勾股定理证明方法的应用(教案)

勾股定理证明方法的应用(教案)
勾股定理证明方法的应用(教案)

课题:勾股定理证明方法的应用

教师:郑燕

时间:2007年5月9日(星期三)第6节

班级:初二(7)班(数学实验班)

教学目标:熟练掌握勾股定理的几种常见证明方法(赵爽弦图法、刘徽青朱出入法、欧几里得面积法等),理解证明思路;运用赵爽弦图法、欧几里得面积法、刘徽青朱出入法解决一些问题;体验知识的迁移和方法的运用过程,从而提高分析、类比的能力,提高解决问题的能力;感受勾股定理中折射出的数学文化,体验数学美.

教学重点:勾股定理证明方法的应用

教学难点:欧几里得面积法的理解和应用,刘辉青朱出入法的理解和应用

教学过程:

一、巩固知识、引出问题:

复习勾股定理的几种常见的证明方法(演示自制的flash课件)

1 赵爽弦图法(构造以斜边c为边长的正方形):

2 刘徽青朱出入法(面积割补):

3 欧几里得面积法(三角形全等、平行线间的等积变形):

世界上各个古代文明中几乎都能找到勾股定理的影子,到了近代勾股定理的证明方法更有数百种之多,成为数学大花园中的一朵奇葩,而勾股定理的各种证明方法中也蕴含着美妙的数学思想方法,值

得我们好好学习体会.

二、 运用方法,挑战中考试题:

例1(赵爽弦图法的应用)

(2003年烟台)四年一度的国际数学家大会于2002年8月在北京市召开. 大会会标如图a. 它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13,每个直角三角形两直角边的和是5,求:

(1)中间小正方形的面积;

(2)现有一张长为6.5cm ,宽为2cm 的纸片,如图b ,请你将它分割成6块,再拼成一个正方形.

此题比较简单,由学生独立思考完成,师生小结赵爽弦图法对解题的作用,体验运用赵爽弦图法的过程.

例2(欧几里得面积法的应用)

(2005年北京市海淀区中考题)已知△ABC ,分别以AB 、BC 、CA 为边向形外作等边三角形ABD 、等边三角形BCE 、等边三角形ACF .

如图,当△ABC 中只有60ABC ∠= 时,请你证明ABC S 与ACF S 的和等于BCE S 与ABD S 的和.

此题为05海淀中考最后一题,难度较

大,方法不唯一,欧几里得证明勾股

定理时所使用的面积法为解决此题提

供了很巧妙的证明思路,但题目的外

b

a

D E

形与勾股定理有较大的出入,需要学生经过辨别、分析才能够认识到. 另外,使用方法时,平行线间的等积变形是一个难点,为突破这一难点,一方面:借助自制的flash 和几何画板课件可以帮助学生直观的、清晰的认识基本图形,了解基本方法;另一方面,要分析清楚,已知中“60ABC ∠= ”为“平行线”、“等积变形”提供了条件,是解题的关键.

简单证明:连接AE 、BF ,得AEC ?≌FBC ?,AEC FBC S S ??∴= 由AB ∥EC AEC BEC S S ??∴=

BEC FBC S S ??∴=

同理:ABD ABF S S ??∴=

A B D B E C A B F C B F A B C F A B C

S S S S S S S ??????∴+=+==+ 此题先让学生充分的独立思考、相互讨论,最后师生共同完成,并反思欧几里得面积法对解决此题的作用. 此题的其他证明方法,由学生课下思考.

三、 运用方法,动手操作:

勾股定理的各种证明方法,除了为我们解决一些中考题提供了思路,还给我们提供了很有趣的拼图游戏.

例3(刘徽青朱出入法的应用)

把两个小正方形,剪切几刀,重新组合成一个大正方形,这不就是勾股定理的证明,不需借

助任何文字与符号,更能拼出那么多美丽的图案,让我们来比比看,看谁剪拼得又快又漂亮?请叙述出你的辅助线(剪开线),并简要说明拼图的方法

和成立的理由.

此题是一个发散性的题目,源于学生利

用课余时间搜集到的勾股定理有关材料,在

动手实践中,思考全等和对应的关系,利用

平移、旋转、轴对称等几何变换,运用几何语言(辅助线的作图)叙述剪、拼过程,提高识图能力、分析能力、表达能力. 学生可以在活动中,发挥自身的想象力与创造性,尝试更多合理的拼图方案,并且观察和思考其中的规律,体验做数学的快乐和成就感,感受数学的美.

四、小结作业

学生小结

作业:

1(2006北京市中考题)请阅读下列材料:

问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.

小东同学的做法是:设新正方形的边长为(0)x x >.依题意,割补前后图形的面积相等,有25x =

,解得x =成的矩形对角线的长.于是,画出如图2所示的分割线,拼出如图3所示的新正方形.

请你参考小东同学的做法,解决如下问题:

现有10个边长为1的正方形,排列形式如图4,请把它们分割后拼接成一个新的正方形.要求:在图4中画出分割线,并在图5的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.

说明:直接画出图形,不要求写分析过程.

2 在作业本上完成例2、例

3

图1 图2 图3 图4 图5

课后自评:

勾股定理是数学史上极富色彩的一笔,涉及内容极为广泛,特别适合学生利用课余时间综合性的学习. 因此,我在五一长假期间布置了搜集勾股定理证明方法的作业. 学生搜集材料的热情和丰富程度是我始料不及的,超过了我们备课组几位老师搜集的材料总和. 那么多的证明方法,学生有的能看懂、有的看不懂、更多的似懂非懂,但特别好奇、感兴趣,作为教师,课时有限制、考试有要求、学生情感有需求、知识有局限,如何处理?

我整理了近两年全国各地中考试题,发现,勾股定理的证明方法常常出现在试题中. 有的很明显,如课上例1和作业第1题,熟悉赵爽弦图的学生必然能轻松应对;有的则很隐蔽,如课上例2,题目难度很大,表面看上去与勾股定理毫无瓜葛,但若能运用上欧几里得证明勾股定理的方法,困难迎刃而解. 我曾经和一个老师一起做这道题,由于我读过《原本》很快就解决了问题,而那位老师寻求其他方法花费了很长的时间. 这是让我决定选择这一课题一个直接的原因. 例3源自学生搜集到的材料,但在近些年的中考中,这类发散型、操作型、设计型题目的影子也常常出现.

综上,为了满足学生的好奇心、丰富学生的学习内容、落实学生对勾股定理一些常用方法的理解、紧密结合中考动态,我设计了这节课.

精选的三道例题运用了三种不同的证明勾股定理的方法,例1较易、例2较难、例3开放,前面的复习为三道例题提供铺垫,突出知

识的迁移和方法的运用.

自制的flash和几何画板课件,对突破教学难点(欧几里得面积法的理解和运用)、提高教学密度起到了重要的支持作用,三种方法的应用都有板书,起到了教学效果.

从教学的实际效果和课后作业看来,教学目标基本实现. 不足的是,教学时间的安排略显紧张. 由于所选的都是中考题,特别是例1,题目不难、但很长,阅读能力不是本课的训练重点,应该忍痛将题目改短后再使用. 课后作业的第1题也是中考原题,但因为是作业,让学生顺便训练一下数学阅读能力、体验一下中考题的感觉是可以的.

勾股定理教案

勾股定理(一) 常德市第二中学张美荣 教学目标 2、过程与方法 让学生经历“观察——猜测——证明——应用”的数学探究过程,在动手实践中体会“特殊到一般”和“数形结合”的数学思想方法。 3、情感态度与价值观 通过实验,让学生感受到数学所具有的探索性和创造性,激发学生探究热情,培养学生良好的团队合作意识和创新精神。通过对我国古代数学成就的了解,增强民族自豪感,激发学习热情。 教学重点与难点 教学重点:勾股定理的探索过程与应用 教学难点:勾股定理的证明 教学过程 一、创设情景引入新知 创设校园问题情景 1、观看多媒体照片 照片中,你看到了什么? 2、抽象出数学问题 如图,少数师生为了走“捷径”,在学校求索馆前的长方形草坪内走出一条小路AB。已知两步为1m,你能算出“捷径”省了多少路吗?从计算出的结果,你有怎样的想法? 引导学生分析:要算节省的路程,就要算出AB的长,Rt△AOB中,已经知道AO、BO 的长,如何计算AB呢?即问题转化为:直角三角形中已知两边,如何求第三边? 这就是我们今天要探究的内容:勾股定理 二、测量实验猜测新知 操作一 在方格纸上画一个顶点都在格点上的R t△ABC,∠C=90°,其中a=3,b=4,测量斜边c 的长度。

操作二 分别以R t△ABC三边a、b、c为边长向外作正方形S、T、P,则正方形S、T的面积是多少?正方形P呢,如何计算? 引导学生先画图,由画图过程去体会正方形P的计算方法(割补法),然后请学生来表述。 操作三 P的面积,由此猜测 222 +=,即勾股定理: a b c 直角三角形两直角边a,b的平方和,等于斜边c的平方. 222 += a b c 三、拼图探究验证新知 (一)拼图实验 步骤1剪出四个全等的(如右图)直角三角形,其中c为斜边,且b>a. 步骤2用这四个直角三角形拼出一个正方形(中间可以出现空心). 学生作品展示 运用多媒体工具(备课王)展示学生作品:

勾股定理的应用教学设计20

勾股定理在实际生活中的应用 学习目标 1通过本科的学习,掌握利用勾股定理理解:决实际问题的方法分析———画图———解答。 2掌握勾股定理在实际生活中的重要性。 3在互助学习中进一步了解数学源于生活,有服务于生活的道理。 教学重点 如何利用勾股地理解决实际问题。 教学难点 将实际生活问题转化成用勾股定理解决的数学问题。 教学手段 多媒体课件 教学准备 课件五个生准备门框框架 教学方式 互助学习 教学过程 —,温故知新 (一)出示课件一 生齐读勾股定理 (二)师:大家读了非常好,同学们,我们学习了勾股定理,你们知道它对我们的生活有哪些帮助呢?这节课我们就来学习17.1勾股定理——在实际生活中的应用。通过这节课的学习你会知道勾股定理的重要性。 师板书课题:勾股定理———在实际生活中的应用 一、温故知新 (一)出示课件一 生齐读勾股定理 (二)师:大家读的非常好,同学们,我们学习了勾股定理,你们知道它对我们的生活有哪些帮助呢?这节课我们就来学习17.1勾股定理——在实际生活中的应用。通过这节课的学习你会知道勾股定理的重要性。 师板书课题:勾股定理———在实际生活中的应用 师:请同学们打开教材25页,互助合作学习完成例1,例2. 二、互助学习 (一)出示课件2、3结合课件小组进行互助学习。师友互学,教师巡视指导。 生1汇报例1,师友补充并展示例1的解题过程。 生2讲解例2,师友展示例2解答过程。 (二)生讨论归纳:通过对例1、例2的学习,你发现了什么? 教师板书:分析---------画图---------解答 (RTΔ)(勾股定理) 三、探究提升 (一)出示课件4(思考题)

勾股定理教案课程

勾股定理 教学目标 1、了解勾股定理的推理过程,掌握勾股定理的内容,会用面积法证明勾股定理; 2、从实际问题中抽象出数学模型,利用勾股定理解决,渗透建模思想和数形结合思想; 3、通过研究一系列富有探究性的问题,培养在实际生活中发现问题总结规律的意识和能力.知识梳理 1.勾股定理 (1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于_____的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2. (2)勾股定理应用的前提条件是在___三角形中. (3)勾股定理公式a2+b2=c2的变形有:a2=c2﹣b2,b2= c2﹣a2及c2=a2+b2. (4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边. 2. 直角三角形的性质 (1)有一个角为90°的三角形,叫做直角三角形. (2)直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:性质1:直角三角形两直角边的平方和等于斜边的平方(勾股定理). 性质2:在直角三角形中,两个锐角___. 性质3:在直角三角形中,斜边上的___等于斜边的一半.(即直角三角形的外心位于斜边的中点) 性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积. 性质5:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的___;在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直 角边所对的锐角等于___. 3.勾股定理的应用 (1)在不规则的几何图形中,通常添加辅助线得到直角三角形. (2)在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.(3)常见的类型: ①勾股定理在几何中的应用:利用勾股定理求几何图形的面积和有关线段的长度. ②由勾股定理演变的结论:分别以一个直角三角形的三边为边长向外作正多边形,以斜边为 边长的多边形的面积等于以直角边为边长的多边形的面积和. ③勾股定理在实际问题中的应用:运用勾股定理的数学模型解决现实世界的实际问题. ④勾股定理在数轴上表示无理数的应用:利用勾股定理把一个无理数表示成直角边是两个正整 数的直角三角形的斜边. 4.平面展开-最短路径问题 (1)平面展开﹣最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,_________.在平面图形上构造直角三角形解决问题. (2)关于数形结合的思想,勾股定理及其逆定理它们本身就是数和形的结合,所以我们在解决有关结合问题时的关键就是能从实际问题中抽象出数学模型. 典型例题

北师大版八年级数学上《勾股定理的应用》精品教案

《勾股定理的应用》精品教案 ●教学目标: 知识与技能目标: 1.了解勾股定理的作用是“在直角三角形中已知两边求第三边”;而勾股逆定理的 作用是由“三角形边的关系得出三角形是直角三角形”. 2.掌握勾股定理及其逆定理,运用勾股定理进行简单的长度计算. 过程与方法目标 1.让学生亲自经历卷折圆柱. 2.让学生在亲自经历卷折圆柱中认识到圆柱的侧面展开图是一个长方形(矩形). 3.让学生通过观察、实验、归纳等手段,培养其将“实际问题转化为应用勾股定理 解直角三角形的数学问题”的能力. 情感与态度目标 1.在将实际问题抽象成数学问题的过程中,提高分析问题、解决问题的能力及渗透数 学建模的思想. 2.在利用勾股定理解决实际问题的过程中,体验数学学习的实用性. ●重点: 勾股定理的应用. ●难点: 将实际问题转化为“应用勾股定理及其逆定理解直角三角形的数学问题”. ●教学流程: 一、课前回顾 在一个直角三角形中三条边满足什么样的关系呢? 勾股定理:直角三角形两直角边的平方和等于斜边的平方. →逆命题:如果三角形的三边长a、b、c满足a2 + b2 = c2那么这个三角形是直角三角形。 二、情境引入 探究1:有一个圆柱,它的高等于12厘米,底面半径等于3厘米, 在圆柱下底面上的A点有一只蚂蚁,它想从点A爬到点B,蚂蚁沿着圆柱 侧面爬行的最短路程是多少? (π取3)

当圆柱高为12cm ,底面周长为18cm 时,蚂蚁怎么走最近呢? 所走路程为高+直径=12+2×3=18cm 所走路程为高 +πr=12+3×3=21cm 在Rt △ABC 中,利用勾股定理可得, 222CB AC AB += cm AB 1522591222=∴=+= 比较方案①②③,可得,方案③为最短路径,最短路径是15cm 总结:1、线段公理 两点之间,线段最短 2、勾股定理 在Rt △ABC 中,两直角边为a 、b,斜边为c ,则a 2+b 2=c 2. 练习1:在底面半径为1、高为2的圆柱体的左下角A 处有一只蚂蚁,欲从圆柱体的侧面如图迂回爬行去吃左上角B 处的食物,问怎样爬行路径最短,最短路径是多少? 从A 点向上剪开,则侧面展开图如图所示,连接AB ,则 AB 为爬行的最短路径.

勾股定理的证明种方法教案

勾股定理的证明 【证法1】(课本的证明) 做 8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF , ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2. ∵ Rt ΔGDH ≌ Rt ΔHAE , ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2 b a +. ∴ ()2 22 14c ab b a +?=+. ∴ 2 22c b a =+.

【证法3】(赵爽证明) 以a 、b 为直角边(b>a ), 以c 为斜 边作四个全等的直角三角形,则每个直角 三角形的面积等于ab 21 . 把这四个直角三 角形拼成如图所示形状. ∵ Rt ΔDAH ≌ Rt ΔABE, ∴ ∠HDA = ∠EAB . ∵ ∠HAD + ∠HAD = 90o, ∴ ∠EAB + ∠HAD = 90o, ∴ ABCD 是一个边长为c 的正方形,它的面积等于c 2. ∵ EF = FG =GH =HE = b ―a , ∠HEF = 90o. ∴ EFGH 是一个边长为b ―a 的正方形,它的面积等于()2 a b -. ∴ ()2 2 214c a b ab =-+?. ∴ 2 22c b a =+. 【证法4】(1876年美国总统Garfield 证明) 以a 、b 为直角边,以c 为斜边作两个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这两个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上. ∵ Rt ΔEAD ≌ Rt ΔCBE , ∴ ∠ADE = ∠BEC . ∵ ∠AED + ∠ADE = 90o, ∴ ∠AED + ∠BEC = 90o. ∴ ∠D EC = 180o―90o= 90o. ∴ ΔDEC 是一个等腰直角三角形, 它的面积等于221c . 又∵ ∠DAE = 90o, ∠EBC = 90o, ∴ AD ∥BC . ∴ ABCD 是一个直角梯形,它的面积等于()2 21 b a +. ∴ ()2 2212122 1 c ab b a +?=+. ∴ 2 22c b a =+.

勾股定理的应用教案

勾股定理的应用 教学目标: 知识与技能: (1) 能应用勾股定理解决一些简单的实际问题。 (2) 学会选择适当的数学模型解决实际问题。 过程与方法: 通过问题情境的设立,使学生明白数学来源于生活,又应用于生活,积累 利用数学知识解决日常生活中实际问题的经验和方法。 情感、态度和价值观:使学生认识到数学来自生活,并服务于生活,从而增强学生学数学、 用数学的意识,体会勾股定理的文化价值。发展运用数学的信心和能力, 初步形成积极参与数学活动的意识。 教学重点: 应用勾股定理解决实际问题是本节课的教学重点; 教学难点.: 把实际问题化归成勾股定理的几何模型(直角三角形)则是本节课的难点。 教学关键:应用数形结合的思想,从实际问题中,寻找可应用的RT △,然后有针对性解决。 教学媒体:电子白板 教学过程: 一、导入 1、由犍为岷江大桥图片引入(一是拉近和学生的关系,激发学生对家乡的热爱之情, 同时由斜拉桥上的直角三角形引入勾股定理的应用) 另出具复习引入题 如图,长2.5m 的梯子靠在墙上,梯子 的底部离墙角1.5m ,如何求梯子的顶 端与地面的距离h? 先让学生复习勾股 定理的简单应用。 2、复习勾股定理内容 3、板书课题 二、新课探究 1、例 小明想知道学校旗杆的高度,但又不能把旗杆放倒测量,但他发现旗杆顶端的绳子垂到地面还多1米,当他把绳子下端拉开5米后,绳子刚好斜着拉直下端接触地面,你能帮小明算算旗杆的高度吗? 首先让学生审题并画出几何图形,再引导其完成。题中隐含了什么条件? 解:设旗杆高AB=x 米,则绳子长AC=(x+1) 米,在Rt ABC 中,由勾股定理得: 答:旗杆的高度为12米。 12 ,)1(52 22222==+=++x x x AC BC AB 解方程,得即

勾股定理逆定理八种证明方法

勾股定理逆定理八种证 明方法 集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

证法1 作四个的直角三角形,把它们拼成如图那样的一个多边形,使D、E、F在一条上(设它们的两条直角边长分别为a、b ,斜边长为c.)。过点C作AC的延长线交DF于点P. ∵ D、E、F在一条直线上,且RtΔGEF ≌ RtΔEBD, ∴ ∠EGF = ∠BED, ∵ ∠EGF + ∠GEF =90°, ∴ ∠BED + ∠GEF = 90°, ∴ ∠BEG =180°―90°= 90° 又∵ AB = BE = EG = GA = c, ∴ ABEG是一个边长为c的正方形。 ∴ ∠ABC + ∠CBE = 90° ∵ RtΔABC ≌ RtΔEBD, ∴ ∠ABC = ∠EBD. ∴ ∠EBD + ∠CBE = 90° 即∠CBD= 90° 又∵ ∠BDE = 90°,∠BCP = 90°,BC = BD = a. ∴ BDPC是一个边长为a的正方形。 同理,HPFG是一个边长为b的正方形. 设多边形GHCBE的面积为S,则 证法2 作两个的直角三角形,设它们的两条直角边长分别为a、b(b>a),做一个边长为c的正方形。斜边长为c. 再把它们拼成如图所示的多边形,使E、A、C 三点在一条直线上. 过点Q作QP∥BC,交AC于点P. 过点B作BM⊥PQ,垂足为M;再过点F作FN⊥PQ,垂足为N. ∵ ∠BCA = 90°,QP∥BC, ∴ ∠MPC = 90°, ∵ BM⊥PQ, ∴ ∠BMP = 90°, ∴ BCPM是一个矩形,即∠MBC =90°。 ∵ ∠QBM + ∠MBA = ∠QBA = 90°,∠ABC + ∠MBA = ∠MBC = 90°, ∴ ∠, 又∵ ∠BMP = 90°,∠BCA = 90°,BQ = BA = c, ∴ RtΔBMQ ≌ RtΔBCA. 同理可证RtΔQNF ≌ RtΔAEF.即 证法3 作两个全等的直角三角形,同证法2,再作一个边长为c的正方形。把它们拼成如图所示的多边形. 分别以CF,AE为边长做正方形FCJI和AEIG, ∵EF=DF-DE=b-a,EI=b, ∴FI=a, ∴G,I,J在同一直线上, ∵CJ=CF=a,CB=CD=c,∠CJB = ∠CFD = 90°,

《勾股定理的应用》教学设计1

17.1 .2 勾股定理(二) 一、教学目标 1.会用勾股定理解决简单的实际问题。 2.树立数形结合的思想。 二、重点、难点 1.重点:勾股定理的应用。 2.难点:实际问题向数学问题的转化。 3.难点的突破方法: 数形结合,从实际问题中抽象出几何图形,让学生画好图后标图;在实际问题向数学问题的转化过程中,注意勾股定理的使用条件,教师要向学生交代清楚,解释明白;优化训练,在不条件、不同环境中反复运用定理,使学生达到熟练使用,灵活运用的程度;让学生深入探讨,积极参与到课堂中,发挥学生的积极性和主动性。 三、例题的意图分析 例1(教材P25页例1)明确如何将实际问题转化为数学问题,注意条件的转化;学会如何利用数学知识、思想、方法解决实际问题。 例2(教材P25页例2)使学生进一步熟练使用勾股定理 四、课堂引入 勾股定理在实际的生产生活当中有着广泛的应用。勾股定理的发现和使 用解决了许多生活中的问题,今天我们就来运用勾股定理解决一些问题,你 可以吗?试一试。 五、例习题分析 例1(教材P25页例1) 分析:⑴在实际问题向数学问题的转化过程中,注意勾股定理的使用条件, 即门框为长方形,四个角都是直角。⑵让学生深入探讨图中有几个直角三角 形?图中标字母的线段哪条最长?⑶指出薄木板在数学问题中忽略厚度,只记长度,探讨以何种方式通过?⑷转化为勾股定理的计算,采用多种方法。⑸注意给学生小结深化数学建模思想,激发数学兴趣。 例2(教材P25页例2) 分析:⑴在△AOB 中,已知AB=2.6,AO=2.4,利用勾股定理计算 OB 。 ⑵ 在△COD 中,已知CD=2.6,CO=1.9,利用勾股定理计 算OD 。 则BD=OD -OB ,通过计算可知BD ≠AC 。 ⑶进一步让学生探究AC 和BD 的关系,给AC 不同的值,计算BD 。 六、课堂练习 1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。 2.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是 米,水平距离是 米。 D A B C A B

勾股定理五种证明方法

勾股定理五种证明方法 【证法1】 做 8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 214214222?+=?++, 整理得 222c b a =+. 【 证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角 形的面积等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点 在一条直线上,B 、F 、C 三点在一条直线上,C 、G 、D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c2. ∵ Rt ΔGDH ≌ Rt ΔHAE, ∴ ∠HGD = ∠EHA . ∵ ∠HGD + ∠GHD = 90o, ∴ ∠EHA + ∠GHD = 90o. 又∵ ∠GHE = 90o, ∴ ∠DHA = 90o+ 90o= 180o. ∴ ABCD 是一个边长为a + b 的正方形,它的面积等于()2b a +. ∴ ()2 2214c ab b a +?=+. ∴ 222c b a =+. 【证法3】(梅文鼎证明) 做四个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为

人教版八年级下册17.1.1勾股定理教案

《勾股定理》教案 【教学目标】 1.知识与技能 (1)了解关于勾股定理的一些文化历史背景。 (2)能用勾股定理解决一些简单问题。 2.过程与方法 发展观察、归纳、概括等能力,发展有条理的思考能力以及语言表达能力。 3.情感态度和价值观 通过师生共同活动,促进学生在学习活动中培养良好的情感,合作交流,主动参与的意识。【教学重点】 勾股定理的推导 【教学难点】 利用勾股定理解决问题。 【教学方法】 自学与小组合作学习相结合的方法。 【课前准备】 教学课件。 【课时安排】 1课时 【教学过程】 一、情景导入 【过渡】如图所示为2002年在北京举行的国际数学家大会的会徽,它标志着我国古代数学的成就。这个图形里到底蕴涵了什么样博大精深的知识呢?今天我们就来探究一下,关于这个图形,究竟有哪些知识。

二、新课教学 1.勾股定理 【过渡】相传2500年前,毕达哥拉斯有一次在朋友家里做客时,发现朋友家用砖铺成的地面中反映了直角三角形三边的某种数量关系。现在,我们也来观察一下,从图形中能发现什么知识呢? 【过渡】大家来看P22页的思考内容,我们发现,这个图形与上边的图形是一致的,今天,我们也来当一回科学家,来思考一下,这个图形到底有什么奥秘呢? 【过渡】我们能够看到,在这个图中,有三个正方形A、B、C,现在,我们假设小方格的边长为1。正方形A、B、C的面积各为多少? (学生回答)引导学生通过小方格的个数计算。 【过渡】通过观察,我们发现,三个正方形,S A=6,S B=6,S C=12。由此,我们能够回答思考内容中的第一个问题,即三个正方形的关系是S A+S B=S C。 【过渡】现在,我们来看第二个问题,结合正方形的知识,我们知道三个正方形所围成的,即蓝色部分是一个等腰直角三角形。我们假设A、B、C三个正方形对应的边长分别为a、b、c。则通过正方形面积的计算,大家能得到什么呢? (学生回答) 【过渡】大家都是很优秀的科学家,就是这样,我们能够得到a2+b2=c2,而从图中,我们又能发现,a、b、c刚好是等腰直角三角形的三条边。那么,现在谁能来总结一下,等腰直角三角形中三边的关系呢? 对于等腰直角三角形有这样的性质:斜边的平方等于两直角边的平方和。 【过渡】既然等腰三角形中有这样的性质,那大家就可能会说,其他一般的三角形中会不会也有

《勾股定理的应用》教案1

《勾股定理的应用》教案 教学目标 教学知识点: 能运用勾股定理及直角三角形的判别条件(即勾股定理的逆定理)解决简单的实际问题能力训练要求: 1、学会观察图形,勇于探索图形间的关系,培养学生的空间观念 2、在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想. 情感与价值观要求: 1、通过有趣的问题提高学习数学的兴趣. 2、在解决实际问题的过程中,体验数学学习的实用性,体现人人都学有用的数学 . 教学重点难点 重点:探索、发现给定事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题难点:利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题教学过程 1、创设问题情境,弓I入新课 前几节课我们学习了勾股定理,你还记得它有什么作用吗? 例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需多长的梯子? 根据题意,(如图)AC是建筑物,则AC = 12米,BC = 5米,AB是梯子的长度.所以在Rt △ ABC 中,AB2= AC2+ BC2= 122 + 52= 132 ; AB= 13米. 所以至少需13米长的梯子. 2、讲授新课:①蚂蚁怎么走最近?

出示问题:有一个圆柱,它的高等于12cm,底面上圆的周长等于18cm .在圆行柱的下底面点A 点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,沿圆柱侧面爬行的的最短路程是多少? (1) 自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(小组讨论) (2) 如图1-12,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你 画对了吗? (3) 蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱侧面爬行的最短路程是多少?(学生分组讨论,公布结果) 我们知道,圆柱的侧面展开图是一长方形,好了,现在咱们就用剪刀沿母线AA '将圆 柱的侧面展开(如下图). (1)A T A'f B ;( 2)A T B'T B; (3)A T D f B ;( 4) A f B. 哪条路线是最短呢?你画对了吗? 第(4)条路线最短.因为“两点之间的连线中线段最短” ②完成教材第13页的做一做. 李叔叔想要检测雕塑(图1-13)底座正面的边AD和边BC是否分别垂直于底边AB,随身只带卷尺? 也就是要检测/ DAB = 90°,/ CBA = 90° .连结BD或AC,也就是要检测△ DAB和厶C BA是否为直角三角形.很显然,这是一个需用勾股定理的逆定理来解决的实际问题 ③随堂练习 (1)甲、乙两位探险者,到沙漠进行探险?某日早晨8 : 00甲先出发,他以6km/h的速度 向正东行走.1时后乙出发,他以5km/h的速度向正北行走.上午10 : 00,甲、乙两人相距多

第十八章勾股定理全章教案

第十八章勾股定理 18.1 勾股定理(一) 一、教学目标 1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理. 2.培养在实际生活中发现问题总结规律的意识和能力. 3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习. 二、重点、难点 1.重点:勾股定理的内容及证明. 2.难点:勾股定理的证明. 3.难点的突破方法:几何学的产生,源于人们对土地面积的测量需要.在古埃及,尼罗河每年要泛滥一次;洪水给两岸的田地带来了肥沃的淤积泥土,但也抹掉了田地之间的界限标志.水退了,人们要重新画出田地的界线,就必须再次丈量、计算田地的面积.几何学从一开始就与面积结下了不解之缘,面积很早就成为人们认识几何图形性质与争鸣几何定理的工具.本节课采用拼图的方法,使学生利用面积相等对勾股定理进行证明.其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变. 三、例题的意图分析 例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手.激发学生的民族自豪感,和爱国情怀. 例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变.进一步让学生确信勾股定理的正确性. 四、课堂引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等.我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的.这个事实可以说明勾股定理的重大意义.尤其是在两千年前,是非常了不起的成就. 让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长. 以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五.”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5.再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长. 你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2. 对于任意的直角三角形也有这个性质吗? 例1(补充)已知:在△ABC中,∠C=90°,∠A、∠B、 ∠C的对边为a、b、c. 求证:a2+b2=c2. 分析:⑴让学生准备多个三角形模型,最好是有颜色的吹 塑纸,让学生拼摆不同的形状,利用面积相等进行证明. A B

勾股定理的简单应用教案

课题 3.3勾股定理的应用第1课时 学习目标1、在运用勾股定理解决实际问题的过程中,感受数学的“转化”思想, 2、进一步发展有条理思考和有条理表达的能力。 3、通过对勾股定理应用,培养解决实际问题的能力和审美能力。 教学重点解斜三角形问题转化为解直角三角形的问题 教学难点勾股定理及直角三角形的判定条件的应用的区别 教法教具自主探究合作交流 教师活动二次备课 一创设情境 勾股定理在生活中的应用 从远处看,斜拉桥的索塔、桥面与拉索组成许多直角三角形 二探索活动 已知桥面以上索塔AB的高,怎样计算AC、AD、AE、AF、AG的 长. A B C E F G D

二.例题教学 例1 九章算术中的“折竹”问题:今有竹高一丈,末折抵地,去根三尺,问折者高几何? 意思是:有一根竹子原高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高? 练习 “引葭赴岸”是《九章算术》中另一道题“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?” 题意是:有一个边长为10尺的正方形池塘,在水池正中央有一根新生的芦苇,它高出水面1尺,如果把这根芦苇沿与水池边垂直的方向拉向岸边,它的顶端恰好到达岸边.请问这个水池的深度和这根芦苇的长度各是多少? A C B 例2 如图,在△ABC中,AB=26,BC=20,BC边上的中线AD =24,求AC.

勾股定理与它的逆定理在应用上有什么区别? 三.展示交流 1.如图,在△ABC 中, AB =AC =17,BC =16,求△ABC 的面积. 2如图,在△ ABC 中,AD ⊥BC ,AB =15,AD =12,AC =13,求△ABC 的周长和面积. 3、如图,以△ABC 的三边为直径向外作半圆,且S 1+S 3=S 2,试判断△ABC 的形状? 四.总结 从勾股定理的应用中我们进一步体会到直角三角形与等腰三角形有着密切的联系;把研究等腰三角形转化为研究直角 D C B A D C B A

勾股定理及其应用

勾股定理及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

第五次课勾股定理及其应用 本章知识要点 A. 勾股定理及其逆定理。 B. 验证、证明勾股定理及其依据(面积法)。 C. 勾股数组、基本勾股数组及勾股数的推算公式。 D. 勾股定理及其逆定理的应用。 E. 感受“方程”思想、“数形结合”思想、“化归与转化”思想等数学思想。 重点知识勾股定理的验证

(美)伽菲尔德总统拼图 如右图,直角梯形的面积等于三个直角三角形的面积之和,所以 ()()22121221 c ab b a b a +?=+? +,即222c b a =+ 赵爽弦图 如右图,用四个全等的直角三角形可得到一个以()a b -为边长的小正方形和一个边长为c 的大正方形,因为大正方形的边长为c ,所以面积为2c ,又因为大正方形被分割成了四个全等的直角边长分别为b a ,的直角三角形和一个边长为()a b -的正方形,所以其面积为 ()2 2 14a b ab -+?所以()2 22 14a b ab c -+?=,从而222b a c +=. 刘徽:青朱出入图 如右图,通过拼图,以c 为边长的正方形面积等于分别以b a ,为边长的两个正方形的面积之和 名师提示 用拼图法验证勾股定理的思路:①图形经过割补拼接后,只 要没有重叠、没有空隙,那么面积就不会改变;②根据同一种图形面积的不同表示方法(简称面积法)列出等式,推导勾股定理 重点知识 确定几何体上的最短路线 描述 示意图 9 E D B A C F 7 D A E B C F 展开 5 甲 F D E F

勾股定理16种证明方法

v1.0 可编辑可修改 【证法1】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a 、b ,斜边长为c ,再做三个边长分别为a 、b 、c 的正方形,把它们像上图那样拼成两个正方形. 从图上可以看到,这两个正方形的边长都是a + b ,所以面积相等. 即 ab c ab b a 21 4214222?+=?++, 整理得 222c b a =+. 【证法2】(邹元治证明) 以a 、b 为直角边,以c 为斜边做四个全等的直角三角形,则每个直角三角形的面积 等于ab 21. 把这四个直角三角形拼成如图所示形状,使A 、E 、B 三点在一条直线上,B 、F 、 C 三点在一条直线上,C 、G 、 D 三点在一条直线上. ∵ Rt ΔHAE ≌ Rt ΔEBF, ∴ ∠AHE = ∠BEF . ∵ ∠AEH + ∠AHE = 90o, ∴ ∠AEH + ∠BEF = 90o. ∴ ∠HEF = 180o―90o= 90o. ∴ 四边形EFGH 是一个边长为c 的 正方形. 它的面积等于c 2.

v1.0 可编辑可修改 ∴∠HGD = ∠EHA. ∵∠HGD + ∠GHD = 90o, ∴∠EHA + ∠GHD = 90o. 又∵∠GHE = 90o, ∴∠DHA = 90o+ 90o= 180o. ∴ ABCD是一个边长为a + b的正方形,它的面积等于()2b a+. ∴()2 2 2 1 4c ab b a+ ? = + . ∴2 2 2c b a= +. 【证法3】(赵爽证明) 以a、b 为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角 三角形的面积等于 ab 2 1 . 把这四个直角三 角形拼成如图所示形状. ∵ RtΔDAH ≌ RtΔABE, ∴∠HDA = ∠EAB. ∵∠HAD + ∠HAD = 90o, ∴∠EAB + ∠HAD = 90o, ∴ ABCD是一个边长为c的正方形,它的面积等于c2. ∵ EF = FG =GH =HE = b―a , ∠HEF = 90o. ∴ EFGH是一个边长为b―a的正方形,它的面积等于()2a b-. ∴ ()2 2 2 1 4c a b ab= - + ? .

勾股定理全章教案 人教版(优秀教案)讲解学习

勾股定理全章教案人教版(优秀教案)

第十八章勾股定理 .勾股定理(一) 一、教学目标 .了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。 .培养在实际生活中发现问题总结规律的意识和能力。 .介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。 二、重点、难点 .重点:勾股定理的内容及证明。 .难点:勾股定理的证明。 三、例题的意图分析 例(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。 例使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步让学生确信勾股定理的正确性。 四、课堂引入 目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这

种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。 让学生画一个直角边为和的直角△,用刻度尺量出的长。 以上这个事实是我国古代多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是,长的直角边(股)的长是,那么斜边(弦)的长是。 再画一个两直角边为和的直角△,用刻度尺量的长。 你是否发现与的关系,和的关系,即,,那么就有勾股弦。 对于任意的直角三角形也有这个性质吗? 五、例习题分析 例(补充)已知:在△中,∠°,∠、∠、∠的对边为、、。 求证:+。 分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。 ⑵拼成如图所示,其等量关系为:△小正大正 ×2 1 +(-),化简可证。 ⑶发挥学生的想象能力拼出不同的图形,进行证明。 ⑷ 勾股定理的证明方法,达余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。 A B

勾股定理的应用教案

勾股定理的应用教案 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

121教学模式 科目_________________________ 年级_________________________ 教师____________ 数学 八年级 潘明明

课前1分钟交通安全教育 “121”教学模式导学案(______科) 数学 2013 年 9 月 7日制订

际问题 2、将立体图形问题转化成平面图形问题 合作探究交流共享第一环节:情境引入 内容: 情景1:多媒体展示: 提出问题:从二教楼到综合楼怎样走最近 情景2: 如图:在一个圆柱石凳上,若小明在吃东西时留下 了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这 一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近意图: 通过情景1复习公理:两点之间线段最短;情景2的创设引入新课,激发学生探究热情. 效果: 从学生熟悉的生活场景引入,提出问题,学生探究热情高涨,为下一环节奠定了良好基础. 第二环节:合作探究 内容: 学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线.让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法. 意图: 通过学生的合作探究,找到解决“蚂蚁怎么走最近”的方法,将曲面最短距离问题转化为平面最短距离问题并利用勾股定理求解.在活动中体

验数学建摸,培养学生与人合作交流的能力,增强学生探究能力,操作能力,分析能力,发展空间观念. 效果: 学生汇总了四种方案: (1) (2) (3) (4) 学生很容易算出:情形(1)中A →B 的路线长为:'AA d +, 情形(2)中A →B 的路线长为:'2 d AA π+ 所以情形(1)的路线比情形(2)要短. 学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA ’剪开圆柱得到矩形,情形(3)A →B 是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)较短,最后通过计算比较(1)和(4)即可. 如图: (1)中A →B 的路线长为:'AA d +. (2)中A →B 的路线长为:''AA A B +>AB . (3)中A →B 的路线长为:AO +OB >AB . (4)中A →B 的路线长为:AB . 得出结论:利用展开图中两点之 间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB 在Rt △AA′B 中,利用勾股定理可得222'B A A A AB +'=,若已知圆柱体高为12cm ,底面半径为3cm ,π取3,则 A ’ A ’ A ’

勾股定理的证明教案

勾股定理的证明教案 教学内容:第十四章勾股定理——第一节———第二课时 一、教学目标: 1、知识与技能:(1)掌握勾股定理的一些基本证明方法; (2)了解有关勾股定理的历史. 2、过程与方法:(1)在定理的证明中培养学生的拼图能力; (2)经历理解勾股定理的证明过程,感悟并 掌握勾股定理的证明猜想. 3、情感态度与价值观:(1)通过有关勾股定理的历史讲解,对学生 进行德育教育; (2)通过数学思维活动,发展学生探究意识 和合作交流思想. 二、教学重点:理解并熟练勾股定理的证明过程 三、教学难点:对勾股定理证明思想的领会 四、教学用具:直尺,四个全等的直角三角形纸片,赵爽弦图,2002 年国际数学大会图片 五、教学方法:以学生为主体的讨论探索法

六、教学过程: 1、创设情境→激发兴趣 (1)复习勾股定理——直角三角形的三边关系 勾股定理:直角三角形两直角边a、b 的平方和等于斜边c 的平方。数学表达式:a2+b2 =c2 (2)欣赏图片——引出课题 通过欣赏2002年在我国北京召开的国际数学家大会的会徽图案,引出“赵爽弦图”,让学生了解我国古代辉煌的数学成就,激发学生民族自豪感. 2、分析探究→得出猜想 通过对赵爽弦图图形组成的提问:即由四个全等的直角三角形构成的,让同学们体验对数学图形的探究过程,学习这种研究方法。同时提问:为什么会把这个图案设为大会的会徽?它有什么意义呢? 继而教师总结:因为在1700多年前中国古代数学家赵爽用这个弦图证明了勾股定理(出示图片),我们称它为“赵爽弦图”,它反应了中国古代数学家的聪明才智,是我们中国古代数学的骄傲,现在让我们追忆一下古人的足迹,用赵爽弦图证明勾股定理: 3、拼图证明→得出定理

《勾股定理的应用》教学设计

《勾股定理的应用》教学设计 教学目标: 1、准确运用勾股定理及逆定理. 2、经历勾股定理的应用过程,熟练掌握其应用方法,应用“数形结合”的思想来解决. 3、培养合情推理能力,提高合作交流意识,体会勾股定理的应用 教学重点:掌握勾股定理及其逆定理 教学难点:正确运用勾股定理及其逆定理. 教学关键:应用数形结合的思想,从实际问题中,寻找可应用的RT△,然后有针对性解决. 教学准备: 教师准备:直尺、圆规 教学过程: 一、创设情境,激发兴趣 教师道白:在一棵树的l0m高的D处有两只猴子,其中一只猴子爬下树走到离树 20m处的池塘A处,另一只爬到树顶后直接跃向池塘A处,如果两只猴子所经过的 距离相等,试问这棵树有多高? 评析:如图所示,其中一只猴子从D→B→A共走了30m,另一只猴子从D→C→A也共走了30m,且树身垂直于地面,于是这个问题可化归到直角三角形解决. 教师提出问题,引导学生分析问题、明确题意,用化归的思想解决问题. 解:设DC=xm,依题意得:BD+BA=DC+CA CA=30-x,BC=l0+x在RtnABC中 2 2 2BC AB AC+ =AC' =AB' +BC 即()()2 2 210 20 30x x+ + = - 解之x=5 所以树高为15m. 二、范例学习 如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在给定网格中按下列要求画出图形:(1)从点A出发画一条线段AB,使它的另一个端点B在格点(即小正方形的顶点)上,且长度为22;(2)画出所有的以(1)中的AB为边的等腰三角形,使另一个顶点在格点上,且另两边的长度都是无理数.

教师分析 只需利用勾股定理看哪一个矩形的对角线满足要求. 解(1) 图1中AB长度为22. (2) 图2中△ABC、 △ABD 就是所要画的等腰三角形. 例如图,已知CD =6m , AD =8m , ∠ADC =90°, BC =24m , AB=26m .求 图中阴影部分的面积. 教师分析:课本图14.2.7中阴影部分的面积是一个不规则的图形,因此我们首先应考虑如何转化为规则图形的和差形,这是方向,同学们记住,实际上 阴S =ABC S ?-ACD S ?,现在只要明确怎样计算ABC S ?和ACD S ?了。 解 在Rt △ADC 中, AC 2=AD2+CD2=62+82=100(勾股定理), ∴ AC =10m . ∵ AC2+BC2=102+242=676=AB2 ∴ △ACB 为直角三角形(如果三角形的三边长a 、 b 、 c 有关系: a 2+b 2=c 2,那么这个三角形是直角三角形),∴ S 阴影部分=S△ACB -S△ACD =1/2×10×24-1/2×6×8=96(m 2). 评析:这题应总结出两种思想方法:一是求不规则图形的面积方法“将不规则图化成规则”,二是求面积中,要注意其特殊性. 三、课堂小结 此课时是运用勾股定理和判定直角三角形的勾股逆定理来解决实际问题,解决这类问题的关键是画出正确的图形,通过数形结合,构造直角三角形,碰到空间曲面上两点间的最短距离间题,一般是化空间问题为平面问题来解决.即将空间曲面展开成平面,然后利用勾股定理及相关知识进行求解,遇到求不规则面积问题,通常应用化归思想,将不规则问题转换成规则何题来解决.解题中,注意辅助线的使用.特别是“经验辅助线”的使用. 五、布置作业

相关文档
最新文档