用Socket接口实现网络异步通信

用Socket接口实现网络异步通信
用Socket接口实现网络异步通信

用Socket接口实现网络异步通信

1.建立应用程序框架

为了便于说明程序之间的相互关系,假设已用VC ++的AppWizard建立了单文档类型

的应用程序框架,项目名为Asock,它包括以下几个文件:

AsockApp.h AsockApp.cpp

MainFraim.h MainFraim.cpp

ChildView.h ChildView.cpp

下面在上述程序框架的基础上编写一个能进行异步通信的应用程序。

2.流式套接字通信原理

流式套接字因其可靠性高而得到广泛的应用。其通信原理为:服务端和客户端都必

须建立通信套接字,而且服务端应先进入监听状态,然后客户端套接字发出连接请求,

服务端收到请求后,建立另一个套接字进行通信,原来负责监听的套接字仍进行监听,

如果有其他客户发来连接请求,则再建立一个套接字。默认状态下最多可同时接收5个客

户的连接请求,并建立通信关系。

3.定义MySocket类

本例中为了实现套接字的网络异步通信,通过异步套接字类CAsycnSocket 派生出

两个新类。代码的生成可以利用ClassWizard来建立程序框架,给两个派生类取名为

MySocket和ServeSocket,生成时使用的基类为CAsycnSocket,并可将它们放在同一组

文件中(本例是放在MySocket.h和MySocket.cpp中)。接着在ClassWizard

中为MySocket

类加入OnAccept()和OnReceive()两个函数;为ServeSocket类加入OnReceive()函数。注

意,这些函数都是重载函数,不能随便给其命名,加入函数的方法是:在ClassWizard的

Object Ids窗口中选中最后一行,然后在Message窗口中选择相应的函数即可。

两个派生类的功能是:MySocket类用于在服务端和客户端建立套接字,分别用于监

听和通信;ServeSocket类用于在服务端建立通信套接字,它是在服务端监听到连接请求

后才建立的,因此本例中将它作为MySocket类的成员变量。为了使服务端能响应多个客

户的请求,可以建立5个ServeSocket类型的套接字,并设立一个记录器,记录已经收到

的请求个数,该记录器在MySocket的构造函数中被置为0。

完成异步通信的关键在于上述三个重载函数,它们从网络中传来信息时,可以被自

动调用,以完成接收工作。在本例中,OnAccept()函数在收到连接请求后,会向客户发

出一个代表其序号的信息;两个OnReceive()函数都进行提示,并在确认后将收到的信息

发送回去。上述两个派生类的源代码在网上,网址为https://www.360docs.net/doc/2e6812474.html,。

4.完成服务端或客户端的设置

通过菜单项完成的设置工作可以有多种安排方法,本例为了便于显示,将设置工作

安排在CChildView类中。首先用资源编辑器在主菜单中增加Server和Client 两个选项,

并定义它们的ID,然后用ClassWizard在CChildView类中增加对这两个ID的响应函数,并

在其中分别创建套接字后进入监听或开始连接。为了便于观察工作进程,可在其中增加

相应的输出语句,另外,在ChildView.h和ChildView.cpp文件前面必须有

#include "mysocket.h"语句。

为了简化程序,本程序直接写入服务主机的IP地址,因此,本程序在使用时,服

务端是指定的,不能随便改变,但客户端的位置不受限制。

5.程序的使用

本程序可以在同一网络中的不同主机之间进行异步通信。以两台主机为例,首先

在指定的主机上启动本程序,并在菜单中选择Server选项,使程序进入监听状态;然

后在另一主机上启动本程序并选择Client选项,向服务端发出连接请求;服务端收到

连接请求后,自动调用OnAccept()函数,根据客户端的请求顺序向其发出相应信息;

客户端接收到服务端发出的信息后,在屏幕上显示一个提示框,按下“确认”按钮后,

客户端将此信息发回服务端;服务端收到客户端发回的信息后,处理方式与客户端相同,

就是这样实现了这个信息在两台计算机之间的来回传递。值得注意的是,在等待信息期

间,这个程序还可以做其他的工作,比如可以选择菜单上的某个选项等,当然也可以加

入其他的工作。

运行本程序并选择作为服务端时最多可以同时接收五个客户的请求,因此可以同时

运行本程序的六个实例,其中一个设置为服务端,另外五个设置为客户端。由于服务端

实际上是用五个套接字分别与客户端通信,因此点对点的通信过程将会互不干扰地进行。

6.源程序

本文给出框架中被改动过的文件代码(即MySocket和ChildView的.h 和.cpp文件的源代

码)如下,这些程序均在VC ++ 6.0下编译通过,并在本文作者单位的网络环境上运行成功。

mysocket.h文件:

//派生套接字类

classServeSocket : public CAsyncSocket

{public:

charrx_buf[100];

intServeNo;

public:

ServeSocket();

virtual ~ServeSocket();

public:

// ClassWizard generated virtual function overrides //{{AFX_VIRTUAL(ServeSocket)

public:

virtual void OnReceive(intnErrorCode);

//}}AFX_VIRTUAL

}

classMySocket : public CAsyncSocket

{

public:

ServeSocketservesocket[5];

intAcceptNo;

intConnectNo;

charrx_buf[100];

public:

MySocket();

virtual ~MySocket();

public:

// ClassWizard generated virtual function overrides //{{AFX_VIRTUAL(MySocket)

public:

virtual void OnAccept(intnErrorCode);

virtual void OnReceive(intnErrorCode); //}}AFX_VIRTUAL

}

mysocket.cpp文件中的有关部分:voidServeSocket::OnReceive(intnErrorCode) {

if(Receive(rx_buf,100))

{//重新发出收到的信息

MessageBeep(0);

AfxMessageBox(rx_buf);

Send(rx_buf,10);

}

else

{//接收错误

AfxMessageBox("receive failed",14);

return;

}

CAsyncSocket::OnReceive(nErrorCode);

}

voidMySocket::OnAccept(intnErrorCode)

{

if(AcceptNo>4) return;

if(!Accept(servesocket[AcceptNo]))

{//接收请求失败

AfxMessageBox("accept fail!",12);

}

else

{//接收请求成功

servesocket[AcceptNo].ServeNo=AcceptNo;

switch(AcceptNo)

{//根据接收次序,向客户端发出信息

case 0:

{servesocket[AcceptNo].Send("Message 0",10);break;} case 1:

{servesocket[AcceptNo].Send("Message 1",10);break;} case 2:

{servesocket[AcceptNo].Send("Message 2",10);break;} case 3:

{servesocket[AcceptNo].Send("Message 3",10);break;} case 4:

{servesocket[AcceptNo].Send("Message 4",10);break;}

default:

break;

}

// AfxMessageBox("accept client!",14); AcceptNo++;

}

CAsyncSocket::OnAccept(nErrorCode); }

voidMySocket::OnReceive(intnErrorCode) {

if(Receive(rx_buf,100))

{//将收到的信息重新发出

MessageBeep(0);

AfxMessageBox(rx_buf);

Send(rx_buf,10);

}

else

{//接收错误

AfxMessageBox("receive failed",14); return;

}

CAsyncSocket::OnReceive(nErrorCode);

}

3.childview.h文件中的有关部分

classCChildView : public CWnd

{

...public: MySocketSocket_id;

//定义套接字类...protected:

//{{AFX_MSG(CChildView)}

afx_msg void OnPaint();

afx_msg void OnClient();

afx_msg void OnServer();

//}}AFX_MSG DECLARE_MESSAGE_MAP()

}

4.childview.cpp文件中的有关部分

BEGIN_MESSAGE_MAP(CChildView,CWnd )

//{{AFX_MSG_MAP(CChildView) ON_WM_PAINT()

ON_COMMAND(ID_CLIENT, OnClient)

//菜单项ID_CLIENT将程序设置为客户端 ON_COMMAND(ID_SERVER, OnServer)

//菜单项ID_CLIENT将程序设置为服务端 //}}AFX_MSG_MAP

END_MESSAGE_MAP()

voidCChildView::OnClient()

{

CClientDCdc(this);

//Creat a socket

Socket_id.Create();

dc.TextOut(200,100,"connect",7);

if(Socket_id.Connect("192.0.0.0",2000))

//服务端主机IP地址和端口号

dc.TextOut(200,120,"connect fail!",13);

else

dc.TextOut(200,120,"connect successful!",18);

}

voidCChildView::OnServer()

{

CClientDCdc(this);

//创建已定义的套接字

Socket_id.Create(2000);

//为其分配一个端口(2000)

//Socket_id.Bind(2000,"192.0.0.0");

//端口号和服务端主机IP地址。不同的主机此地址不同。

//开始监听

dc.TextOut(200,100,"listen",6); Socket_id.Listen();

}

同步传输与异步传输的区别

同步传输与异步传输的区别 数据块与数据块之间的时间间隔是固定的,必须严格地规定它们的时 列,标记一个数据块的开始和结束,一般还要附加一个校验序列,以 同步传输的特点:同步传输的比特分组要大得多。它不是独立地 异步传输是数据传输的一种方式。由于数据一般是一位接一位串行传输的,例如在传送一串字符信息时,每个字符代码由7位二进制位组成。但在一串二进制位中,每个7位又从哪一个二进制位开始算起呢?异步传输时,在传送每个数据字符之前,先发送一个叫做开始位的二进制位。当接收端收到这一信号时,就知道相继送来7位二进制位是一个字符数据。在这以后,接着再给出1位或2位二进制位,称做结束位。接收端收到结束位后,表示一个数据字符传送结束。这样,在异步传输时,每个字符是分别同步的,即字符中的每个二进制位是同步的,但字符与字符之间的间隙长度是不固定的。 异步传输的特点:将比特分成小组进行传送,小组可以是8位的 从不知道它们会在什么时候到达。一个常见的例子是计算机键盘与主

异步传输,英文名AsynchronousTransfer Mode,ATM,是实现B-ISDN的一项技术基础,是建立在电路交换和分组交换的基础上的快速分组交换技术。ATM的主要特点是面向连接;采用小的、固定长度的单元(53字节);取消链路的差错控制和流量控制等,这些措施提高了传输效率。。ATM 的突出优点是可以为每个虚连接提供相应的服务质量(QOS),可以有效地支持视、音频多媒体传输,包括语音、视频和数据等;另外,ATM可以实现局域网和广域网的平滑无缝连接。 [2] 异步传输一般以字符为单位,不论所采用的字符代码长度为多少位,在发送每一 异步传输 字符代码时,前面均加上一个“起”信号,其长度规定为1个码元,极性为“0”,即空号的极性;字符代码后面均加上一个“止”信号,其长度为1或者2个码元,极性皆为“1”,即与信号极性相同,加上起、止信号的作用就是为了能区分串行传输的“字符”,也就是实现了串行传输收、发双方码组或字符的同步。 综上所述,同步传输与异步传输的简单区别:1、异步传输是面向字符的传输,而同步传输是面向比特的传输。 2,异步传输的单位是字符,而同步传输的单位是帧。

socket编程实现客户端和服务器端通信

#include "" #include <> #include #pragma comment(lib,"") #define BUF_SIZE 64 int _tmain(int argc,_TCHAR* argv[]) { WSADATA wsd; S OCKET sServer; S OCKET SClient; i nt retVal; c har buf[BUF_SIZE]; i f (WSAStartup(MAKEWORD(2,2),&wsd)!=0) {printf("wsastartup failed!\n"); return 1; } s Server=socket(AF_INET,SOCK_STREAM,IPPROTO_TC P); i f (INVALID_SOCKET==sServer) {printf("socket failed!\n"); WSACleanup(); return -1; } S OCKADDR_IN addrServ; =AF_INET; =htons(9990); retVal=bind(sServer,(const struct sockaddr*) &addrServ,sizeof(SOCKADDR_IN)); i f (SOCKET_ERROR==retVal) {printf("bind failed!\n"); closesocket(sServer); WSACleanup(); return -1; } retVal=listen(sServer,1); i f (SOCKET_ERROR==retVal) {printf("listen failed!\n"); closesocket(sServer); WSACleanup(); return -1; } p rintf("tcp server start...\n"); s ockaddr_in addrClient; i nt addrClientlen=sizeof(addrClient); S Client=accept(sServer,(sockaddr FAR*)&addrClient,&addrClientlen); i f (INVALID_SOCKET==SClient) { printf("accept failed!\n"); closesocket(sServer); WSACleanup(); return -1; } w hile(true) { ZeroMemory(buf,BUF_SIZE); retVal=recv(SClient,buf,BUF_SIZE,0); if (SOCKET_ERROR==retVal) { printf("recv failed!\n"); closesocket(sServer); closesocket(SClient); WSACleanup(); return -1; } SYSTEMTIME st; GetLocalTime(&st); char sDataTime[30]; sprintf(sDataTime,"%4d-%2d-%2d %2d:%2d:%2d",, ,,,,; printf("%s,recv from client [%s:%d]:%s\n",sDataTime,inet_ntoa,,buf); if (StrCmp(buf,"quit")==0) { retVal=send(SClient,"quit",strlen("quit"),0); break; } else { char msg[BUF_SIZE]; sprintf(msg,"message received -%s",buf); retVal=send(SClient,msg,strlen(msg),0); if (SOCKET_ERROR==retVal) { printf("send failed!\n"); closesocket(sServer); closesocket(SClient); WSACleanup(); return -1; } } } c losesocket(sServer); c losesocket(SClient);

同步复位和异步复位的区别

针对数字系统的设计,我们经常会遇到复位电路的设计,对初学者来说不知道同步复位与异步复位的区别与联系,今天我对这个问题简要的阐述下,希望对初学者有一定的参考意义,若有不正确的地方愿大家明示。 同步复位原理:同步复位只有在时钟沿到来时复位信号才起作用,则复位信号持续的时间应该超过一个时钟周期才能保证系统复位。 异步复位原理:异步复位只要有复位信号系统马上复位,因此异步复位抗干扰能力差,有些噪声也能使系统复位,因此有时候显得不够稳定,要想设计一个好的复位最好使用异步复位同步释放。 同步复位与异步复位的优劣:异步复位消耗的PFGA逻辑资源相对来说要少些,因此触发器自身带有清零端口不需要额外的门电路,这是其自身的优势,通常在要求不高的情况下直接使用异步复位就OK。 下面我用verilog来演示下同步复位与异步复位。 同步复位的verilog程序如下: module D_FF (

//Input ports SYSCLK, RST_B, A, //Output ports B ); //========================================= //Input and output declaration //========================================= input SYSCLK; input RST_B; input A; output B; //========================================= //Wire and reg declaration //=========================================

同步通信与异步通信区别

同步通信与异步通信区别 1.异步通信方式的特点:异步通信是按字符传输的。每传输一个字符就用起始位来进来收、发双方的同步。不会因收发双方的时钟频率的小的偏差导致错误。这种传输方式利用每一帧的起、止信号来建立发送与接收之间的同步。特点是:每帧内部各位均采用固定的时间间隔,而帧与帧之间的间隔时随即的。接收机完全靠每一帧的起始位和停止位来识别字符时正在进行传输还是传输结束。 2.同步通信方式的特点:进行数据传输时,发送和接收双方要保持完全的同步,因此,要求接收和发送设备必须使用同一时钟。优点是可以实现高速度、大容量的数据传送;缺点是要求发生时钟和接收时钟保持严格同步,同时硬件复杂。可以这样说,不管是异步通信还是同步通信都需要进行同步,只是异步通信通过传送字符内的起始位来进行同步,而同步通信采用共用外部时钟来进行同步。所以,可以说前者是自同步,后者是外同步。---------------------------- 同步通信原理 同步通信是一种连续串行传送数据的通信方式,一次通信只传送一帧信息。这里的信息帧与异步通信中的字符帧不

同,通常含有若干个数据字符。 采用同步通信时,将许多字符组成一个信息组,这样,字符可以一个接一个地传输,但是,在每组信息(通常称为帧)的开始要加上同步字符,在没有信息要传输时,要填上空字符,因为同步传输不允许有间隙。在同步传输过程中,一个字符可以对应5~8位。当然,对同一个传输过程,所 有字符对应同样的数位,比如说n位。这样,传输时,按每n位划分为一个时间片,发送端在一个时间片中发送一个字符,接收端则在一个时间片中接收一个字符。 同步传输时,一个信息帧中包含许多字符,每个信息帧用同步字符作为开始,一般将同步字符和空字符用同一个代码。在整个系统中,由一个统一的时钟控制发送端的发送和空字符用同一个代码。接收端当然是应该能识别同步字符的,当检测到有一串数位和同步字符相匹配时,就认为开始一个信息帧,于是,把此后的数位作为实际传输信息来处理。 异步通信原理 异步通信是一种很常用的通信方式。异步通信在发送字符时,所发送的字符之间的时间间隔可以是任意的。当然,

同步传输与异步传输的区别

在网络通信过程中,通信双方要交换数据,需要高度的协同工作。为了正确的解释信号,接收方必须确切地知道信号应当何时接收和处理,因此定时是至关重要的。在计算机网络中,定时的因素称为位同步。同步是要接收方按照发送方发送的每个位的起止时刻和速率来接收数据,否则会产生误差。通常可以采用同步或异步的传输方式对位进行同步处理。 1. 异步传输(Asynchronous Transmission):异步传输将比特分成小组进行传送,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,而接收方从不知道它们会在什么时候到达。一个常见的例子是计算机键盘与主机的通信。按下一个字母键、数字键或特殊字符键,就发送一个8比特位的ASCII代码。键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。 异步传输存在一个潜在的问题,即接收方并不知道数据会在什么时候到达。在它检测到数据并做出响应之前,第一个比特已经过去了。这就像有人出乎意料地从后面走上来跟你说话,而你没来得及反应过来,漏掉了最前面的几个词。因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号,异步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。 异步传输的实现比较容易,由于每个信息都加上了“同步”信息,因此计时的漂移不会产生大的积累,但却产生了较多的开销。在上面的例子,每8个比特要多传送两个比特,总的传输负载就增加25%。对于数据传输量很小的低速设备来说问题不大,但对于那些数据传输量很大的高速设备来说,25%的负载增值就相当严重了。因此,异步传输常用于低速设备。 2. 同步传输(Synchronous Transmission):同步传输的比特分组要大得多。它不是独立地发送每个字符,每个字符都有自己的开始位和停止位,而是把它们组合起来一起发送。我们将这些组合称为数据帧,或简称为帧。 数据帧的第一部分包含一组同步字符,它是一个独特的比特组合,类似于前面提到的起始位,用于通知接收方一个帧已经到达,但它同时还能确保接收方的采样速度和比特的到达速度保持一致,使收发双方进入同步。 帧的最后一部分是一个帧结束标记。与同步字符一样,它也是一个独特的比特串,类似于前面提到的停止位,用于表示在下一帧开始之前没有别的即将到达的数据了。

实现socket通信

基于visual c++之windows核心编程代码分析(10)实现socket通信 分类:VC++编程技术Visual C++2010编程技术Visual Studio2012 Windows8 2011-12-17 11:32 120人阅读评论(0) 收藏举报在多台计算机之间实现通信,最常见的方法有两种:Socket通信与UDP通信。 Socket是一种基于TCP/IP协议,建立稳定连接的点对点通信,它的特点是安全性高,数据 不会丢失,但是很占系统资源。 在JAVA中,ServerSocket类和Socket类为我们实现了Socket 通信,建立通信的一般步骤是: 1。建立服务器 ServerSocket ss = new ServerSocket(端口号); Socket socket = ss.accept(); 这样,我们就已经建立了服务器,其中accept()方法会阻塞,知道有客户发送一个连接请求,我们可以通过 socket.getInputStream()和socket.getOutputStream()来获得输入输出流,如调用socket.getInputStream()获得一个输入流,实际上这个流就是连接对方的一个输出流,流的操作与文件流操作相同,我们可以用操作文件的方法来操作它们。 2。建立客户端 Socket socket = new Socket(主机名,端口号) 客户端只需这一句代码就可以与服务器取得连接,这里的主机名应为服务器的IP地址,端口号是服务器用来监听该程序的端口,同样可以通过socket.getInputStream()和 socket.getOutputStream()来获得输入输出流。在以上程序中,已经实现了一个最简单的客户端和服务器的通信。但是,还有一些问题。 首先,这个通信只执行一次,程序就将结束。因为我们只读了一次输入流,如果想要建立客户与服务器之间的稳定的会话,就要用到多线程: Thread thread = new Thread(new Sender()); thread.start();

异步传输和同步传输的区别(整理)

同步传输和异步传输的区别 在网络通信过程中,通信双方要交换数据,需要高度的协同工作。为了正确的解释信号,接收方必须确切地知道信号应当何时接收和处理,因此定时是至关重要的。在计算机网络中,定时的因素称为位同步。同步是要接收方按照发送方发送的每个位的起止时刻和速率来接收数据,否则会产生误差。通常可以采用同步或异步的传输方式对位进行同步处理。 1. 异步传输(Asynchronous Transmission):异步传输将比特分成小组进行传 送,小组可以是8位的1个字符或更长。发送方可以在任何时刻发送这些比特组,而接收方从不知道它们会在什么时候到达。一个常见的例子是计算机键盘与主机的通信。按下一个字母键、数字键或特殊字符键,就发送一个8比特位的ASCII代码。键盘可以在任何时刻发送代码,这取决于用户的输入速度,内部的硬件必须能够在任何时刻接收一个键入的字符。 异步传输存在一个潜在的问题,即接收方并不知道数据会在什么时候到达。在它检测到数据并做出响应之前,第一个比特已经过去了。这就像有人出乎意料地从后面走上来跟你说话,而你没来得及反应过来,漏掉了最前面的几个词。因此,每次异步传输的信息都以一个起始位开头,它通知接收方数据已经到达了,这就给了接收方响应、接收和缓存数据比特的时间;在传输结束时,一个停止位表示该次传输信息的终止。按照惯例,空闲(没有传送数据)的线路实际携带着一个代表二进制1的信号,异步传输的开始位使信号变成0,其他的比特位使信号随传输的数据信息而变化。最后,停止位使信号重新变回1,该信号一直保持到下一个开始位到达。例如在键盘上数字“1”,按照8比特位的扩展ASCII编码,将发送“00110001”,同时需要在8比特位的前面加一个起始位,后面一个停止位。 异步传输的实现比较容易,由于每个信息都加上了“同步”信息,因此计时的漂移不会产生大的积累,但却产生了较多的开销。在上面的例子,每8个比特要多传送两个比特,总的传输负载就增加25%。对于数据传输量很小的低速设备来说问题不大,但对于那些数据传输量很大的高速设备来说,25%的负载增值就相当严重了。因此,异步传输常用于低速设备。 2. 同步传输(Synchronous Transmission):同步传输的比特分组要大得多。它 不是独立地发送每个字符,每个字符都有自己的开始位和停止位,而是把它们组合起来一起发送。我们将这些组合称为数据帧,或简称为帧。 数据帧的第一部分包含一组同步字符,它是一个独特的比特组合,类似于前面提到的起始位,用于通知接收方一个帧已经到达,但它同时还能确保接收方的采样速度和比特的到达速度保持一致,使收发双方进入同步。 帧的最后一部分是一个帧结束标记。与同步字符一样,它也是一个独特的比特串,类似于前面提到的停止位,用于表示在下一帧开始之前没有别的即将到达的数据了。

基于Socket技术的企业局域网通信软件设计与实现毕业设计

基于Socket技术的企业局域网通信软件设计与实现毕业设计 目录 1 绪论 (3) 1.1 研究背景 (3) 1.2 国外研究现状 (4) 1.2.1 国外研究现状 (4) 1.2.2 国研究现状 (4) 1.3 课题研究容及组织结构 (5) 1.3.1 研究容 (5) 1.3.2 组织结构 (5) 1.4 本章小结 (5) 2 系统核心技术 (6) 2.1 网络传输协议及Socket技术 (6) 2.1.1 网络传输协议 (6) 2.1.2 TCP协议 (6) 2.1.3 UDP协议 (7) 2.1.4 Socket (8) 2.1.5 点对点技术 (9) 2.2 加密算法 (10) 2.2.1 DES算法 (10) 2.2.2 MD5算法 (12) 2.3 多媒体技术 (13) 2.3.1 https://www.360docs.net/doc/2e6812474.html, (13) 2.3.2 Microsoft.DirectX SDK (13) 2.3.3 音频压缩算法 (14) 2.4 .Net技术 (14) 2.4.1 多线程 (14) 2.4.2 动态库 (15) 2.4.3 媒体控制接口 (15)

2.4.4 图形设备接口 (15) 2.4.5 正则表达式 (16) 2.5 三层架构技术 (16) 2.6 本章小结 (17) 3 系统需求分析 (18) 3.1 系统概述 (18) 3.2 系统业务分析 (18) 3.3 客户端需求 (20) 3.3.1 客户端主面板 (20) 3.3.2 用户私聊 (20) 3.3.3 群组聊天 (21) 3.3.4 视频会议 (21) 3.4 服务器需求 (21) 3.4.1 服务器主界面 (22) 3.4.2 员工信息管理 (22) 3.4.3 历史聊天记录管理 (22) 3.4.4 群共享管理 (22) 3.4.5 聊天记录数据图查看 (22) 3.5 非功能需求 (22) 3.5.1 可靠性 (23) 3.5.2 友好性 (23) 3.6 本章小结 (23) 4 系统设计 (24) 4.1 系统整体架构 (24) 4.2 客户端 (25) 4.2.1 聊天模块 (25) 4.2.2 群组聊天模块 (27) 4.2.3 视频会议模块 (28) 4.3 服务器端 (28) 4.3.1 数据快速查看模块 (28)

同步通信与异步通信有何不同

同步通信与异步通信有何不同? 串口通信可以分为同步通信和异步通信两类。同步通信是按照软件识别同步字符来实现数据的发送和接收,异步通信是一种利用字符的再同步技术的通信方式。 同步通信 同步通信是一种连续串行传送数据的通信方式,一次通信只传送一帧信息。这里的信息帧与异步通信中的字符帧不同,通常含有若干个数据字符。如图: 单同步字符帧结构 +-----+------+-------+------+-----+--------+-------+-------+ |同步|数据|数据|数据| ... |数据|CRC1|CRC2| |字符|字符1|字符2|字符3| |字符N| | | +-----+------+-------+------+-----+--------+-------+-------+ 双同步字符帧结构 +-----+--------+------+-------+---+-------+-------+--------+ |同步|同步|数据|数据| ... |数据|CRC1|CRC2| |字符1|字符2|字符1|字符2| |字符N| | | +-----+--------+------+-------+---+-------+-------+--------+ 它们均由同步字符、数据字符和校验字符(CRC)组成。其中同步

字符位于帧开头,用于确认数据字符的开始。数据字符在同步字符之后,个数没有限制,由所需传输的数据块长度来决定;校验字符有1到2个,用于接收端对接收到的字符序列进行正确性的校验。 同步通信的缺点是要求发送时钟和接收时钟保持严格的同步。 异步通信 异步通信中,数据通常以字符或者字节为单位组成字符帧传送。字符帧由发送端逐帧发送,通过传输线被接收设备逐帧接收。发送端和接收端可以由各自的时钟来控制数据的发送和接收,这两个时钟源彼此独立,互不同步。 接收端检测到传输线上发送过来的低电平逻辑"0"(即字符帧起始位)时,确定发送端已开始发送数据,每当接收端收到字符帧中的停止位时,就知道一帧字符已经发送完毕。 在异步通行中有两个比较重要的指标:字符帧格式和波特率。 (1)字符帧,由起始位、数据位、奇偶校验位和停止位组成。如图: 无空闲位字符帧 +--+---+---+---+---+--+--+--+--+--+--+--+---+---+---+--+--+ |D7|0/1| 1 | 0 |D0|D1|D2|D3|D4|D5|D6|D7|0/1| 1 | 0 |D0|D1| +--+---+---+---+--+--+--+--+--+--+--+--+---+---+---+--+--+ 奇偶停起奇偶停起 校验止始校验止始 位位位位

利用Socket实现双机通信(DOC)

计算机科学与技术学院 课程设计报告 2015— 2016学年第一学期 课程名称计算机网络 设计题目利用Socket实现双机通信姓名 学号 专业班级 指导教师 2016 年1 月8 日

目录 一、目的与要求 ................................................................................. - 3 - 二、什么是Winsock与Socket .......................................................... - 3 - 三、TCP/IP 简介................................................................................. - 4 - 1、TCP/IP 简介 ............................................................................... - 4 - 2、作用............................................................................................ - 4 - 四、java Socket网络编程 .................................................................. - 5 - 五、设计方案 ..................................................................................... - 5 - 1. 服务器端: ................................................................................. - 6 - 2. 客户端: ........................................................................................ - 9 - 六、运行结果: ............................................................................... - 14 - 七、课程设计的总结体会................................................................ - 15 - 八、参考资料: ............................................................................... - 15 - 简单的即时通信软件

利用Socket实现双机通信(计算机网络课程设计)

目录 1、目录 (1) 2、题目 (2) 3、设计任务 (2) 4、WinSocket简介及特点原理 (2) 5、T C P简介及特点原理 (3) 6、Vis ual C++简介 (7) 7、设计方案 (8) 8、系统的原理框图和程序流程图 (10) 9、实验中的问题 (14) 10、实验结果及分析 (14) 11、课程设计的总结体会 (16) 12、参考文献 (16)

利用Socket实现双机通信 一、设计任务 1.利用WinSock来实现双机通信,理解TCP状态机图。 2.要求使用WinSock编程,采用其中的TCP面向连接方式,实现文本数据的交换。 二、WinSocket简介及特点原理 2.1、什么是socket 所谓socket通常也称作"套接字",用于描述IP地址和端口,是一个通信链的句柄。应用程序通常通过"套接字"向网络发出请求或者应答网络请求。 Socket接口是TCP/IP网络的API,Socket接口定义了许多函数或例程,程序员可以用它们来开发TCP/IP网络上的应用程序。要学Internet上的TCP/IP网络编程,必须理解Socket接口。Socket接口设计者最先是将接口放在Unix操作系统里面的。如果了解Unix系统的输入和输出的话,就很容易了解Socket了。网络的Socket数据传输是一种特殊的I/O,Socket也是一种文件描述符。Socket 也具有一个类似于打开文件的函数调用Socket(),该函数返回一个整型的Socket 描述符,随后的连接建立、数据传输等操作都是通过该Socket实现的。 常用的Socket类型有两种:流式Socket(SOCK_STREAM)和数据报式Socket

异步通信同步通信区别

异步通信”是一种很常用的通信方式。异步通信在发送字符时,所发送的字符之间的时间间隔可以是任意的。当然,接收端必须时刻做好接收的准备(如果接收端主机的电源都没有加上,那么发送端发送字符就没有意义,因为接收端根本无法接收)。发送端可以在任意时刻开始发送字符,因此必须在每一个字符的开始和结束的地方加上标志,即加上开始位和停止位,以便使接收端能够正确地将每一个字符接收下来。异步通信的好处是通信设备简单、便宜,但传输效率较低(因为开始位和停止位的开销所占比例较大)。 异步通信也可以是以帧作为发送的单位。接收端必须随时做好接收帧的准备。这是,帧的首部必须设有一些特殊的比特组合,使得接收端能够找出一帧的开始。这也称为帧定界。帧定界还包含确定帧的结束位置。这有两种方法。一种是在帧的尾部设有某种特殊的比特组合来标志帧的结束。或者在帧首部中设有帧长度的字段。需要注意的是,在异步发送帧时,并不是说发送端对帧中的每一个字符都必须加上开始位和停止位后再发送出去,而是说,发送端可以在任意时间发送一个帧,而帧与帧之间的时间间隔也可以是任意的。在一帧中的所有比特是连续发送的。发送端不需要在发送一帧之前和接收端进行协调(不需要先进行比特同步)。每个字符开始发送的时间可以是任意的t0 0 1 1 0 1 1 0起始位结束位t每个帧开始发送的时间可以是任意的以字符为单位发送以帧为单位发送帧开始帧结束 “同步通信”的通信双方必须先建立同步,即双方的时钟要调整到同一个频率。收发双方不停地发送和接收连续的同步比特流。但这时还有两种不同的同步方式。一种是使用全网同步,用一个非常精确的主时钟对全网所有结点上的时钟进行同步。另一种是使用准同步,各结点的时钟之间允许有微小的误差,然后采用其他措施实现同步传输。 同步方式是在传送一组字符前加入1个或2个同步字符SYN。同步字符后可以连续改善任意多个字符,每个字符间不需要附加位。故此传输方法效率较高,但双方要事先约定同步的字符个数及同步字符代码,且中间传输有停顿时会失去同步,造成传输错误。 串行通信是指计算机主机与外设之间以及主机系统与主机系统之间数据的串行传送。使用串口通信时,发送和接收到的每一个字符实际上都是一次一位的传送的,每一位为1或者为0。 串行通信的分类 串行通信可以分为同步通信和异步通信两类。同步通信是按照软件识别同步字符来实现数据的发送和接收,异步通信是一种利用字符的再同步技术的通信方式。 同步通信 同步通信是一种连续串行传送数据的通信方式,一次通信只传送一帧信息。这里的信息帧与异步通信中的字符帧不同,通常含有若干个数据字符。 它们均由同步字符、数据字符和校验字符(CRC)组成。其中同步字符位于帧开头,用于确认数据字符的开始。数据字符在同步字符之后,个数没有限制,由所需传输的数据块长度来决定;校验字符有1到2个,用于接收端对接收到的字符序列进行正确性的校验。同步通信的缺点是要求发送时钟和接收时钟保持严格的同步。 异步通信 异步通信中,在异步通行中有两个比较重要的指标:字符帧格式和波特率。数据通常以字符或者字节为单位组成字符帧传送。字符帧由发送端逐帧发送,通过传输线被接收设备逐帧接收。发送端和接收端可以由各自的时钟来控制数据的发送和接收,这两个时钟源彼此独立,互不同步。 接收端检测到传输线上发送过来的低电平逻辑"0"(即字符帧起始位)时,确定发送端已开

Socket通信原理

Socket通信原理 对TCP/IP、UDP、Socket编程这些词你不会很陌生吧?随着网络技术的发展,这些词充斥着我们的耳朵。那么我想问: 1. 什么是TCP/IP、UDP? 2. Socket在哪里呢? 3. Socket是什么呢? 4. 你会使用它们吗? 什么是TCP/IP、UDP? TCP/IP(Transmission Control Protocol/Internet Protocol)即传输控制协议/网间协议,是一个工业标准的协议集,它是为广域网(WANs)设计的。 UDP(User Data Protocol,用户数据报协议)是与TCP相对应的协议。它是属于TCP/IP协议族中的一种。 这里有一张图,表明了这些协议的关系。 图1 TCP/IP协议族包括运输层、网络层、链路层。现在你知道TCP/IP与UDP的关系了吧。

Socket在哪里呢? 在图1中,我们没有看到Socket的影子,那么它到底在哪里呢?还是用图来说话,一目了然。 图2 原来Socket在这里。 Socket是什么呢? Socket是应用层与TCP/IP协议族通信的中间软件抽象层,它是一组接口。在设计模式中,Socket其实就是一个门面模式,它把复杂的TCP/IP协议族隐藏在Socket接口后面,对用户来说,一组简单的接口就是全部,让Socket去组织数据,以符合指定的协议。你会使用它们吗? 前人已经给我们做了好多的事了,网络间的通信也就简单了许多,但毕竟还是有挺多工作要做的。以前听到Socket编程,觉得它是比较高深的编程知识,但是只要弄清Socket 编程的工作原理,神秘的面纱也就揭开了。 一个生活中的场景。你要打电话给一个朋友,先拨号,朋友听到电话铃声后提起电话,这时你和你的朋友就建立起了连接,就可以讲话了。等交流结束,挂断电话结束此次交谈。生活中的场景就解释了这工作原理,也许TCP/IP协议族就是诞生于生活中,这也不一定。

同步通信和异步通信

同步通信和异步通信 串行通信的数据是逐位传送的,发送方发送的每一位都具有因定的时间间隔,这就要求接收方也要按照发送方同样的时间间隔来接收每一位。不仅如此,接收方还要确定一个信息组的开始和结束。为此,串行通信对传送数据的格式作了严格的规定。不同的串行通信方式具有不同的数据格式。下面简单介绍一下常用的两种基本串行通信方式:同步通信和异步通信及其数据传送格式。 同步通信 所谓同步通信是指在约定的通信速率下,发送端和接收端的时钟信号频率和相信始终保持一致(同步),这就保证了通信双方在发送和接收数据时具有完全一致的定时关系。 同步通信把许多字符组成一个信息组,或称为信息帧,每帧的开始用同步字符来指示。由于发送和接收的双方采用同一时钟,所以在传送数据的同时还要传送时钟信号,以便接收方可以用时钟信号来确定每个信息位。 同步通信要求在传输线路上始终保持连续的字符位流,若计算机没有数据传输,则线路上要用专用的“空闲”字符或同步字符填充。 同步通信传送信息的位数几乎不受限制,通常一次通信传的数据有几十到几千个字节,通信效率较高。但它要求在通信中保持精确的同步时钟,所以其发送器和接收器比较复杂,成本也较高,一般用于传送速率要求较高的场合。 用于同步通信的数据格式有许多种, (a)单同步格式,会送一帧数据仅使用一个同步字符。当接收端收到并识别出一个完整同步字符后,就连续接收数据。一帧数据结束,进行CRC校验。 同步字符数据CRC1 CRC2 (b)双同步字格式,这时利用两个同步字符进行同步。 同步字符1 同步字符2 数据CRC1 CRC2 (c)同步数据链路控制(SDC)规程所规定的数据格式。 标志符01111110 地址符8位数据CRC1 CRC2 标志符01111110 (d)则是一种外同步方式所采用的数据格式。对这种方式,在发送的一帧数据中不包含同步字符。同步信号SYNC通过专门的控制线加到串行的接口上。当SYNC一到达,表明数据部分开始,接口就连续接收数据和CRC校验码。 数据场CRC1 CRC2 (e)高级数据链路控制(HDLC)规程所规定的数据格式。它们均用于同步通信。这两种规程的细节本书不做详细说明。 标志符01111110 地址符8位控制符8位数据CRC1 CRC2 标志符01111110 CRC(cyclic redundancy checks)的意思是循环冗余校验码。它用于检验在传输过程中是否出现错误,是保证传输可靠性的重要手段之一。 异步通信 异步通信是指通信中两个字符之间的时间间隔是不固定的,而在一个字符内各位的时间间隔是固定的。 异步通信规定字符由起始位(start bit)、数据位(data bit)、奇偶校验位(parity)和停止位(stop bit)组成。起始位表示一个字符的开始,接收方可用起始位使自己的接收时钟与数据同步。停止位则表示一个字符的结束。这种用起始位开始,停止位结束所构成的一串信息称为帧(frame)(注意:异步通信中的“帧”与同步通信中“帧”是不同的,异步通信中的“帧”只包含一个字符,而同步通信中“帧”可包含几十个到上千个字符)。在传送一个字符时,由一位低电平的起始位开始,接着传送数据位,数据位的位数为5~8。在传输时,按低位在前,高位在后的顺序传送。奇偶校验位用于检验数据传送的正确性,也可以没有,可由程序来指定。

用socket实现进程间通信

实验报告 班级011291 班 学生姓名 学号 实验成绩

一、实验题目: 实现最简单实用的通信程序socket. 二、实验目的: 通过对socket的编写,了解socket通信的原理.了解TCP通信的整个过程.以及Linux下C语言的socket函数. 三、实验设备及环境: 1. 硬件设备:PC机一台 2. 软件环境:安装Linux操作系统,并安装相关的程序开发环境,如C \C++\tsh\bsh等编程语言环境。 四、实验内容及要求: 用C语言编程实现linux简单的聊天室功能。 ?用户程序命名为2.c;服务器程序命名为1.c ?要求client可以通过socket连接server ?Client与server可以相互通信,实现交互 五.代码(针对实验1,2,请将最终源代码粘贴至此;正式报告中将下面例子删除) 服务端: #include

#include #include #include #define UNIX_DOMAIN "/tmp/UNIX.domain" int main(void) { socklen_t clt_addr_len; int listen_fd; int com_fd; int ret; int i; char recv_buf[1024]; char send_buf[1024]; int len; struct sockaddr_un clt_addr; struct sockaddr_un srv_addr; listen_fd=socket(PF_UNIX,SOCK_STREAM,0); if(listen_fd<0) { perror("cannot create communication socket"); return 1;

C# Socket编程 同步以及异步通信

套接字简介:套接字最早是Unix的,window是借鉴过来的。TCP/IP协议族提供三种套接字:流式、数据报式、原始套接字。其中原始套接字允许对底层协议直接访问,一般用于检验新协议或者新设备问题,很少使用。 套接字编程原理:延续文件作用思想,打开‐读写‐关闭的模式。 C/S编程模式如下: ?服务器端: 打开通信通道,告诉本地机器,愿意在该通道上接受客户请求——监听,等待客户请求——接受请求,创建专用链接进行读写——处理完毕,关闭专用链接——关闭通信通道(当然其中监听到关闭专用链接可以重复循环) ?客户端:打开通信通道,连接服务器——数据交互——关闭信道。 Socket通信方式: ?同步:客户端在发送请求之后必须等到服务器回应之后才可以发送下一条请求。串行运行 ?异步:客户端请求之后,不必等到服务器回应之后就可以发送下一条请求。 并行运行 套接字模式: ?阻塞:执行此套接字调用时,所有调用函数只有在得到返回结果之后才会返回。在调用结果返回之前,当前进程会被挂起。即此套接字一直被阻塞在网络调用上。 ?非阻塞:执行此套接字调用时,调用函数即使得不到得到返回结果也会返回。套接字工作步骤: ?服务器监听:监听时服务器端套接字并不定位具体客户端套接字,而是处于等待链接的状态,实时监控网络状态 ?客户端链接:客户端发出链接请求,要连接的目标是服务器端的套接字。为此客户端套接字必须描述服务器端套接字的服务器地址与端口号。 ?链接确认:是指服务器端套接字监听到客户端套接字的链接请求时,它响应客户端链接请求,建立一个新的线程,把服务器端套接字的描述发送给客户端,一旦客户端确认此描述,则链接建立好。而服务器端的套接字继续处于监听状态,继续接受其他客户端套接字请求。

同步和异步的区别

同步和异步的区别集锦 通俗版: 举个例子:普通B/S模式(同步)AJAX技术(异步) 同步:提交请求->等待服务器处理->处理完毕返回这个期间客户端浏览器不能干任何事 异步: 请求通过事件触发->服务器处理(这是浏览器仍然可以作其他事情)->处理完毕 -------------------------------------------------------------------------------------------------------------------- 同步就是你叫我去吃饭,我听到了就和你去吃饭;如果没有听到,你就不停的叫,直到我告诉你听到了,才一起去吃饭。 异步就是你叫我,然后自己去吃饭,我得到消息后可能立即走,也可能等到下班才去吃饭。 所以,要我请你吃饭就用同步的方法,要请我吃饭就用异步的方法,这样你可以省钱。 -------------------------------------------------------------------------------------------------------------------- 举个例子打电话时同步发消息是异步 综述版: 异步通信”是一种很常用的通信方式。异步通信在发送字符时,所发送的字符之间的时间间隔可以是任意的。当然,接收端必须时刻做好接收的准备(如果接收端主机的电源都没有加上,那么发送端发送字符就没有意义,因为接收端根本无法接收)。发送端可以在任意时刻开始发送字符,因此必须在每一个字符的开始和结束的地方加上标志,即加上开始位和停止位,以便使接收端能够正确地将每一个字符接收下来。异步通信的好处是通信设备简单、便宜,但传输效率较低(因为开始位和停止位的开销所占比例较大)。 异步通信也可以是以帧作为发送的单位。接收端必须随时做好接收帧的准备。这是,帧的首部必须设有一些特殊的比特组合,使得接收端能够找出一帧的开始。这也称为帧定界。帧定界还包含确定帧的结束位置。这有两种方法。一种是在帧的尾部设有某种特殊的比特组合来标志帧的结束。

基于C++的socket通信实例

刚刚学windows编程,所以想写学习笔记,这是一个简单的Socket 程序例子,开发环境是vc6: 首先是TCP server端: [cpp]view plaincopy 1.#include "stdafx.h" 2.#include 3.#include 4. 5.#pragma comment(lib,"ws2_32.lib") 6. 7.int main(int argc, char* argv[]) 8.{ 9.//初始化WSA 10.WORD sockVersion = MAKEWORD(2,2); 11. WSADATA wsaData; 12.if(WSAStartup(sockVersion, &wsaData)!=0) 13. { 14.return 0; 15. } 16. 17.//创建套接字 18. SOCKET slisten = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP); 19.if(slisten == INVALID_SOCKET) 20. { 21. printf("socket error !"); 22.return 0; 23. } 24. 25.//绑定IP和端口 26. sockaddr_in sin; 27. sin.sin_family = AF_INET; 28. sin.sin_port = htons(8888); 29. sin.sin_addr.S_un.S_addr = INADDR_ANY; 30.if(bind(slisten, (LPSOCKADDR)&sin, sizeof(sin)) == SOCKET_ERROR) 31. { 32. printf("bind error !"); 33. } 34.

相关文档
最新文档