水稻基因组学的的研究进展

水稻基因组学的的研究进展
水稻基因组学的的研究进展

基因组学课程论文

所在学院生命科学技术学院

专业14级生物技术(植物方向)

姓名金祥栋

学号2014193012

水稻基因组学的研究进展

摘要:随着模式植物——拟南芥和水稻基因组测序的完成,近年来关于植物基因组学的研究越来越多。水稻是世界上重要的粮食作物之一,养活着全世界近一半的人口。同时南于水稻基冈组较小、易于转化及与其他禾本科植物基因组的同线性和共线性等特点,一直被作为禾本科植物基因组研究的模式作物。水稻基因组测序的完成及种质资源的基因组重测序,为水稻功能基因组研究奠定了基础。现综述我国水稻基因组测序和功能基因组研究历史,重点介绍了近年来在水稻基因组序列分析中获得的几项最新的研究结果。

关键词:水稻;基因组测序;功能基因组;研究历史;基因组学;研究进展

The recent progress in rice genomics research

Abstract: With the completion of genome sequencing ofthe model plant-- Arabidopsis and rice,more and more researches on plant genomics emerge in recent years. Rice i s one of the most important crops in the world, raised nearly half of the world popul ation. At the same time in south rice Keegan group is smaller, with linear and linear features such as easy transformation and other gramineous plant genome, has been use d as a model crop for plant genome research of Gramineae. Genome sequencing and germplasm resources the rice genome sequencing completed laid the foundation for ric e functional genomics research. This article reviews the history and function of our ge nome sequencing of rice genome research, introduces several latest research results in recent years in the analysis of rice genome sequences.

前言

基因组是1924年提出用于描述生物的全部基因和染色体组成的概念,是研究生物基因结构与功能的学科,是在遗传学的基础上发展起来的一门现代生物技术前沿科学,也是现代分子生物学和遗传工程技术所必要学科,是当今生物学研究领域最热门、最有生命力、发展最快的前沿科学之一。基因组学的主要任务是研究探索生物基因结构与功能,生物遗传和物理图谱构建,建立和发展生物信息技术,为生物遗传改良及遗传病的防治提供相关技术依据。

进入21 世纪,随着全球化、市场化农业产业发展和全球贸易一体化格局的逐步形成,我国种业正面临前所未有的严峻挑战,主要表现在:依靠传统育种技术难以大幅度提高粮食单产;土地资源短缺,农业环境污染日益突出;种质资源发掘、基因组育种技术亟需创新等。水稻不仅是重要的粮食作物,由于其基因组较小且与其他禾本科作物基因组存在共线性,以及具有成熟高效的遗传转化体系,已成为作物功能基因组研究的模式植物。因此,水稻基因组研究对发展现代农作物育种技术、提升种业国际竞争力和保障粮食有效供给具有重大战略意义。

基因组研究主要包括三个层次:①结构基因组学,以全序列测序为目标,构建高分辨率的以染色体重组交换为基础的遗传图谱和以DNA 的核苷酸序列为基础的物理图谱。②功能

基因组学,即“后基因组计划”,是结构基因组研究的延伸,利用结构基因组提供的遗传信息,利用表达序列标签,建立以转录图谱为基础的功能图谱( 基因组表达图谱),

系统研究基因的功能,植物功能基因组学是当前植物学最前沿的领域之一。③蛋白质组学,是功能基因组学的深入,因为基因的功能最终将以蛋白质的形式体现。

水稻( Oryza sativa)是第一个被全基因组测序的作物,目前栽培稻2个亚种全基因组测序工作已经完成:粳稻品种日本晴(Nipponbare)通过全基因组鸟枪法和逐步克隆法被测序,籼稻品种扬稻6号(9311)通过全基因组鸟枪法被测序。除核基因组外,水稻叶绿体和线粒体基因组也于1989年和2002年分别被测序。水稻2个亚种的全基因组测序完成,一方面开启了植物比较基因组学的大门,另一方面为人们在基冈组水平上鉴定出所有水稻基因并分析其功能奠定了基础,同时也使得人们对植物进化的认识,尤其是对禾本科植物进化的了解,逐步从系统分类和分子标记水平进入到了基因组序列水平。许多研究者通过对水稻基因组序列的分析,利用生物信息学工具,对水稻在基因组水平上的进化进行了大量研究。

1、水稻基因组学的研究

1.1、水稻基因组测序的开启

水稻基因组测序相对简单然而最终目的不是测序注释序列认识基因的内含子或外显子的结构更重要的是知道每个基因的功能。水稻反向遗传学和插入引起的突变为水稻功能基因组研究提供了强有力的工具。

继“人类基因组计划”“拟南芥基因组计划”提出之后,各国科学家为抢夺下一个生物学科研前沿,将水稻基因组计划提上日程。1991 年日本将水稻基因组制图列入研究规划。我国于1990年开始研讨水稻基因组测序,并于1992 年正式宣布开展水稻基因组测序,同时在上海成立了中国科学院国家基因研究中心。历时 4 年,中国在国际上率先完成了水稻( 籼稻) 基因组物理图的构建,为水稻基因组测序提供了材料基础。1997 年9 月,日本和中国作为主要参与国牵头发起“国际水稻基因组测序计划”(International Rice Genome Sequencing Project, IRGSP)。1998 年2 月,IRGSP 正式启动,主要内容是开展水稻遗传图和物理图的绘制,完成基因组序列的测定及基因序列的注释分析等工作。IRGSP 确定以主要栽培品种——粳稻“日本晴”作为测序对象,基于基因组物理图谱进行测序。水稻1 2 条染色体的测序工作分别由日本(6 条)、美国(3条)、中国(1 条)、中国台湾(1 条)、法国(1 条)承担,其中印度、韩国、巴西等参与了部分染色体的测序工作。中国科学院上海生命科学研究院国家基因研究中心作为中国大陆的参加单位,承担第4号染色体的测序工作。

由于水稻种质资源丰富且控制重要农艺性状的基因存在大量的序列变异,随着新一代测序技术的发展及测序成本降低,近年来开展了大量种质的基因组重测序。2011 年,我国科学家对50 个水稻品种进行基因组重测序并构架遗传变异数据库,首次对野生稻和栽培稻的

基因组进行大规模的遗传多样性分析,为挖掘野生稻优良基因,加快高产、优质水稻品种培育奠定了理论基础。

1.2我国水稻功能基因组研究计划

水稻基因组序列的获得为基因功能研究奠定了基础。“功能基因组学”的主要任务是解析这些序列的功能及组装结构,并在此基础上揭示各种生命现象所涉及的基因及其表达调控的机理,最终阐明基因组的功能。我国在水稻基因组测序取得进展的同时,适时启动了水稻功能基因组研究。1999 年,科技部通过国家重点基础研究发展计划(“973”项目) 和国家高技术研究发展计划(“863”计划) 开始资助中国水稻功能基因组研究。起初,中国水稻功能基因组研究主要包括 3 部分内容:(1) 建立功能基因组研究平台;(2) 开展重要农艺性状功能基因组研究;(3) 重要基因的分离克隆和功能分析。随着水稻功能基因组研究的深入,逐步拓展了功能基因组组学研究平台,主要包括:种质资源、转录组、表观组、代谢组、表型组及生物信息数据库等组学平台。重要农艺性状功能基因组研究主要包括功能基因和调控因子的分离克隆、重要农艺性状形成的调控网络解析。功能基因组研究的最终目标是应用于基因组技术育种,培育高产、优质、多抗的水稻新品种。

2 水稻基因组的测序

2.1遗传图谱

水稻是已知的单子叶植物中基因组最小的植物之一,基因组大小为450 Mb,共有12 条染色体。自1988年MeCoueh等[6]利用IR34583(籼)×Bulu Dalam(爪哇)的F2群体构建了第一张水稻分子连锁图谱(含135 RFLP标记)以来,高密度的图谱相继产生。近年来,随着分子遗传学的迅速发展,国际水稻基因组测序计划(International Rice GenomeSequencing Pr oject,IRGSP)成员国以Nipponbare、Kasalath、IR64和Azucena等水稻品种为材料,构建了1 0个饱和的遗传图谱并与表型的标记进行了整合,以创造新的遗传资源。1998年,Harushima 等[7]构建了一张高密度水稻遗传连锁图,包含2275个遗传标记,覆盖水稻基因组1521.6 c M。2001年Rice Genome Program(RGP)公布了包含3 267个RFLP分子标记的水稻分子连锁图。还利用次级三体和终级三体(telotrisomics)将经典遗传图和分子遗传图中的着丝粒位置确定,修正了分子图谱的方向,把RFLP标记定位到特定的染色体臂上;Wu等[8]构建了水稻第11和第12染色体短臂末端重复基因组区域的图谱,重复基因组区域大小是2.5 Mb,表明水稻也存在大染色体片段的重复区域。上述遗传图谱在基因定位、物理图谱的构建和基因测序中发挥了或即将发挥巨大作用。

2.2 物理图谱

水稻物理图谱的构建有利于以图位克隆技术分离目的基因,因此,基因物理定位研究是水稻基因组研究计划的一个重要方面。国际水稻基因组测序计划(IRGSP)已于2002年12月宣布,利用克隆连克隆(逐步克隆)测定法(clone by clone sequencing),提前3年完成了水稻12条染色体的碱基测序工作。日本在其中发挥着主导作用,并最先以99.99%的精度完成了最长的第1条染色体的测序工作。另外,中国12家单位,于1998年至2001年利用全基因组霰弹法(whole- genome shotgun sequencing,WGS),构建了籼稻93—11基因组工作框架图和低覆盖率的培矮64S草图,并最先向全世界公布了水稻93—11全基因组框架图。随后,美国先正达(Syngenta)公司也完成了日本晴基因组工作框架图的测序。两个框架图同时发表在2002年4月的《Science》第296期第79~99页,它们都是对IRGSP的补充。水稻基因组框架图和全长序列的精确测定虽已基本完成,但片段之间或重叠群之间仍存在一些缺口或空隙(gap),如籼、粳两个亚种的基因组工作框架图分别覆盖了水稻全基因组的95.29%和93%,碱基准确率约99%。

当前基于物理图精确测序的图谱研究表明,水稻“日本晴”全基因组己获得372.1 M b的高质量精确序列,余下的5%分布于12条染色体上的38个间隙(gaps)、10个着丝粒和10个端粒处;水稻全基因组预测有56278个基因位点,因为6498个基因位点编码10432个转录本,所以总转录本为66710;如果去除15236个转座因子相关的蛋白编码基因后,共有41042个基因位点编码非转座因子相关的蛋白,平均9.4 kb含一个基因,其中约29%的基因成族出现,约71%与拟南芥基因(Arabidopsis,28000-29000个基因)享有同源性(反过来,约90%的拟南芥基因与水稻基因享有同源性)。31439个基因位点已经得到ESTs序列、全长cDNA序列、Tiling芯片检测、大规模平行测序(massively parallel sig.Nature sequencin

g,MPSS)检测的RNA转录水平上的确认,8226个基因位点的编码蛋白序列与功能已知的蛋白质序列相同或相似,另有13632个基因位点的编码蛋白含有已知的功能域。

2.3 EST测序

大规模的ES T 测序对研究水稻基因组很有帮助, 分离和部分测序的cDNA 克隆不仅有利于构建RFLP 连锁图谱和物理图谱,而且还可以了解各类同功酶和基因家族的表达机理。大规模的EST 测序的最终目的就是要将所有表达的基因进行分类。RGP 研究小组从水稻不同组织和愈伤组织中分离和部分测序了29 000 个cDNA 克隆, 这些碱基序列翻译成氨基酸序列时存在3 个可能的阅读框, 通过PIR 数据库同源性检索,分析的cDNA 序列与已知蛋白质的编码序列具有高度同源和相似性的克隆占25 %,还有75 %的克隆编码未知功能蛋白[ 9] 。到目前为止, 公共的ES T 数据库中已有68 000 水稻EST ,私有ES T 数据库中也有120 000 多个ES T , 这些ES T 主要来自于5' -末端, 但现在对应克隆的3' -端也在测序,这就使我们可以探测多基因家族的不同成员, 有利于构建全长cDN A[ 10] 。所有公共的水稻EST 可分成大约21 000 重叠克隆群,这样就可以鉴定相同数目的表达基因, 许多表达基因与其它物种的基因表现出相似性。因为水稻富含CG 的密码子较多,只有在蛋白质水平上进比较, 表明水稻与大多数植物和有机体分享相同的基因,但水稻ESTs 的30 %与鉴定的无同源性。这就揭示在了解水稻基因功能前存在间隙,另一方面, 尽管水稻的密码子较多, 拟南芥ES Ts 的 1 %~ 2 %与水稻ESTs在核苷酸序列水平相一致[ 11] ,这些保守序列可与许多不同基因组杂交,尔后进行线性排列。

2 .4基因组测序

国际水稻基因组测序计划( IRGSP) 由1997 年在新加坡举行的植物分子生物学会议发起; 1998 年,中国、日本、美国和韩国的代表共同草拟了资源共享等组织议程;2000 年在美国的C1emson 召开了协调会,对12 条染色体测序任务进行了分工(表1) 。测序工作分为测序、填补缺口和最后完成三个阶段。对于最后测序结果的标准, IRGSP 规定为误差率低于1/ 10000 (精度99. 99 %) 。第二阶段是测序工作的瓶颈,测序阶段留下的缺口需要补

平,水稻特殊序列组成(易于形成二级结构和GC 富集区) 和重复序列造成的低质量测序结果需要改进[22 ] 。通过各研究机构和私营公司的共同努力, IRGSP 已于2002 年12月宣布,利用克隆连克隆(逐步克隆) 测定法(cloneby clone sequencing) ,提前 3 年完成了水稻12 条染色体的碱基测序工作。

3 水稻基因组的信息

3.1水稻基因组的概述

水稻基因组有12 条染色体,第 1 染色体最长,第10 染色体最短;核基因组序列总长约430 Mb ,是拟南芥基因组的3. 7 倍或人类基因组的1/ 6. 7 ,预测基因总数达32 000~56000 个,可能多于人类基因总数。籼稻是亚洲和世界其他一些地方广为种植的主要水稻亚种,同时也是我国杂交水稻的主要遗传背景之一,为解决中国人民的粮食问题作出了巨大贡献。籼稻93211 基因组框架图,共完成462 万个成功反应,得到了127 550 个重叠群,覆盖深度为4. 2 ×,预测基因组长466 Mb ,实测的全长非冗余序列为409. 76 Mb ,大约覆盖了水稻全基因组的95129 % ,碱基准确率大于99 % ;估计基因的大小为4 500 bp ,预测基因数为4. 6 万~5. 6 万个,拷贝基因占基因总数的74 % ,转位因子占全基因组的2419 % ,简单重复序列数为全基因组的 2. 1 % ;基因内GC 含量的梯度明显;外显子变异少、内含子变化大;水稻与玉米、小麦和大麦之间有广泛的共线性,但水稻与拟南芥的共线性是有限的。

3. 2水稻全基因组的完成图

水稻基因组框架图和全长序列的精确测定虽已基本完成,但片段之间或重叠群之间仍存在一些缺口或空隙(gap) ,如籼、粳两个亚种的基因组工作框架图分别覆盖了水稻全基因组的95. 29 %和93 % ,碱基准确率约99 % ;第 1 染色体和第4 染色体的全长序列之间也分别还有8 个和7 个缺口。由于无数重复序列,第 1 染色体390 个PAC/ BAC 克隆中有4个克隆仍缺乏一致性,还属于测序的第1 阶段;16个克隆属于第2 阶段,370 个克隆属于第3 阶段。框架图仍需增加更大片段读序,构建更大跨度的重叠群(支架) ,填充这些顺序间隙( sequence gap) 和物理间隙(physical gap ) ,结合现有的物理图,改善框架图。全长序列还可用荧光标记终止法、引物步查法和少核苷酸的PCR 反应等方法填补缺口或纠正组装错误。最终,为世界上所有从事水稻以及其他禾谷类作物研究的生物学家和遗传学家提供一个高度准确并进行精细注释的水稻基因组完成图。

4 未来水稻功能基因组学的发展趋势

4.1水稻2020研究计划(RICE 2020)

RICE 2020 计划是我国科学家基于全球水稻功能基因组研发现状和生物技术手段的不断创新,适时提出的关于水稻功能基因组研究中长期发展的国际合作计划,包括以下主要内容:建立国际共享的水稻功能基因组研究的技术平台和基因资源;解码水稻全部基因的生物学功能;开展系统的表观基因组学和基因表达分析研究,明确基因的调控网络;建立蛋白质组和蛋白质互作组;挖掘栽培稻和野生稻的自然变异和基因组多样性;发展生物信息学,建立海量数据搜索和分析的数据库平台;建立以基因组研究成果为基础的分子设计育种技术。我国水稻功能基因组在RICE 2020 计划的指导下已取得傲人成果,但考虑到水稻基因组的复杂性,RICE2020 计划的总体目标仍然是下一阶段水稻功能基因组研究的灯塔。

4.2重要农艺性状形成的分子网络解析

我国水稻功能基因组研究始终以水稻重要农艺性状的分子网络剖析和基因组遗传改良对技术和基因资源的需求为导向。经过几轮水稻功能基因组项目的实施,我国在水稻产量、品质、抗病虫、抗逆、养分高效利用等重要农艺性状功能基因解析方面取得突破性进展,相关的功能基因及其调控机制表现出较好的育种应用前景。由于重要农艺性状形成的分子网络的复杂性,目前获得的功能基因仍然屈指可数,相关的分子调控机制了解还不透彻。因此,重要农艺性状形成的分子网络解析在相当长的一段时期内仍然是水稻功能基因组研究的重点。未来水稻功能基因组研究将进一步发掘种质资源的多样性,拓展转录组学、表观组学、蛋白质组学和代谢组学等组学研究平台,分离克隆控制水稻重要农艺性状的功能基因及调控元件,应用于水稻重要农艺性状的遗传改良。

4.3水稻4D基因组学(RICE 4Dome)

基于水稻基因组测序技术的革新及已有的功能基因组研究平台,从整体上开展水稻4D 基因组学研究已成为今后水稻功能基因组研究新的增长点。针对水稻重要性状的生物学问题( 产量、抗逆、品质、杂种优势等),系统研究水稻基因组三维空间结构及其动态变化对基因转录、复制、调控等生物过程的作用机制,对解析水稻生长发育环境适应的分子机理,指导水稻的遗传改良有重大意义。

4.4全基因组育种技术

充分利用高通量测序技术获得的大量水稻品种重测序结果,将世界上最先进的分子标记检测技术和我国10 多年的水稻基因组研究成果积累结合起来,开展水稻全基因组选择育

种技术,搭建了水稻全基因组育种芯片技术平台,有望现育种过程的科学控制:有目的地选择优良性状相关位点进行组合,创造优良基因型;在导入目标性状,使受体亲本主要缺点得到改良的情况下,高度保持其原有优良性状。该技术将对促进我国育种行业转型,从传统育种向以基因组信息为依据的科学育种起到重要影响,提高我国种业创新能力以及与国际种业巨头竞争的实力。水稻全基因组选择育种技术平台的建设和育种应用将为我国其他作物的全基因组选择育种技术提供示范和经验。

参考文献

1.Galbraith D W, Harkins K R, Maddox J R, et al . Rapid Flow Cytometric Analysis of the Cell Cycle in Intact Plant Tissues[J]. Science, 1983, (220):1049~ 1051.

2.BvanM, Bancroft I, Bent E, et al. Analysis of 1. 9 Mb of Cont iguous Sequence from Chromosome 4 of Arbidopsi s thaliana [J] .Nature, 1998, (391):485~588.

3. Izawa T , Shimamoto K. Becoming a model plant : the importance of rice to

plant science. Trends Plant Sci ,1996 , 1 :95 - 99.

4. Yu J , Hu S N , Wang J , et al. A draft sequence of the rice genome ( O2

ryza sativa ssp. indica) . Science ,2002 , 296 :79 - 92.

5. Goff S A , Ricke D , Lan T H , et al. A draft sequence of the rice genome

( Oryza sativa L. ssp. japonica) . Science ,2002 , 296 : 92 - 100.

6.Sasaki T , Matsumoto T , Yamamoto K, et al. The genome sequence and

structure and rice chromosome 1. Nature ,2002 , 420 : 312 - 316.

7.肖景华, 吴昌银, 袁猛, 等. 中国水稻功能基因组研究进展与展望. 科学通报, 2015, 60: 1 711-22

8. 新闻集锦. 中国稻米, 2006, 12: 60

9.鲁伟, 范敬群. 主要动植物功能基因组研究获系列突破[N/OL]. 科学时报, 2011-06-17. htt p://https://www.360docs.net/doc/235620633.html,/sbhtmlnews/2011/6/245511.html

10.张启发. 我国水稻功能基因组研究跻身领先行列[N/OL]. 科技日报, 2016-03-13. http://di https://www.360docs.net/doc/235620633.html,/http_https://www.360docs.net/doc/235620633.html,/kjrb/html/2016-03/13/content_333704.htm?div=-1

水稻基因组学的的研究进展

基因组学课程论文 所在学院生命科学技术学院 专业14级生物技术(植物方向) 姓名金祥栋 学号2014193012

水稻基因组学的研究进展 摘要:随着模式植物——拟南芥和水稻基因组测序的完成,近年来关于植物基因组学的研究越来越多。水稻是世界上重要的粮食作物之一,养活着全世界近一半的人口。同时南于水稻基冈组较小、易于转化及与其他禾本科植物基因组的同线性和共线性等特点,一直被作为禾本科植物基因组研究的模式作物。水稻基因组测序的完成及种质资源的基因组重测序,为水稻功能基因组研究奠定了基础。现综述我国水稻基因组测序和功能基因组研究历史,重点介绍了近年来在水稻基因组序列分析中获得的几项最新的研究结果。 关键词:水稻;基因组测序;功能基因组;研究历史;基因组学;研究进展 The recent progress in rice genomics research Abstract: With the completion of genome sequencing ofthe model plant-- Arabidopsis and rice,more and more researches on plant genomics emerge in recent years. Rice i s one of the most important crops in the world, raised nearly half of the world popul ation. At the same time in south rice Keegan group is smaller, with linear and linear features such as easy transformation and other gramineous plant genome, has been use d as a model crop for plant genome research of Gramineae. Genome sequencing and germplasm resources the rice genome sequencing completed laid the foundation for ric e functional genomics research. This article reviews the history and function of our ge nome sequencing of rice genome research, introduces several latest research results in recent years in the analysis of rice genome sequences. 前言 基因组是1924年提出用于描述生物的全部基因和染色体组成的概念,是研究生物基因结构与功能的学科,是在遗传学的基础上发展起来的一门现代生物技术前沿科学,也是现代分子生物学和遗传工程技术所必要学科,是当今生物学研究领域最热门、最有生命力、发展最快的前沿科学之一。基因组学的主要任务是研究探索生物基因结构与功能,生物遗传和物理图谱构建,建立和发展生物信息技术,为生物遗传改良及遗传病的防治提供相关技术依据。 进入21 世纪,随着全球化、市场化农业产业发展和全球贸易一体化格局的逐步形成,我国种业正面临前所未有的严峻挑战,主要表现在:依靠传统育种技术难以大幅度提高粮食单产;土地资源短缺,农业环境污染日益突出;种质资源发掘、基因组育种技术亟需创新等。水稻不仅是重要的粮食作物,由于其基因组较小且与其他禾本科作物基因组存在共线性,以及具有成熟高效的遗传转化体系,已成为作物功能基因组研究的模式植物。因此,水稻基因组研究对发展现代农作物育种技术、提升种业国际竞争力和保障粮食有效供给具有重大战略意义。 基因组研究主要包括三个层次:①结构基因组学,以全序列测序为目标,构建高分辨率的以染色体重组交换为基础的遗传图谱和以DNA 的核苷酸序列为基础的物理图谱。②功能

【免费下载】真菌基因组学研究进展

真菌基因组学研究进展 真菌为低等真核生物,种类庞大而多样。据估计,全世界约有真菌150万种,已被描述的约8万种。真菌在自然界分布广泛,存在于土壤、水、空气和生物体内外,与人类生产和生活有着非常密切的关系。许多真菌在自然界的碳素和氮素循环中起主要作用,参与淀粉、纤维素、木质素等有机含碳化合物及蛋白质等含氮化合物的分解。有些真菌如蘑菇、草菇、木耳、麦角、虫草、茯苓等可直接供作食用和药用,或在发酵工业、食品加工业、抗生素生产中具有重要作用。然而,也有些种类引起许多植物特别是重要农作物的病害,如水稻稻瘟病、小麦锈病、玉米腥黑穗病、果树病害等。少数真菌甚至是人类和动物的致病菌,如白色假丝酵母Candida albicans等。因此,合理利用有益真菌,控制和预防有害 真菌具有重要意义。 本文整理了已完成基因组序列测定的真菌的信息,并对真菌染色体组的历史、测序策略及其基因组学的研究进展进行了评述。 1真菌染色体组的研究历史和资源 1986年美国科学家Thomas Rodefick提出基因组学概念,人类基因组计划带动了模式生物和其它重要生物体基因组学研究。阐明各种生物基因组DNA中碱基对的序列信息及破译相关遗传信息的基因组学已经成为与生物学和医学研究不可分割的学科。由欧洲、美国、加拿大和日本等近百个实验室六百多位科学家通力合作,1996年完成第一个真核生物酿酒酵母Saccharomyces cerevisiae的基因组测序,这 对于酵母菌类群来说是一个革命性的里程碑,并且激起了真核基因功能和表达的第一次全球性研究(Goffeau etal,1996)。随后粟酒裂殖酵母Schizosaccharomyces pombe(Wood etal.2002)和粗糙脉孢 霉Neurospora crassa(Galagan etal.2003)染色体组的完成显露出酿酒酵母作为真菌模式生物的局限性。尽管如此,真菌染色体组测序的进展最初是缓慢的。为加快真菌染色体组研究的步伐,2000年由 美国Broad研究所与真菌学研究团体发起真菌基因组行动(fungal genome initiative,FGI),目的是 促进在医药、农业和工业上具有重要作用的真菌代表性物种的基因组测序。2002年2月FGI发表了第 一份关于测定15种真菌基因组计划的白皮书。2003年6月,真菌基因组行动发表了第二份白皮书,列 出了44种真菌作为测序的目标,强调对其中10个属即青霉属Penicillium、曲霉属Aspergillus、组 织胞浆菌属Histoplasma、球孢子菌Coccidioides、镰刀菌属Fusarium、脉孢菌属Neurospora、假丝 酵母属Candida、裂殖酵母属Schizosaccharomyces、隐球酵母属Cryptococcus和柄锈病菌属Puccin& 的物种优先进行测序。之后,经过FGI、法国基因组学研究项目联(G6nolevures Consortium)、美国能 源部联合基因组研究所(The DOE Joint Genome Institute,JGI)DOE联合基因组研究所、基因组研究 院(The Institute for Genomic Research,TIGR)、英国The Wellcome Trust Sanger InstimteSanger和华盛顿大学基因组测序中心等共同努力;得到包括美国国家人类染色体研究所、国 家科学基金会、美国农业部和能源部等的资助,也有来自学术界和产业集团如著名的 Monsanto、Syngenta、Biozentrum、Bayer Crop Science AG和Exelixis等公司的持续合作,在最近 的几年里,真菌基因组学研究取得重大突破。至2008年6月1日,共有3734种生物的全基因组序列测定工作已经完成或正在进行,公开发表812个完整的基因组,其中,70余种真菌基因组测序工作已经 组装完成或正在组装,分别属于子囊菌门、担子菌门、接合菌门、壶菌门和微孢子虫(Microsporidia) 的代表。此外,还有Ajellomyces dermatitidis和Antonospora locustae等20余种真菌基因组序列 正在测定中(Bemal etal.2001)。这些真菌都是重要的人类病原菌、植物病原菌、腐生菌或者模式生物,基因组大小为2.5—81.5Mb,包含酵母或产生假菌丝的酵母、丝状真菌,或者具有二型性(或多型性) 生活史的真菌,拥有与动物和植物细胞一样的的细胞生理学和遗传学特征,包括多细胞性、细胞骨架结

进化基因组学研究进展

研究进化基因组学进展 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 正文 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。 一、目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学、基因注释的等方面;在新基因方面

发现毒理学的研究进展

*基金项目:国家高技术研究发展计划(863计划)基金(2002AA2Z342D 和2004A A2Z3774) 综 述 发现毒理学的研究进展 * 王全军,吴纯启,廖明阳 (军事医学科学院毒物药物研究所,国家北京药物安全评价研究中心,北京100850) [摘要] 发现毒理学又称为开发前毒理学(Predevelopmental Toxicology),是指在创新药物的研发早期,对所合成的系列新化合物实体(New Chemical Entities,NCEs)进行毒性筛选,以发现和淘汰因毒性问题而不适于继续研发的化合物,指导合成更安全的同类化合物。发现毒理学的研究既可加快药物研发进程,提高研发成功率,又减少资源消耗。笔者就发现毒理学研究的定义、必要性、研究内容、研究方法和我国当前的研究现状作一简述。 [关键词] 发现毒理学;新化合物实体(NCEs);毒性筛选 [中图分类号]R994 1;R965 1 [文献标识码]A [文章编号]1003-3734(2005)08-0958-04 Progresses of discovery toxicology research W ANG Quan jun,W U Chun qi,LI AO Ming yang (Institute o f Pharmacology and To xicology ,Academ y o f Military Medical Sciences ,National Beijing Center f o r Drug Sa fety Evaluation and Research ,Beijing 100850,China )[Abstract ] Discovery toxicology,also named predevelopmental toxicology,is to screen toxicities of new che mical entities (NCEs)in the discovery phase of ne w drug research,to discover and eliminate the compounds that are unsuitable for further development due to their toxicity as early as possible,and to optimize the next more safe compounds.Discovery toxicology research can break through the limitation and improve the efficiency of drug research.This article will present the concept of discovery toxicology,the essentiality of discovery toxicology research.The content,methods and current status of discovery toxicology in China are described too. [Key words ] discovery toxicology;new chemical entities(NCEs);toxicity screening 药物研发成功与否部分取决于在研发早期严格淘汰不适合进一步研发的化合物。在药物临床前阶段,毒性问题是研发失败的主要原因。在研发早期尽早发现候选化合物的潜在毒性是毒理学研究的重要问题。 多年来,新药研发越来越多地依赖于生命科学技术的研究进展。在新药设计方面,化学家参考药物作用靶、内源性配体和底物的化学结构特征,应用计算机辅助药物设计手段发现选择性作用于靶位的新药;在新药活性筛选方面,现代药物组合化学与体外高通量筛选的成功结合极大地提高了先导化合物的发现速度;在新药的药动学(ADME)研究方面,多种基于药物代谢酶或转运体的药动学筛选模型已开始应用于新药开发研究。这些新技术的成功运用大 大加快了药物研发早期的药物发现、药物合成、药效筛选的进程,从而产生大量的候选化合物。传统药物毒理学研究在时间、经费、样品消耗量和动物数等方面都花费巨大,在药物毒作用机制研究方面难以阐明一些临床使用药物的毒性机制和理想的应急解毒措施,因此传统药物毒理学无法满足因新的生物技术而产生的海量候选化合物的毒性筛选研究,成为限制整个药物研发的瓶颈。而发现毒理学(Discovery Toxicology)的研究将打破这个瓶颈,既可加快药物研发进程,提高研发成功率,又减少资源消耗。笔者就发现毒理学研究的含义、必要性、研究内容、研究方法和我国当前的研究现状作一简要综述。1 定义、产生背景和产生的必要性 伴随着科学技术的发展,当代毒理学的发展将 958

微生物基因组研究进展及意义

微生物基因组研究进展及其意义 近年来,病原微生物的基因组研究取得了飞速的进展。所谓基因组研究是指对微生物的全基因进行核苷酸测序,在了解全基因的结构基础上,研究各个基因单独或数个基因间相互作用的功能。由于过去人们大多从表型分析入手,寻找已知功能的编码基因,实际只了解微生物中极少数的基因,如链球菌的链激酶基因、结核杆菌编码的热休克蛋白基因等。还有大量未知基因未被发现。通过基因组研究,则从根本上揭示了微生物的全部基因,不仅可发现新的基因,还可发现新的基因间相互作用、新的调控因子等。这一研究将使人类从更高层次上掌握病原微生物的致病机制及其规律,从而得以发展新的诊断、预防及治疗微生物感染的制剂、疫苗及药品。此外,新发现的微生物酶及蛋白还可能有在工农业生产上的应用价值。因此,全球除已完成了70余株覆盖重要病毒科的病毒代表株全基因组研究外,据美国基因组研究所(The Institute for Genomic Research, TIGR)报道,目前已完成了19种微生物基因组测序,其中11种与人类及疾病相关(嗜血流感杆菌,生殖道支原体,肺炎支原体,幽门螺杆菌,枯草杆菌,伯氏疏螺旋体,结核杆菌,梅毒螺旋体,沙眼衣原体,普氏立克次体)。另外,还有40余种微生物已被登记正在进行测序,预计在1999~2000年完成〔1〕。 病毒基因组研究进展 病毒因其基因组小,是进行基因组研究最早的生物体。早在1977 年已完成了噬菌体DNA的全基因测序。存在于脊髓灰质炎疫苗中的SV40,是最早完成全基因测序的与疾病相关的病毒;此后,许多病毒均已完成了全基因测序,并根据序列的开放阅读框架(ORF)对编码蛋白进行了推导。已对相当一些病毒蛋白进行了重组表达,还对一些病毒基因编码的调控序列进行了研究。除一般大小的病毒已完成了基因组测序,对大基因组病毒,疱疹病毒科,如水痘病毒基因组为0.125Mb(Mega-basepair,兆碱基对)〔2〕。巨细胞病毒,基因组为0.229Mb〔3〕。我国已对痘苗病毒天坛株(约0.2Mb)进行了全基因测序,发现与国外的痘苗毒株序列有明显的差异〔4〕。我国还对甲、乙、丙、丁、戊、庚型肝炎病毒进行了国内毒株的全基因测序。近来还对国内2株发现的虫媒病毒毒株完成了全基因测序。我国从不同来源的标本中发现了不少乙肝病毒变异株,有的具有特殊的生物学特性〔5〕。对病毒基因中调控因子的分析,发现了与乙肝病毒增强子作用的新细胞核因子〔6〕。 因此,目前对病毒的基因组研究已进入了后基因组阶段,即从全基因水平研究病毒的生物学功能,同时发现新的基因功能。对于医学病毒学当前主要方向是研究病毒基因组中与致病及诱生免疫应答相关的基因,从而揭示和解决迄今尚未解决的问题,以达到控制或消灭一些重要病毒感染的目的。 建议目前可进行后基因组研究的领域为: 1.病毒持续性感染:基因组中与持续性感染相关的基因,基因变异或调控因子研究。已报道的乙肝病毒的前核心基因出现终止密码突变,

水稻基因组进化的研究进展

水稻基因组进化的研究进展 水稻是世界上重要的粮食作物之一,养活着全世界近一半的人口。同时南于水稻基冈组较小、易于转化及与其他禾本科植物基因组的同线性和共线性等特点,一直被作为禾本科植物基因组研究的模式作物。水稻是第一个被全基因组测序的作物,目前栽培稻2个亚种全基因组测序工作已经完成:粳稻品种日本晴(Nipponbare)通过全基因组鸟枪法和逐步克隆法被测序,籼稻品种扬稻6号(9311)通过全基因组鸟枪法被测序。除核基因组外,水稻叶绿体和线粒体基因组也于1989年和2002年分别被测序。水稻2个亚种的全基因组测序完成,一方面开启了植物比较基因组学的大门,另一方面为人们在基冈组水平上鉴定出所有水稻基因并分析其功能奠定了基础,同时也使得人们对植物进化的认识,尤其是对禾本科植物进化的了解,逐步从系统分类和分子标记水平进入到了基因组序列水平。许多研究者通过对水稻基因组序列的分析,利用生物信息学工具,对水稻在基因组水平上的进化进行了大量研究。 1 水稻及其他禾本科植物基因组的古多倍体化过程 水稻是典型的二倍体植物,其核基因组中共有12条染色体。在水稻基因组被完整测序之前,人们就已经采用分子标记、DNA重复元件等方法探究水稻基因组的古多倍体化(polyploidization)过程,并发现了一些重复的染色体片段。随着水稻基因组测序计划的完成,越来越多的证据表明水稻基因组曾发生过全基因组复制(whole genome duplication),即古多倍体化过程。 Golf等利用鸟枪法完成了粳稻品种日本晴全基因组的测序工作,并利用同义替换率分布方法(Ks- based age distribution)提出水稻基因组可能发生过一次全基因组复制过程。此后多家研究机构和一些研究者对水稻基因组中的重复片段进行了研究,虽然得出的结论不尽相同,但均发现水稻基因组中存在大量的重复片段。根据所采用方法和参数的不同,这些重复片段占整个水稻基因组的15%~62%。Yu 等在水稻基因组中发现了18对大的重复片段,大约占整个基因组的65.7%。其中17对重复片段形成的时间很相近,发生在禾本科物种分化之前;最近的一次片段复制事件发生在水稻11和12号染色体之间,在禾本科物种分化之后。 水稻基因组被测序之后,许多科研机构对基因组数据进行了详尽的注释。其中应用比较广泛的是美国基因组研究院(the institute for genome research,TIGR)和日本农业生物科学研究所(national in- stitute of agrobiological sciences,NIAS)的水稻基因组注释信息。TIGR根据其注释的结果和基因相似性矩阵(gene homology matrix,GHM)方法,检测到大量染色体间的重复片段,这些重复片段几乎覆盖了整个水稻基因组。TIGR水稻基因组注释数据库从第4版开始便增加了对片段重复的注释,该分析是利用DAGChainer程序进行的,重复片段采用100 kb和500 kb 2种参数模型进行了染色体片段的基因共线性分析(图1),这是全基因组复制的有力证据。根据复制片段上同源基因的分子进化分析,估计全基因组复制发生在大约7 000万年前,在禾本科物种分化之前。此外,Zhang等利用TIGR更新的数据进行分析,采用同义替换率分布方法检测到另一次更古老的(单、双子叶植物分化前)基因组复制事件,说明水稻基因组至少经历了2次全基因组复制过程。 全基因组复制或多倍体化是植物尤其是禾本科作物物种形成和进化过程中非常重要的事件,大部分开花植物在进化过程中均经历了多倍体化过程。基因组加倍后,再经历所谓的二倍体化过程(diploidization),进化成当代的二倍体物种,并造成大量重复片段中基因的重排和丢失。Salse等研究发现基因组复制事件对禾本科植物的物种形成和演变具有重要作用。他们认为禾本科植物的祖先物种是一个基因组内包含5条染色体的物种,在进化过程中,首先在距今5 000~7 000万年前经基因组复制产生了10条染色体;此后,在基因组内发生了2次染色体置换和融合而形成了12条中间态染色体。以这12条中间态染色体为基础,逐渐分化出水稻、小麦、玉米和高粱的基因组,其中水稻基因组保留了原有的12条中间态染色体,而小麦、玉米和高粱均又发生了染色体丢失和融合才形成了现有的基因组。水稻全基因组复制片段是至今为止在动、植物基因组中发现的最为清晰、完整的基因组复制的遗迹。水稻之所以保存这么完整,一方面是水稻基因组保持了12条中间态染色体的基本形态,另一方面可能与水稻基因组相对较稳定有关。 2水稻籼粳2个亚种的分化 水稻是世界上最重要的粮食作物之一,在其11 500多年的栽培历史中,因适应不同的农业生态环境而产生了丰富的遗传多样性和明显的遗传分化。长期以来,基于形态性状、同工酶以及对一些化合物不同反应的研究,把亚洲栽培稻(Oryza sativa L.)分为籼稻(indica)和粳稻(japonica)2个亚种。其中籼亚种耐湿耐热,主要适应于热带和亚热带等低纬度地区,而粳亚种则耐寒耐弱光,适应于高纬度和高海拔地区种植。这2个亚种间不仅产生了生殖隔离的基因库,还在形态特征、农艺性状和生理生化反应等方面存在明显的差异。近期群体

基因组学研究的应用前景

基因组学研究的应用前景摘要:基因组学是一门研究基因组的结构,功能及表达产物的学科,基因组的结构不仅是蛋白质,还有许多复杂功能的RNA,包括三个不同的亚领域,及结构基因组学,功能基因组学和比较基因组学。近几年,基因组学在微生物药物,细菌,病毒基因,营养基因方面都有进展,其前景是光明的。 关键词:基因研究未来结构 一、微生物药物产生菌功能基因组学研究进展 微生物药物是一类化学结构和生物活性多样的次级代谢产物,近年来多个产生菌基因组序列已经被测定完成,在此基础上开展的功能基因组研究方兴未艾,并在抗生素生物合成,形态分化,调控,发育与进化及此生代谢产物挖掘等方面有着新的发现,展现出广阔的研究前景,青霉素及其衍生的《》内酰胺类抗生素极大地改善了人类的卫生保健和生活质量,并促进研究人员不断对其工业生产菌株类黄青霉进行遗传改良和提高其产量,从而降低生产成本。经过60年的随机诱变筛选,当前青霉素产量至少提高了三个数量级,同时,青霉素的生物合成机理也得到了较为清晰的阐述,其pcbAB编码的非核糖体肽合酶ACVS~DPcbc编码的异青霉素N合成酶IPNS位于细胞质中,而苯乙酸COA连接酶PenDE编码的IPN酰基转移酶位于特殊细胞器一微体中。 研究发现,青霉素合成基因区域串联扩增,产黄青细霉胞中微体含量增加都可显著提高青霉素产量。然而随机诱变筛选得到的黄青霉工业菌株高产的分子机制尚不明确。为此,2008年荷兰研究人员联合国美国venter基因组研究所对黄青霉wisconsin54—1225进行了基因组测试和分析,并进一步利用DNA芯片技术研究了wisconsin54—1255及其高产菌株DS17690在培养基中是否添加侧链前体苯乙酸情况下的转录组变化,四组数据的比较分析发现,有2470个基因至少在其中一个条件下是差异表达的,根据更为严格的筛选标准,在PPA存在的条件下,高产菌相比测序菌株有307个基因转录是上调的,和生长代谢,青霉素前体合成及其初级代谢和转运等功能相关,另有271个基因显著下调,主要是与生长代谢及发育分化相关的功能基因。 二、乳酸菌基因组学的研究进展

环境基因组学的研究进展及其应用

环境基因组学的研究进展及其应用 贾海鹰 张徐祥 孙石磊 赵大勇 程树培* (南京大学,环境学院,南京,210093) E-mail(jhy194@https://www.360docs.net/doc/235620633.html,) 摘 要:本文系统地介绍了环境基因组学的基本概念、研究的主流技术平台及其在环境污染控制、健康风险检测与评价等方面地应用,并阐明了环境基因组学与生物信息学两者之间的关系。环境基因组学在分子水平上揭示了环境污染物与生物之间的相互作用,为检测、控制环境污染维护环境健康注入了新的活力。 关键词:环境基因组学 生物信息学 健康风险评价 环境污染 环境健康 1.引言 2003年4月14日,人类基因组计划(Human Genome Project)顺利完成。HGP成功地绘制出了遗传图谱、物理图谱、序列图谱和转录图谱4张图谱。这标志着人类基因组计划的所有目标全部实现。至此,HGP的研究发生了翻天覆地的变化,已从结构基因组学研究时代进入了功能基因组(后基因组)时代[1-2],因此也就有了“人类后基因组计划”。HGP正朝着生物信息科学、计算机生物技术、数据处理、知识产权及社会伦理学研究等多方面发展,对生命科学、环境科学、医疗卫生、食品制药、人文科学各领域产生了广泛而深远的影响。环境基因组学(environmental genomics)是在人类基因组基础上发展的功能基因组内容之一,由基因组学和环境科学交叉融合而成,是一个近期发展起来的新型边缘学科,是基因组学技术和成果在环境污染保护与控制和生态风险评价中的应用,在其发展的短短的几年时间内已渗透到环境科学研究的各个研究领域并发挥着日益重要的作用。 2.环境基因组学的概念与定义 至今,国内外学者对环境基因组学还没有统一明确的定义。但是,大多数学者认为,环境基因组学(environmental genomics)的概念与毒理基因组学(toxicogenomics)密切相关。自从1999年Nuwaysir等[3]首次提出毒理基因组学概念至今,在短短的八年的时间里这一概念不断地发展和完善着。目前人们普遍采纳的定义有两种,一种是美国国家毒理学规划机构给出的定义[3]:毒物基因组学是研究外来化学物对基因活性和基因产物的影响及相互作用的科学;另一种是由世界卫生组织给出的定义[3],认为毒物基因组学是一门与遗传学、基因组水平上RNA表达(转录组学) 、细胞和组织范围的蛋白表达(蛋白质组学)、代谢谱(代谢组学) 、生物信息学和常规毒理学结合,以阐明化学物作用模式和基因-环境相互作用的潜在意义的科学。1998年4月4日,美国国会顾问环境卫生科学委员会正式投资专项基金进行环境基因组计划研究,其目的是专门研究与环境相关疾病的遗传易感性,寻找对化学损伤易感的基因,鉴定对环境发生反应基因中有重要功能的多态性,并确定它们在环境暴露引起疾病的危险度方面的差异;在疾病流行病学中研究基因与环境的相互作用,从而改善遗传分析技术,优化研究设计,建立样品资源库,把公用的多态性应用于社会、法律和伦理学[4-7]。2001年,Miller 提出环境基因组(Environmental Genomics)是在人类基因组(HGP)基础上发展起来的后 - 1 -

狂犬病病毒的基因分型及其分子流行病学研究进展

文章编号:1002-2694(2006)03-0271-03 狂犬病病毒的基因分型及其分子流行病学研究进展 张建明1,2,严延生2 中图分类号:R37319 文献标识码:A 狂犬病(Rabies)是由狂犬病病毒(rabies virus,RV)引起的人和所有哺乳动物的急性致死性中枢神经系统的自然疫源性疾病。人狂犬病的临床特征是恐水、怕风、咽肌痉挛和进行性麻痹等,尤以恐水症状为突出,一旦发病,死亡率几乎达100%〔1〕。狂犬病是全球性的严重公共卫生问题,近些年来,随着宠物增多又缺乏相对有效的管理控制措施,狂犬病的发病又呈现上升趋势,在分子水平上进行狂犬病病毒流行病学研究对于阐明病毒的毒力变异和抗原飘移、了解病毒的宿主特异性和病毒系统发育的时空进程,以便更好地控制狂犬病都具有重要意义,本文就狂犬病病毒的基因分型及其分子流行病学研究进展作一综述。 1 狂犬病病毒的基因组结构和分型 111 基因结构 狂犬病病毒的基因组为单股负链不分节段的RNA,全长约12kb(11215kb)。由基因组的3’端至5’端依次排列着N、NS、M、G、L5个结构基因,各基因的序列长度分别为1424、991、805、1675和6475个核苷酸,它们分别编码核蛋白(N)、磷蛋白(P)、基质蛋白(M)、糖蛋白(G)和大蛋白(P或RNA依赖的RNA转录酶蛋白)。每个基因均由3’端非编码区、编码区和5’端非编码区三部分组成。在N 基因前有1个50个核苷酸的先导序列,在L基因后有约70个核苷酸的非翻译区。在N2NS、NS2M、M2G和G2L基因间分别有2、5、5和423个核苷酸的间隔序列,G2L基因间的423核苷酸间隔序列是一个伪基因。 112 基因分型 狂犬病病毒的N蛋白基因相对恒定,点突变较少,而且与病毒的型别有关,可以作为群变异的指标〔2〕。1993年Bourhy等〔3〕通过测定狂犬病病毒属中具有代表性的病毒分离物N基因的序列,将狂犬病原区分为6个基因型:基因型1(狂犬病病毒,RABV)、基因型2(拉各斯蝙蝠病毒,LBV)、基因型3(莫科拉病毒,MO KV)、基因型4(杜文海洛病毒,DUVV)、基因型5(欧洲蝙蝠狂犬病病毒1,EBLV2 2)、基因型6(欧洲蝙蝠狂犬病病毒2,EBLV22)。1998年Skerratt等〔4〕从澳大利亚的蝙蝠中分离出狂犬病病毒的基因型7(澳大利亚蝙蝠狂犬病病毒,ABLV)。2001年de Mattos 等〔5〕对狂犬病病毒基因分型进行比较研究,根据N基因核苷酸序列的同源性绘制了狂犬病病毒属成员间的种系发生关系图,属内成员N蛋白序列的同源性由78%(MO KV和EBLV22)至93%(DUVV和EBLV21),基因型和早先根据抗原性划分的血清型基本一致。7个基因型又可分为2个进化组:第一组包括基因型1、4、5、6和7;第二组含基因型2和3。同组内1种病毒的抗体与其他病毒可产生交叉反应,不同组的病毒之间不能产生交叉免疫保护。非洲的DUVV和EBLV21亲缘关系较近,而LBV和MO KV在系统发育上则和RABV亲缘关系较远。ABLV与古典的RABV亲缘关系最密切。在基因型内还可分辨出各个不同的病毒聚簇,这些聚簇反映了病毒间历史的地理的或宿主种别的关系。 2 狂犬病的分子流行病学研究 211 流行现状 狂犬病呈全球性分布,只有南极洲和少数岛国(日本、挪威、冰岛、芬兰、瑞典、英国、马来西亚、新加坡、新西兰等)无狂犬病发生。亚洲是狂犬病高发地区,估计每年有近40000人死于狂犬病,约占全球因犬伤死亡的90%〔6〕。亚洲狂犬病发病率以印度为最高,中国、菲律宾、孟加拉、巴斯基坦、越南、泰国等也相当高〔7〕。非洲普遍存在狂犬病且大面积流行,病原型别复杂,感染来源更复杂,最早发现的狂犬病病毒的4个血清型中有3个存在于非洲,除家犬、猫外,非洲南部至少有30种属于5个科的肉食动物被确诊患狂犬病。欧洲由于实行针对狐狸的口服免疫策略〔8〕,近10年来,动物狂犬病已明显下降,其流行病学也发生了改变,西欧国家采取了对犬进行免疫,同时对犬进行严格管理,已基本上控制或消灭了人、畜狂犬病。狂犬病在中、南美洲长期以来一直是严重的公共卫生和经济问题,其中阿根廷、玻利维亚、巴西、哥伦比亚、厄瓜多尔、危地马拉、洪都拉斯等国疫情较重。北美洲狂犬病呈地区性流行,以野生动物为主,自1996年以来,狂犬病发病率一直保持下降趋势,但蝙蝠作为传染源引起的人狂犬病无下降趋势〔9〕。澳大利亚原本是一个无狂犬病的国家,1998年Skerratt等〔4〕从果蝠中分离出澳大利亚蝙蝠狂犬病病毒,引起了公众的注意。 212 分子流行病研究方法 Rupprecht C等〔10〕通过单克隆抗体检测狂犬病病毒的抗原变异,证明了来自世界各地不同病毒分离物间存在许多差异。但是,单纯血清型或抗原型并不能鉴定狂犬病病毒的来源和迁移,在分子流行病学的研究中受到一定的限制。Ermine A等〔11〕把放射性标记的核酸探针杂交方法用于检测狂犬病病毒基因组,但此法只能用于检测受严重感染的组织中的狂犬病病毒基因组。近年来狂犬病的分子流行病学研究方法不断完善,Bourhy HB等〔12〕证实利用RT2PCR及基因测序的分子流行病研究在病毒的分类及病毒株来源的鉴别上是一个很有用的工具。许多学者是根据N基因的特点———高度保守和高效表达,先用RT2 PCR方法扩增N基因片段,然后再进行基因序列测定,对狂犬病病毒进行病毒检测、基因分型和系统发育分析,从而进 通讯作者:严延生 作者单位:1.福建医科大学,福州 350004; 21福建省疾病预防控制中心,福州 350001

系统毒理学及其研究进展

系统毒理学及其研究进展 在总结国内外相关研究的基础上,综述了系统毒理学的原理、诞生背景、研究策略、研究基础及其主要应用。同时,通过介绍系统毒理学的研究实例来阐述其目前的研究进展情况。希望从分子生物学的发展中汲取足够营养并结合传统毒理学的研究成果发展壮大自己。 【Abstract】Based on the foundation of related research at home and abroad,paper summarizes the principle and research strategy,research background,basis and main application of system toxicology. At the same time,to explain its current status a case study of the system is introduced. And we hope to draw sufficient toxicological nutrition from the development of molecular biology and development itself combined with the research of traditional toxicology . 标签:背景;技术;应用;进展 1 系统毒理学及其诞生背景 系统毒理学是近10年来发展起来的一门新兴学科,代表着后基因组时代毒理学发展的新方向。所谓系统毒理学是指通过了解机体暴露后在不同剂量、不同时点的基因表达谱、蛋白质谱和代谢物谱的改变以及传统毒理学的研究参数,借助生物信息学和计算毒理学技术對其进行整合,从而系统地研究外源性化学物和环境应激等与机体相互作用的一门学科[1]。 近年来,生命科学在新理论和新技术上有了突飞猛进的发展,一系列“组学”(omics)应运而生,如基因组学(genomics)、蛋白质组学(proteomics)、细胞组学(cellomics或cytomics),等新学科不断涌现,使人们对基因和基因组的认识,对生命本质的认识和认识生命、健康的手段取得了重要的进展。 另外,传统的毒理学研究依然存在许多不足,相对于飞速发展的分子生物学技术和越来越多的外源性物质,毒理学的研究方法急待革新。 系统毒理学的发展,既有系统生物学发展的外在刺激,又有传统毒理学在发展中克服自身不足的内在需求。 2 生物学基础 2.1 基因组学 基因组学是研究基因组的结构、功能及表达产物的学科。基因组的产物不仅是蛋白质,还有许多复杂功能的RNA。将基因组学的方法与技术应用于毒理学研究领域,称之为毒物基因组学(toxicogenomics)。毒物基因组学的基本方法是通过观察生物在接触毒物后基因表达谱的变化,筛选毒性相关基因、揭示毒作用

8种水稻基因组DNA提取方法的比较

8种水稻基因组DNA提取方法的比较 朱世杨;罗天宽;张小玲;陈海英;唐征;刘庆 【期刊名称】《安徽农业科学》 【年(卷),期】2009(037)005 【摘要】[目的]寻找操作简便、耗时短、成本低的水稻基因组DNA提取方法,[方法]分别以水稻幼嫩黄化叶片和老叶片为材料,用8种方法提取其中的DNA,测定所提DNA的浓度和纯度,并对其进行PCR扩增和电泳检测,比较各方法的提取效果.[结果]8种方法提取的DNA浓度分别为35.15、30.80、67.30、26.15、23.55、8.95、48.0.5、54.26 μg/ml,方法③提取的DNA浓度最大,但PCR扩增效果较差;改进的SDS法(方法⑦、⑧)提取的DNA纯度较高,PCR扩增产物电泳条带较亮,但这2种方法操作程序复杂,成本较高,提取每份样品的成本分别为14、31元,远高于其他提取方法.[结论]除方法③外,其余5种简化方法均能得到较高质量的水稻基因组DNA,且提取成本远低于传统SDS法. 【总页数】3页(1929-1931) 【关键词】水稻;基因组DNA;提取 【作者】朱世杨;罗天宽;张小玲;陈海英;唐征;刘庆 【作者单位】温州科技职业学院农业与生物技术系,浙南作物育种重点实验室,浙江温州,325006;温州科技职业学院农业与生物技术系,浙南作物育种重点实验室,浙江温州,325006;温州科技职业学院农业与生物技术系,浙南作物育种重点实验室,浙江温州,325006;温州科技职业学院农业与生物技术系,浙南作物育种重点实验室,浙江温州,325006;温州科技职业学院农业与生物技术系,浙南作物育种重点实验室,浙江温州,325006;温州科技职业学院农业与生物技术系,浙南作物育种重

进化基因组学研究进展

进化基因组学研究进展 刘超 (山东大学生命科学学院济南250100) 摘要:进化基因组学是利用基因组数据研究差异基因功能、生物系统演化、从基因在水平探索生物进化的学科。随着近年来基因组数据的不断增加,进化基因组学得到了长足的发展。进化基因组学主要包括从基因组水平理解和诠释生物进化和新基因分析研究探索两方面的内容。本文介绍了进化基因组学研究的主要内容和较为常用的方法,以及近年来在细菌、酵母、果蝇进化基因组学方面的研究进展。 关键词:进化基因组学系统进化比较基因组学新基因 前言 随着基因测序技术的不断进步以及基因组学的飞速的发展,人们积累了大量的基因组学数据,利用所得的大量的基因组数据与进化生物学相结合,在基因组水平研究生物进化机制,随即产生了进化基因组学(Evolutional Genomics)。 近年来进化基因组学取得了长足的进展,在研究差异基因功能、生物系统演化、从基因在水平探索生物进化的终极方式等方面有重大突破,对人类理解生命现象和过程有重要作用。 1进化基因组学研究内容 研究系统进化学通常包括两个关键步骤:一方面,在不同物种中鉴定同源性特佂,另一方面利用构建系统进化树的方法比较这些特征,进而重新构建这些物种的进化历史[1]。针对这两个关键步骤,传统系统进化学,常采用基于形态学数据和单个基因研究的同源性状鉴定和重建系统进化树(常包括距离法、最大简约法、概率法)[1]的方法来研究。在目前拥有丰富基因组数据的条件下,我们可以分析基因组数据,利用进化基因组学研究系统进化。

目前进化基因组学的研究内容主要集中于两个方面:(1)在比较不同生物的基因数据的基础上,从基因组水平理解和诠释生物进化;(2)通过对新基因的分析研究探索基因进化过程的规律两个方面[2](如图1)。在进行全基因组进化分析方面,进化基因组学主要集中于构建系统进化树、研究基因组进化策略、研究生物功能变化和进化机制、进化和生态功能基因组学[2]、基因注释的等方面;在新基因方面主要分析基因产生机制和新基因固定及其动力学研究。 图1 进化基因组学主要研究内容 目前进化基因组学的研究有力的解决了一些基础性的进化问题,但也出现了一些未来需要急需解决的挑战。例如生物进化的本质和目前重建系统进化树方法的限制[1]。 2研究进化基因组学的方法 研究进化基因组学的方法主要包括利用基因组数据分析和研究新基因的产生和演化两种。 2.1利用基因组数据进行系统进化分析 利用基因组数据进行系统进化分析,常有基于基因序列的方法和基于全基因特征的方法。(如图2)

生态毒理基因组学和生态毒理蛋白质组学研究进展_戴家银

第26卷第3期2006年3月生 态 学 报ACTA EC OLOGI CA SI NICA Vol .26,No .3Mar .,2006生态毒理基因组学和生态毒理蛋白质组学研究进展 戴家银,王建设 (中国科学院动物研究所,北京 100080) 基金项目:中国科学院知识创新工程重要方向性资助项目(KSCX2-SW -128) 收稿日期:2005-08-30;修订日期:2005-12-05 作者简介:戴家银(1965~),男,安徽怀宁人,博士,研究员,主要从事生态毒理学和生物化学研究.E -mail :daijy @ioz .ac .cn Foundation item :The project was supported by the Innovation Project of Chines e Academy of Sciences (No .KSCX2-SW -128) Received date :2005-08-30;Accepted date :2005-12-05 Biography :DAI Jia -Yin ,Ph .D .,Professor ,mainly engaged in ecotoxicology and biochemis try .E -mail :daijy @ioz .ac .cn 摘要:将基因组学和蛋白质组学知识整合到生态毒理学中形成了生态毒理基因组学和生态毒理蛋白质组学。通过生态毒理基因组学和生态毒理蛋白质组学的研究能够在基因组和蛋白质组水平更深入理解毒物的作用机制,寻找更敏感、有效的生物标记物,形成潜在的强有力的生态风险评价工具。介绍了生态毒理基因组学和生态毒理蛋白质组学的研究进展,以及DNA 芯片技术和2D -凝胶电泳技术在持久性有毒污染物的生态毒理学研究中的应用。 关键词:生态毒理基因组学;生态毒理蛋白质组学;DNA 芯片技术;2D -凝胶电泳;持久性有机污染物 文章编号:1000-0933(2006)03-0930-05 中图分类号:X171 文献标识码:A Progress in ecotoxicogenomics and ecotoxicoproteomics DAI Jia -Yin ,WANG Jian -She (Institut e of Zoology ,C hines e Acade my of Sci ence s ,Beijing 100080,C hina )..Acta Ecologica Sinica ,2006,26(3): 930~934.Abstract :Ec otoxicogeno mics and ecotoxic oproteo mics are integration of genomics and proteomics into ec otoxicology .Ecotoxic ogenomics is defined as the study of gene and pr otein expr ession in non -target organisms that is impor tant in responses to environmental toxicant exposures .Ecotoxic ogenomic toolsmay provide us with a better mechanistic understanding of ec otoxicology ,and they are likely to provide a vital r ole in ecological risk assessment .Pr ogress in ec otoxicogenomics and ecotoxicoprote omics are discussed in this paper .DNA gene c hip and 2D -gel usually used in ecotoxicogeno mics and ecotoxicoproteomics ar e also e xpounded by exa mples . Key words :ec otoxicogeno mics ;ecotoxic oproteo mics ;D NA micr oarra y ;2D -gel ;persistent organic pollutants 随着生态学和环境科学的深入发展,生态毒理学已成为生态学和环境科学前沿研究领域,正从基因、蛋白质、器官和整体水平深入开展研究工作。 在人类基因组计划实施的短短几年间,以“组学(-omics )”构成的学科及其相关研究如雨后春笋般在生命科学界迅速蔓延、蓬勃发展。在环境科学领域中也出现了环境基因组学(environmental genomics )、毒理基因组学(toxicogenomics )等学科。Snape 等人[1~3]将基因组学知识整合到生态毒理学中,于2004年提出了“生态毒理基因组学(ecotoxicogenomics )”的概念,通过生态毒理基因组学研究确认一系列毒物效应基因,从而在基因组水平更深入理解毒物的作用机制,并在基因和蛋白质水平寻找更敏感、有效的生物标记物(biomarkers ),形成潜在的强有力的生态风险评价工具。 持久性有机污染物(Persistent Organic Pollutants ,POPs )是指能持久存在于环境中、通过食物链蓄积、逐级传递,经直接或间接途径进入人体的化学物质。POPs 具有致癌、致畸、致突变性、内分泌干扰等毒作用。POPs 对人体健康和生态环境带来的危害受到全社会的普遍关注,引起世界各国的决策者和科学家的高度重视,也成为环境科学和生态毒理学研究的热点课题之一[4,5]。我国已于2001年5月签署了控制12种P OPs 对人类健康

相关文档
最新文档