焊接中防止变形和减少内应力的方法

焊接中防止变形和减少内应力的方法
焊接中防止变形和减少内应力的方法

在农机修理中焊接是非常重要的一种方法,但是如果焊接不好就会产生变形和内应力,甚至焊后的零件无法使用而报废。

一、减少内应力的方法

1.锤打和锻冶——机械法

当焊修较长的裂缝和堆焊层,需要以一端连续焊到另一端时,在焊修进行中,趁着焊缝和堆焊层在炽热的状态下,用手锤敲打,这样可以减少焊缝的收缩和减少内应力。敲打时,焊修金属温度800℃时效果最好。若温度下降,敲打力也随之减小。温度过低,在300℃左右就不允许敲打了,以免发生裂纹。锻冶方法的道理与上述基本一致,不同的是要把焊件全部加热后再敲打。

2.预热和缓冷——热力法

此种方法就是焊修前将需焊的工件放在炉内,加热到一定的温度(100~600℃),在焊接过程中要防止加热后的工件急剧冷却。这样处理的目的是降低焊修部分温度和基体金属温度的差值,从而减少内应力。缓冷的方法是将焊接后的工件加热到600℃,放到退火炉中慢慢地冷却。3.“先破后立”法

铸铁件用普通碳素钢焊条焊接时,很容易产生裂纹,用铸铁焊条又不经济。现介绍一种“先破后立”用碳素钢焊条焊接的方法:先沿焊缝用小电流切割,注意只开槽而不切透,然后趁热焊接。由于切割时消除了裂纹周围局部应力,不会产生新裂纹,焊接效果很好。

在焊接过程中减少内应力有以上三种方法,现举例如下:铸铁泵壳裂缝的焊接。

(1)在裂缝的两端点钻止裂孔(φ10mm),以防焊接中裂缝进一步向外扩展。

(2)用手动磨光机在裂缝的位置开坡口,坡口顶宽8~9mm,略成V字形,深32mm(此泵泵壳壁厚为40mm),使得能够焊入电焊液。

(3)焊接为手工焊,采用φ3.2mm专用铸铁电焊条,使用直流电焊机,反接,电流为150A,实施间断焊,即每焊长15~20mm电焊缝,停等片

刻。在停焊间隙,当焊接熔液凝固后,由白热状态到红热状态时,用小尖锤捶击电焊缝,捶击用力要轻,速度要快,次数要多,使焊缝金属减薄向四周伸长,抵消一些焊缝收缩并减少焊接应力,这样能有效地提高焊缝金属的抗裂性(注意使用小锤头必须是半径为10mm左右的圆弧形的)。待焊接熔池冷却到暗红色消失后再接着焊。

(4)对于较长的裂缝,为避免开裂,必须分段焊补。分段的原则是先焊能自由伸缩的那段。如分三段,应首先焊中间的一段,当此段冷至暗红色消失时,立即施焊另一段,然后焊最后一段。

(5)施焊前,先对焊缝区进行预热,焊后保温,以降低冷却速度。预热、保温不仅能提高焊缝金属的抗裂性,而且还有益于降低熔合线附近区域的硬度。

二、减少和防止焊修时变形的方法

1.预热法

在焊接前对焊接件进行预热,不仅可以减少内应力,而且也是一种减少变形的好方法。

2.预加反变形法

预加反变形法是根据被焊金属的性质,预先凭经验估计出焊修后发生变形的方向和收缩量,在焊修前,将工件用机械方法进行预变形,使焊修后的变形恰好和预变形抵消。

3.水冷法

此种方法就是利用冷水喷射焊件,用降低基体金属的温度来防止变形,也可以将焊件浸在冷水槽中,露出需要焊修的部分,这样使基体金属温度不会升高,因此焊修件也不会引起变形。

4.夹固法

此种方法就是用刚性较大的夹具紧固焊件,防止被焊件在焊接时产生变形。但此法将在焊件内部残留着内应力,因此,这种方法主要应用于具有良好可塑性的低碳钢薄板焊接。

5.合理选择焊接规范

在焊接前,合理选择焊接规范,对减少焊件变形影响很大。如随着电流强度的增加,焊件的变形相应增大。焊缝的焊接顺序对减少焊件变形有很大意义,结构上的焊缝,应该使被连接的两个部件之间的焊缝最后焊成。对于柱形板结构,应该先焊纵向(轴向)焊缝,然后焊环形焊缝,否则,会使结构中央引起凸起变形,甚至裂缝。若焊件是一些钢板组成的金属板,应首先拼焊钢板的横向焊缝,当组成单个板条后,可采用分段焊,每一段都是朝着与施焊总方向相反的方向施焊,即采用逆向焊接法。

焊接应力与变形

4.2 焊接应力与变形: 4.2.1 焊接变形和残余应力的不利影响: 焊接变形 1.影响工件形状、尺寸精度 2.影响组装质量 3.增大制造成本———矫正变形费工、费时 4.降低承载能力———变形产生了附加应力 焊接应力 1.降低承载能力 2.引起焊接裂纹,甚至脆断 3.在腐蚀介质中,产生应力腐蚀裂纹 4.引起变形 4.2.2 焊接变形和应力的产生原因: 根本原因:对焊件进行的不均匀加热和冷却,如图6-2-8 焊接应力 焊接加热时,焊缝区受压力应力(因膨胀受阻,用符号“-”表示) 远离焊缝区手拉应力(用符号“+”表示) 焊后冷却时,焊缝受拉应力(因收缩受阻),远离焊缝区受压应力 焊接变形:当焊接应力超过金属σs时,焊件将产生变形 焊接应力和焊接变形总是同时存在,不会单独存在,当母材塑性较好,结构刚度较小时,焊接变形较大而应力较小;反之,则应力较大而变形较小。 4.2.3 焊接变形的控制和矫正:

4.2.3.1 焊接变形的基本形式,如图6-2-9 如图6-2-9 常见的焊接残余变形的类型 1、2---纵向收缩量3---横向收缩量4、5---角变形量f---挠度 (1)收缩变形:即焊件沿焊缝的纵向和横向尺寸减少,是由于焊缝区的纵向和横向收缩引起的。如图5-2-9 a (2)角变形:即相连接的构件间的角度发生改变,一般是由于焊缝区的横向收缩在焊件厚度上分布不均匀引起的。如图5-2-9b (3)弯曲变形:即焊件产生弯曲。通常是由焊缝区的纵向或横向收缩引起的。如图5-2-9c (4)扭曲变形:即焊件沿轴线方向发生扭转,与角焊缝引起的角度形沿焊接方向逐渐增大有关。如图5-2-9d (5)失稳变形(波浪变形):一般是由沿板面方向的压应力作用引起的。如图5-2-9e 4.2.3.2 控制焊接变形的措施 (1)设计措施(详见焊接结构设计) 尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状,合理安排焊缝位置──尽量使焊缝对称或接近于构件截面的中性轴(以减少弯曲变形)。如图6-2-10

控制压力容器管板焊接变形的方法(通用版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 控制压力容器管板焊接变形的 方法(通用版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

控制压力容器管板焊接变形的方法(通用 版) 在压力容器制造中,由于在控制压力容器管板进行焊接时,没有对焊接工艺参数进行合理的选择,导致在焊接过程管板焊接变形,本文主要对控制压力容器管板焊接变形的方法进行探讨。 随着科学技术的迅猛发展,压力容器被普遍应用到能源工业、石油化学工业、科研工业等工业的生产过程中。因为压力容器属于危险性比较高的一类物品,很容易出现燃烧起火、爆炸等情况,对相关人员和单位造成一定的经济损失和伤害。在压力容器在压力容器制造中,往往由于组装与施焊的顺序不当,以及焊接工艺参数选择的不合理,易引起管板焊接变形,导致密封不严,管子拉脱。因此,在压力容器制作的过程中,对密封性要求非常的高。为了有效的避免因为各种不利因素对导致压力容器的密封性降低,本文主要对控制

压力容器管板焊接变形的方法进行探讨。 管板焊接变形的原因及影响因素 管板焊接变形的原因主要表现在两个方面。一是主要是由于筒体与管板焊接的横向收缩变形在厚度方向上的不均匀分布引起的;管板与筒体的焊缝一般为单面单边V型坡口,焊接时焊缝的背面和正面的熔敷金属的填充量不一致,造成了构件平面的偏转,所以这种变形在客观上是绝对存在的;二是管板与筒体焊接角变形主要由两种变形组成,即筒体与管板角度变化和管板本身的角变形,前者相当于两个工件对接焊接引起的角变形,后者相当于在管板上堆焊时引起的角变形。而焊接变形的大小的主要取决于管板的刚性、焊接线能量、坡口角度、焊缝截面形状、熔敷金属填充量焊接操作等因素有关。根据管板变形的原因及影响因素,由于管板焊接不能实现双面焊,焊接时电流过大会引起烧穿伤及换热管,所以管板与壳体的焊接应考虑减少管板受热和提高管板刚性以减少变形。 压力容器制造工艺 一般情况下,压力容器根据使用途径的不同,可以分成不同的种

预防焊接变形的工艺措施

预防焊接变形的工艺措施 在焊接过程中当产生的焊接应力超过金属的屈服极限就会产生焊接变形。 应力变形的种类(从变形的外观形态来看):收缩变形、弯曲变形、角变形、波浪变形、扭曲变形等。 减少和防止焊接应力和变形的措施:1.合理进行结构设计和焊接工艺设计,设计焊接方法时应该选用对称工作断面和焊缝位置,在保证强度的前提下,尽量减小焊缝的断面和长度外在焊接工艺上采取以下措施:采取合理的装配和焊接顺序 2.反变形法(根据生产中焊件变形规律,焊前预先将焊件做出相反方向的变形以抵消焊后发生的变形)V型坡口单面焊缝一般发生角变形。 3..刚性固定法:采用把焊件固定在平台上或在焊接用夹具上夹紧进行焊接。(采用适当的方法来增加焊件的刚度或拘束度,可以达到减小变形的目的,此种方法就是)焊件预热,对焊件进行预先加热,使焊件温度差减小,这样可以均匀的同时冷却减小应力。5焊后缓冷 6.焊后轻击焊缝或回火。 焊接残余变形的主要危害有:1)首先零件或部件的焊接变形会直接降低装配质量,而结构中的焊接残余变形会使结构的尺寸达不到要求。2)过大的残余变形还会增加结构的制造成本,同时降低焊接接头的性能。3)焊件的残余变形会降低结构的承载能力。 预防焊接变形的设计措施有:1)尽量选用对称的构件截面和焊缝位置。2)合理地选择焊缝长度和焊缝数量。3)合理选择焊缝截面尺寸和坡口形式。 如果在设计上能充分估计到制造过程中可能发生的焊接变形,选择合理的设计方案,比从工艺上采取措施要方便得多。然而,如果单从设计上采取措施,在生产中不注意选择正确的工艺,同样会产生较大的焊接变形。因此,实际生产中应该从设计和工艺两方面采取措施来预防和减小焊接变形的产生。 预防焊接变形的工艺措施:1留余量法留余量法主要是用于补偿焊件的收缩变形。反变形法主要用于控制变形规律较明显的角变形和弯曲变形。 2.反变形法 3.刚性固定法刚性固定法有以下几种a将焊件固定在刚性平台上。b将焊件组合成刚性更大或对称的结构c利用焊接夹具增加结构的刚性和约束d采用临时支撑增加结构的拘束。限制角变形和弯曲变形。刚性固定法可减小焊接变形但增大焊接应力。这种方法适用塑性好的焊件。 4.选择合理的装配焊接顺序 选择合理的装配焊接顺序基本原则如下:正在施焊的焊缝应尽量靠近结构截面的中性轴;对于焊缝非对称布置的结构,装配焊接时应先焊焊缝少的一侧;焊缝对称布置的结构,应由偶数焊工对称地施焊;长焊缝焊接时,选择正确的焊接方向和焊接顺序;相邻两条焊缝的焊接,选择正确的焊接方向和顺序。 长焊缝焊接小于2m时采用直通焊;大于2m时可用分段焊、逐段退焊、跳焊法进行焊接,逐段退焊法焊接变形最小。 5.合理地选择焊接方法和焊接工艺参数 各种焊接方法的热源不同,加热集中的程度也各不相同,因而产生的变形也不一样,当焊件结构形式、尺寸及刚性拘束相同的条件下,埋弧焊产生的变形比焊条电弧大;焊条电弧焊产生的变形比其他保护焊大。

焊接应力及焊接变形预防措施

钢结构工程焊接应力与变形差生的危害及采取的措施 随着“绿色建筑”理念的推广,以钢结构件为主体框架结构结合复合砌筑体结构已成为一种必然趋势,因为以钢结构为主的框架结构的回收利用性有效避免钢筋混凝土结构建筑垃圾的产生,具有可持续性。由于钢结构工程的特有型,焊接作业时钢结构工程最重要的工序之一,而焊接应力及焊接变形产生是影响钢结构安全性及可靠性的重要因素。本文着重对焊接应力及焊接变形的危害及所采取的对应措施进行分析。 一、焊接应力与变形产生机理 焊接热输入引起材料不均匀局部加热,使焊缝区熔化,而熔池毗邻的高温区材料的热膨胀则受到周围材料的限制,产生不均匀的压缩塑性变形。在冷却过程中,已发生压缩塑性变形的这部分材料又受到周围材料的制约,不能自由收缩,在不同程度上又被拉伸而卸载,与此同时,熔池凝固,金属冷却收缩也产生了相应的收缩拉应力和变形。这种随焊接热过程而变化的内应力场和构件变形,称为瞬态应力与变形。而焊后,在室温条件下,残留于构件中的内应力场和宏观变形称为焊接残余应力与焊接残余变形。 焊接残余应力和变形,严重影响焊接构件的承载力和构件的加工精度,应从设计、焊接工艺、焊接方法、装配工艺着手降低焊接残余应力和减小焊接残余变形。

二、焊接残余应力的危害及降低焊接应力的措施 1.焊接残余应力的危害 影响构件承受静载能力;影响结构脆性断裂;影响结构的疲劳强度;影响结构的刚度和稳定性;易产生应力腐蚀开裂;影响构件精度和尺寸的稳定性。 2.降低焊接应力的措施 (1)设计措施 尽量减少焊缝的数量和尺寸,在减小变形量的同时降低焊接应力;防止焊缝过于集中,从而避免焊接应力峰值叠加;要求较高的容器接管口,宜将插入式改为翻边式。 (2)工艺措施 采用较小的焊接线能量,减小焊缝热塑变的范围,从而降低焊接应力;合理安排装配焊接顺序,使焊缝有自由收缩的余地,降低焊接中的残余应力;层间进行锤击,使焊缝得到延展,从而降低焊接应力;焊接高强钢时,选用塑性较好的焊条;预热拉伸补偿焊缝收缩(机械拉伸或加热拉伸);采用整体预热;降低焊缝中的含氢量及焊后进行消氢处理,减小氢致集中应力。 采用热处理方法:整体高温回火、局部高温回火或温差拉伸法(低温消除应力法,伴随焊缝两侧的加热同时加水冷) 三、焊接变形的危害性及预防焊接变形得到措施 1、焊接变形的分类 焊接变形可以区分为在焊接热过程中发生的瞬态热变形和室温

防止焊接变形的措施(2021新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 防止焊接变形的措施(2021新版)

防止焊接变形的措施(2021新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 1.设计合理的焊接结构 2.采取适当的工艺措施 其实设计合理的焊接结构,它包括了合理安排焊缝的位置,减少不必要的焊缝,合理选用焊缝形状和尺寸等。例如,采用焊缝对称布置。象咱们常用于肋板与腹板的脚焊缝的焊脚就不应该太高。一般对低碳钢有个最小焊脚尺寸推荐 板厚《6mm最小焊脚3mm 板厚7---13mm最小焊脚4mm 板厚19--30mm最小焊脚6mm 板厚31--35mm最小焊脚8mm 板厚51--100mm最小焊脚10mm 减少焊接变形的工艺措施: (1).反变形法 (2).利用装配顺序和焊接顺序控制焊接变形

(3).热调整法 (4).对称实焊法 (5).刚性固定法 (6).锤击焊缝法 其实这些里也包含了各种措施,本人打字太慢,就不详细说了。 如果有人想了解焊接的一些、知识,我象大家推荐一本书吉林化学工业集团公司组织编写.孙景荣主编. 这个老焊接工程师经验丰富的很,我刚毕业的时候跟他共事了一年,学到了很多焊接的知识.他出过好几本有关焊接方面的书.呵呵,我也算跟名人混过啊!! 钢板拼装可以采用从中间至两边分段退焊法进行 焊前要适当的做一些反变形,这是事前控制的办法! 反变形法: 在焊接进行装配时,预先将工件向焊接变形相反的方向进行人为的变形。例如,焊接8~~12mm的钢板,V型破口单面焊。将工件预先反向斜置,焊接后由于自身收缩,使工件恢复到平正的形状(我将附图说明) 对于较大刚性的构件,下料的时候,可将构件制成预定大小和方

焊接过程中应力与变形控制

焊接过程中应力与变形控制 摘要焊接应力与变形是直接影响焊接结构性能、安全可靠性和制造工艺性的重要因素,了解其作用与影响,采取措施进行控制与消除,对于焊接结构的完整性设计和焊接工艺方法的选择以及产品在运行中的安全评定都有重大意义。 关键词焊接应力;焊接变形;规律;控制 焊接是一种特殊而又重要的加工工艺,随着焊接技术的发展,一个重要技术课题是控制焊接件的焊接变形以提高产品制造精度,使焊件焊后加工量减少或不加工即可用于精度要求高的机械产品中,因此,了解焊接应力产生机理,掌握结构件焊接变形规律,在焊接工艺中采取措施进行控制和消除,从而保证焊接质量。 1 焊接应力 1.1 焊接应力产生机理及影响因素 焊接时的局部不均匀热输入是产生焊接应力与变形的决定因素,焊接热输入引起材料不均匀局部加热,使焊缝区融化,而与熔池毗邻的高温区材料的热膨胀则受到周围材料的限制,产生不均匀压缩塑性变形,在冷却过程中,已发生压缩变形的这部分材料又受到周围条件的制约,而不能自由收缩,在不同程度上又被拉伸而卸载;与此同时,熔池凝固,金属冷却收缩也产生相应的收缩应力与变形,使得焊接接头区产生不协调的应变,称为初始应变或固有应变。与此相对应,在构件中会形成自身相平衡的内应力,通常称为焊接应力;而焊后,在在室温条件下,残留于构件中的内应力场和宏观变形,称为焊接残余应力与焊接残余变形。 焊接应力与焊接材料(主要包含材料特性、热物理常数及力学性能)、焊接接头形状和尺寸、焊接工艺参数,焊接结构(结构形状、厚度及刚性)有关。 1.2 焊接应力的分类 1.2.1 接应力在焊件空间位置 一维空间应力沿着焊件—个方向作用;二维空间应力应力在—个平面内不同方向上作用;三维空间应力应力在空间所有方向上作。 1.2.2 按产生应力的原因 (1)热应力它是在焊接过程中,焊件内部温差所引起应力,随着温度的消失而消失,并且是引起热裂纹的力学原因。 (2)相变应力焊接过程中,局部金属发生相变,相比容增大或减小而引起的应力。

焊接时防止变形的方法

Distortion - Prevention by fabrication techniques 制造技术防止变形 Distortion caused by welding a plate at the centre of a thin plate before welding into a bridge girder section. Courtesy John Allen 焊接桥梁部分前由在薄板中央焊接钢板时产生的变形. Courtesy John Allen Assembly techniques 组装技术 In general, the welder has little influence on the choice of welding procedure but assembly techniques can often be crucial in minimising distortion. The principal assembly techniques are: ?tack welding ?back-to-back assembly ?stiffening 通常,焊工在选择焊接工艺时没有什么影响但关键的是在组装技术上控制最小变形.主要安装技术是: 点焊 重叠组装 加强板 Tack welding点焊 Tack welds are ideal for setting and maintaining the joint gap but can also be used to resist transverse shrinkage. To be 点焊能很好的定位和保证连接间隙但不能防止横向收缩.为了起到好的效果, 应考虑点焊数

浅谈焊接变形原因及防止措施

浅谈焊接变形原因及防止措施 摘要:在工程施工过程中,各种设备、管道焊接产生的应力变形是个比较突出 的问题,采用合理焊接工艺方法可以较好减少变形。 关键词:工艺焊接变形处理 焊接在设备、管道安装过程中举足轻重,由于焊接过程中的变形与应力直接 影响工艺质量、使用性能、配件装配,为提高质量,我们在施工中采取了相对的 措施。 一、焊接应力与变形产生的原因 焊接过程中,对焊件进行局部不均匀加热,会产生焊接应力和变形。焊接时 焊缝和附近的金属处于高温,焊缝和近缝区纵向受拉应力,远离焊缝区受压应力,整个焊件纵向及横向尺寸有一定的收缩。如果在焊接过程中,焊件能够较自由的 伸缩,则焊后焊件的变形较大而焊接应力较小;反之,如果焊件厚度或刚性较大 不能自由伸缩,则焊后焊件的变形较小而焊接应力较大。还有组装与施焊的顺序 不当,焊接方向不正确,焊接参数不合理,引起局部过热,没有采用适当的辅助 措施等。 二、减小焊接变形的工艺措施 由于焊接变形在焊接生产中是不可避免的,因此应在生产中根据焊接结构的 具体形式,选用一种或几种方法,以达到控制变形的目的。 1、加裕量法和反变形法在下料时留一定量,补充焊后收缩。预先确定焊后 可能发生的变形大小和方向,将工件放在相反的方向位置上;或在焊前使工件反 方向变形,抵消焊后所发生的变形。 2、刚性夹固法输水主管上常常出现分支,这是根据工艺流程来设计的,如 来水汇管到各分支管,然后汇集到出水汇管再输出去。在制作汇管时产生很大的 焊接变形,为了减少变形需把此工艺汇管固定起来,如制作Φ426×7汇管,可在 其下放一Φ630×7的铜管,用Φ48×4短管固定。因此焊前将工件固定夹紧,并设 置拉杆提高焊接刚性,焊后即缩小变形。 3、选择合理的焊接次序减少焊接变形的施焊顺序方式很多,基本原则是使 焊接热比较均匀地加上去;或者使焊接变形相互抵消;或者用前道焊缝提高结构 刚性以限制后焊焊缝的变形工序合理的次序可缩小变形。 4、选择合理的焊接工艺(1)焊接速度高的焊接方法能减少焊件受热,减 少焊件受热,减少焊缝冷却时的收缩区宽度,从而减少变形。(2)采用从中间 向两端焊,逆向分段焊、跳焊法、多人对称焊,预热焊等。(3)利用减少焊接 线能缩小加热区或使不均匀加热或冷却尽可能趋于均匀,达到减少焊接变形的目的。(4)多层焊对减少焊缝的纵、横向收缩以及由此引起的挠曲和失稳变形是 有利的,但多层焊对角变形不利。(5)采用小电流、快焊速、不摆动焊法;小 直径焊条代替大直径焊条;厚板焊接尽可能采用多层焊代替单层焊等。 5、设计方面(1)要尽量减少焊缝数量、焊缝长度和焊缝截面积,合理地 确定坡口的外形和尺寸,合理布置焊缝,除了要避免焊缝密集以外,还应使焊缝 位置尽可能靠近构件的中和轴,并使焊缝的布置与构件中和轴相对称。(2)设 计焊接结构时,应尽量选用尺寸规格较大的板材、型材和管材,形状复杂的可采 用冲压件和铸钢件,以减少焊缝数量,简化焊接工艺和提高结构的强度和刚度。 在容器组焊时,应尽量避免十字焊缝,相邻两筒节纵缝、封头拼缝与相邻筒节的 纵缝应错开。

焊接应力和变形控制论文

焊接应力和变形控制论文 摘要:为有效控制因焊件的不均匀膨胀和收缩而造成的焊接变形,就焊接变形和焊接应力的各种影响因素进行分析,提出了相应的控制措施。 关键词:焊接变形,焊接应力,热过程,焊接工艺 在焊接技术发展如火如荼的今天,形式各异的焊接机械、焊接方法日新月异,焊接技术成了一个关键的课题。但在作业过程中,由于焊接产生的焊接残余应力和残余变形,严重影响着焊接的质量,因而,急需采用合理的方法予以控制。 焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。常见的焊接应力有:1)纵向应力;2)横向应力;3)厚度方向应力。常见的焊接变形有:1)纵向收缩变形;2)横向收缩变形;3)角变形;4)弯曲变形;5)扭曲变形;6)波浪变形。针对这些不同种类的焊接变形和应力分布,追溯根源,具体进行研究控制。 1焊接变形的控制措施 全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。

1.1焊缝截面积的影响 焊缝截面积是指熔合线范围内的金属面积。焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。 1.2焊接热输入的影响 一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。 1.3焊接方法的影响 多种焊接方法的热输入差别较大,在焊接常用的几种焊接方法中,除电渣以外,埋弧焊热输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。 1.4接头形式的影响 在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。常用的焊缝形式有堆焊、角焊、对接焊。 1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。 2)T形角接接头和搭接接头时,其焊缝横向收缩情况与

焊接应力与变形

焊接应力和变形. 教学目的:了解应力和变形的概念、产生原因;了解焊接变形的种类;掌握预防和减小焊接应力和变形的措施。 教学重点:预防和减小焊接应力和变形的措施 教学难点:应力和变形的概念、产生原因 教学课时:16课时 第一节应力和变形的概念 一、变形 钢结构构件或节点在焊接过程中,局部区域受到很强的高温作用,在此不均匀的加热和冷却过程中产生的变形称为焊接变形。 二、应力 焊接后冷却时,焊缝与焊缝附近的钢材不能自由收缩,由此约束而产生的应力称为焊接应力。 三、应力形成 两块钢板上施焊时,产生不均匀的温度场,焊缝附近温度高达1600 C,其邻近区域温度较低,且冷却很快。冷却时钢材收缩,冷却慢的区域收缩受到限制,从而产生拉应力,冷却快的区域受到压应力。 四、焊接应力的分类 1.根据焊接应力在空间的位置 单向应力、双向应力、三向应力。 2.根据焊接应力发生和互相平衡所在的范围大小 第一类应力、第二类应力、第三类应力。 3.根据焊接应力在焊缝中的方向不同 纵向应力、横向应力、厚度方向应力 第二节焊接应力和变形的产生原因 焊件进行局部的、不均匀的加热是产生焊接应力和变形的原因。 一、金属棒的均匀加热和冷却 金属棒在均匀加热时,产生过压缩塑性变形,则冷却后必定产生缩短变形。 二、纵向焊接应力和变形

焊接时,在电弧热的作用下,使金属局部达到熔化温度,但离电弧较远处的金属温度则较低,这样焊件就出现了不均匀的膨胀。沿焊缝轴线方向尺寸的缩短。 三、横向焊接应力和变形 焊件在于海峰轴线垂直的方向上,焊缝及热影响区金属在加热过程中也受到压应力,发生压缩塑性变形,在冷却后则存在着残余应力和变形,称为横向焊接应力和变形。 四、影响焊接应力和变形的因素 影响焊接应力和变形的因素主要包括以下几点:焊接规范、焊缝尺寸、焊缝在结构中位置的布置、焊缝分段和焊接方向、焊接程序、焊接结构的刚性以及层数。 第三节焊接变形的种类 一、纵向变形 指平行于焊缝方向的变形。多层焊比单层焊的变形量小。 二、横向变形 指垂直于焊缝方向的变形。角焊缝和对接焊缝焊后都会引起横向变形,同时,与焊接方法有关。 三、弯曲变形 T型梁焊接后,由于焊缝布置不对称,焊缝多的一面收缩量大,引起的工件弯曲。 四、角变形 由于V型坡口对接焊焊缝布置不对称,造成焊缝上下横向收缩量不均匀而引起的变形。 五、扭曲变形 由于焊接过程中焊接顺序和焊接方向不合理引起的工件扭曲,又称为螺旋形变形,多出现在工字梁的焊接加工过程中。 六、波浪变形 这种变形易发生在波板焊接过程中。是由于焊缝收缩使薄板局部引起较大的压应力而失去稳定性,焊后使构件成波浪形。 第四节预防和减小焊接应力和变形的措施 一、从结构设计方面的预防措施 1、尽量减少焊缝数量。

防止焊接变形的方法

防止焊接变形的方法

针对焊接变形的原因和种类从焊接工艺上进行改进,可以有效防止和减少焊接变形所带来的危害。下面,我们主要介绍几种常见的防止焊接变形的方法。 1. 反变形法 在焊前进行装配时,预置反方向的变形量为抵消(补偿)焊接变形,这种方法叫做反变形法。图1所示为8—12mm厚的钢板V形坡口单面对接焊时,采用反变形法以后,基本消除了角变形。 2. 利用装配和焊接顺序来控制变形; 采用合理的装配和焊接程序来减少变形,这在生产实践中是行之有效的好办法,如图2(a)所示为一箱形梁,由于焊缝不对称,焊后产生下挠弯曲变形。解决办法是由两人或四人,对称地先焊只有两条焊缝的一侧,如图2(b)中焊缝1和1然后就造成了如图2 ?的上拱变形。由于这两条焊缝焊后增加了箱形梁的刚性。当焊接另一侧的两条焊缝时,如先焊图2(d)中焊缝2和2,最后再焊图2(e)中焊缝3和3,就基本上防止了变形。 有许多结构截面形状对称,焊缝布置也对称,但

焊后却发生弯曲或扭曲的变形,这主要是装配和焊接顺序不合理引起的,也就是各条焊缝引起的变形,未能相互抵消,于是发生变形。 焊接顺序是影响焊接结构变形的主要因素之一,安排焊接顺序时应注意下列原则: 1)尽量采用对称焊接。对于具有对称焊缝的工作,最好由成对的焊工对称进行焊接。这样可以使由各焊缝所引起的变形相互抵消一部分。 2)对某些焊缝布置不对称的结构,应先焊焊缝少的一侧。 3)依据不同焊接顺序的特点,以焊接程序控制焊接变形量。常见的焊接顺序有五种,即: a.分段退焊法 这种方法适用于各种空间的位置的焊接,除立焊外,钢材较厚、焊缝较长时都可以设挡弧板,多人同时焊接。其优点是可以减小热影响区,避免变形。每段长应为0.5—1m。见图2(f) b.分中分段退焊法 这种方法适用于中板或较薄的钢板的焊接,它的优点是中间散热快,缩小焊缝两端的温度差。焊缝热影响区的温度不至于急剧增高,减少或避免热膨胀变形。这种方法特别适用于平焊和仰焊,

焊接残余应力与变形

焊接残余应力和焊接变形 焊接残余应力(welding residual stresses)简称焊接应力,有沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。 1、纵向焊接应力 焊接过程是一个不均匀加热和冷却的过程。在施焊时,焊件上产生不均匀的温度场,焊缝及其附近温度最高,可达1600℃以上,而邻近区域温度则急剧下降。不均匀的温度场产生不均匀的膨胀。温度高的钢材膨胀大,但受到两侧温度较低、膨胀量较小的钢材所限制,产生了热塑性压缩。焊缝冷却时,被塑性压缩的焊缝区趋向于缩短,但受到两侧钢材限制而产生纵向拉应力。在低碳钢和低合金钢中,这种拉应力经常达到钢材的屈服强度。焊接应力是一种无荷载作用下的内应力,因此会在焊件内部自相平衡,这就必然在距焊缝稍远区段内产生压应力 2、横向焊接应力 横向焊接应力产生的原因有二:一是由于焊缝纵向收缩,使两块钢板趋向于形成反方向的弯曲变形,但实际上焊缝将两块钢板连成整体,不能分开,于是两块板的中间产生横向拉应力,而两端则产生压应力。二是由于先焊的焊缝已经凝固,会阻止后焊焊缝在横向自由膨胀,使其发生横向塑性压缩变形。当焊缝冷却时,后焊焊缝的

收缩受到已凝固的焊缝限制而产生横向拉应力,而先焊部分则产生横向压应力,在最后施焊的末端的焊缝中必然产生拉应力。焊缝的横向应力是上述两种应力合成的结果。 3、厚度方向的焊接应力 在厚钢板的焊接连接中,焊缝需要多层施焊。因此,除有纵向和横向焊接应力σx、σy外,还存在着沿钢板厚度方向的焊接应力σz。在最后冷却的焊缝中部,这三种应力形成同号三向拉应力,将大大降低连接的塑性。 3.4.2 焊接应力和变形对结构工作性能的影响 一、焊接应力的影响 1、对结构静力强度的影响 对在常温下工作并具有一定塑性的钢材,在静荷载作用下,焊接应力是不会影响结构强度的。设轴心受拉构件在受荷前(N=0)截面上就存在纵向焊接应力。在轴心力N作用下,截面bt部分的焊接拉应力已达屈服点fy,应力不再增加,如果钢材具有一定的塑性,拉力N就仅由受压的弹性区承担。两侧受压区应力由原来受压逐渐变为受拉,最后应力也达到屈服点fy,这时全截面应力都达到fy 2、对结构刚度的影响 构件上的焊接应力会降低结构的刚度。由于截面的bt部分的拉应力已达fy,这部分的刚度为零,则具有所示残余应力的拉杆的抗

如何控制焊接应力和变形

如何控制焊接应力和变形- - 摘要:为有效控制钢结构因焊件的不均匀膨胀和收缩而造成的焊接变形,就焊接变形和焊接应力的各种影响因素进行分析,提出了相应的控制措施。 在建筑钢结构发展如火如荼的今天,形式各异的焊接机械、焊接方法日新月异,焊接技术成了一个关键的课题。但在施工过程中,由于焊接产生的焊接残余应力和残余变形,严重影响着工程的质量、安装进度和结构承载力(即使用功能),因而,急需采用合理的方法予以控制。 钢结构的焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。常见的焊接应力有:1)纵向应力;2)横向应力;3)厚度方向应力。常见的焊接变形有:1)纵向收缩变形;2)横向收缩变形;3)角变形;4)弯曲变形;5)扭曲变形;6)波浪变形。针对这些不同种类的焊接变形和应力分布,追溯根源,具体进行研究控制。1焊接变形的控制措施 全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。 1.1焊缝截面积的影响 焊缝截面积是指熔合线范围内的金属面积。焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。 1.2焊接热输入的影响 一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。 1.3焊接方法的影响 多种焊接方法的热输入差别较大,在建筑钢结构焊接常用的几种焊接方法中,除电渣以外,埋弧焊热 输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。 1.4接头形式的影响 在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。常用的焊缝形式有堆焊、角焊、对接焊。 1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度 而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。 2)T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。 3)对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。 双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。 1.5焊接层数的影响 1)横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第 一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。

如何防止焊接变形

焊接变形的种类。 焊接过程中焊件产生的变形称为焊接变形。焊后,焊件残留的变形称为焊接残余变形。焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,见图1,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。 2 焊件在什么情况下会产生纵向收缩变形? 焊件焊后沿平行于焊缝长度方向上产生的收缩变形称为纵向收缩变形。当焊缝位于焊件的中性轴上或数条焊缝分布在相对中性轴的对称位置上,焊后焊件将产生纵向收缩变形,其焊缝位置见表1。

焊缝的纵向收缩变形量随焊缝的长度、焊缝熔敷金属截面积的增加而增加,随焊件截面积的增加而减少,其近似值见表2。 表2 焊缝纵向收缩变形量的近似值(mm/m) 对接焊缝连续角焊缝间断角焊缝 0.15~0.3 0.2~0.4 0~0.1 注:表中所表示的数据是在宽度大约为15倍板厚的焊缝区域中的纵向收缩变形量,适用于中等厚度的低碳钢板。 3 试述焊缝的横向收缩变形量及其计算。 焊件焊后在垂直于焊缝方向上发生的收缩变形称为横向收缩变形,横向收缩变形量随板厚的增加而增加。低碳钢对接接头、T形接头和搭接接头的横向收缩变形量,见表3、表4。

对接接头横向收缩变形量的近似计算公式,见表5。 表5 对接接头横向收缩变形量的近似计算公式坡口形式横向缩短量计算公式 Y形双Y形△L横=0.1δ①+0.6 △L横=0.1δ+0.4 ①δ——板厚(mm)。 当两板自由对接、焊缝不长、横向没有约束时,横向收缩变形量要比纵向的大得多。 4 焊件在什么情况下会产生弯曲变形? 如果焊件上的焊缝不位于焊件的中性轴上,并且相对于中性轴不对称(上下、左右),则焊后焊件将会产生弯曲变形。如果焊缝集中在中性轴下方(或下方焊缝较多)则焊件焊后将产生上拱弯曲变形;相反如果焊缝集中在中性轴上方(或上方焊缝较多),则焊件焊后将产生下凹弯曲变形。又如果焊件相对焊件中性轴左、右不对称,则焊后将产生旁弯,焊件产生弯曲变形的焊缝位置,见表6。

如何防止焊接变形

如何防止焊接变形 1、焊接变形的种类: 焊接过程中焊件产生的变形称为焊接变形。焊后,焊件残留的变形称为焊接残余变形。焊接残余变形有纵向收缩变形、横向收缩变形、角变形、弯曲变形、扭曲变形和波浪变形等共六种,见图1,其中焊缝的纵向收缩变形和横向收缩变形是基本的变形形式,在不同的焊件上,由于焊缝的数量和位置分布不同,这两种变形又可表现为其它几种不同形式的变形。 2、如何利用合理的装配焊接顺序来控制焊接残余变形? 不同的构件形式应采用不同的装配焊接方法。 1)结构截面对称、焊缝布置对称的焊接结构,采用先装配成整体,然后再按一定的焊接顺序进行生产,使结构在整体刚性较大的情况下焊接,能有效地减少弯曲变形。 例如,工字梁的装配焊接过程,可以有两种不同方案,见图4。若采用图4b所示的边装边焊顺序进行生产,焊后要产生较大的上拱弯曲变形;若采用图4c所示的整装后焊顺序,就可有效地减少弯曲变形的产生。

2)结构截面形状和焊缝不对称的焊接结构,可以分别装焊成部件,最后再组焊在一起见图5。图5b所示的方案由于焊缝1离中性轴距离较大,所以弯曲变形较大,而图5a所示的焊缝1 的位置几乎与上盖板截面中性轴重合,所以对整个结构的弯曲变形没有影响。 3、如何利用合理的焊接顺序来控制焊接残余变形? ⑴对称焊缝采用对称焊接当构件具有对称布置的焊缝时,可采用对称焊接减少变形。如 图4所示工字梁,当总体装配好后先焊焊缝1、2,然后焊接3、4,焊后就产生上拱的弯曲变形。 如果按1、4、2、3的顺序进行焊接,焊后弯曲变形就会减小。但对称焊接不能完全消除变形, 因为焊缝的增加,结构刚度逐渐增大,后焊的焊缝引起的变形比先焊的焊缝小,虽然两者方向 相反,但并不能完全抵消,最后仍将保留先焊焊缝的变形方向。 ⑵不对称焊缝先焊焊缝少的一侧因为先焊焊缝的变形大,故焊缝少的一侧先焊时,使它 产生较大的变形,然后再用另一侧多的焊缝引起的变形来加以抵消,就可以减少整个结构的变 形。

焊接的六大缺陷产生原因和预防措施大汇总

一、外观缺陷 外观缺陷(表面缺陷)是指不用借助于仪器,从工件表面可以发现的缺陷。常见的外观缺陷有咬边、焊瘤、凹陷及焊接变形等,有时还有表面气孔和表面裂纹。单面焊的根部未焊透等。 A、咬边 是指沿着焊趾,在母材部分形成的凹陷或沟槽, 它是由于电弧将焊缝边缘的母材熔化后没有得到熔敷金属的充分补充所留下的缺口。 产生咬边的主要原因:是电弧热量太高,即电流太大,运条速度太小所造成的。焊条与工件间角度不正确,摆动不合理,电弧过长,焊接次序不合理等都会造成咬边。直流焊时电弧的磁偏吹也是产生咬边的一个原因。某些焊接位置(立、横、仰)会加剧咬边。咬边减小了母材的有效截面积,降低结构的承载能力,同时还会造成应力集中,发展为裂纹源。 防止咬边的预防:矫正操作姿势,选用合理的规范,采用良好的运条方式都会有利于消除咬边。焊角焊缝时,用交流焊代替直流焊也能有效地防止咬边。 B、焊瘤 焊缝中的液态金属流到加热不足未熔化的母材上或从焊缝根部溢出,冷却后形成的未与母材熔合的金属瘤即为焊瘤。焊接规范过强、焊条熔化过快、焊条质量欠佳(如偏芯),焊接电源特性不稳定及操作姿势不当等都容易带来焊瘤。在横、立、仰位置更易形成焊瘤。 焊瘤常伴有未熔合、夹渣缺陷,易导致裂纹。同时,焊瘤改变了焊缝的实际尺寸,会带来应力集中。管子内部的焊瘤减小了它的内径,可能造成流动物堵塞。 防止焊瘤的措施:使焊缝处于平焊位置,正确选用规范,选用无偏芯焊条,合理操作。 C、凹坑 凹坑指焊缝表面或背面局部的低于母材的部分。 凹坑多是由于收弧时焊条(焊丝)未作短时间停留造成的(此时的凹坑称为弧坑),仰立、横焊时,常在焊缝背面根部产生内凹。凹坑减小了焊缝的有效截面积,弧坑常带有弧坑裂纹和弧坑缩孔。 防止凹坑的措施:选用有电流衰减系统的焊机,尽量选用平焊位置,选用合适的焊接规范,收弧时让焊条在熔池内短时间停留或环形摆动,填满弧坑。 D、未焊满 未焊满是指焊缝表面上连续的或断续的沟槽。填充金属不足是产生未焊满的根本原因。规范太弱,焊条过细,运条不当等会导致未焊满。 未焊满同样削弱了焊缝,容易产生应力集中,同时,由于规范太弱使冷却速度增大,容易带来气孔、裂纹等。 防止未焊满的措施:加大焊接电流,加焊盖面焊缝。 E、烧穿 烧穿是指焊接过程中,熔深超过工件厚度,熔化金属自焊缝背面流出,形成穿孔性缺。 焊接电流过大,速度太慢,电弧在焊缝处停留过久,都会产生烧穿缺陷。工件间隙太大,钝边太小也容易出现烧穿现象。 烧穿是锅炉压力容器产品上不允许存在的缺陷,它完全破坏了焊缝,使接头丧失其联接飞及承载能力。

焊接应力与变形控制方法

焊接应力与变形控制方法 发表时间:2018-12-02T13:27:28.937Z 来源:《基层建设》2018年第29期作者:胡涛 [导读] 摘要:伴随着我国社会经济的快速崛起,带动着我国工业行业亦获得了高速发展,而焊接作为不可或缺的环节,在工业发展当中发挥着非常重要的地位,尤其是电力行业。 大庆油田中油电能热电一公司热机检修部黑龙江大庆市 163300 摘要:伴随着我国社会经济的快速崛起,带动着我国工业行业亦获得了高速发展,而焊接作为不可或缺的环节,在工业发展当中发挥着非常重要的地位,尤其是电力行业。各种各样的焊接工艺和焊接形式越来越多的被应用在实际的焊接工作过程中。同时焊接使用的工作机械也在不断的更新及发展。现在的焊接工相较于以前的焊接工作已经有了非常大的发展和创新。基于此,本文主要对焊接变形与焊接应力进行了简要的分析,希望可以为相关工作人员提供一定的参考。 关键词:焊接变形;焊接应力;探讨 引言 在整个焊接的过程当中,由于焊接时温度分布不同,焊接材料之间也会呈现不同的收缩率。这些因素的存在会在一定层面上导致焊接材料之间的变形。这种变形有持久的也有暂时的。目前,关于焊接变形与焊接应力相关的研究,在学术领域和实践领域并没有达成很大的共识。因此,需进一步加强焊接变形和应力的分析。 1焊接应力与焊接变形的定义 1.1焊接应力 钢材在焊接过程中,焊件部位会因为焊接时的局部高温产生不均的温度场,高温时,有一部分钢材会产生很大的膨胀和伸长,但由于受到邻近钢材的影响,会在焊件内部产生较大的收缩应力。在焊接的过程中,这种收缩应力伴随着焊接时间的变化和温度的升降变化不断的改变,而这种收缩应力就被定义为焊接应力。 1.2焊接变形 焊接构件在焊接及逐渐冷却的过程中,由于焊接构件局部受热且受热不均,焊接构件冷却也不均,因此焊接构件不仅会产生焊接应力,还会产生各种变形。这种焊件产生的变形,被称为焊接变形。 2焊接变形及焊接应力出现的主要原因 2.1焊接件受热不均匀 按照有关的实践分析可知,在焊接过程中出现焊接应力与变形的根本原因为在焊接操作时受力不均匀所导致。焊接件焊接的位置引起焊接操作的实施而发生热涨状况,但是没有焊接的位置因不存在热涨现象进而阻止了热涨变形。因此,导致焊接完成后发生严重的焊接变形。并还会出现较大的焊接应力。 2.2焊接金属出现收缩 焊接工作实际就是将要融化焊接母材然后再进行金属填充,在常态下是一种全塑状态,在焊接操作的过程中只会出现自身的变形而没有带动亦或拉动其它金属变形,从而导致金属发生收缩的现象,造成焊接变形的出现。 2.3焊接件刚性约束 捍接件本身存在的刚性约束同焊接过程中出现焊接应力及焊接变形之间存在着必要的联系。焊接件的刚性约束同焊接变形以及焊接应力发生概率呈现反比例关系。刚性约束越大,发生焊接变形与焊接应力的概率则越小。 2.4其它因素导致焊接残余应力产生 在电力焊接加工中,不仅受到热源和材料、力学性能因索的影响,而且受到其它因素的影响,也会出现不同的残余应力。例如:如果在焊接加工操作之前,使钢结构局部零件以及器材进行轧刹,也会影响电力焊接加工过程,使电力焊接加工中出现不同的残余应力。此外,在电力焊接加工中,还要重点考虑其它多方面的影响,才能避免出现较大的残余应力。 3焊接变形控制措施 首先需要严格控制焊接量,避免焊接残余应力出现。在材料焊接加工前必须做好充足的准备工作,深入了解和分析材料的基本特征,焊缝的尺寸需要进行严格管理,母材不能进行焊缝。其次,在具体焊接中需要合理调整焊接工艺次序,对于不必要的焊接次序需要进行优化调整,如果材料收缩量比较大,那么需前焊接,然而继续焊接长直缝,只有遵循先大后小的原则,才能避免残余应力,再者,焊接时需有意识的预留充分焊接缝,从而却未必焊接时自由收缩缓和槽减小应力法:厚度大的焊件刚性大,焊接时极易出现裂纹,在不影响结构强度性能基础上,通过焊缝附近开缓和槽的方法降低焊接应力,防止裂纹的发生。最后,在先进的科学技术支撑下,可以不断改善焊接技术,加强应用全新的焊接技术,例如二氧化碳保护焊以及氩弧焊,这些焊接工艺技术都能避免电力焊接变形问题产生。 4焊接变形的控制措施 4 1设计措施 (1)焊缝要对称布置,连接处要平滑。当焊接不同宽度或者是厚度的焊件时,防止截面出现突变而产生过大的应力集中现象,可以采用一定的坡度过渡的方法。(2)焊接要避免焊缝过分集中,或者是多个方向的焊缝都相交于一点,如出现前两种情况,相交处会形成多向同号应力场,这样就会使得钢材变脆;通常采用主要焊缝连续通过而次要焊缝断开的构造方法来防止多方向焊缝相交的现象发生。(3)尽量减小焊缝的数量及其尺寸,采用适宜的焊脚尺寸和长度。搭接角焊缝焊接时,要避免焊接热量集中现象,应该采用细长焊缝,而不能用粗短焊缝。(4)在搭接连接中不能只有一条正面角焊缝传力,要求搭接长度不小于薄板厚度的5倍或者是25毫米。(5)要尽量避免在母材厚度方向有收缩应力。(6)焊缝要合理布置位置,避免仰焊 4.2焊接工艺 (1)采用合理的焊接方向和顺序。结构对称时,采用对称焊法。当焊缝较多且较集中时,采用跳焊法分散受热防止集中受热。大于l米的长焊缝,采用分段退焊法。(2)先焊接膨胀大的焊缝,后焊膨胀小的焊缝。先焊短缝,后焊长缝,使得焊缝有足够大的横向收缩空间。(3)为保证受力较大的焊缝在焊接后有一定的伸缩空间,应先焊受力较大的主要焊缝,后焊受力较小的次要焊缝。(4)反变形弦。为了减小焊接变形,可以在焊接之前预留一个与焊接变形相反的预变形。5)预热。焊接之前,先将焊件整体或者是局部加热到100-300℃,并且在焊接后保

相关文档
最新文档