介绍一种液压马达性能试验系统

介绍一种液压马达性能试验系统
介绍一种液压马达性能试验系统

液压泵液压马达功率计算

液压泵液压马达功率计算 This model paper was revised by the Standardization Office on December 10, 2020

应用:(1)已知液压泵的排量是为136毫升/ 120kgf/cm 2,计Q=qn=136(毫升/转)×970转/分 =131920(毫升/分) =131.92(升/分) 系统所需功率 考虑到泵的效率,电机功率一般为所需功率的1.05~1.25倍 N D =()N=28.5~32.4(kW ) 查有关电机手册,所选电机的功率为30kW 时比较适合。 (2)已知现有液压泵的排量是为136毫升/转,所配套的电机为22kW ,计算系统能达到 的最高工作压力。 解:已知Q=qn=131.92(升/分),N D =22kW 将公式变形 考虑到泵的效率,系统能达到的最高工作压力不能超过90kgf/cm 2。 液压泵全自动测试台 液压泵全自动测试台是根据各国对液压泵出厂试验的标准设计制造,可测 试液压叶片泵(单联泵、双联泵、多联泵)、齿轮泵、柱塞泵等的动静态性能。测试范围、测试项目、测试要求符合JB/T7039-2006、JB/T7041-2006、JB/T7043-2006等有关国家标准,试验测试和控制精度:B 或C 级。液压泵全自动测试台是液压泵生产和维修企业的最重要检测设备。 液压泵全自动测试台:主要由驱动电动机、控制和测试阀组、检测计量装 置、油箱冷却、数据处理和记录输出部分等组成,驱动电动机选用了先进的变频电机,转速可在0—3000rpm 内进行无级调速,满足各类不同转速的液压泵的试验条件,也可测试各类液压泵在不同转速下的性能指标。控制阀选用了目前先进的比例控制装置,同时配置手动控制装置,因此测试时可以采用计算机自动控制和检测,也可以切换为手动控制和检测。压力、流量、转速和扭矩的测量采用数字和模拟两种方法,数字便于用计算机采集、整理和记录,模拟便于现场观察控制。油箱的散热是由水冷却装置完成,可以满足液压泵的满功率运行要求。测试台还可根据客户要求进行设计和开发,满足不同用户的特殊的个性要求。 功率回收式液压泵全自动测试台:功率回收式液压泵性能测试台是目前最 先进的节能试验方式,它解决了被压加载方式使油温上升过快,不能做连续试验和疲劳寿命试验的缺点。这种新型测试台最高可节省70%的能耗,可直接为用户带来可观的经)(9.2561292.131120612kW Q P N =?=?=

液压传动实验指导书

实验一液压泵的性能实验 (2) 实验二液压元件拆装实验 (5) 实验三节流调速性能实验 (8)

实验一液压泵的性能实验 一、试验目的 了解液压泵的主要性能和小功率液压泵的测试方法 二、实验内容 测试一种泵(齿轮泵或叶片泵)的下列特性: 1、液压泵的压力脉动值; 2、液压泵的流量—压力特性; 3、液压泵的容积效率—压力特性; 4、液压泵的总效率—压力特性。 附:液压泵的主要性能表 图1—1所示为QCS003B型液压实验台测试液压泵的液压系统原理图。图中8为被试泵,它的进油口装有线隙式滤油器22,出油口并联有溢流阀9和压力表P6。被试泵输出的油液经节流阀10和椭圆齿轮流量计20流回油箱。用节流阀10对被试泵加压。 1、液压泵的压力脉动值 把被试泵的压力调到额定压力,观测记录其脉动值,看是否超过规定值。测试压力表P6不能加接阻尼器。 2、液压泵的流量—压力特性 通过测定被试泵在不同工作压力下的实际流量,得出它的流量压力特性曲线q=F(p)。调节节流阀10即得

到被试泵的不同压力,可通过压力表P6观测。不同压力下的流量用齿轮流量计和秒表测定。压力调节范围从零开始(此时对应的流量为空载流量)到被试泵额定压力的1.1倍为宜。 3、液压泵的容积效率—压力特性 容积效率=理论流量 实际流量 在实际生产中,泵的理论流量一般不用液压泵设计时的几何参数和运动参数计算,通常以空载流量代替理论流量。 容积效率=空载流量 实际流量 即η PV = 空 实q q 4、液压泵总效率—压力特性 总效率= 泵输入功率 泵输出功率 即ηP = 入 出 N N N 出= 1000 pq (kW) 式中 p —泵的工作压力(Pa ),q —泵的实际流量(m 3/s ) N 入=2πn T 式中 T —泵的实际输入扭矩,n —泵的转速(本实验中为1410rpm ) 本实验中液压泵的输入功率用电功率表测出。功率表指示的数值N 表为电动机的输入功率。再根据该电动机的功率曲线,查出功率为N 表时的电动机效率η电,则 N 入=N 表η 电。 液压系统总效率:ηP =电 表ηN pq 1000 四、实验步骤: 参照图1—1、图1—3进行实验 1.将电磁阀12的控制旋钮置于“0” 位,使电磁阀处于中位,电磁阀11的控制旋钮置于“0” 位,阀11断电处于下位。全部打开节流阀10和溢流阀9,接通电源,让被试泵8空载运转几分钟,排除系统内的空气。 2.关闭节流阀10,慢慢关小溢流阀9,将压力p 调至7MPa (额定压力的1.1倍),然后用锁母将溢流阀9锁住。 3.逐渐开大节流阀10的通流面积,使系统压力p 降至泵的额定压力—6.2 MPa ,观测泵的压力脉动值(做两次)。 4.全部打开节流阀10,使被试泵的压力为零(或接近零),测出此时的流量,此即为空载流量。再逐渐关小截流阀10的通流面积,作为泵的不同负载,对应测出压力p 、流量q 和电动机的输入功率N 表。注意节流阀每次调节后,需运转一、两分钟后,再测有关数据。 压力p —从压力表p 6上直接读出。 流量q —用秒表测量椭圆齿轮流量计指针旋转一周所需时间,根据公式q = t V ?求出。

液压试验报告

实验一液压泵的特性试验 在液压系统中,每一个液压元件的性能都直接影响液压系统的工作和可靠性。因此,对生产出的每一个元件都必须根据国家规定的技术性能指标进行试验,以保证其质量。液压泵是主要的液压元件之一,因此我们安排了此项试验。 一.试验目的 了解液压泵的主要性能和小功率液压泵的测试方法。 二.实验内容 测试一种液压泵(齿轮泵或叶片泵)的下列特性: 1.液压泵的压力脉动值; 2.液压泵的流量—压力特性; 3.液压泵的容积效率—压力特性; 4.液压泵的总效率—压力特性。 液压泵的主要性能包括:额定压力、额定流量、容积效率、总效率、压力脉动值、噪声、寿命、温升和震动等项。其中以前几项为最重要,表2—1列出了中压叶片泵的主要技术性能指标,供学生参考。 表2—1 表中技术性能指标是在油液粘度为17~23cSt时测得的,相当于采用0号液压油或20号机械油,温度为50℃时的粘度。因此用上述油液实验时,油温控制在50℃±5℃的范围内才准确。 三.实验方法 图2—11为QCS003B型液压实验台测试液压泵的液压系统原理图。图中8为被试泵,它的进油口装有线隙式滤油器22,出油口并联有溢流阀9和压力表P6。被试泵输出的油液经节流阀10和椭圆齿轮流量计20流回油箱。用节流阀10对被试泵加载。 1.液压泵的压力脉动值 把被试泵的压力调到额定压力,观察记录其脉动值,看是否超过规定值。测量时压力表

P 6不能加接阻尼器。 2. 液压泵的流量—压力特性 通过测定被试泵在不同工作压力下的实际流量,得出它的流量—压力特性曲线Q=f (p )。调节节流阀10即得到被试泵的不同压力,可通过压力表P 6观测。不同压力下的流量用椭圆齿轮流量计和秒表确定。压力调节范围从零开始(此时对应的流量为空载流量)到被试泵额定压力的1.1倍为宜。 图2--11 液压泵的特性试验液压系统原理图 3. 液压泵的容积效率—压力特性 容积效率= 理论流量 实际流量 在实际生产中,泵的理论流量一般不用液压泵设计时的几何参数和运动参数计算,通过以空载流量代替理论流量。 容积效率= 空载流量 实际流量 即ηpv = 空 实Q Q 4. 液压泵总效率—压力特性 总效率= 泵输入功率 泵输出功率 即ηp =入 出 N N

液压泵液压缸液压马达的型号及参数以及

液压、气动 一、液压传动 1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。 2、组成原件 1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵 2 、调节、控制压力能的液压控制阀 3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达) 4 、传递压力能和液体本身调整所必需的液压辅件 液压系统的形式 3、部分元件规格及参数 衡力,磨损严重,泄漏较大。 叶片泵:分为双作用叶片泵和单作用叶片泵。这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。 柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。 一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。还有一些其他形式的液压泵,如螺杆泵等,

但应用不如上述3种普遍。 适用工况和应用举例

【KCB/2CY型齿轮油泵】工作原理: 2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。A为入吸腔,B为排出腔。泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。 KCB/2Y型齿轮油泵型号参数和安装尺寸如下: 【KCB/2CY型齿轮油泵】性能参数:

【KCB/2CY型齿轮油泵】安装尺寸图:KCB18.3~83.3与2CY1.1~5安装尺寸图 电动机 KCB200~960与2CY8~150安装尺寸图

液压泵性能实验实验报告

液压泵拆装实验 班级: 学号: 姓名: 一.实验目得 1、深入理解定量叶片泵得静态特性,着重测试液压泵静态特性。 2、分析液压泵得性能曲线,了解液压泵得工作特性。 3、通过实验,学会小功率液压泵性能得测试方法与测试用实验仪器与设备。 二.实验设备与器材 QCS014型液压教学实验台、定量叶片泵、椭圆齿轮流量计、秒表、节流阀、 溢流阀。 三.实验内容 1。本实验所采用得液压泵为定量叶片泵,其主要得测试性能包括:能否在 额定压力下输出额定流量、容积效率、总效率及泵得输出功率等。 2、测定液压泵在不同工作压力下得实际流量,得出流量-—压力特性曲线 q=f(p)。实验中,压力由压力表读出,流量由椭圆齿轮流量计与秒表确定。 3、实验中用到得物理量: (1)理论流量:在实际得液压系统中,通常就是以公称(额定)转速下得空载(零压)流量来代替。 (2)额定流量:就是指在额定压力与额定转速下液压泵得实际输出量。

(3)不同工作压力下得实际流量:通过某种方式给液压泵加载,可得对应压力下得对应流量。 4、计算数据用到得公式: (1)液压泵得容积效率 : (2)液压泵得输出功率 : (3)液压泵得总效率: 四.实验步骤 1、首先熟悉QCS014 液压教学实验台液压系统得工作原理及各元件得作 用,明确注意事项。 2、实验装置液压系统原理图: 图2—1 液压泵性能实验液压系统原理图 3、操作步骤 (1)将节流阀开至最大,测出泵得空载流量q 空,并测出其相应得转速 n 空 .

(2)调节节流阀得开度,作为泵得不同负载,使泵得工作压力分别为记录表中所示得数值,并分别测出与这些工作压力p相应得泵得流量q。 (3)调节节流阀得开度,使泵得出口压力为泵得额定压力,测出泵得额定流 量q 额,并测出相应得转速n 额 。 4、实验注意事项 (1)节流阀每次调节后,运转1~2分钟后再测有关数据。 (2)压力P,可由压力表P2-1(P6)读出; (3) 流量q,在t时间间隔内,计算通过椭圆齿轮流量计油液容积累计数之差Δv,可由流量计读出在t时间内(可取t=1 分钟)累积数差(L /min);由此得: q=Δv/t*60(升/分) [t得单位为秒,Δv得单位为升] (4)容积效率ηv: ηv=实际流量/理论流量=q/qt [q得单位为升 /分,qt得单位为升/分] 在生产实际中,q 理论 一般不用液压泵设计说得几何参数与运转参数计算得,而就是以空载流量代替理论流量。 (5)扭矩M,采用电动机平衡法测量。 (6)转速n,可由光电转速表直接读出。 5、记录数据并填于下表 实验条件:油温19°C。n空=1447转/分n额=1447转/分

内曲线液压马达滚子_导轨设计加工技术

第6期(总期49期)2011年11月 Fluid Power Transmission and Control No.6(Serial No.49) Nov.,2011 引言 低速大扭矩液压马达种类较多、依据产品的压力等级分为高压与低压的低速大扭矩液压马达。高压低速大扭矩液压马达在欧美等少数发达国家的工程机械、船舶、港口、钻探、矿山、水泥、冶金等行业有较为广泛的应用,其中英国(川琦)Staffa曲轴连杆液压马达和瑞典Hagglunds、法国Poclain为代表的内曲线多作用径向低速大扭矩液压马达,以其产品的压力等级高、功率密度大、低速稳定性好、抗冲击能力强、模块化生产等特点已广泛应用在静液压传动装置(简称HST)中。 国外内曲线液压马达在制造、应用经过60多年的发展已比较成熟。国内内曲线液压马达的设计、制造也已有近40年的历史,但国内企业因进行调整而时断时续,没有形成一定规模。国外已成熟生产的滚子式内曲线液压马达,国内目前还处于起步阶段,性能还不稳定,且因生产制造水平较低及使用中油液污染等问题而使液压马达存在故障率偏高,寿命短等一系列问题,随着材料选取和工艺水平及油液清洁度的提高,相信上述问题将逐渐得到解决。 1设计、制造过程中的问题 自20世纪70年代以来,我国在内曲线液压马达的参数选择和导轨曲线的输出无脉动设计等方面取得了不低于国外的进步。但近20多年来,国外出现的滚子柱塞副取代滚轮柱塞副的新结构,我国在滚子 收稿日期:2011-07-29 作者简介:赵崇碧(1981-),男,大专,主要从事低速大扭矩液压马达的开发与应用技术。柱塞副的材料匹配选择设计、滚子外形设计及柱塞内圆柱面的设计加工等方面与国外尚有明显差距,影响了这类液压马达性能和寿命的提高。 经过大量的台架试验、工业性试验,发现液压马达在中低压状态下运行时的使用状况较好,高压状态下使用时液压马达的寿命会出现下降,经过仔细观察及分析后发现,这不仅与滚子柱塞副,滑动轴承结构和材料的选取及液压马达使用中的油液清洁度有关,而在设计、加工、装配过程中一直忽略了导轨曲面的母线及滚动体(以下简称滚子)母线型式对液压马达承载能力及接触疲劳寿命的重要性。其中滚子母线型式对内曲线液压马达功能部件损坏的影响较大(同滚子轴承的受力状态及失效型式十分相近)。 2滚子与导轨作用机理及凸度设计分析内曲线液压马达滚子与导轨形成一对线接触重载的滚动摩擦副,滚子与导轨接触面间形成油膜润滑。此摩擦副属弹性流体动力润滑特性,它决定了零件的承载力及运行使用寿命。借鉴低速重载情况下滚子轴承的应用状况,在弹流润滑工况下滚子端部的油膜变薄,形成闭合效应,并成为滚子摩擦副弹流的重要特征。闭合效应使端泄阻力增大,油膜压力局部升高,形成端部的压力峰值,相应的油膜厚度减薄,其值比线接触理论计算值小得多。滚子端部的闭合效应随载荷的增大,其端部边缘应力也会随之升高,其压力的奇异分布有可能切断端部的油膜。闭合效应在弹流中具有双重特性:一方面,它能减弱以阻止端泄,把润滑油封在摩擦副内,有利于形成和增厚润滑油膜;另一方面,过高的端部压力油膜会破裂,使材料的局部早期失效。 内曲线液压马达滚子、导轨设计加工技术 赵崇碧陈卓如 (宁波斯达弗液压传动有限公司浙江宁波315803) 摘要:内曲线液压马达滚子、导轨合理凸度设计可有效减弱闭合效应,能有效地改善滚动接触区的压力分布奇异性,减小或消除滚子边缘应力集中,降低运行时的温升,有利于形成弹性流体润滑,从而降低液压马达运行时的振动和噪声,提高液压马达的动态使用特性及使用寿命。 关键词:内曲线液压马达;滚子凸度设计;对数滚子;导轨 中图分类号:TH137.5文献标志码:B文章编号:1672-8904-(2011)06-0044-003

液压与气压传动实验报告

液压与气压传动实验报告 实验一油泵性能实验 一、实验目的: 1、了解定量叶片泵性能实验所用的实验设备及实验方法。 2、分析定量叶片泵的性能曲线,以了解叶片泵的工作特性。

二、实验项目 1、测定叶片泵的流量与压力关系。 2、测定叶片泵的容积效率及总效率与压力的关系; 3、测定叶片泵的功率与压力的关系; 4、绘制叶片泵的综合曲线。 三、实验台原理图: 油泵性能实验液压系统原理图 1—空气滤清器,2—泵,3、6—溢流阀,5—二位二通电磁换向阀,9、13—压力表,12—调速阀,14—节流阀,18—电动机,19—流量计,21—液位温度计,22—过滤器,23—油箱 四、实验步骤 1、实验步骤: 1)了解和熟悉实验台液压系统工作原理和元件的作用; 2)检查实验中各旋钮必须在“停”位置上,溢流阀压力调到最小值(开度最大),然后进行实验。

3) 启动运转油泵:按“泵启动”按钮,使油泵运转工作一定时间,方可进行 实验工作。 4) 调整溢流阀作为安全压力阀,节流阀14关死,调溢流阀6,使压力表指针指 到安全压力4MPa 。此时溢流阀6作安全阀用,然后开始实验。 2、实验方法: 1)测定油泵的流量与压力的关系。将节流阀14调到最大开口,旋转一分钟后使压力表9的读数达到最小值(认定大于额定压力30%)为空载压力,测定空载压力时流量Q (用流量计和秒表测定)。然后逐步关小节流阀14的开口,使压力增大,测定不同压力下(分别为额定压力的25%、40%、55%、70%、85%、100%)的流量,即得()Q f P =曲线,额定压力为4MPa 。 2)测定功率与压力的关系: 泵的有效功率为:N PQ =有效 根据测得数据压力P 及Q 值,可直接计算出各种压力下的有效功率。 3)容积效率η容 容积效率η容是油泵在额定工作压力下的实际流量Q 实和理论流量Q 理的比值,即 100%Q Q η= 实容理 式中:Q 实—液压泵的实际流量(当压力1P P =时的流量) 。 在实际生产实验中,一般用油泵空载压力下的空载流量0Q 代替Q 理,则: 0100%1100%Q q Q Q η???? =?=-?? ??????? 实容理 式中:q —液压泵的漏油量0q Q Q =-实。 由上式知,各种压力下的容积效率可根据第一项实验的数据计算之。 4)总效率η总 100%N N η= ?有效总泵输入

液压马达测试系统及动力源设计

摘要 在高压、高速、大功率的制造行业,机、电、液一体化的设备在整个机械设备中所占的比重越来越大。液压实验台作为一种检测液压元件的必须设备,可对液压泵,液压马达,液压阀等各种液压元件进行测量。 液压马达作为液压系统的动力元件和执行元件,是整个液压系统的心脏,其质量、性能的好坏直接影响着液压系统的可靠性,进而影响生产设备的正常运行。因此,对液压马达进行精确的性能测试,是辨别产品优劣、改进结构设计、提高工艺水平、保证系统性能和促进产品升级的重要手段。 本文根据如下试验标准对液压马达试验台进行设计和研制:1.液压缸(马达)试验方法标准GB/T 15622-1995[1];2.JB/ZQ3774-86工程机械液压缸检验规则;3.美国SAEJ2214 MAR86试验标准。并且结合现代传感器技术、微机技术以及计算机辅助测试技术,对液压马达试验台进行了符合ISO及GB标准的设计。 关键词:液压马达;测试;试验标准;计算机辅助测试技术

ABSTRACT In the field of the high-pressure, high-speed and great-power manufacturing, the equipment which consists of mechanic, electric and hydraulic is playing more and more important roles in the field. As a necessary device of measuring hydraulic parts, the hydraulic test-bed is able to measuring vary of parts such as pumps, motors and valve. The hydraulic motor is heart of whole hydraulic system as a part of power and executing, it results in the dependability of hydraulic system; even in the good working condition of the manufacturing equipments.Therefore, measuring accurately to the hydraulic motors is the way of promotion of construction, process and performance of products. The designing is depending on these standards:1.The Standards of Hydraulic Cylinder(Motors) Test Procedure(GB/T 15622-1995[1]);2.The rules of Hydraulic Cylinder Test Procedure(JB/ZQ3774-86);3.The standards of SAEJ2214 MAR86.The designing is the combination of modern technology of sensors, micro-computers and Computer-aided Test (CAT) which conforms to the standards of ISO and GB. Key words:hydraulic motors; measuring; standards of test;CAT

液压泵液压马达与液压缸的工作原理区别及应用

液压泵的原理 就是为液压传动提供加压液体的一种液压元件,就是泵的一种。就是一种能量转换装置,它的功能就是把驱动它的动力机(如电动机与内燃机等)的机械能转换成输到系统中去的液体的压力能。 左图为单柱塞泵的工作原理图。凸轮由电动机带动 旋转。当凸轮推动柱塞向上运动时,柱塞与缸体形成 的密封体积减小,油液从密封体积中挤出,经单向阀 排到需要的地方去。当凸轮旋转至曲线的下降部 位时,弹簧迫使柱塞向下,形成一定真空度,油箱中 的油液在大气压力的作用下进入密封容积。凸轮使 柱塞不断地升降,密封容积周期性地减小与增大,泵 就不断吸油与排油。 液压泵的分类 1、按流量就是否可调节可分为:变量泵与定量 泵。输出流量可以根据需要来调节的称为变量泵, 流量不能调节的称为定量泵。 2、按液压系统中常用的泵结构分为:齿轮泵、 叶片泵与柱塞泵3种。 (1)齿轮泵:体积较小,结构较简单,对油的清洁度要求不严,价格较便宜;但泵轴受不平衡力,磨损严重,泄漏较大。泵一般设有差压式安全阀作为超载保护,安全阀全回流压力为泵额定排出压力1、5倍。也可在允许排出压力范围内根据实际需要另行调整。但就是此安全阀不能作减压阀长期工作,需要时可在管路上另行安装。该泵轴端密封设计为两种形式,一种就是机械密封,另一种就是填料密封,可根据具体使用情况与用户要求确定 左图为外啮合齿轮泵的工作原理图。壳 体、端盖与齿轮的各个齿槽组成了许多密 封工作腔。当齿轮按如图所示的方向旋转 时,右侧左侧吸油腔由于相互啮合的齿轮 齿轮逐级分开,密封工作腔容积增大,形成 部分真空,油箱中的油液被吸进来,将齿槽 充满,并随着齿轮旋转,把油液带到右侧压 油腔中;右侧因为齿轮在这面啮合,密封工 作腔容积缩小,油液便被挤出去——吸油 区与压油区就是由相互啮合的轮齿以及 泵体分开的。 (2)叶片泵:分为双作用叶片泵与单作用叶片泵。这种泵流量均匀、运转平稳、噪音小、作压力与容积效率比齿轮泵高、结构比齿轮泵复杂。 (3)柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料与加工精度要求高、价格贵、对油的清洁度要求高。 一般在齿轮泵与叶片泵不能满足要求时才用柱塞泵。还有一些其她形式的液压泵,如螺

液压泵液压马达试验台知识讲解

液压泵液压马达试验 台

本科毕业设计(论文) 液压泵与液压马达实验台液压系统的设计 燕山大学 2011 年 6 月 收集于网络,如有侵权请联系管理员删除

摘要 液压泵和马达作为液压系统的动力元件和执行元件,是整个液压系统的心脏,它们的性能直接影响着整个液压系统的性能。因此液压泵、马达性能的精确测试有着非常重要的意义。液压泵和马达的性能测试是辨别产品优劣、改进结构设计、提高工艺水平、保证系统性能和促进产品升级的重要手段。 本次设计就是通过测定液压泵液压泵、液压马达在给定外界情况下的排量、流量、容积效率等,检验液压泵和液压马达的是否合格。 设计了液压泵与液压马达实验台液压系统,并对有关参数进行了计算,绘制了液压泵与液压马达实验系统原理图、泵站装配图、油箱的部件图、阀块零件图一系列相关立体图与二维图纸,为液压泵与液压马达实验台液压系统的设计奠定了理论基础。 关键词液压泵;液压马达;液压系统 收集于网络,如有侵权请联系管理员删除

Abstract As the power components and the actuator components of hydraulic system ,the hydraulic pump and the motor are the heart of the entire hydraulic system, of which the performance directly affects the entire hydraulic system`s. Therefore, there is very important significance to test the performance of hydraulic pumps and motors accurately. The performance test is an important means of identifying product strengths and weaknesses, improving structural design and technological level, ensuring system performance and promoting product upgrading. The design involved in this paper mainly discusses how to test hydraulic the eligibility of pumps and hydraulic motors by measuring displacement, flow, volumetric efficiency of the hydraulic pump-hydraulic pump, hydraulic motors with given external conditions. In this paper,we design the hydraulic system bench of the hydraulic pump and hydraulic motor, and calculate the related parameters , draw series of three-dimensional maps and two-dimensional drawings of the hydraulic pump and hydraulic motor,including Schematic experimental system, pump station assembly drawings, parts drawings of tank and valve block parts diagrams,which lay a theoretical foundation for the design of the hydraulic pump and hydraulic motor hydraulic system bench. Key words hydraulic pump; hydraulic motor; hydraulic system 收集于网络,如有侵权请联系管理员删除

实验三 液压泵的特性实验

实验三液压泵的特性实验 一、实验目的 了解液压泵的主要性能和小功率液压泵性能的测试方法。 了解该实验的回路组成,测试液压泵能否达到额定压力与额定流量,测试液压泵的总效率和压力脉动值。 二、实验设备与仪器 QCS003B[QCS003]型液压实验台、秒表。 三、实验内容 1、测试液压泵的压力脉动值; 2、测试液压泵的容积效率——压力特性; 3、测试液压泵的流量——压力特性; 4、测试液压泵的总效率——压力特性; 四、实验原理 参照实验原理图,图中泵8为被试泵,它的进油口装有线隙式滤油器22,出油口并联有溢流阀9和压力表P。被试泵输出的油液经节流阀10和椭圆齿轮流量计20流回油箱。用节流阀10对被试泵加载。 1液压泵的压力脉动值 把被试泵的压力调到额定压力,观察记录其脉动值,看是否超过规定值.测时压力表P6不能加接阻尼器. 2 液压泵的流量――压力特性 通过测定被试泵在不同工作压力下的实际流量,得出它的流量-压力特性曲线Q=f(p).调节节流阀10即得到被试泵的不同压力,可通过压力表P6观

测.不同压力下的流量用椭圆齿轮流量计和秒表确定.压力调节范围从零开始(此时对应的流量为空载流量)到被试泵额定压力的1.1倍为宜. 3 容积效率――压力特性 容积效率=实际流量/理论流量 即ηv=q/qt 实际生产中,泵的理论流量一般不用液压泵是、设计时的几何参数和运用参数计算,通常以空载流量代替理论流量. 容积效率=实际流量/空载流量 即ηv=q/q空 4 液压泵的总效率――压力特性 总效率=泵输出功率/泵输入功率 η=P0/Pi P0=pq/612(kw) 式中p-泵的工作压力; q-泵的实际流量. Pi=Tin/974(kw) 式中Ti-泵的实际输入转矩; n-泵的转速. 液压泵的输入功率用电功率表19测出.功率表的指示的数值p表为电动机的输入功率.再根据电动机的效率曲线,查出功率为p表时的电动机效率η电,则pi=p表η电液压泵的总效率 η=pq/612p表η电 液压泵的输入功率用扭矩仪测出.速度用转速表测出,则pi=2πTin.

液压锁和五星轮式液压马达.

液压锁: 液压锁实质是由两个液控单向阀组成。作用是互锁。 图中虚线所框出的部分就是液压锁。 液压锁的作用是互锁,当图中滑阀位于中位时,液压油缸在两个单向阀的作用下左右油缸处于静止状态。 当滑阀处于右位机能时,此时右路单向阀进油,同时控制油路把左路单向阀打开泄油,液压油缸的活塞与活塞杆左移; 当滑阀处于左位机能时,此时左路单向阀进油,同时控制油路把右路单向阀打开泄油,液压油缸的活塞与活塞杆右移。 五星轮式液压马达:

静力平衡式低速大扭矩马达也叫无连杆马达或五星轮式液压马达,国外把这类马达称为罗斯通(Roston马达。 这种马达是从曲柄连杆式液压马达改进、发展而来的,连杆已由一个滑套在偏心轮5外面的五星轮3所代替,而配油轴和输出轴也已做成一体,成为偏心轴5,从配油套引入的油液,经曲轴的内部钻孔,还可穿过偏心轮和五星轮3,一直通入到空心柱塞2中,因而也就取消了壳体中的流道。 液压马达五星轮3滑套在偏心轴的偏心轮上,由于受柱塞底部端面的约束,则五星轮3只能作平面运动而不能转动。在它的五个平面中各嵌装一个压力环4,压力环的上平面与空心柱塞2的底面接触,柱塞中间装有弹簧,以防止液压马达启动或空载运转时柱塞底面与压力环脱开。高压油经配流轴中心孔道通到曲轴的偏心配油部分,然后经五星轮中的径向孔、压力环、柱塞底部的贯通孔而进入油缸的工作腔内。在图示位置时,配流轴上方的三个油缸通高压油,下方的两个油缸通低压回油。 在这种结构中,五星轮取代了曲柄连杆式液压马达中的连杆,压力油经过配流轴和五星轮再到空心柱塞中去,液压马达的柱塞与压力环、五星轮与曲轴之间可以大致做到静压平衡。在工作过程中,这些零件还要起密封和传力作用。

液压泵性能测试1

实验一 液压泵静态性能实验 一、实验目的 1、了解定量泵的主要静态性能,分析泵的性能参数之间的关系; 2、通过实验,学会小功率液压泵的测试方法和熟悉本实验所用的仪器和设备,掌握液压泵的工作特性。 二、实验所需设备 YZ-01型液压传动综合教学实验台。 三、实验内容及要求 1. 液压泵的流量——压力特性 测定液压泵在不同工作压力下的实际输出流量,得出流量——压力特性曲线()p f q q =。 实验原理见图。 实验中,压力由压力表8直接读出,各种压力时的流量由流量计4直接读出。实验中可使溢流阀2作为安全阀使用,调节其压力值为7.0~7.5MPa ,用节流阀3调节泵出口工作压力的大小,由流量计测得液压泵在不同压力下的实际输出流量,直到节流阀调小使液压泵出口压力达到额定压力6.0MPa 为止。给定不同的出口压力,测出对应的输出流量,即可得出该泵的()p f q q =。 2. 液压泵的容积效率——压力特性 测定液压泵在不同工作压力下,它的容积效率——压力的变化特 性()p f V V =η。 因为:() 0) ()()(q q q q V 空载流量输出流量理论流量输出流量理= = η

所以:理q q V = η 由于:)(p f q q = 则:)()(p f q p f V q V ==理 η 式中:理论流量理q :液压系统中,通常是以泵的空载流量来代 替理论流量(或者nv =理q ,n 为空载转速,v 为泵的排量)。 实际流量q :不同工作压力下泵的实际输出流量。 3. 液压泵的输出功率——压力特性 测定液压泵在不同工作压力下,它的实际输出功率和输出压力的变化关系()p f N N O =。 输出功率:()p f p pf pq N N q O (=== 4. 液压泵的总效率——压力特性 测定液压泵在不同工作压力下,它的总效率和输出压力之间的变化关系()p f ηη=总 )(p f N pq N N i i o ηη=== 总 式中:i N 为泵的输入功率,实际上i N 为泵的输入扭矩()T 与角速度()ω的乘积,由于扭矩T 不易测量,这里用电动机D 的输入电流功率近似表示,该值可以从实验台功率表上针对不同的输出压力时直接读出。

用于测试液压泵和液压马达试验台

液压泵和液压马达测试试验台 US 4798086 A 摘要 试验台是有用的,例如,用于测试新的泵和马达或修理的的操作。目前的测试平台包括一个直接驱动测试泵的电机,它的马力必须大于等于测试泵额定马力。本试验台采用驱动变量位移补偿压力泵电机。由泵的排量驱动液压马达,这反过来又推动了试验泵。测试泵的排量以循环的方式给液压马达提供了外的动力。因此,泵具有高出电动马达几倍的额定功率,可以有效地测试他们的最大额定排量和压力设置。电机带动另一个变量压力补偿泵,将其流量引向测试马达。测试马达驱动变量马达,功能类似于泵将压力油输送给变量泵或者马达通过电机以循环的方式给变量泵提供额外的动力。因此,可以在同一试验台测试比电动机额定功率高的马达。 说明 技术目的发明通常涉及一种液压试验台,特别是一种主要电源检测试验台,液压泵具有额定马力,该试验台的主要电源几次电机。 背景术是常规测试液压泵和马达的模拟工作条件下作出的在维修后,以确保它们符合额定规格。这样的液压泵和液压马达试验台是目前测试通过减压阀泵和电机负载。这些试验台普遍采用电机作为动力源。一个遇到的问题与这种类型的测试是测试是有限的驱动电机直接输入功率。提供一种具有足够的马力测试许多今天的高压电机,高容量的泵和马达是不可行的,因为大小等高马力电机成本。此外,在高压下产生热量,然后将需要大型冷却器保持油冷却到适当的温度增加倾倒在溢流阀的流体量高。 上述问题的一个解决方案在美国专利发明。4368638号,其中试验台功率再生的特点。该试验台的方法包括一个主电源驱动齿轮的液压泵和液压马达的机械 连接。液压泵由齿轮驱动和传送流体的液压马达转换为机械动力以驱动轮系液压力。这样的系统的一个缺点是,齿轮火车也会占用相当大的空间,也有固有的摩擦损失。另一个缺点是,泵和电机必须以相同的速度运行,试验台只能用来在齿轮列车正常运行速度测试泵和马达。本发明的目的是克服了一个又一个或更多的问题如上。 的inventionin本发明的一个方面披露,一个用于测试液压泵和液压马达试验台包括一个主要的动力源,第一可变位移液压装置机械连接到电源,第二个变量位移液压装置具有可连接到一个液压泵和液压马达进行驱动轴,一个流体管道的第一和第二可变位移液压设备的互连,从试验泵流体管道连通的排液装置,用于控制第二可变位移液压装置保持恒定的驱动轴的预选速度位移,和调节控制第一可变位移液压装置控制管道流体压力位移。 本发明提供一种具有可变位移液压泵由电动机驱动的机械地连接到一个可变位移液压马达以驱动测试泵试验台。从测试泵排出的加压流体直接进入液压马达,液压动力的方法可用于同时驱动在再生方式的液压马达。当试验台是用于测试液压马达,电机带动一个不同的变量位移液压泵和加压流体从用于驱动电机试验。测试电机的机械连接到一个可变位移液压泵流体连接到一个可变位移电机依次机械连接到电动机。电力通过测试电机在测试方法可用于驱动液压泵的连接和排出泵加压流体是用来驱动一个再生的方式使得液压流体动力是电机加变量马达。通过在再生方式测试泵与电机功率的能力,液压泵具有额定马力许多倍的电动马达可以有效地测试。此外,该可变位移电机速度infinately变量0和2500转,因此泵和具有

液压缸综合性能测试系统设计

液压缸综合性能测试系统设计 作者:xxxx 指导老师:xxxx xxx大学工学院 11机制xx班合肥 23000 下载须知:本文档是独立自主完成的毕业设计,只可用于学习交流,不可用于商业活动。另外:有需要电子档的同学可以加我2353118036,我保留着毕设的全套资料,旨在互相帮助,共同进步,建设社会主义和谐社会。 摘要:液压缸在整个液压系统中充当执行元件,起着尤为重要的作用,因此它的综合性能非常重要。液压试验台是对液压元件检测的最佳设备,能够对液压缸及其他液压元件做出全方位的测量。此次毕业设计的主要内容就是设计一个简单的实验测试系统,对它工作方式、组成成分等做出分析设计。 本文对液压缸综合性能测试系统进行设计,液压缸的综合性能直接反应整个液压系统工况,因此对液压缸综合性能的测试是十分必要。于是,在达到国家标准的前提下,进行液压缸的出厂实验,即试运行实验、启动压力特性实验、耐压实验、泄漏实验以及负载效率实验,将其实验结果整理分析,通过所学的液压回路,运用必要的元件组合成一个完整的液压缸综合性能测试系统液压回路。主要对测试系统的控制装置以及加载装置进行详细的介绍。 关键词:液压缸综合性能测试系统 1 绪论 1.1 课题背景 随着现在工业化步伐的加快,传统的液压传动和装置已经满足不了产品的需求,高性能液压元件和系统越来越重要。因此,液压传动与控制领域的研究与设计越来越深入,为了满足产品的不同种需求,新型液压系统与元件也就得到了高度的重视。

液压缸综合性能的测试在液压领域有着十分重要的地位,在进行测试时,主要是对有关物理量进行直接或间接的测量,因此先进的测量仪器以及实用的测量系统能在很大程度上改进液压缸综合性能测试技术,当然这一切都要迎合国家标准和行业标准。 1.2 液压缸综合性能测试系统研究现状 存在的问题有: (1)不能实现简单自动的机械型检测而且数据及结果不清晰; (2)达不到国家标准和行业标准,不能进行如耐压试验、负载效率实验等一些液压缸重要性能测试; (3)现在的测试系统存在不稳定不安全性对一些实验仪器会有损害,如实验时压力控制不好,温度控制不好; (4)现在的测试设备太落后,没有计算机的控制系统,压力、油温和液位等不能够准确实时的反馈,组合不成一个闭环控制系统; (5)现在的测试系统太过于复杂,检测人员的工作过于繁琐,对人才资源过于浪费。 由此可得,现在的测试系统过于落后,测试结果不准确不能达到要求,而且实验不够全面,实验过程不安全,而且不能实现简单自动化的测试。 1.3 课题目的 本论文的主要宗旨在于通过自己的实验和理论分析设计出一个实用型的液压缸综合性能测试系统。首先,必须在符合国家规定和行业规定的前提下,对液压缸进行试运行实验、启动压力特性实验、耐压实验、泄露实验以及负载效率实验。其次,对测试得出的数据和现象要准确,能够反应出液压缸的性能,最后测试系统实验过程必须有操作简单、安全性高的特点。综合上述要求设计出由PLC控制系统、动力源和液压缸综合性能实验台组成的液压缸综合性能测试系统。 2 液压缸综合性能 2.1 液压缸的综合性能实验的规定 液压缸的分类, ①按照结构特点不同分为:活塞式液压缸、柱塞式液压缸、摆动式液压缸。 ②按照作用方式不同分为:单作液压缸、和双作用液压缸。 国标GB/T 15622-2005 对液压缸综合性能实验的项目、实验方法、实验要求做出了详细的规定,主要分为型式试验和出厂实验。 2.2 液压缸综合性能实验 液压缸的型式试验主要是为了全面的理解液压缸的结构和确定产品有没有

液压泵、液压缸、液压马达工作原理及应用

液压传动 液压泵、液压马达、液压缸 摘要:液压泵、液压马达、液压缸是液压系统中几个关键的元件,了解它们的工作原理、区别及其应用,对掌握液压传动至关重要。 关键词:液压泵、液压马达、液压缸 Hydraulic Hydraulic pumps, hydraulic motors, hydraulic cylinders SHI Ya-bo(Chongqing Three Gorges University, Chongqing Wanzhou 404000)Abstract:The hydraulic pump, hydraulic motor, hydraulic cylinder is a hydraulic system of several key components, to understand how they work, the difference and its application, to control the hydraulic drive is essential. Keywords: hydraulic pumps, hydraulic motors, hydraulic cylinders 液压系统(英文名称为hydraulic system)以液压油为工作介质,利用液压油的压力能并通过控制阀门等附件操纵液压执行机构工作的整套装置。一个完整的液压系统由五个部分组成,即动力元件、执行元件、控制元件、辅助元件(附件)和液压油。与机械传动、电气传动相比,液压传动具有①液压传动的各种元件,可以根据需要方便、灵活地来布置;②重量轻、体积小、运动惯性小、反应速度快;③操纵控制方便,可实现大范围的无级调速(调速范围达2000:1);④可自动实现过载保护;⑤一般采用矿物油作为工作介质,相对运动面可自行润滑,使用寿命长;⑥很容易实现直线运动;⑦很容易实现机器的自动化,当采用电液联合控制后,不仅可实现更高程度的自动控制过程,而且可以实现遥控等优点。下面主要介绍液压系统中常用的液压泵、液压马达、液压缸的工作原理、区别及应用。 液压泵、液压马达及液压缸的工作原理 1.液压泵 液压泵(hydraulic pump)是一种能量转换装置,它把驱动它的原动机(一般为为电动机)的机械能转换成输出送到系统中去的油液的压力能。 液压泵分类: (1)按其在每转一转所能输出(所需输入)油液体积可否调节分成定量泵和变量泵。 (2)按结构分为齿轮式、叶片式、和柱塞式三大类。 工作原理: 依靠密闭工作容积改变实现吸、压液体,从而将机械能转化为液压能 1.1 分类详述

相关文档
最新文档