电势Ef则转子电流为 (式—1 ) 式中:R2:转子回路电阻; sX20:转子旋转时转子绕组每相漏抗 E20:转子开路相电势 电动机在正常运行时,转差率s很小,故R2≥sX20。忽略sX20有 (式—2 )

上式中,E20为取决于电动机的一个常数,所以,改变附加电势Ef可以改变转差率s,从而实现调速。 设当Ef = 0时电动机运行于额定转速,即n = nN, s = sN ,由(式—2 )可见,当附加电动势与转子相电势相位相反时(Ef前取负号),改变Ef 的大小,可在额定转速以下调速,这种调度方式称为低同步串级调速,且附加电势与转子相电势相位相同时(Ef前取正号),改变Ef 的大小,可在额定转速以上调速,这种调度方式称为超同步串级调速(即s <0)。 串级调速四种基本状态方式下能量传递方式如下图示,图中不计电动机内部各种损耗,即认定定子输入功率P即为转子输出功率。 晶闸管低同步串级调速系统是在绕线转子异步电动机转子侧用大功率的晶闸管或二极管,将转子的转差频率交流电变为直流电,再用晶闸管逆变器将转子电流返回电源以改变电机转速的一种调速方式。

相关文档
最新文档