解题研究

解题研究(163)

试题:某些电子集成电路常用黄金镀膜.废旧电子产品上的黄金通过某种溶液的溶解后,加入某种金属,即可回收.对黄金在电子产品上的应用和回收过程,下列说法错误的是

配方法题研究-备战2021年中考数学解题方法之探究十法(解析版)

备战2020中考数学解题方法专题研究 专题6 配方法专题 【方法简介】 配方法是指将一个式子(包括有理式和超越式)或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和,这种方法称之为配方法。这种方法常常被用到恒等变形中,以挖掘题目中的隐含条件,是解题的有力手段之一。 把代数式通过凑配等手段,得到完全平方式,再运用完全平方式是非负数这一性质达到增加问题的条件的目的,这种解题方法叫配方法. 配方法的作用在于改变代数式的原有结构,是求解变形的一种手段;配方法的实质在于改变式子的非负性,是挖掘隐含条件的有力工具,配方法在代数式的化简求值、解方程、解最值问题、讨论不等关系等方面有广泛的应用. 运用配方法解题的关键是恰当的“凑配”,应具有整体把握题设条件的能力,即善于将某项拆开又重新分配组合,得到完全平方式. 【真题演练】 1. 用配方法解一元二次方程x 2﹣4x ﹣6=0,变形正确的是( ) A .(x ﹣2)2=0 B .(x ﹣4)2=22 C .(x ﹣2)2=10 D .(x ﹣2)2=8 【解答】解:x 2﹣4x ﹣6=0, 移项得:x 2﹣4x =6, 配方得:x 2﹣4x+4=10,即(x ﹣2)2=10. 故选:C . 2. 用配方法解下列方程: (1)x 2+3x -4=0; (2)x(x +8)=609. 【解析】解:(1)由x 2+3x -4=0, 得x 2+3x + ????322-????322-4=0, 即????x +322-254=0,????x +322=254 , ∴x +32=±52,x =-32±52 , ∴x 1=1,x 2=-4.

初等数学研究课后习题答案(2020年7月整理).pdf

初等代数研究课后习题 20071115033 数学院 07(1) 杨明 1、证明自然数的顺序关系具有对逆性与全序性,即 (1)对任何N b a ∈,,当且仅当b a <时,a b >. (2))对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立. 证明:对任何N b a ∈,,设a A ==,b B == (1)“?” b a <,则B B ??,,使,~B A ,A B B ~, ?∴,a b >∴ “?” a b >,则B B ??,,使A B ~,,B B A ?∴,~,b a <∴ 综上 对任何N b a ∈,,b a (2)由(1)b a b a <∴与b a >不可能同时成立, 假设b a <∴与b a =同时成立,则B B ??,,使,~B A 且B A ~, ,~B B ∴与B 为有限集矛盾,b a <∴与b a =不可能同时成立, 综上,对任何N b a ∈,,在b a <,b a =,b a >中有且只有一个成立.. 2、证明自然数的加法满足交换律. 证明:对任何N b a ∈,设M 为使等式a b b a +=+成立的所有b 组成的集合 先证 a a +=+11,设满足此式的a 组成集合k ,显然有1+1=1+1成立 φ≠∈∴k 1,设k a ∈,a a +=+11,则 +++++++=+=+==+a a a a a 1)1()1()(1 k a ∈∴+,N k =∴, 取定a ,则1M φ∈≠,设,b M a b b a ∈+=+,则 ()()a b a b b a b a +++++=+=+=+ ,b M M N + ∴∈∴= ∴ 对任何N b a ∈,,a b b a +=+ 3、证明自然数的乘法是唯一存在的 证明:唯一性:取定a ,反证:假设至少有两个对应关系,f g ,对b N ?∈,有 (),()f b g b N ∈,设M 是由使()()f b g b =成立的所有的b 组成的集合, ()()1f b g b a ==? 1M φ∴∈≠ 设b N ∈则()()f b g b =()()f b a g b a ∴+=+ ()()f b g b ++∴=,b M +∴∈,M N ∴= 即b N ?∈,()()f b g b =

高考数学解题技巧

高考数学解题技巧 这是一篇由网络搜集整理的关于2017高考数学解题技巧的文档,希望对你能有帮助。 2017高考数学解题技巧 一般情况下,每个大题都有至少两个小题,而每题的最后一小题是最压轴最难的,第一小题最简单,无论压轴题多难,第一小题一般同学都可以做出来拿到分数的,所以在对付压轴题的时候,第一小题一定要做对才有资格接着做后面的题目。 学习基础比较好的同学在最后一道压轴题的第二小题上,一般情况下可以拿到一半左右的分数。因为压轴题很难,用时久,所以能够拿到一半的分数就算很棒了。因此建议大家在压轴题上不要耗时太久,在不浪费整体考试时间的基础上,能拿多少分就拿多少分,强弩之末不能穿缟,考试时要适可而止。 平日练习建议: 一定要重视审题。解题最重要的是要有条件,所以审题能否审出需要的条件是非常重要的因素。一般一道题给出的题目中,不会有用不到的.条件的,考生要相信所有条件都自有用处,只是当时你没有想到而已。建议解答这些压轴题是,第一个要做的就是认真审视题目,把条件罗列出来,然后再根据题目选择需要的条件作答。 小窍门——一道大题中第一题的答案是下一题的条件。很多同学在做压轴题时都忽略了一个重要条件,就是第一小题的答案。一般第一小题很简单,第二题很难,有的同学忽略了第一题答案可以作为下一题条件这个重要因素,所以耗

时很久也解答不出来。建议考生罗列题目给出的条件时,一定要把第一小题的答案也考虑进去。当然,不是每个压轴大题都是这样的,也有很多压轴题的不同小题给出不同条件,希望考生们能够根据实际情况随机应变。 平日高一高二学生练习时一定要注意方法,重视解题思路,实在解答不出来时可以参考答案或者询问老师同学,在这上面耗费太多时间得不偿失。对于高考生来讲,在不到一个月的时间里最好不要把时间浪费在压轴题目上,基础巩固与考试技巧训练更加重要。 做题心态: 做题时心态是非常重要的,有的同学解答不出来时容易烦躁、紧张、出冷汗或者自暴自弃,这在高考中是最忌讳的。如果时间充足,建议同学们在压轴题上训练自己的心态,即使做不出来也要冷静、淡定,另外要注意好时间的控制。 做压轴题的最高境界是没有难易之分,只有根据题目条件推理出新条件,最终获取结论的做题流程。如果解答不出就果断放弃,能够解答到哪里就解答到哪里,老师会根据得分点来给分的。 最后提醒同学们,在做压轴题时已经是一场考试的最后阶段,疲劳、紧张不可避免,做题时要谨慎,控制好时间的同时,心态也要平稳,避免出现小差错。 为了能在考试中对压轴题发挥更自如,平时的练习一定要认真,基础知识要掌握牢固,多进行限时练习,多做一些经典的题目,总结解题方法,找到自己速度快且正确率更高的解题方法。经典题目可以在学科网搜索,不管是周考、月考,还是期中期末考,又或者是专题练习、真题模拟题,你都可以进行练习,但是一定别忘了总结思路和方法,只有这样才能不断进步。

高中数学三角函数解题方法研究

高中数学三角函数解题方法研究 三角函数作为高中数学重点知识,是高考的必考内容,会通过选择、填空、解答等多种 题型来考查我们的掌握程度、思维能力。通过对三角函数知识的学习与思考有利于我们加深 对三角函数的记忆和理解,同时也能锻炼我们思维能力、提高学习效率和质量。接下来,谈 谈对高中数学三角函数解题方法的几点思考。 一、加强审题,注意审题方法 我们在做三角函数题时,切忌急躁,一定要定下心来认真审题,认真琢磨题干中的每一 个信息,如此以来,就不会出现审错题问题。我在学习的过程中,归纳总结了几个审题方法:第一,在面对新颖题型时,擦亮眼睛认真审题,把题干中的已知条件、重点信息进行标注, 运用所学知识明确已知条件和未知结论二者的关系,明确解题方向、选择解题方法,从而成 功解题。切忌浏览完题目信息立即动笔解题,一定要找到关键信息,进而成功解题;第二, 在面对常见题型时,要学会与自己做过的类似题目进行对比,发现二者异同点,从而找到解 答本题最合适的方法,切忌照搬照抄;第三,在审题的过程中,做个有心人,深度挖掘题干 隐含信息,特别是在面对图形题时,要留心每个细节,寻找内在联系,从而正确解答。 二、深化三角函数概念理论 数学是高中阶段的基础学科,也是核心学科,加强对基础知识的记忆和理解有利于我们 打好数学基础,提高后续数学学习质量。 在学习的过程中,我发现,在考试中,三角函数多是以选择题的形式出现,考查范围非 常广,解题时涉及很多基础知识,很多题目都是通过公式变形得出答案的,因此,在日常学 习中要加强对基础知识的训练。以"弧度制"章节知识点为例,需要我们掌握弧长公式、扇形 面积公式,还要掌握角度制、弧度制之间的换算知识;再如,学习"同角三角函数基本关系" 章节时,需要掌握平方、商数、倒数关系,涉及到的诸多公式。还要充分掌握三角变换中的"消去法"、"化弦法"等运用方法,从而在解题过程中灵活运用。 另一方面,就三角函数这一章节知识点来说,我们知识学好基础知识,扎实基本功,才 能在解决实际问题的过程中游刃有余。由此可见,作为高中生,我们在学习数学三角函数知 识过程中,要加强对三角函数基础知识的记忆、理解和掌握,不断提升自己的概括能力。我 们都是在高一阶段接触到三角函数知识的,大部分学生在刚开始学习的时候,都能理解和掌握,但是也有不少学生在时间的推移中将高一学的知识忘记了。所以,我们在高中阶段,应 做好回头看工作,实时对所学的知识进行巩固记忆,深化概念理论,从而为后续深入学习三 角函数知识打好基础,进而树立正确的解题理念和解题思虑,不断提高学习效率和质量。 三、加强课后练习,提高解题思路的多样性 我在学习三角函数一段时间以后发现要想理解和掌握三角函数知识点,没有什么捷径, 只能通过掌握三角函数理论知识、加强练习,才能有效提升自己的解题能力、学习能力。所以,我发现,只有通过实现理论知识与实际训练的高度结合,才有不断丰富解题思路、进而 有效解决问题。如,在学习"三角函数正弦定理"章节知识点时,我们可以通过做大量的练习 题来加强对正弦定理的理解和掌握,并学以致用,解决实际问题。如,已经锐角三角形ABC,假设每个内角为A、B、C所对应的边分别时a、b、c,如果a=sinA·2b,求B。解:正弦定理 正弦定理的sinA=2sinBsinA,综合已知条件a=sinA·2b,得出,sinB=1/2。我们只要知道正弦定理,很快就能解答这道题。反过来看,这道题实质上是在考查我们对正弦定理的掌握程度。 由此可见,我们必须掌握好三角函数的基本知识,并学以致用,用这些概念、定理、公理去 解决实际问题,加强练习,并学会总结,才能有效提高解题能力、数学学习能力。

初等数学研究(程晓亮、刘影)版课后习题答案

初等数学研究(程晓亮、刘影)版课后习题答案

初等数学研究(程晓亮、刘影)版课后习题答案 第一章 数 1添加元素法和构造法,自然数扩充到整数可以看成是在自然数的基础上添加0到扩大的自然数集,再添加负数到整数集;实数扩充到复数可以看成是在实数的基础上构造虚数单位i 满足12-=i ,和有序实数对),(b a 一起组成一个复数bi a +. 2(略) 3从数的起源至今,总共经历了五次扩充: 为了保证在自然数集中除法的封闭性,像b ax =的方程有解,这样,正分数就应运而生了,这是数的概念的第一次扩展,数就扩展为正有理数集. 公元六世纪,印度数学家开始用符号“0”表示零.这是数的概念的第二次扩充,自然数、零和正分数合在一起组成算术数集. 为了表示具有相反意义的量,引入了负数.并且直到17世纪才对负数有一个完整的认识,这是数的概念的第三次扩充,此时,数的概念就扩展为有理数集. 直到19世纪下半叶,才由皮亚诺、戴德金、维尔斯特拉斯等数学家的努力下构建了严格的实数理论.这是数的概念的第四次扩充,形成了实数集. 虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用.这是数学概念的第五次扩充,引进虚数,形成复数集. 4证明:设集合D C B A ,,,两两没有公共元素d c b a ,,,分别是非空有限集D C B A ,,,的基数,根据定义,若b a >,则存在非空有限集'A ,使得B A A ~'?;若d c ≥从而必存在非空有限集'C ,使得D C C ~'?,所以)(C A ?)(D B ??所以集合C A ?的基数c a +大于集合D B ?的基数d b +,所以d b c a +>+. 5(1)解:按照自然数序数理论加法定义, 15 55555155155 )25(2535''=++=++?=+?=+?=?=? (2)解:按照自然数序数理论乘法定义 8 7)6(])15[()15()25(2535'''''''' '===+=+=+=+=+ 6证明:?1当2=n 时,命题成立.(反证法)

最新高考数学答题规范要求

高考数学答题规范要求 高考答题的规范化要求有很多方面:答题工具、答题规则与程序、答题位置、答题过程及书写格式要求等。养成良好的答题习惯,可以帮助考生多得分,至少不会失去一些应得分。 一、答题工具 合格的2B铅笔、绘图橡皮(禁止使用涂改液、修正带或透明胶带改错)、 0.5毫米黑色墨水签字笔、直尺、三角板,圆规。 二、答题规则与程序 原则上做题顺序按试题排列顺序即可,以免漏题。不过,在此原则下,还应灵活掌握。由于考试时间很紧,所以应把时间放在得分效益最大的地方,即所谓好钢用在刀刃上。这里的刀刃并不是指个别的难题,而是大量的普通题。因为普通题所花时间与所得分数之比是最大的。做完有充分把握得分的容易题,才能做难题,做了难题丢了容易题的做法是很愚蠢的。另外,先把容易的题目做出来,能使紧张的心情逐渐平静,这时再去想难题,会比较从容。如果一开始就去做自己不熟悉的难题,越做不出来心态越坏,时间也花得多,甚至导致本能做出的其它题也没时间去做了。 三、答题位置 按题号在指定的答题区域内作答,切不可超出黑色边框,超出黑色边框的答案无效。如需对答案进行修改,可将需修改的内容划去,然后紧挨在其上方或其下方写出新的答案,修改部分在书写时与正文一样,不能超过该题答题区域的黑色矩形边框,否则修改的答案无效。 四、填空题书写格式要求 《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。关于填空题,常见错误或不规范的答卷方式有:字迹不工整、不清晰、字符书写不规范或不正确、分式写法不规范、通项和函数表达式书写不规范、函数解析式书写正确但不注明定义域、要求结果写成集合的不用集合表示、集合的对象属性描述不准确。碰到难题可以猜一个答案先填,如0、1、30°、60°等,如果最后真有空余时间,再重新检查修改。 五、解答题书写格式要求 解答题与填空题比较,同属提供型的试题,但也有本质的区别,首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括的准确;其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。在答题过程中,关键语句和关键词

数学解题方法与技巧教学的研究_答题技巧

数学解题方法与技巧教学的研究_答题技巧 数学解题方法与技巧教学的研究 前面所说的数学习过程的练习题一般是由标准答案,已知和求解都是十分清楚的。而实际生活中许多问题预先是不知答案或者不一定有统一的答案,甚至可能没有答案,这样一类可以用数学方法去研究和解决的问题称为数学问题解答。它的常见类型和价值是这样的。 1. 可以构建数学模型的非常规的实际问题。这类问题往往不是纯数学化的问题模式,而是一种情景,一种实际需求,只是为了解决遇到的困难,需要讲实际问题转化为数学模型并进行解释与解决。这是在生活和实践中运用数学最常用的方式,培养的是学生面对实际进行的问题解决能力。 2. 探究性问题:要求的是通过一定的探索,研究来认识数学对象的性质,去发现其数学规律,这种问题要求一种研究式的思维能力,在问题解决过程中感受发现的乐趣,它培养的是一种主动探索精神和科学态度。 3. 开放性问题:是问题的条件、结论、解题策略或应用等方面具有一定的开放程度的问题,学生在研究这类问题时通常采用的是合作研究,这种方式可互相启发学生的合作与交流,在交流和合作中完善和优化自己的思维。这类问题的解决可培养学生的思维的灵活性和发散性。培养学生的创新意识。 二、解题的方法与技巧 数学思想方法在解题中有不可忽视的作用 解题的学习过程通常的程序是:阅读数学知识,理解概念;在对例题和老师的讲解进行反思,思考例题的方法、技巧和解题的规范过程;然后做数学练习题。 基本题要练程序和速度;典型题尝试一题多解开发数学思维;最后要及时总结反思改错,交流学习好的解法和技巧。著名的数学教育家波利亚说过“如果没有反思,就错过了解题的的一次重要而有意义的方面。” 教师在教学设计中要让学生解好数学问题,就要对数学思想方法有清楚的认识,才能更好的挖掘题目的功能,引导学生发现总结题目的解法和技巧,提高解题能力。

解题研究的现状分析

解题研究的现状分析 罗增儒 2-1 解题研究的基本工作 2-1-1 资料性的分类汇编 2-1-2 数学方法论的研究 2-1-3 波利亚学说的研究与超越 2-1-4 解题教学的研究与应用 2-1-5 竞赛数学的学科建设 2-1-6 数学思维的研究 2-1-7 解题策略的研究 2-1-8 初等数学的研究 2-1-9 教育数学的研究 2-1-10 以开放题为代表的新题型研究 2-1-11 中学数学刊物繁荣 2-1-12 数学解题的实证与心理学分析 2-1-13 数学解题理论的建设 2-1-14 中国解题学派正在形成

2-2 解题研究的存在问题 解题研究中的主要问题是,还存在着一些片面的认识、盲目的实践与停留在操作的层面上等,我们指出6点. ●“解题理论”研究的取消论 ●解题研究的误区 ●考试目的 ●理论与实践的脱节 ●解题研究多停留在操作层面,也缺少有效的方法深入到心理层面 ●缺少争鸣气氛 2-2-1 “解题理论”研究的取消论 认为随着数学内容的学习和数学知识的丰富,解题方法可以自然而然地掌握、解题能力可以自然而然地生成,“解题理论”的研究纯属多余的标新立异.一些连中学教材的习题都不能独立完成的空头理论家,更为这种观点提供了口实.而来自学生的情况却是,许多人学了课本内容不会解题,还有的人解了许多题却说不清思路.教师中也有类似情况. 解题理论须以解题实践为基础,但是,再丰富的经验也无法代替理论,并且,缺乏正确理论指导的实践常常会流于盲目. 2-2-2 解题研究的误区 表现1.很多文章只是用现成的例子说明现成的观点,或用现成的观点解释现成的例子,缺少创新,有的更是低层次的简单重复.还有很多文章明显资料占有不充分,现在有网络条件,建议动手写作之前,先搜寻一遍,至少要有一点新意、有一点自己的心得,才形成文章. 表现2.长期徘徊在一招一式的归类上,缺少观点上的提高或实质性的突破;有时候,只是解题方法的简单堆积或解题技巧的神秘出现,在解题具体操作与解题策略(或数学思想方法)之间还缺少沟通的桥梁. 表现3.多研究“怎样解”,较少问“为什么这样解”,更少问“怎样学会解”,重结果、轻过程. 表现4.更关注现成的、形式化问题的求解,对问题的“提出”和“应用”研究不足. 因此,尽管中国有丰富的解题资料,却始终未上升为系统的解题理论.

数学的解题方法

数学的解题方法 技巧,积累教学资料,提升业务水平和教学水平。下面介绍的解题方法,都是初中数学中最常用的,有些方法也是中学教学大纲要求掌握的。1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。通过配方解决数学问题的方法叫配方法。其中,用的最多的是配成完全平方式。配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。因式分解的方法有很多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不但用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还能够求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些相关二次曲线的问题等,都有非常广泛的应用。5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。它是中学数学中常用的方法之一。6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它能够是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。使用构造法解题,能够使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。7、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过准确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题准确的一种方法。反证法能够分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。反设是反证法的基础,为了准确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是/不是;存有/不存有;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一个/一个也没有;至少有n个/至多有(n一1)个;至多有一个/至少有两个;唯一/至少有两个。归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。推理必须严谨。导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定初中各年级课件教案习题汇总语文数学英语物理化学理、公式矛盾;与反设矛盾;自相矛盾。8、面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算相

初等数学研究试题答案

习题一 1、数系扩展的原则是什么?有哪两种扩展方式?(P9——P10) 答:设数系A 扩展后得到新数系为B ,则数系扩展原则为: (1)A 的元素间所定义的一些运算或几本性质,在B 中被重新定义。而且对于A 的元素来说,重新定义的运算和关系与A 中原来的意义完全一致。 (2)在A 中不是总能实施的某种运算,在B 中总能施行。 (3)在同构的意义下,B 应当是A 的满足上述三原则的最小扩展,而且有A 唯一确定。 数系扩展的方式有两种: (1)添加元素法。 (2)构造法。 2、对自然数证明乘法单调性:设,,,a b c N ∈则 (3),a b ac bc >>若则; 证明:(1)设命题能成立的所有C 组成集合M 。 由归纳公理知,,N M =所以命题对任意自然数成立。 (2),,.a b b a k k N <=+∈若则有 (P17定义9) 由(1)有()bc a k c =+ ac bc ∴< (P17.定义9) 或:,,.a b b a k k N <=+∈若则有 bc ()a k c ac kc =+=+ 3、对自然数证明乘法消去律:,,,a b c N ∈设则 (1),;ac bc a b ==若则

(2)ac bc a b <<若,则; (3)ac bc a b >>若,则。 证明(1)(用反证法) (2)方法同上。 (3)方法同上。 4、依据序数理论推求: 解: 1313134++=='()先求,, (P16.例1)323231(31)45,++=+=+=='''再求, (2)31313??=先求,, 5、设n N ∈,证明n 415n 1+-是9的倍数。 证明:1n 141511189,1n =+?-==①当时,是的倍数故时命题成立。 k n k 415k 19=+-②假设当时,命题成立。即是的倍数。则当n=k+1时: k 1k 415k 11 4415k 1315k 18441519(52) k k k +++-=+--?+=+---()()()。 1n k ∴=-当时,命题成立。 由①,②知,对于任一自然数n 成立。 6、用数学归纳法证明下式对于任意自然数都成立: 证明: ①412111--3-3.11-21n +?==== ==?当时,左边,右边左边右边。 ②n k =假设当时,等式成立,即:

高考数学解题方法

一、选择填空题技巧 人生选择,选择人生,用兵之道,奇正相生,数学解题,其理相同。迂回曲径,直捣黄龙,审时度势,天佑功成。 (一)特值法 要点是:从条件中,取一些方便于计算的满足所有已知条件的数值进行验证,从而否定答案。选项不满足特值的 一定排除,满足的特值不一定选。 1. 如果0<x <1,则式子的化简结果是( ) A 、 B 、 C 、 D 、﹣ 2、化简) 4 sin()4cos() 4sin()4cos(x x x x +π++π+π-+π的结果是( ) 。 A 、-tan x B 、tan 2 x C 、 tan2x D 、cot x 3、 已知f( x x +1)= x x x 1 12 2++,则f (x)=( )。 A 、(x +1)2 B 、(x -1)2 C 、x 2 -x +1 D 、x 2 +x +1 4、 在ABC ?中,若 C ∠为钝角,则tgB tgA ?的值( ) A 、等于1 B 、小于1 C 、 大于1 D 、 不能确定 5、 已知{a n }满足a 1=1, a 2= 3 2 ,且n n n a a a 21111=++- (n ≥2),则a n 等于( )。 A 、 12+n B 、(3 2)n -1 C 、(32)n D 、22+n 6、设4 7 10 310()22222()n f n n N +=++++ +∈,则()f n =( ) A 、 2(81)7n - B 、12(81)7n +- C 、32(81)7n +- D 、42 (1)7 n n +-

7、已知数列{a n }的通项公式为a n =2n-1 ,其前n 和为S n ,那么C n 1 S 1+ C n 2 S 2+…+ C n n S n =( ) A 、2n -3n B 、3n -2n C 、5n -2n D 、3n -4n 8、若- 23π≤2α≤2 3π,那么三角函数式α32 cos 2121+化简为( ) A 、sin 3α B 、-sin 3α C 、cos 3α D 、-cos 3 α 9、已知α-β=6 π,tan α=3m , tan β=3-m , 则m 的值是( )。 A 、2 B 、-31 C 、-2 D 、2 1 10、直线x -ay +a 2=0(a >0且a ≠1)与圆x 2 +y 2 =1的位置关系是( ) A 、相交 B 、相切 C 、相离 D 、不能确定 11、若a , b 是任意实数,且a >b ,则( )。 A 、a 2 >b 2 B 、 a b <1 C 、lg(a -b )>0 D 、(21)a <(2 1)b 12、设n ≥2时,数列n n n n n n nC C C C 1 4 n 3 2 1 ) 1(,,4C - ,3 ,2 ,--- 的和是( )。 A 、0 B 、(-1)n 2n C 、1 D 、1 2+n n 13、已知a , b 是两个不等的正数,P =(a + a 1)( b +b 1 ), Q =(ab +ab 1)2, R =(2b a ++b a +2)2, 那么数值最大 的一个是( )。 A 、P B 、Q C 、R D 、与a , b 的值有关 14、已知m >n >1, 0log n a B 、a m >a n C 、a m 0且a ≠1,P =log a (a 3+1),Q =log a (a 2 +1),则P 、Q 的大小关系是( )。 A 、P >Q B 、p

中学数学解题方法研究模拟试题

中学数学解题方法研究模拟试题 一、填空题:(每题4分,共28分) 1.递推方法是根据具体问题,首先关系,再通过递推关系进行求解,从而解决这一具体问题的方法。 2.三角代换可以沟通数学学科的联系,在解题过程中要善于捕捉这方面的素材,引入适当的三角变换,可以扩展解题视野,拓宽解题思路。 3.对于任意两个实数a、b,总存在实数t,使,我们称t为增量,这种代换称为增量代换。 4.利用数学模型法解答实际问题(包括数学应用题),一般要做好三方面的工作:(1)建模;(2)推理、演算;(3)。 5. 分析解题包括两方面的内容:一是;二是对题解进行深入地思考。 6. 的主要表现形式是:综合与单一间的分合;整体与部分间的分合;无限与有限间的分合等。在解数学问题时,分合并用策略的主要体现为拼凑、拆与并、割与补等。 7.中学数学中,包含两个方面的内容:一是运用代数、三角知识,通过对数量关系的讨论,去处理几何图形问题;二是运用 中学数学解题方法模拟试题

中学数学解题方法模拟试题 几何知识,通过对图形性质的研究,去解决数量关系的问题。 二、单选题:在下列各题的备选答案中选择一个正确的。(每题4分,共12分) 8.函数)2(log )(22x x x f +=的单调递减区间是( ) A. ),0[+∞; B. ),2(+∞-; C.),0(+∞; D. )2,(--∞ 9.等差数列{}{}n n b a ,的前n 项和分别为n n T S 和,若 132+=n n T S n n ,则n n n b a ∞→lim 等于( ) A. 1 B.36 C. 32 D. 9 4 10.已知函数()2sin (0)f x x ωω=>在区间34ππ??-???? ,上的最小值是2-,则ω的最小值等于( ) A.23 B.32 C.2 D.3 三、解答题(每题15分,共45分) 11.已知函数R m m x m x x f ∈++-=,)1()(2。若tan A ,tan B 是方程04)(=+x f 的两个实根,A 、B 是锐角三角形ABC 的两个内角,求m 的取值范围。

初等数学专题研究答案

习题解答 第一讲 自然数的基数理论与序数理论 1、在自然数的基数理论中,证明自然数的乘法满足交换律 证明:对于{(,)|,}A B a b a A b B ?=∈∈与{(,)|,}B B b a b B a A ?=∈∈, 定义A B ?到B A ?的映射为:(,)(,),(,),(,)f a b b a a b A B b a B A ??→∈?∈? 显然这个映射是A B ?到B A ?的一一映射,所以A B B A ?=?,于是按定义有: A B B A ?=?,即乘法满足交换律。 2、利用最小数原理证明定理14. 定理14的内容是:设()p n 是一个与自然数有关的命题,如果:(1)命题()p n 对无穷多个自然数成立;(2)假如命题对0()n k k n =≥成立时,能够推出命题对 1n k =-也成立,那么对一切自然数不小于n 0的自然数n ,命题()p n 必然成立。 证明:如果命题不真,设使命题不成立的自然数构成集合M ,那么M 非空,因此,M 中必有一个最小数000()r r n ≥。 此时,由于不大于0r 的自然数只有有限个,按照条件(1),至少有一个自然数0()r r r >,命题在r 处成立;于是由条件(2) ,命题对1r -也成立,连锁应用条件(2),那么命题在12,,,,, r r r r k ---处都成立,而这个序列是递减的,因此0r 必然出现在这个序列中,这与0r 的假定不符,这个矛盾说明定理14成立。 3、用序数理论证明3+4=7 证明:313432313145,(),''''+==+=+=+== 33323256(),'''+=+=+== 34333367()'''+=+=+== 4、设平面内两两相交的n 个圆中,任何三个不共点,试问这n 个圆将所在的平面分割成多少个互不相通的区域?,证明你的结论。 解:设这n 个圆将所在平面分割成()f n 个部分,显然1224(),()f f ==; 如果满足条件的n 个圆把平面分割成()f n 个部分,那么对于满足条件的n+1个圆

初等数学研究(程晓亮、刘影)版课后习题答案教程文件

初等数学研究(程晓亮、刘影)版课后习题答案 第一章 数 1添加元素法和构造法,自然数扩充到整数可以看成是在自然数的基础上添加0到扩大的自然数集,再添加负数到整数集;实数扩充到复数可以看成是在实数的基础上构造虚数单位i 满足12-=i ,和有序实数对),(b a 一起组成一个复数 bi a +. 2(略) 3从数的起源至今,总共经历了五次扩充: 为了保证在自然数集中除法的封闭性,像b ax =的方程有解,这样,正分数就应运而生了,这是数的概念的第一次扩展,数就扩展为正有理数集. 公元六世纪,印度数学家开始用符号“0”表示零.这是数的概念的第二次扩充,自然数、零和正分数合在一起组成算术数集. 为了表示具有相反意义的量,引入了负数.并且直到17世纪才对负数有一个完整的认识,这是数的概念的第三次扩充,此时,数的概念就扩展为有理数集. 直到19世纪下半叶,才由皮亚诺、戴德金、维尔斯特拉斯等数学家的努力下构建了严格的实数理论.这是数的概念的第四次扩充,形成了实数集. 虚数作为一种合乎逻辑的假设得以引进,并在进一步的发展中加以运用.这是数学概念的第五次扩充,引进虚数,形成复数集. 4证明:设集合D C B A ,,,两两没有公共元素d c b a ,,,分别是非空有限集D C B A ,,,的基数,根据定义,若b a >,则存在非空有限集'A ,使得B A A ~'?;若d c ≥从而必存在非空有限集'C ,使得D C C ~'?,所以)(C A ?)(D B ??所以集合 C A ?的基数c a +大于集合 D B ?的基数d b +,所以d b c a +>+. 5(1)解:按照自然数序数理论加法定义, 15 55555155155)25(2535''=++=++?=+?=+?=?=? (2)解:按照自然数序数理论乘法定义 8 7)6(])15[()15()25(2535'''''''''===+=+=+=+=+ 6证明:?1当2=n 时,命题成立.(反证法)

2017年高考数学解题思路的总结

2017年高考数学解题思路的总结 高考数学解题思想一:函数与方程思想 函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系(或构造函数)运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程(方程组)或不等式模型(方程、不等式等)去解决问题。利用转化思想我们还可进行函数与方程间的相互转化。 高考数学解题思想二:数形结合思想 中学数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此我们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。 高考数学解题思想三:特殊与一般的思想 用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,我们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求主观题的求解策略,也同样精彩。 高考数学解题思想四:极限思想解题步骤 极限思想解决问题的一般步骤为: (1)对于所求的未知量,先设法构思一个与它有关的变量; (2)确认这变量通过无限过程的结果就是所求的未知量;

(3)构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。 高考数学解题思想五:分类讨论 常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。

初等数学研究论文

姓名:苏章燕学号:201102024002 班级:师范1班 分类思想 摘要:分类讨论的问题在这学期做高考题和中考题过程中,很多题上面都有体现。是在问题的解答出现多种情况且综合考虑无法深入时,我们往往把可能出现的所有情况分别进行讨论,得出每种情况下相应的结论,这种思想方法就是分类的思想。 关键词:分类讨论、函数、例题、集合分类 一、分类要素 分类的思想运用到每个具体数学问题中都有三个基本内容,即分类三要素,在分类的合定义中,三要素就是全集,子集和子集的分类根据。分类的逻辑定义中,三要素是母项,子项和分类标准。 二、分类的规则 在问题讨论前,首先应弄清楚我们所研究对象的范围,即全集。分类就要在这个特定范围内进行,要防止在全集不明确的情况下或全集外进行讨论。 每次分类都必须以同一本质属性为标准,被分概念或集合有若干本质属性,确定某一个作为分类标准。那么在分类过程中就要始终使用这个标准。同一次讨论中标准只能是一个。如实数在讨论绝对值时,可分为整数、负数和零;在讨论其他性质和运算时可分为有理数与无理数。又如函数按自变量个数可分为一元函数、二元函数乃至多元函数;按单调性可分为增函数、减函数和非单调函数(在某一区间内);按定义域可分为在R上都有意义的函数与定义域不是R的函数;按奇偶性可分为奇函数、偶函数和非奇非偶函数(在定义域内);按属性可分为代数函数和超级函数。诸如此类,按不同标准就有不同的分类。 分类的完整性,把集合A分为A1、A2、···An等n个子集的分类,集合A应是这n 个子集的并集,集合的每一个元素都属于且仅属于其中的一个子集,分类时必须防止遗漏,如把角分为第一象限角、第二象限角、第三象限角、第四象限角,就不是一个完整的分类,因为终边落在坐标轴上的角就不在其中。 分类的互斥性,分类中分成的各部分必须是互相排斥的,即分类中各个子集的交集是空集,如平面几何中把三角形分为锐角三角形、等腰三角形······的分类就是不正确的分类,因为存在着等腰锐角三角形,这是由于破坏了分类的互斥性。 分类的逐级性,被分概念必须分成与它最邻近的概念。有些问题必须要连续分类,这就要求严格按层次逐级进行划分、讨论。 分类的种类,人们对事物的认识有一个由现象到本质逐步深化的无线过程,因此分类也有一个从现象分类到本质这样一个逐步深化的过程。 现象分类就是根据事物的外部标志或外部联系所进行的分类,这种分类往往会把本质上相同的事物分为不同的类别,而把本质上不相同的事物归为同一类别。如平面几何中多边形按边数分类就是一个现象分类,因为凸多变形和凹多边形即使边数相同其性质也大相径庭,而正多边形(不管它边数多少)都具有很多共性,它们本质上是相同的。 本质分类就是根据事物的本质特征或内部联系所进行的分类,本质分类能够揭示数学对象之间的规律,如含角的三角函数的绝对值,用零点分段法对角进行的分类就属于本质分类。 分类方法的解题步骤,确定分类标准,这就是要运用辩证的逻辑思维,对具体事物作具体分析,从表面上极为相似的事物之间看出它们本质的相同点,发现事物的本质特征,只有这样才能揭示数学对象之间的规律,对数学对象进行有意义的分类。 恰当地进行分类,在确定分类标准的基础上,遵守分类的五条规则,对所讨论的问题恰当地分类,问题能否顺利讨论的关键是对所讨论对象进行正确的分类。 逐类讨论,根据分好的各类情况,逐类地加以研究,深入进行讨论,分门别类逐一把

初等数学研究第三章答案

习题三 1、已知半径为r 的圆为内接等腰梯形ABCD。它的下底AB 是圆O 的直径,上底CD 的端点在圆周上。 (1)写出梯形的周长y 和腰长x 间的函数关系式,并求其定义域; (2)当腰长为何值时,该等腰梯形的周长有最大值,并求出最大值。 解:(1)作DE ⊥AB 于 E 连DB,则∠ADB = 90°∴ADB∽AED ∴AD AB = AE AD 2 AD 2 ∴AD = AE ? AB ∴AE = AB 又Q DC = AB ? 2 AE ∴y = DC + AB + 2 AD = AB ? 2 AE + AB + 2 AD AD 2 = 2r ? 2 + 2r + 2 x AB 2x2 = 2r ? + 2r + 2 x 2r x2 = 4r ? + 2 x r x2 = ? + 2 x + 4r . r x2 又Q x > 0 ,且= AE < r ,即x < 2r 2r ∴函数的定义域为(0,2r)。(2)y = ? (r ? x) 2 + 5r ,所以当腰长x=r 时,周长y 有最大值5r. 2、设函数y = f ( x) 定义在R 上,当x>0 时,f ( x) > 1 ,且对于任意m, n ∈R ,有f (m + n) = f (m) ? f (n). 又当m ≠ n 时,f (m) ≠ f (n). 求证:(1)f (0) = 1. (2)对于任意x ∈R ,均有f ( x) > 0. 证明:(1)Q对任意m, n ∈R ,有f (m + n) = f (m) ? f (n). 1 r ∴令m=n=0,则有f (0 + 0) = f (0) + f (0) 即f (0) = f (0) + f (0) . ∴f (0) ? [ f (0) ? 1] = 0. ∴f (0) = 1 或f (0) = 0. 若 f (0) = 0.则对于任意m>0,有f ( m) = f ( m + 0) = f ( m) ? f (0) = 0 和题设矛盾。因此,f (0) = 1. (2)由题设和(1)的结论,当x ≥ 0 时, f ( x) ≥ 1 > 0 ,假设x < 0 ,则? x > 0 ,因而 f (? x) > 1。但是 f ( x) ? f (? x) = f ( x ? x) = f (0) = 1 所以, f ( x) = 1 > 0. f (? x) 3、判断下列各组函数是不是同一函数,并说出理由。(1)f ( x) = lg x 2 , (2)f ( x) = x , g ( x) = 2lg rx . g ( x) = 3 x 3 . 解:(1)是同一函数。因为定义域相同:x ∈R ? {0} . 且对每个x,对应值也相等。(2)不是同一函数。因为当x<0 时,f ( x) > 0 ,而g ( x) < 0 . 4、求下列函数的定义域(1)y = (4 x ? 5) + 8 ?1 x (2)y = log (2 x?1) (3 x ? 2) (3)y = log 0.5 (log 2 x 2 + 1) (4)y = 7? x?2 lg(9 ? 3x ) (5)y = 1 ? ( ) 2 x?1 (6)y = lg x + lg(5 ? 2 x ) (7)y = arccos(2 x 2 ? x) (8)y = arcsin( x ? 1) + 1 3 1 5x ? 1 1 4 (9)y = sin x ? 1 + (1 ? sin x ) (10)y = lg cos3x ?4 x ? 5 ≠ 0 ? ?8 解:(1)Q ? ? 1 ≥ 0 ? x ? x ≠0 ? 5 ? x≠ ? 4 ? ,∴? x ≤ 8 ?x ≠0 ? ? 5 4 5 4 5 ? x≠ ? 4 ? ,∴? ?8 ≤ x ≤ 8 ? x≠0 ? ? ∴函数定义域为:[?8,0) U (0, ) U ( ,8] . ?3 x ? 2 > 0 ? (2)Q ? 2 x ? 1 > 0 ?2 x ? 1 ≠ 1. ? 2 3 2 ? x> ? 3 ? 1 ? ∴?x > 2 ? ? x ≠1 ? ? ∴函数的定义域为:( ,1) U (1, +∞). ?log 0.5 (log 2 x 2 + 1) ≥ 0 ? (3)Q ? log 2 x 2 + 1 > 0 ? x2 > 0 ? ? 0 < log 2 x 2 + 1 ≤ 1 ? ∴?log 2 x 2 > ?1 ?x≠0 ? ?2-1 ≤ x 2 ≤ 1 ? ∴? x 2 > 2?1 ?x ≠ 0 ? ? 2 2 ≤ x ≤ 1 或?1 ≤ x ≤ ? ? 2 ? 2 ? 2 2 或x ∴? 2 2 ? ? x≠0 ? ? ? 2 2 函数定义域为:[(?1, ? )U( ,1)] . 2 2 ?lg(9 ? 3x ) ≠ 0 ? Q (4)? 9 ? 3x > 0 ?7 ? x ? 2 ≥ 0 ? ? x ≠ log 3 8 ? ∴? x < 2 ??5 ≤ x ≤ 9 ? ? 9 ? 3x ≠ 1 ? ∴? 3x < 9 ? x?2 ≤ 7 ? ? 3x ≠ 8 ? ∴? 3x < 32 ??7 ≤ x ? 2 ≤ 7 ? ∴log 3 8 < x < 2 或?5 ≤ x < log 3 8 ∴函数定义域为:[(?5,log 3 8) U (log 3 8, 2)]. (5)Q1 ? ( ) 2 x?1 ≥ 0. 1 3 ∴( )2 x?1 ≤ 1. ∴ 2 x ? 1 ≥ 0. ? log x ≥ 0 ? (6)Q ? x > 0 ?5 ? 2 x > 0 ? 1 3 ∴1 ≤ x < log 5 2 1 1 ∴函数定义域为[ , +∞] 2 2 x ≥1 ? ? x ≥1 ? ? ∴? x > 0 ∴? x > 0 5 ? ?2 x < 5 ? x< ? 2 ∴x ≥ 5 ∴函数定义域为:[1, ) . 2 (7)Q ?1 ≤ 2 x 2 ? x ≤ 1 ? 2 x 2 ? x ? 1 ≤ 0LL ①∴? 2 ?2 x ? x + 1 ≥ 0LL ② 1 ? ?由①? ≤ x ≤ 1 ∴? 2 ?由②x ∈R ? ∴函数的定义域为:[1, ) . ??1 ≤ x ? 1 ≤ 1 (8)Q ? ? 5x ? 1 > 0 1 5 ?0 ≤ x ≤ 2 1 ? ∴? ∴ ? 5 ? 5 2 ∴函数的定义域为:( ,2].

相关文档
最新文档