基于快速成型技术制造生物骨方法的研究_连芩

基于快速成型技术制造生物骨方法的研究_连芩
基于快速成型技术制造生物骨方法的研究_连芩

3D打印与快速成型和快速制造之间的区别和联系

3D打印与快速成型和快速制造之间的区别和 联系 D、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。目前国内传媒界习惯把快速成型技术叫做“3D打印”或者“三维打印”,显得比较生动形象,但是实际上,“3D打印”或者“三维打印”只是快速成型的一个分支,只能代表部分快速成型工艺。快速制造(Rapid Manufacturing,简称RM),有狭义和广义之分,狭义上是基于激光粉末烧结快速成型技术的全新制造理念,实际上属于RP快速成型技术的其中一个分支,它是指从电子数据直接自动地进行快速的、柔性并具有较低成本的制造方式。快速制造它与一般的快速成型技术相比,在于可以直接生产最终产品,能够适应从单件产品制造到批量的个性化产品制造;而广义上,RM快速制造可以包括“快速模具”技术和CNC数控加工技术在内,因此可以与RP快速成型技术分庭抗礼,各擅胜场。国际上喜欢用“Additive Manufacturing”(简称AM)来囊括RP和RM 技术,国内翻译为增量制造、增材制造或添加制造。年美国ASTM 成立了F42委员会,将AM定义为:

“Process of joining mat-erials to make objects from3d model data, usua-lly layer upon layer, as opposed to subtractive manufacturing methodologies、” 即:一种与传统的材料去处加工方法截然相反的,通过增加材料、基于三维CAD模型数据,通常采用逐层制造方式,直接制造与相应数学模型完全一致的三维物理实体模型的制造方法。解析二:几种主流快速成型工艺的成型原理及优缺点 1、激光光固化(SLAStereolithography)该技术以光敏树脂为原料,将计算机控制下的紫外激光按预定零件各分层截面的轮廓为轨迹对液态树脂连点扫描,便被扫描区的树脂薄层产生光聚合反应,从而形成零件的一个薄层截面。当层固化完毕,移动工作台,在原先固化好的树脂表面再敷上一层新的液态树脂以便进行下一层扫描固化。新固化的一层牢固地粘合在前一层上,如此重复直到整个零件原型制造完毕。美国3DSYSTEMS 公司是最早推出这种工艺的公司。该项技术特点是精度和光洁度高,但是材料比较脆,运行成本太高,后处理复杂,对操作人员要求较高。适合验证装配设计过程中用。 2、三维打印成型(3DP3Dimension Printer)其最大特点是小型化和易操作,多用于商业、办公、科研和个人工作室等环境。而根据打印方式的不同,3DP三维打印技术又可以分为热爆式三维打印(代表:美国3D Systems公司的 Zprinter系列原属ZCorporation公司,已被3D Systems公司收购)、压电式三维打

《生物学研究的基本方法_》教案

第2章探索生命 第1节生物学研究的基本方法 一、教材分析 生物学是一门自然科学,研究的是一些科学事实。在各种科学事实间建立合理的联系,寻找事实产生的原因,提出解释事实的各种假说和理论。生物科学的发展就是人类不断研究的过程,研究过程要用到不同的方法,要让学生不断学会研究方法很重要,所以,通过这节课的学习,让学生初步学会简单的生物学研究方法,提高学生的能力,为以后学习生物学打好基础,也为社会进步带来新的希望。 二、教学目标 知识与技能目标:能说出实验法的基本步骤。 过程与方法目标:通过提出假设和设计实验方案,尝试科学探究的一般方法;通过材料获取和处理信息,培养学生收集材料的能力和分析处理信息的能力。 情感态度与价值观目标:在讨论中,体验用实验法进行科学探究的过程,逐渐形成严谨、实事求是的科学态度;在小组活动中,学会交流与表达,学会与他人合作。 三、教学重难点 教学重点:实验法研究的一般步骤 教学难点:在教师的指导下,以小组为单位,学生自己进行分析、处理、归纳信息,设计实验方案。 教法:通过媒体展示,提高课堂容量、拓宽学生知识面,同时采用观察、思考、阅读、探究方法等相结合。 教具:多媒体课件 四、教学过程 内容设计意图 导入教师 活动我们现在学的生物教材是属于生物学,生物学是一门不断研究 的学科,也是一门自然科学,既然是一门自然学科,那么在研 究的过程中就要遵循自然规律,要遵循自然规律进行研究,就 应该首先掌握研究的基本方法,引入课题 激发学生的兴趣引入主题 一、 生物学研究的基本方法教师 活动 提问:同生们平时在生活中遇到问题是怎么解决的, 用到哪些方法? 联系生活实际激发学生的求知 欲 学生 活动 思考、结合生活实际回答问题培养学生的语言表达能力 教师 活动 多媒体展示:科学家们的研究的基本方法:观察、 调查、分类、实验等,引出实验法最重要 整体感知,培养学生的观察能 力 二、过度 思考 既然实验法是最重要的,那么实验法研究的基本步骤是什么 呢? 设置悬念引入思考 教师 活动 引出:本节课要以“实验法研究的示例:响尾蛇是如何跟踪它 放走的猎物”为例来了解实验法研究的基本步骤 多媒体展示:不同种响尾蛇的图片和有关响尾蛇的文字介绍 感知认识 学生 活动 认真观察、阅读信息,加强对响尾蛇的了解 感知认识,拓展学生的视野教师 活动 展示图片:播放响尾蛇捕捉老鼠的视频,并对视频内容作解释 直观形象,激发学生兴趣 学生 活动 认真观察、迅速获取信息培养学生的观察能力和获取信 息的能力 教师 活动 提问学生:通过观察录像,叫学生说出自己感兴趣的问题 引导学生发现问题 学生 活动 学生主动起来说出自己感兴趣的问题落实学生自主学习,培养学生 的创新能力 教师对学生提出的问题作出客观评价,指出在众多问题中,本节课统一学生的思想,引导学生共 - 1 -

快速成型技术的发展与应用

快速成型技术的发展与应用 摘要:快速成型技术是一项多学科交叉多技术集成的先进制造技术,本文简要介绍该技术的原理、特点,并重点研究阐述该技术在国内外应用和发展状况,并结合实际指出了该技术开发方向。 关键词:快速成型;原理;应用;开发 一引言 最近英国经济学人指出:快速成型技术(简称RP技术)市场潜力巨大,必将引领未来制造业,它将使工厂彻底告别车床、钻床等传统工具,改由更加灵巧的电脑软件主宰,这便是第三次工业革命到来的标志。虽然究竟谁能够引领第三次工业革命?目前我们要下这个结论,显得时机过早。但重视这被西方媒体誉为将带来“第三次工业革命” 的“RP技术”是非常必要的。本文就这一技术的原理及发展应用情况予以介绍。 二快速成型技术原理及特点 RP技术是20世纪90年代发展起来的一项高新技术。笼统地讲,RP技术属于堆积成形;严格地讲,它是基于离散和堆积原理,将零件的CAD模型按一定方式离散,成为可加工的离散面、离散线、离散点,而后采用物理或化学手段,将这些离散的面、线段和点堆积而形成零件的整体形状。RP技术工艺流程如图1所示。其主要工艺方法有:SLA、SLS、FDM、TDP,具体见下表: 用粉末材料为原料,按照分层信息铺好一层粉末材料计算机控制喷头有选择性地喷射粘接剂,使部分粉末粘接形成截面层。一层完成后,工作台下降一个层厚,如此循环形成三维产品。 三快速成型技术的发展现状 3.1国外的快速成型技术的发展现状 这种为现代社会带来强大冲击和震撼的新技术起源于1988年,美国3D System 公司推出的SLA-250液态光敏树脂选择性固化成形机,标志着RP技术的诞生。目前,RP技术被广泛应用于各个领域,如航天航空、医疗、军工、艺术设计等领域,应用最为广泛的是航空零部件的快速制造,包括快速精铸技术、金属直接制造零部件、风洞模型的制造。 国外主要的航空企业都在应用RP技术研制新型航空器。例如,美国军用和商用航空发动机制造商Sundstrand公司使用RP技术制作新型燃气轮发动机进风口外壳原型(φ300×250,壁厚仅1.5),节省了4个多月的加工制造时间和超过8.8万美元的费用。

快速成形技术的快速模具制造技术(doc 6)

快速成形技术的快速模具制造技术(doc 6)

基于快速成形技术的快速模具制造技术 一、引言 近10年来,制造业市场环境发生了巨大的变化,迅速将产品推向市场已成为制造商把握市场先机的重要保障。因此,产品的快速开发技术将成为赢得21世纪制造业市场的关键 快速成形技术(以下简称RP)是一种集计算机辅助设计、精密机械、数控激光技术和材料学为一体的新兴技术,它采用离散堆积原理,将所设计物体的CAD模型转化成实物样件。由于RP技术采用将三维形体转化为二维平面分层制造的原理,对物体构成复杂性不敏感,因此物体越复杂越能体现它的优越性。 以RP为技术支撑的快速模具制造RT(Rapid Tooling)也正是为了缩短新产品开发周期,早日向市场推出适销对路的、按客户意图定制的多品种、小批量产品而发展起来的新型制造技术。由于产品开发与制造技术的进步,以及不断追求新颖、奇特、多变的市场消费导向,使得产品(尤其是消费品)的寿命周期越来越短已成为不争的事实。例如,汽车、家电、计算机等产品,采用快速模具制造技术制模,制作周期为传统模具制造的1/3~1/10,生产成本仅为1/3~1/5。所以,工业发达国家已将RP/RT作为缩短产品开发时间及模具制作周期的重要研究课题和制造业核心技术之一,我国也已开始了快速制造业的研究与开发应用工作。 二、基于RPM的快速模具制造方法 模具是制造业必不可少的手段,其中用得最多的有铸模、注塑模、冲压模和锻模等。传统制作模具的方法是:对木材或金属毛坯进行车、铣、刨、钻、磨、电蚀等加工,得到所需模具的形状和尺寸。这种方法既费时又费钱,特别是汽车、摩托车和家电所需的一些大型模具,往往造价数十万元以上,制作周期长达数月甚至一年。而基于RPM技术的RT直接或间接制作模具,使模具的制造时间大大缩短而成本却大大降低。 1. 用快速成形机直接制作模具 由于一些快速成形机制作的工件有较好的机械强度和稳定性,因此快速成形件可直接用作模具。例如,Stratasys公司TITAN快速成形机的PPSF制件坚如硬木,可承受30 0℃高温,经表面处理(如喷涂清漆,高分子材料或金属)后可用作砂型铸造木模、低熔点合金铸造模、试制用注塑模以及熔模铸造的压型。当用作砂形铸造的木模时,它可用来重复制作50~100件砂型。作为蜡模的成型模时,它可用来重复注射100件以上的蜡模。用FDM快速成形机的ABS工件能选择性地融合包裹热塑性粘结剂的金属粉,构成模具的半成品,烧结金属粉并在孔隙渗入第二种金属(铝)从而制作成金属模。

快速成型技术的现状和发展趋势

快速成型技术的现状和发展趋势 1 快速成型技术的基本成型原理 近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术 (Rapid Prototyping简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。 传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。而快速成型技术基本原理是:借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行“切片”处理,即将零件的3D数据信息离散成一系列2D轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。 目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。其基本的原理如下图所示。 图1 快速成型原理示意图 2 快速成型技术在产品开发中的应用 不断提高RP技术的应用水平是推动RP技术发展的重要方面。目前,交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快速成

型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。RP技术的实际应用主要集中在以下几个方面: 2.1 用于新产品的设计与试制。 (1)CAID应用: 工业设计师在短时间得到精确的原型与业者作造形研讨。 (2)机构设计应用: 进行干涉验证,及提早发现设计错误以减少后面模具修改工作。 (3)CAE功效:快速模具技术以功能性材料制作功能性模具,以进行产品功能性测试与研讨。 (4)视觉效果:设计人員能在短时间之便能看到设计的雛型,可作为进一步研发的基石。 (5)设计确认:可在短时间即可完成原型的制作,使设计人员有充分的时间对于设计的产品做详细的检证。 (6)复制于最佳化设计:可一次制作多个元件,可使每个元件针对不同的设计要求同时进行测试的工作,以在最短时间完成设计的最佳化。 (7)直接生产: 直接生产小型工具,或作为翻模工具 2.2 快速制模及快速铸造 快速模具制造传统的模具生产时间长,成本高。将快速成型技术与传统的模具制造技术相结合,可以大大缩短模具制造的开发周期,提高生产率,是解决模具设计与制造薄弱环节的有效途径。快速成形技术在模具制造方面的应用可分为直接制模和间接制模两种,直接制模是指采用RP技术直接堆积制造出模具,间接制模是先制出快速成型零件,再由零件复制得到所需要的模具 2.3 机械制造 由于RP技术自身的特点,使得其在机械制造领域,获得广泛的应用,多用于制造单件、小批量金属零件的制造。有些特殊复杂制件,由于只需单件生产,或少于50件的小批量,一般均可用RP技术直接进行成型,成本低,周期短。2.4 医疗中的快速成形技术 在医学领域的应用近几年来,人们对RP技术在医学领域的应用研究较多。以医学影像数据为基础,利用RP技术制作人体器官模型,对外科手术有极大的应用价值。 2.5 三维复制 快速成形制造技术多用于艺术创作、文物复制、数字雕塑等。 2.6 航空航天技术领域 航空航天产品具有形状复杂、批量小、零件规格差异大、可靠性要求高等特点,产品的定型是一个复杂而精密的过程,往往需要多次的设计、测试和改进,耗资大、耗时长,而快速成型技术以其灵活多样的工艺方法和技术优势而在现代航空航天产品的研制与开发中具有独特的应用前景。

快速成型技术与试题---答案

试卷 2. 3.快速成型技术的主要优点包括成本低,制造速度快,环保节能,适用于新产品开发和单间零件生产等 4.光固化树脂成型(SLA)的成型效率主要与扫描速度,扫描间隙,激光功率等因素有关 5. 也被称为:3D打印,增材制造; 6.选择性激光烧结成型工艺(SLS)可成型的材料包括塑料,陶瓷,金属等; 7.选择性激光烧结成型工艺(SLS)工艺参数主要包括分层厚度,扫描速度,体积成型率,聚焦光斑直径等; 8.快速成型过程总体上分为三个步骤,包括:数据前处理,分层叠加成型(自由成型),后处理; 9.快速成型技术的特点主要包括原型的复制性、互换性高,加工周期短,成本低,高度技术集成等; 10.快速成型技术的未来发展趋势包括:开发性能好的快速成型材料,改善快速成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,开发新的成形能源,快速成形方法和工艺的改进和创新,提高网络化服务的研究力度,实现远程控制等; 11.光固化快速成型工艺中,其中前处理施加支撑工艺需要添加支撑结构,支撑结构的主要作用是防止翘曲变形,作为支撑保证形状; 二、术语解释 1.STL数据模型 是由3D SYSTEMS 公司于1988 年制定的一个接口协议,是一种为快速原型制造技术服务的三维图形文件格式。STL 文件由多个三角形面片的定义组成,每个三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。stl 文件是在计算机图形应用系统中,用于表示三角形网格的一种文件格式。它的文件格式非常简单,应用很广泛。STL是最多快速原型系统所应用的标准文件类型。STL是用三角网格来表现3D CAD模型。STL只能用来表示封闭的面或者体,stl文件有两种:一种是ASCII明码格式,另一种是二进制格式。 2.快速成型精度包括哪几部分 原型的精度一般包括形状精度,尺寸精度和表面精度,即光固化成型件在形状、尺寸和表面相互位置三个方面与设计要求的符合程度。形状误差主要有:翘曲、扭曲变形、椭圆度误差及局部缺陷等;尺寸误差是指成型件与CAD模型相比,在x、y、z三个方向上尺寸相差值;表面精度主要包括由叠层累加产生的台阶误差及表面粗糙度等。 3.阶梯误差 由于快速成型技术的成型原理是逐层叠加成型,因此不可避免地会产生台阶效应,使得零件的表面只是原CAD模型表面的一个阶梯近似(除水平和垂直表

生物学的基本研究方法

生物学的基本研究方法 一、基础知识: (1)、_________和_______是科学探究基本方法。也是我们学习生物学的基本方法。 (2)、实践可以给研究者提供现象、数据等资料,是检验_______、形成科学理论的实践基础。 实验的一般规程是:1. ________________________ 2、_____________________________ 3、________________________ 4、________________________________ 5、_________________________________________ (3)正确使用显微镜的步骤是:1. ________________________ 2、_____________________________ 3、________________________4、_________________________5、____________________________ 在显微镜下观察到的物像是________像。 (4)科学探究的基本过程是;1. _____________ 2、_____________3、______________ 4、________________________ 5、___________________ 6、__________________________ 实验中单一变量原则:变量是______________________,在一个实验中,除了要研究的变量以外,其余的变量都应__________,并控制在__________状态。 (5)什么叫对照实验?_________________________________________ _________________________________________ _________________________________________ (6)收集资料和分析资料有什么好处? _________________________________________ _________________________________________ (7)测量 在测量中如何提高数据的可靠性?_________________________________________ (8)调查:调查是科学探究的常用方法。 完成一项调查需要做好哪几个方面工作?________________________________ ________________________________________________________________ (9)综合起来科学探究的方法概括起来有: 1、2、3、 4 二、探究训练 1、使用显微镜对光的程序是() ①选遮光器上较大的光圈对准通光孔②转动转换器,使低倍物镜对准通光孔,③左眼注视目 镜,右眼睁开④转动反光镜,使光线通过通光孔反射到镜筒内 A、①→②→③→④ B、②→①→③→④ C、③→④→②→① D、③→②→①→④ 2、小明在用显微镜进行观察时看到了一个小黑点,移动载玻片和物镜,小黑点不动,由此可判断小 黑点可能在( ) A 目镜上 B 物镜上 C 载玻片上 D 反光镜上 3、当显微镜的目镜为10X、物镜为10X时,在视野直径范围内看到一行相连的8个细胞。若目镜 不变,物镜换成40X时,则在视野中可看到这行细胞中的() A.2个B.4个C.16个D.32个 4、小强在显微镜下观察到了洋葱表皮细胞后,兴奋地向同学描述,并把显微镜轻轻挪动给同组同学,

3D打印与快速成型和快速制造之间地区别和联系

3D打印与快速成型和快速制造之间的区别和联系当前,3D打印、3D打印机、三维打印、快速成型、快速制造、数字化制造这些名词,如同一股旋风,仿佛一夜之间就在学术界、政界、传媒界、金融界、制造界掀起了巨澜。然而至今还没有一篇文章能够全面、完整地对这些名词进行解析,让人们真正认识和了解“什么是3D打印”、“什么是快速制造”。 解析一:概念 快速成型(Rapid Prototyping,简称RP),诞生于20世纪80年代后期,是基于材料堆积法的一种新型技术,被认为是近20年来制造领域的一个重大成果。它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了一种高效低成本的实现手段。目前国传媒界习惯把快速成型技术叫做“3D打印”或者“三维打印”,显得比较生动形象,但是实际上,“3D打印”或者“三维打印”只是快速成型的一个分支,只能代表部分快速成型工艺。 快速制造(Rapid Manufacturing,简称RM),有狭义和广义之分,狭义上是基于激光粉末烧结快速成型技术的全新制造理念,实际上属于RP快速成型技术的其中一个分支,它是指从电子数据直接自动地进行快速的、柔性并具有较低成本的制造方式。快速制造它与一般的快速成型技术相比,在于可以直接生产最终产品,能够适应从单件产品制造到批量的个性化产品制造;而广义上,RM快速制造可以包括“快速模具”技术和CNC数控加工技术在,因此可以与RP快速成型技术分庭抗礼,各擅胜场。 国际上喜欢用“Additive Manufacturing”(简称AM)来囊括RP和RM技术,国翻译为增量制造、增材制造或添加制造。2009年美国ASTM成立了F42委员会,将AM定义为:“Process of joining mat-erials to make objects from 3d model data, usua-lly layer upon layer, as opposed to subtractive manufacturing methodologies.”即:一种与传统的材料去

快速成型技术及应用论文

基于激光快速成型技术的金属快速成型技术 摘要:文章详细介绍了金属粉末快速成型的研究现状 ,分析了金属粉末选择性激光烧结的工艺特点,对这些工艺的影响因素进行了讨论。 关键词:选区激光烧结;金属零件;影响因素。 引言 快速制造 (Rapid Manufacturing) 金属零件一直受到国内外的广泛重视 , 是当今快速成型领域的一个重要研究方向。到目前为止 ,用于直接成型金属材料、制备三维金属零件的技术主要有激光近形制造与金属粉末的选择性激光烧结技术。激光近形制造(LENS) ,又称激光熔覆制造或熔滴制造 ,它将激光熔覆工艺与激光快速成型技术相结合 , 利用激光熔覆工艺逐层堆积累加材料,形成具有三维形状的三维结构。在该方面 ,美国的Aeromet、德国的汉诺威激光中心以及清华大学激光加工研究中心等均进行了大量的研究 , 并得到了具有一定形状的三维实体零件。有异于激光近形制造 ,选择性激光烧结则有选择地逐层烧结固化粉末金属得到三维零件。在这一领域,美国的DTM丶德国的汉诺威激光中心等进行了多元金属的烧结研究。就选区激光烧结(SelectiveLaser Sintering , SLS)而言 ,根据成型用金属粉末的不同 , 人们又开发出多种工艺途径来实现金属零件的烧结成型 ,主要有三种途径:一是利用金属粉末与有机粘结剂粉末共混粉体的间接烧结,金属粉末与有机粘结剂粉末均匀共混,烧结中,低熔点的粘结剂粉末熔化并将高熔点的金属粉末粘结,形成原型(“绿件”),经后处理,烧失粘结剂,形成“褐件”,最后通过金属熔渗工艺得到致密的金属件;二是利用金属混合粉末的直接烧结 , 其中一种粉末具有较低的熔点(如铜粉) ,另一种粉末熔点较高 (如铁粉) ,烧结中低熔点的金属粉末铜熔化并将难熔的铁粉粘结在一起 , 这种方法同样需要较大功率激光器;三是利用单一成分金属粉末的直接烧结,这种方法目前主要用于低熔点金属粉末的烧结,对熔点高的金属粉末,需采用大功率激光器。本文分别对上述的间接和直接烧结成型工艺进行了初步的研究。 1 SLS的烧结原理 激光选择性烧结快速成型技术是使用激光束熔化或烧结粉末材料 ,利用分层的思想 ,把计算机中的 CAD 模型直接成型为三维实体零件。它的创新之处在于将激光、光学、温度控制和材料相联系。SLS烧结原理如图1所示,烧结过程可分为三部分: (1)首先在粉体床上铺一薄层粉体 , 并压实 , 可以根据需要 ,在激光烧结前进行预热; (2)激光照射粉体层 ,烧结粉体,形成所设计零件一层的形状;(3) 粉体床下降一个薄层厚度的距离;重复上面的过程 ,直到原型零件完成。 SLS对粉末烧结的明显优势在于: (1) 和其它的加工方法比较,能获得优良的材料性能,同时,它的加工材料范围比较宽 (聚合物、金属、陶瓷、铸造砂等);(2) 易于实现液相烧结 , 烧结周期比较短; (3) 比传统的烧结方法更易得到密实的以粉末金属为原料的产品;(4)工艺比较简单 , 烧结路线、烧结温度便于控制。

快速成型技术的发展和应用

快速成型技术的发展和应用 摘要:科技飞速发展的今天,人类对制造业也提出了更高的要求,行业竞争也日趋激烈。 快速成型技术也应运而生,并且展现了它强大的生命力和广阔的应用前景。目前,快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。并且随着这一技术本身的发展,其应用领域将不断拓展。 The rapid development of science and technology today, the human is put forward higher requirements on manufacturing, industry competition is increasingly fierce. Rapid prototyping technology also arises at the historic moment, and shows its strong vitality and broad application prospects. At present, the modelling of rapid prototyping technology has been in the industry, machinery manufacturing, aerospace, military, architecture, film and television, home appliances, light industry, medicine, archaeology, cultural art, sculpture, jewelry, and other fields has been widely used. And with the development of the technology itself, and will continue to expand its application field. 关键词:快速成型,堆积法,高集成性、高柔性、高速性,自动、直接、快速、精确。 前言: 21世纪是以知识经济和信息社会为特征的时代,随着科学技术的发展和社会需求的多样化,全球统一市场和经济全球化的逐步形成,产品的竞争更加激烈。在工业化的国家中,60%—80%的财富是由制造业提供的。制造业是衡量一个国家实力水平的重要标志之一,也是创造社会财富和国民经济赖以生存发展的重要支柱产业。 现代制造已不仅仅是机械制造,而且具有大制造,全过程,多科学的新特点。大制造应包括机电产品的制造,工业流程制造,材料科学制造等等,所以它是一个广义的制造概念。 我国在先进制造技术方面和国外有比较大的差距,特别是我国制造业的自动化,信息化水平不高。大力发展和应用先进制造技术,勇气改造传统产业和形成高技术,提升我国制造业得产业结构,产品结构和组织结构,增强其技术创新能力,产品开发,和市场竞争能力。是制造业,特别是机械制造业走出困局的关键性措施。这样才能保证我们世界工厂地位的确立,实现由制造业大国向制造业强国的转变。 快速成型技术的诞生 快速成型技术作为一个专用名词在20世纪80年代末期,美国为了加强其制造业的竞争力与促进国民经济的增长,根据其制造业面临的挑战与机遇,并对其制造业存在的问题进行深刻反省提出来的。快速成型技术是集成制造技术,电子技术,信息技术,自动化技术,能源晕技术,材料科学以及现在管理技术等众多技术的交叉,融合和渗透而发展起来的,涉及到制造业中的产品设计,加工装配,检验测试,经营管理等产品生命周期全过程,已实现优质,高效,低耗,清洁,灵活生产,提高对动态多变,细分的市场的适应能力和竞争能力的一项综合技术。 快速成型技术是顺应这一潮流而出现的先进制造技术,它能自动,直接,快速,精确的将设计思想物转化具有一定功能的原型或直接制造零件,快速成型技术是先进制造技术的重要组成部分,也是制造技术在制造理论的一次革命性飞跃,快速成型技术目前在美国,欧洲,日本等地已被广泛应用,受到制造业界及各类用户的普遍重视。 世界上第一台快速成形机于自1988年诞生于美国。快速成型制造技术是国外20世纪80年

生物科学研究方法

生物科学研究方法 ?科学研究方法: 1、假说——演绎法 ①提出假设 ②演绎就是推理 ③实验验证假设和推理 ④得出结论 2、同位素示踪法:同位素示踪法是利用放射性核素或稀有稳定核素作为示踪剂对研 究对象进行标记的微量分析方法 3、科学的研究方法包括:归纳法、类比推理法、实验法和演绎法。 ①归纳法:是从个别性知识,引出一般性知识的推理,是由已知真的前提,引出可能 真的结论。它把特性或关系归结到基于对特殊的代表(token )的有限观察的类型;或公 式表达基于对反复再现的现象的模式(pattern )的有限观察的规律。 ②类比推理法:类比推理这是科学研究中常用的方法之一。类比推理是根据两个或两 类对象有部分属性相同,从而推出它们的其他属性也相同的推理。简称类推、类比。它是 以关于两个事物某些属性相同的判断为前提,推出两个事物的其他属性相同的结论的推理。 ③实验法:通过试验的论证得出所需数据,进行分析后得出结论。分为:化学物质的 检测方法;实验结果的显示方法;实验条件的控制方法;实验中控制温度的方法 ④演绎法:从普遍性结论或一般性事理推导出个别性结论的论证方法。演绎法得出的 结论正确与否,有待于实践检验。它只能从逻辑上保证其结论的有效性,而不能从内容上 确保其结论的真理性。也可以从逻辑思维,逆向思维和想象思维延伸到其结论该以反证明。 4、实验必须遵守的原则: ①设置对照原则:空白对照;条件对照;相互对照;自身对照。 ②单一变量原则; ③平行重复原则 5、实验的特性:对照,统一性质。提出问题;设计方案;讨论结果;分析问题。分 为科学实验;验证性实验;对照实验等。 ?知识拓展:

快速成型技术及其发展综述

计算机集成制造技术与系统——读书报告 题目名称: 专业班级: 学号: 学生姓名: 指导老师

快速成型技术及其发展 摘要:快速成型技术兴起于20世纪80年代,是现代工业发展不可或缺的一个重要环节。本文介绍了快速成型技术的产生、技术原理、工艺特点、设备特点等方面,同时简述快速成型技术在国内的发展历程。 关键词:快速成型烧结固化叠加发展服务 1 快速成形技术的产生 快速原型(Rapid Prototyping,RP)技术,又称快速成形技术,是当今世界上飞速发展的制造技术之一。快速成形技术最早产生于二十世纪70年代末到80年代初,美国3M公司的阿伦赫伯特于1978年、日本的小玉秀男于1980年、美国UVP公司的查尔斯胡尔1982年和日本的丸谷洋二1983年,在不同的地点各自独立地提出了RP的概念,即用分层制造产生三维实体的思想。查尔斯胡尔在UVP的继续支持下,完成了一个能自动建造零件的称之为Stereolithography Apparatus (SLA)的完整系统SLA-1,1986年该系统获得专利,这是RP发展的一个里程碑。同年,查尔斯胡尔和UVP的股东们一起建立了3D System公司。与此同时,其它的成形原理及相应的成形系统也相继开发成功。1984年米歇尔法伊杰提出了薄材叠层(Laminated Object Manufacturing,以下简称LOM)的方法,并于1985年组建Helisys 公司,1992年推出第一台商业成形系统LOM-1015。1986年,美国Texas大学的研究生戴考德提出了选择性激光烧结(Selective Laser Sintering,简称SLS)的思想,稍后组建了DTM 公司,于1992年开发了基于SLS的商业成形系统Sinterstation。斯科特科瑞普在1988年提出了熔融成形(Fused Deposition Modeling,简称FDM)的思想,1992年开发了第一台商业机型3D-Modeler。 自从80年代中期SLA光成形技术发展以来到90年代后期,出现了几十种不同的RP技术,但是SLA、SLS和FDM几种技术,目前仍然是RP技术的主流,最近几年LJP(立体喷墨打印)技术发展迅速,以色列、美国、日本等国的RP设备公司都力推此类技术设备。 2基本原理 快速成形技术是在计算机控制下,基于离散、堆积的原理采用不同方法堆积材料,最终完成零件的成形与制造的技术。 1、从成形角度看,零件可视为“点”或“面”的叠加。从CAD电子模型中离散得到“点”或“面”的几何信息,再与成形工艺参数信息结合,控制材料有规律、精确地由点到面,由面到体地堆积零件。 2、从制造角度看,它根据CAD造型生成零件三维几何信息,控制多维系统,通过激光束或其他方法将材料逐层堆积而形成原型或零件。 3快速成型技术特点 RP技术与传统制造方法(即机械加工)有着本质的区别,它采用逐渐增加材料的方法(如凝固、焊接、胶结、烧结、聚合等)来形成所需的部件外型,由于RP技术在制造产品的过程中不会产生废弃物造成环境的污染,(传统机械加工的冷却液等是污染环境的),因此在当代讲究生态环境的今天,这也是一项绿色制造技术。 RP技术集成了CAD、CAM、激光技术、数控技术、化工、材料工程等多项技术,解决了传统加工制造中的许多难题。 RP技术的基本工作原理是离散与堆积,在使用该技术时,首先设计者借助三维CAD或者

快速成型技术的原理

快速成型技术的原理、工艺过程及技术特点: 1 快速成型介绍 RP技术简介 快速原型制造技术,又叫快速成形技术,(简称RP技术); 英文:RAPID PROTOTYPING(简称RP技术),或 RAPID PROTOTYPING MANUFACTUREING,简称RPM。 快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。 RP技术的优越性显而易见:它可以在无需准备任何模具、刀具和工装卡具的情况下,直接接受产品设计(CAD)数据,快速制造出新产品的样件、模具或模型。因此,RP技术的推广应用可以大大缩短新产品开发周期、降低开发成本、提高开发质量。由传统的"去除法"到今天的"增长法",由有模制造到无模制造,这就是RP技术对制造

业产生的革命性意义。 2、它具体是如何成形出来的呢? 形象地比喻:快速成形系统相当于一台"立体打印机"。 快速成型属于离散/堆积成型。它从成型原理上提出一个全新的思维模式维模型,即将计算机上制作的零件三维模型,进行网格化处理并存储,对其进行分层处理,得到各层截面的二维轮廓信息,按照这些轮廓信息自动生成加工路径,由成型头在控制系统的控制下,选择性地固化或切割一层层的成型材料,形成各个截面轮廓薄片,并逐步顺序叠加成三维坯件.然后进行坯件的后处理,形成零件。 快速成型的工艺过程具体如下: l )产品三维模型的构建。由于 RP 系统是由三维 CAD 模型直接驱动,因此首先要构建所加工工件的三维CAD 模型。该三维CAD模型可以利用计算机辅助设计软件(如Pro/E , I-DEAS , Solid Works , UG 等)直接构建,也可以将已有产品的二维图样进行转换而形成三维模型,或对产品实体进行激光扫描、 CT 断层扫描,得到点云数据,然后利用反求工程的方法来构造三维模型。 2 )三维模型的近似处理。由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理,以方便后续的数据处理工作。由于STL格式文件格式简单、实用,目前已经成为快速成型领域的准标准

七年级生物上册 生物学研究的基本方法教案 北师大版

第2章第2节生物学研究的基本方法 教学目的 1、说出实验法研究的一般步骤; 2、尝试设计简单的实验并控制实验条件; 1、根据实验数据建立一个表格并分析数据。 教学重点 实验法研究的的一般步骤 课时安排 2课时。 教学方法 观、思、读、探相结合 板书设计 第2节生物学研究的基本方法 一、生物学研究的基本方法 观察法、调查法、分类法、文献法、实验法 二、实验法的一般步骤 1、实验法示例——响尾蛇是如何追寻它放走的猎物的 2、活动“讨论实验法基本程序” 发现并提出问题——收集与问题相关的信息——作出假设——设计实验方案——实施实验并计录——分析实验现象——得出结论 三、用实验法研究影响生物分布的环境因素——活动“探究影响分布鼠妇的环境因素”教学过程 第一课时以实验法研究的示例“响尾蛇是如何追寻它放走的猎物的”为核心,探究实验法基本程序的。 复习提问:①上节课我们学习哪四位具有代表性的科学家?②他们的研究成果是什么?③他们的研究方法是什么? (回答:略。)

导入:他们的研究方法有观察法、调查法、分类法、文献法、实验法。这就是生物学研究的基本方法,而其中实验法是现代生物学研究的重要方法。那么实验法包括哪些内容呢? 阅读书P27——28,看看科学家们对提出的问题是如何分析,进行实验的,在阅读过程中注意思考这么几个问题:①这个实验要解决什么问题?②科学家们做出了什么样的假设? ③这个假设是根据什么做出的或者说在作假设前科学家都做了哪些工作?④实验中人为控制的条件是什么?⑤为什么要强调多次重复以上的实验?(同学们边回答教师边讲解,加深同学们的认识。) 结合影片,师生共同完成下表; 响尾蛇是如何追寻它放走的猎物的 着事先设 :将一只没有被响尾蛇袭击过的死老鼠,沿着事先设定的弯曲路径, 进行实验,观察到响尾蛇的头缓慢地左右移动,同时它的舌迅速

快速成型技术与试题-答案

试卷 —、填空题 1?快速成型技术是由计算机辅助设计及制造技术、逆向工程技术、分层制造技术(SFF)、材料去除成形(MPR)、材料增加成形(MAP)技术等若干先进技术集成的; 2. 3. 快速成型技术的主要优点包括成本低,制造速度快,环保节能,适用于新产品开发和单间零件生产等 4?光固化树脂成型(SLA的成型效率主要与扫描速度,扫描间隙,激光功率等因素有关 5. 快速成型技术的英文名称为:Rapid Prototyping Manufacturing (RPM),其目前 也被称为:3D打印,增材制造; 6. 选择性激光烧结成型工艺(SLS可成型的材料包括塑料,陶瓷,金属等; 7. 选择性激光烧结成型工艺(SLS工艺参数主要包括分层厚度,扫描速度,体积成型率,聚焦光斑直径等; 8. 快速成型过程总体上分为三个步骤,包括:数据前处理,分层叠加成型(自由成型),后处理; 9. 快速成型技术的特点主要包括原型的复制性、互换性高,加工周期短,成本低,高度技术集成等; 10?快速成型技术的未来发展趋势包括:开发性能好的快速成型材料,改善快速 成形系统的可靠性,提高其生产率和制作大件能力,优化设备结构,开发新的成形能源,快速成形方法和工艺的改进和创新,提高网络化服务的研究力度,实现远程控制等; 11.光固化快速成型工艺中,其中前处理施加支撑工艺需要添加支撑结构,支撑结构的主要作用是防止翘曲变形,作为支撑保证形状; 二、术语解释 1.STL数据模型 是由3D SYSTEM公司于1988年制定的一个接口协议,是一种为快速原型制造技术服务的三维图形文件格式。STL文件由多个三角形面片的定义组成,每个三角形面片的定义包括三角形各个定点的三维坐标及三角形面片的法矢量。stl 文件是在计算机图形应用系统中,用于表示三角形网格的一种文件格式。它的文件格式非常简单,应用很广泛。STL是最多快速原型系统所应用的标准文件 类型。STL是用三角网格来表现3D CAD模型。STL只能用来表示封闭的面或者体,stl文件有两种:一种是ASCII明码格式,另一种是二进制格式。 2■快速成型精度包括哪几部分 原型的精度一般包括形状精度,尺寸精度和表面精度,即光固化成型件在形状、尺寸和表面相互位置三个方面与设计要求的符合程度。形状误差主要有:翘曲、扭曲变形、椭圆度误差及局部缺陷等;尺寸误差是指成型件与CAD模型相比,在x、y、z三个方向上尺寸相差值;表面精度主要包括由叠层累加产生的台阶误差及表面粗糙度等。 3■阶梯误差

快速成型技术及原理

RP技术简介 快速原型制造技术,又叫快速成形技术,(简称RP技术); 英文:RAPID PROTOTYPING(简称RP技术),或 RAPID PROTOTYPING MANUFACTUREING,简称RPM。 快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。形象地讲,快速成形系统就像是一台"立体打印机"。 RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。 快速成型机的工艺 立体光刻成型sla 层合实体制造lom 熔融沉积快速成型fdm 激光选区烧结法SLS 多相喷射固化mjs 多孔喷射成型mjm 直接壳法产品铸造dspc 激光工程净成型lens 选域黏着及热压成型SAHP 层铣工艺lmp 分层实体制造som 自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。其成形原理分别介绍如下: (1)SLA(光固化成型法)快速成形系统的成形原理: 成形材料:液态光敏树脂; 制件性能:相当于工程塑料或蜡模;

相关文档
最新文档