七、线性变换习题课

七、线性变换习题课
七、线性变换习题课

七、线性变换习题课

1.复习线性变换的概念

例1 将C看成R上的线性空间,变换是线性的,看成C上的线性空间则不是。

证明:R上:有==

故A是R上线性空间C的线性变换。

C上:取及,有,

而,故A不是C上线性空间C的线性变换。

由上例,变换A是否为线性变换与所讨论的数域有关。

2.利用运算的意义,运算律推证线性变换的等式,利用线性变换与n阶方阵代数同构解决有关问题。

例2设A,B是线性变换,如果证明:

,(k>0)

证明: 由已知,对k=1结论成立,故考虑用数学归纳法.

对k用归纳法.当k=1时结论成立. K=2时,由已知

=AB=(BA+E)A+A-BA2

=BA2+A+A-BA2=2A 结论成立.

设当k时结论成立,即,也即.

当k+1时,

=ABA k+AkA k-1-BA k+1=(BA+E)A k+kA k-BA k+1

=BA k+1+A k+kA k-BA k+1=(k+1)A k

所以结论对k+1也成立,从而对一切k1成立.

例3设V是数域P上n维线性空间,证明:V的与全体线性变换交换的线性变换是数乘变换.

证明: 需要表达出线性变换,联系到某基下的矩阵.

设令A,B在某基下的矩阵分别为A,B.

因为,所以由得AB=BA.由的任意

性,也是任意的,从而存在某个k使得A=kE为数量阵(P.204,ch.4.ex.7.3),于是

为数量变换.

有了变换乘积,进一步可考虑可逆变换.

3. 系统小结可逆线性变换的的等价条件,并举例说明一些基本论证方法.

A可逆10存在使=E.

A是双射.

A在基下的矩阵A可逆—有限维

例4 设是线性空间V的一组基,A是V上的线性变换,证明:可逆当且仅当

线性无关.

证明:证法一:

“”,,若=0,有B()=0,即

=0,=0,即线性无关.

“”线性无关,

因dimV=n,故使得

=A()

令使=()

易见,且,即

又任给设=

有()==

故,从A可逆.

证法二:利用双射

“” A是双射,则0==A()

得0=(0对应0)

故,线性无关.

“”由dimV=n,V的任一向量可由唯一表示,即V中任一向量有唯一(要证明)原像(显然).故A是双射.

证法三:利用矩阵

A可逆A在下的矩阵A可逆

()A也是一组基=n

线性无关

例5设,W1,W2是V的子空间,且,则可逆.

证明:由,有V,可设W1的一组基为, W2的一组基为,则为V的一组基.

“” A可逆,故线性无关,1,2的秩为r,n-r,

和分别为1和2的基,故.

“”,有dimV=dim,=(),故为AV的一组基,即线性无关,A可逆.

4.小结:线性变换矩阵的求法,进一步掌握矩阵的概念.

为V的一组基,

() =()A, ()=()X为另一组基,有

()=()

例6在空间P[x]n中,是线性变换,求在基

,下的矩阵.

证明: 首先由ex.1.5)知,是线性变换,是线性变换,故是线性变换.

其次,只要求出,用表示,就可得A.

=(1)=1-1=0,

=-

=

=

所以, (,)=(,), 所求矩阵为.

例7设三维线性空间V上的线性变换A在基下的矩阵为

,

1).求在基()下的矩阵;

2).求在基()下的矩阵,其中k;

3).求在基()下的矩阵.

证明:1). =

=

= =

()=()

所求矩阵为。

又可()=()=()

故所求矩阵为A

2)= ()

又()=()

故所求矩阵为A=A

3).=

=

=

=

所求矩阵为

又()=()

故所求矩阵为

A = A

例8,在任一组基下矩阵都相同,则是数乘变换.

证明: 要证在任一组基下矩阵是数量阵.

设在基下下的矩阵为A,对任一n阶非退化方阵X,()=()X为V的另一组基,在此基下的矩阵为即,由的任意性, A为数量阵.

事实上,此时A与任意可换:设可逆矩阵使,则可逆,与A交换,得

于是,由P.204 ex.7 3), A为数量阵,从而为数量变换.

例9证明:下面两个矩阵相似,其中是1,…,n的一个排列:

, .

证明: 曾在二次型中证明过它们合同,显然它们等价,将它们看成一个线性变换在不同基下的矩阵.

设,在基()下的矩阵为A,则显然()是V的另一组基,此基下的矩阵为B.

将线性变换与方阵的特征诸概念列表对比,指出异同,明确求法.

线性变换

有限维

例11设是线性变换的两个不同特征值, 是分别属于的特征向量,证明: 不是的特征向量.

证明:只要证

若有这样的存在,则

===

而属于不同的特征值,线性无关,故,矛盾.

将此结果与属于同一个特征值的特征向量的和(0)作比较, 是的属于的两个特征向量,则当0时, 是的一个特征向量(属于).

例12证明:如果以V中每个非零向量为特征向量,那麽是数乘变换.

分析:

每个非零向量都是特征值k的特征向量

每个非零向量都是特征向量且特征值只有一个

证明:若,有都是的特征向量.

若是分别属于两个不同的特征值,那麽由上题,

即不可能是的特征向量,矛盾.

故,,有是属于的同一特征值的特征向量.设这个特征值为k,于是,又=k0=0,

故.

例13. 可逆,则1). 有特征值,则不为0;

2). 是的特征值,则-1是的特征值.

证法一:1).设是的特征值,是属于的特征向量,则.

因可逆, -1存在,且-1L(V),有

,

即,而,有.

2).由1),, -1是的特征值.

3).的特征向量是的特征向量.

证法二:当V是有限维时,设在基下的矩阵为A,则由可逆,A可逆.

1).若是的特征值,则0==

与A可逆矛盾.

2).若是的特征值,则,且

即-1是的特征值,而,故-1是的特征值.

(注:一般情况与有限维时证明方法不一样;此结论要求掌握.)

特殊变换的特征值

例14设,若,称为对合变换,求的特征值.

证明: 设是的特征值, 是相应的特征向量,有,

,而,

故P,即若有特征值只能是1或-1.

则确有特征值1或-1.

证法二:又,若是的特征值,则-1是的特征值.且若是的属于的特征向量,则是的特征向量,必有=-1,

=.

,则的特征值只能是1,0;

若则,即有特征值1;

时,有特征值1;当的秩

例15 设dimV=n, ,证明:是对合变换时必可对角化。

分析:的特征值至多有两个1和-1,从而不好利用第一个充分条件。设法用充要条件,证明属于1的线性无关特征向量数与属于-1的线性无关特征向量数之和为n;

即(E-A)X=0的基础解系个数+(-E-A)X=0的基础解系个数=n;

即 r(E-A)+r(-E-A)=n.

证明:设为V的一组基,且在此基下的矩阵为A,由,有A2=E,故0=E-A2=(E-A)(E+A),r(E-A)+r(E+A)=n,最后一个等式由Chap.4.补3.P.208.

设r(E-A)=r0,则r(-E-A)= r(E+A)=n-r,故(E-A)X=0的基础解系有n-r个线性无关解; (-E-A)X=0的基础解系有r个线性无关解.即的属于1的线性无关特征向量有n-r个,属于-1的线性无关特征向量有r个;而有定理9,属于不同特征值的特征向量线性无关,故有n个线性无关特征向量,从而可对角化.

1.由(E-A)(-E+A)=0,有,若,则=0,即1不是特征值

则-1必是,两者必有一,但可不全是.

2.幂等变换,可对角化,也可仿此证.

例16设是4维空间V的一组基,在此基下的矩阵为

.

1).求在基,

下的矩阵;

2).求的特征值与特征向量;

3).求可逆矩阵T使得T-1AT为对角阵.

证明:1).=

=S

易知

从而在下的矩阵为B=S-1AS=.

2). 的特征多项式为

=

故的特征值为0,1,0.5P.

解方程组(E-B)X=0

=0:BX=0, =0

因为,得基础解系.的属于0的特征向量为

=其中不全为0.

=1: (E-B)X=0, =0解得,,,得基础解系,的属于1的特征=向量为

=其中不为0.

=0.5: (0.5E-B)X=0, =0解得,,

,得基础解系.的属于0.5的特征向量为

=其中不为0.

3).由2).所得4个特征向量,,

,线性无关,可作为V的一组基,在此基下的矩阵为

,而由到这组基的过渡阵为

,且.

例17设是4维线性空间V的一组基,已知线性变换在此基下的矩阵为

1).求在以下基下的矩阵:

,,,

2).求的核与值域.

3).在的核中选一组基,把它扩充为V的一组基,并求在此基下的矩阵.

4).在中选一组基扩充为V的基,并求在此基下的矩阵.

证明:1).由基到的过渡矩阵为

,

在下的矩阵为

2).,设()

0==()=()A

A==0, =0

解此齐次线性方程组得

所以基础解系为(-4,-3,2,0),(-1,-2,0,1)从而

是的一组基,即=.

因dim=4-dim=4-2=2,而=,的坐标列为A 的列,且A的前2列线性无关,从而线性无关,

即=.

3).由(),及

故向量组()=()=()Q

线性无关,即是V的一组基,此基由的一组基扩充而成,其中Q为由

到的过渡阵.在下的矩阵为

(其中后两列是0因为中元被作用后在任何基下的坐标均为(0,0,0,0)’)

4).()=() ,而

故向量组()=()=()P

线性无关,是V的一组基,由的基扩充而成,由到的过渡阵为P,在此基下的矩阵为

(后两行为0因为任一向量被作用后都在

中,由线性表出).

例18设,,证明:

1).与有相同的值域当且仅当;

2). 与有相同的核当且仅当.

证明:1).“”:故存在,于是

“”:,即,同理

,故。

2). “”:即

故同理

“”:

同理,故

例19设是有限维线性空间V的线性变换,W是V的子空间,表示由W中向量的

像组成的子空间,证明:dim()+dim()=dimW

分析:定理11 dim()+dim()=dimV的证明中,取的基,扩充为V的基.

证明:取的一组基,将它扩充为W的一组基

,即W=L(,)

由于故

W=L(,)=L()

若有

存在使得=

故有

即线性无关,dim W=m-r=dimW-dim()

附注:dim()+dim()=dimV是对V而言的,对子空间的值域和核也一样。

例20设为n维线性空间V的线性变换,证明:的秩的秩+的秩-n.

分析:chap4补10.(p209) r(AB)r(A)+r(B)-n,设法将变换的秩与相应矩阵的秩对应.

证法一: 设在基下的矩阵分别为A,B,则的秩= r(AB), 的秩= r(A),

的秩= r(B).由chap4.补10. r(AB)r(A)+r(B)-n,得证.

证法二:注意到的秩=dim,可用定理11.

由定理11和补9, 秩(AB)=dim=dim-dim()

而,dim()dim

故秩()dim-dim=秩-(n-秩)= r(A)+r(B)-n.

例21设,W是子空间,若可逆,证明:W也是-子空间.

注7.8.1 在证时,有人认为可逆,从而是一一对应,故既单(

={0},={0})又满(),从而,不必考虑有限维,这是错误的: 在间一一对应,不是在间一一对应.

反例:V=P[x]=L(1,x,x2,x3,…),W={f(x2)x2|f(x)}=L(x2,x4,x3,…)

显然可逆(因是一一对应),

但如.

另在间单,dimW有限,因而在间满.

例22.设V是复数域上n维线性空间,,,证明:1).如果是的一个特征值,那麽是的不变子空间;

2).至少有一个公共特征向量.

证明:1). 是子空间, ,故使得

所以,

2).因为V是C上的线性空间, 至少有一个特征值,设为的特征值,由1),

为子空间.令,则有特征值,设为,则存在0使得,故为的公共特征向量.

注7.8.2 此题可推广到两两交换的任意个线性变换在V中有公共特征向量.

例23设

证明:1).W是子空间,,则W=V;

2).{0}是子空间,则;

3).是子空间,,则或.

证明:1).由题意,()=()

若,W为子空间,有

2).令,则

又由得=

如此继续,

设中第一个非零的为,则得.

3).若,,但,矛盾.

例24 可逆的,为上三角阵.

分析:A与Jordan矩阵相似,而若当形是下三角阵,考虑转置.

证明:存在可逆,为若当形矩阵,故()’=是上三角阵,即A相似于一个上三角阵

线性变换练习题

线性变换习题 一、填空题 1. 设σ是3 P 的线性变换,(,,)(2,4,3)a b c b c a b a σ=+-,,,a b c P ?∈,1(1,0,0),ε= 2(0,1,0),ε=3(0,0,1)ε=是3P 的一组基,则σ在基123,,εεε下的矩阵为 _______________,又3123,P αεεε=-+∈则()σα=_________。 2. 设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间n P 的线性变换σ:()A σξξ=, n P ξ∈,则()1dim (0)σ-= ,()dim ()n P σ= 。 3. 设P 上三维列向量空间V 的线性变换σ在基123,,ααα下的矩阵是11220 1121-?? ? ? ?-?? ,则σ在基213,,ααα下的矩阵是 。 4. 如果矩阵A 的特征值等于1,则行列式||A E -= 。 5. 设A =???? ? ??? ??21 1 12 1112 ,()X AX σ=是P 3上的线性变换,那么σ的零度= 。 6. 若n n A P ?∈,且2 A E =,则A 的特征值为 。 7. 在[]n P x 中,线性变换D (()f x )'()f x =,则D 在基211,,, ,n x x x -下的矩阵 为 。 8. 在22 P ?中,线性变换10:20A A σ??→ ???在基121001,,0000E E ???? == ? ????? 300,10E ??= ??? 40001E ?? = ???下的矩阵是 。 9. 设321502114A ?? ? = ? ??? 的三个特征值为1λ,2λ,3λ,则1λ+2λ+3λ= , 1λ2λ3λ= 。 10. 数域P 上n 维线性空间V 的全体线性变换所成的线性空间()L V 为 维线性空间,

第7章 线性变换

第7章 线性变换 §1 线性变换的定义 线性空间V 到自身的映射,通常叫做V 的一个变换,现在讨论的线性变换是线性空间的最简单也是最重要的一种变换。 一、线性变换的定义 定义7.1 设V 为线性空间,若对于V 中的任一向量α,按照一定的对应规则T ,总有V 中的一个确定的向量β与之对应,则这个对应规则T 称为线性空间V 中的一个变换,记为 βα=)(T 或 )(,V T ∈=αβα, β称为α的象,α称为β的原象。象的全体所构成的集合称为象集,记作T (V ),即 T (V )={}V T ∈=ααβ|)(。 由此定义可见,变换类似于微积分中的函数,不过微积分中的函数是两个实数集合间的对应,而这里的变换则是线性空间中的向量与向量之间的对应。 定义7.2 线性空间V 中的变换T ,若满足条件 (1) 对任意V ∈βα,有 (2) )()()(βαβαT T T +=+; (3) 对任意V ∈α及数域P 中任意数k 有 )()(ααkT k T =,

则称变换T 为V 中的线性变换。 例7.1 线性空间V 中的恒等变换或称单位变换E ,即 E )()(V ∈=αα α 以及零变换?,即 ?)(0 )(V ∈=αα 都是线性变换. 例7.2 设V 是数域P 上的线性空间,k 是P 中的某个数,定义V 的变换如下: V k ∈→ααα,. 这是一个线性变换,称为由数k 决定的数乘变换,可用K 表示.显然当1=k 时, 便得恒等变换,当0=k 时,便得零变换. 例7.3 在线性空间][x P 或者n x P ][中,求微商是一个线性变换.这个变换通常用D 代表,即 D ()(x f )=)(x f '. 例7.4 定义在闭区间[]b a ,上的全体连续函数组成实数域上一线性空间,以),(b a C 代表.在这个空间中变换 ?()(x f )=?x a dt t f )( 是一线性变换.

线性变换习题

第四章线性变换 习题精解 1.判别下面所定义的变换那些是线性的,那些不是: 1) 在线性空间V中,A ,其中V是一固疋的向量; 2) 在线性空间V中,A 其中V是:一固疋的向量; (X i,X2,X3) (X;,X2 X3,X 鳥? 3) 在P3中,A 4) 在P3中,A(X i,X2, X3) (2x i X2,X2 X3, X i); 5) 在P[X]中, A f (X) f (X 1) 6)在P[X]中,A f(x) f(X o),其中X0 p是一固定的数; 7)把复数域上看作复数域上的线性空间, A 8)在P"中,AX=BXC其中B,C p n n是两个固定的矩阵. 解1)当0时,是;当0时,不是? 2)当0时,是;当0时,不是. 3)不是?例如当(1,0,0), k 2 时,k A( ) (2,0,0), A(k ) (4,0,0), A(k ) k A(). 4)是?因取(X i,x2,x3), (%,丫2,丫3),有 A( ) = A (x i y i,X2 y2,X3 y3) = (2x i 2y i X2 y2,X2 y2 X3 y3,X i yj = (2x i X2,X2 X3,X i) (2y i y?」?y3, y i) =A + A A(k ) A (kx i, kx2, kx3) (2kx1 kx2, kx2kx3, kx1) (2kx1 kx2, kx2kx3,kx1) k A() 故A是P3上的线性变换? 5)是.因任取f (X) P[x], g(x) P[x],并令 u(x) f(x) g(x)则 A(f(x) g(x)) = A u(x) =u(x 1) = f (x 1) g(x 1) =A f (x) + A(g(x)) 再令v(x) kf (x)则A(kf (x)) A(v(x)) v(x 1) kf (x 1) k A(f (x)) 故A为P[X]上的线性变换. 6)是?因任取f(x) P[x], g(x) P[x]则. A(f (X) g(x))= f (X0 ) g(X0 ) A(f (x)) A(g(x)) A(kf (x)) kf (X0) k A(f (x)) 7)不是.例如取a=1,k=l,则 A(ka)=-i , k( Aa)=i, A(ka) kA(a)

第七章 线性变换.

第七章线性变换 计划课时:24学时.( P 307—334) §7.1 线性变换的定义及性质(2学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1(P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意:1.定理7.1.2给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2.两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1,2,3. §7.2 线性变换的运算(4学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件 教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义1 (P310) 注意:σ+τ是V的线性变换. 二. 数乘运算 定义2(P311) 显然kσ也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义3 (P311-312) 注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可

能是零变换. (2). 线性变换σ 的方幂 四. 可逆线性变换 定义4 (P 313) 线性变换可逆的充要条件 例2 (P 314) 线性变换的多项式的概念 (阅读内容). 作业:P 330 习题七 4,5. §7.3 线性变换的矩阵(6学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握ξ 与σ (ξ)关于同一个基的坐标 之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L (V )与M n (F )的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L (V )与M n (F )的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一. 线性变换σ关于基的矩阵 定义 (P 316) 。 注意:取定n 维向量空间V 的一个基之后,对于V 的每一个线性变换,有唯一确定的n 阶矩阵与它对应. 例1 (P 316) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例2 (P 317) 例3 (P 317) 二. ξ与σ (ξ)关于同一个基的坐标之间的关系. 定理7.3.1 例4 (P 318) 三. L (V )与M n (F )的同构 定理7.3.2 (P 320) 定理7.3.3 (P 320) 注意:1. 定理7.3.2 (P 320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2.由于L (V ) 同构于)(F M n ,所以就把研究一个很复杂的向量空间L (V )的问题转化成研究一个很直观具体的向量空间)(F M n 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求

线性变换习题课

七、线性变换习题课 1.复习线性变换的概念 例1 将C看成R上的线性空间,变换是线性的,看成C上的线性空间则不是。 证明:R上:有== 又 故A是R上线性空间C的线性变换。 C上:取及,有,而,故A不是C上线性空间C的线性变换。 由上例,变换A是否为线性变换与所讨论的数域有关。 2.利用运算的意义,运算律推证线性变换的等式,利用线性变换与n阶方阵代数同构解决有关问题。 例2设A,B是线性变换,如果证明: ,(k>0) 证明: 由已知,对k=1结论成立,故考虑用数学归纳法. 对k用归纳法.当k=1时结论成立. K=2时,由已知 =AB=(BA+E)A+A-BA2 =BA2+A+A-BA2=2A 结论成立. 设当k时结论成立,即,也即. 当k+1时, =ABA k+AkA k-1-BA k+1=(BA+E)A k+kA k-BA k+1 =BA k+1+A k+kA k-BA k+1=(k+1)A k 所以结论对k+1也成立,从而对一切k1成立. 例3设V是数域P上n维线性空间,证明:V的与全体线性变换交换的线性变换是数乘变换. 证明: 需要表达出线性变换,联系到某基下的矩阵. 设令A,B在某基下的矩阵分别为A,B. 因为,所以由得AB=BA.由的任意性,也是任意的,从而存在某个k使得A=kE为数量阵(P.204,ch.4.ex.7.3),于是为数量变换.

有了变换乘积,进一步可考虑可逆变换. 3. 系统小结可逆线性变换的的等价条件,并举例说明一些基本论证方法. A可逆10存在使=E. A是双射. A在基下的矩阵A可逆—有限维 例4 设是线性空间V的一组基,A是V上的线性变换,证明:可逆当且仅当线性无关. 证明:证法一: “”,,若=0,有B()=0,即=0,=0,即线性无关. “”线性无关, 因dimV=n,故使得 =A() 令使=() 易见,且,即 又任给设= 有()== 故,从A可逆. 证法二:利用双射 “” A是双射,则0==A() 得0=(0对应0) 故,线性无关. “”由dimV=n,V的任一向量可由唯一表示,即V中任一向量有唯一(要证明)原像(显然).故A是双射. 证法三:利用矩阵 A可逆A在下的矩阵A可逆 ()A也是一组基=n

第七章线性变换总结篇(高等代数)

第 7章 线性变换 7.1知识点归纳与要点解析 一.线性变换的概念与判别 1.线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ和数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就是其保持向量的加法与数量乘法的变换。 2.线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3.线性变换的性质 设V 是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈。 性质1. ()()00,σσαα==-; 性质2. 若12s ,, ,ααα线性相关,那么()()()12s ,, ,σασασα也线性相关。 性质3. 设线性变换σ为单射,如果12s ,, ,ααα线性无关,那么()()()12s ,, ,σασασα 也线性无关。 注:设V 是数域P 上的线性空间,12,,,m βββ,12,,,s γγγ是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=++ + 记:

()()112111222 2121212,,,,, ,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? 于是,若()dim V n =,12,, ,n ααα是V 的一组基,σ是V 的线性变换, 12,, ,m βββ是 V 中任意一组向量,如果: ()()()11111221221122221122n n n n m m m mn n b b b b b b b b b σβααασβααασβααα=+++=+++=++ + 记: ()()()()()1212,,,,m m σβββσβσβσβ= 那么: ()()1121 112222121212,,,,, ,m m m n n n mn b b c b b c b b c σβββααα?? ? ? = ? ??? 设112111222212m m n n mn b b c b b c B b b c ?? ? ? = ? ??? ,12,,,m ηηη是矩阵B 的列向量组,如果12,,,r i i i ηηη是 12,, ,m ηηη的一个极大线性无关组,那么()()() 12 ,r i i i σβσβσβ就是 ()()()12,m σβσβσβ的一个极大线性无关组,因此向量组()()()12,m σβσβσβ的 秩等于秩()B 。 4. 线性变换举例 (1)设V 是数域P 上的任一线性空间。 零变换: ()00,V αα=?∈; 恒等变换:(),V εααα=?∈。 幂零线性变换:设σ是数域P 上的线性空间V 的线性变换,如果存在正整数m ,使 得σ =m 0,就称σ为幂零变换。

第七章 线性变换 综合练习

第七章 线性变换综合练习 一.判断题 1.数域F 上的向量空间的线性变换的集合对线性变换的加法与数乘运算构成一个向量空间( ) 2.在向量空间3R 中, 1231223(,,)(2,,)x x x x x x x σ=-, 则σ是3R 的一个线性变换. ( )). 3.在向量空间[]n R x 中, 2(())()f x f x σ=, 则σ是[]n R x 的一个线性变换. ( ) 4.两个向量空间之间的同构映射σ的逆映射1-σ还是同构映射. ( ) 5.取定n n A F ?∈, 对任意的n 阶矩阵n n X F ?∈, 定义()X AX XA σ=-, 则σ是n n F ?的一个线性变换. 6.向量空间V 的可逆线性变换σ的核)(σKer 是空集.( ) 7.在向量空间3R 中, 已知线性变换 1231223312313(,,)(,,),(,,)(,0,). x x x x x x x x x x x x x στ=++= 则12321233(2)(,,)(,,)x x x x x x x x στ-=-+-. ( ) 8.设σ为n 维向量空间V 上的线性变换,则Im()ker()V σσ+=.( ) 9.向量空间2R 的两个线性变换σ,τ为12121(,)(,)x x x x x σ=-;12122(,)(,)x x x x x τ=- 则212212()(,)(,).x x x x x στσ-=-+( ) 10.在取定基后, V 的每个可逆线性变换对应于可逆矩阵, 但逆变换未必对应于逆矩阵. ( ) 11.数域F 上的向量空间V 及其零子空间, 对V 的每个线性变换来说, 都是不变子空间. ( ) 12.若21,αα都是数域F 上的方阵A 的属于特征根0λ的特征向量,那么任取 221121,,ααk k F k k +∈也是A 的属于0λ的特征向量.( ) 13. 线性变换σ的本征向量之和, 仍为σ的本征向量. ( ) 14.属于线性变换σ同一本征值0λ的本征向量的线性组合仍是σ的本征向量. ( ) 15.线性变换σ在一个基下可以对角化, 则σ在任何基下可以对角化. ( ). 16.复数域看作实数域上的向量空间是1维的. ( ) 17.σ是向量空间V 的线性变换, 向量组12,, ,m ααα线性无关, 那么12(),(),,() m σασασα也线性无关. ( )

第七章线性变换习题答案

第七章线性变换3.在P[x]中,Af(x)f(x),Bf(x)xf(x),证明: ABBA=E. 『解题提示』直接根据变换的定义验证即可. 证明任取f(x)P[x],则有 =(A BBA)f(x)ABf(x)BAf(x)A(xf(x))B(f(x)) (xf(x))xf(x)f(x)Ef(x), 于是ABBA=E. 4.设A,B是线性变换,如果ABBA=E,证明: kkk k1,k1ABBAA. 『解题提示』利用数学归纳法进行证明. 证明当k2时,由于ABBA=E,可得 22()()2 ABBAAABBAA B BAAA, 因此结论成立. 假设当ks时结论成立,即ssss1 ABBAA.那么,当ks1时,有 s1s1(s s)()ssss(s1)s ABBAAABBAA B BAAAAA, 即对ks1结论也成立.从而,根据数学归纳法原理,对一切k1结论都成立. 『特别提醒』由 AE可知,结论对k1也成立. 5.证明:可逆映射是双射. 『解题提示』只需要说明可逆映射既是单射又是满射即可. 1证明设A是线性空间V上的一个可逆变换.对于任意的,V,如果AA,那么,用 A 作用左右两边,得到A AAA,因此A是单射;另外,对于任意的V,存在1()1() 1()1() 1V A,使得 1 AA(A),即A是满射.于是A是双射.

-1-

『特别提醒』由此结论可知线性空间V上的可逆映射A是V到自身的同构. 6.设1,2,,n是线性空间V的一组基,A是V上的线性变换,证明A可逆当且仅当 A1,A2,,A n线性无关. 证法1若A是可逆的线性变换,设k AkAkA0 ,即 1122nn A(kkk nn)0. 1122 而根据上一题结论可知A是单射,故必有k kk0,又由于 1,2,,n是线性无关的, 1122nn 因此k 1k2k n0.从而A1,A2,,A n线性无关. 反之,若A 1,A2,,A n是线性无关的,那么A AA也是V的一组基.于是,根据 1,2,,n 教材中的定理1,存在唯一的线性变换B,使得B(A i)i,i1,2,,n.显然 BA(i)i,A B(A i)A i,i1,2,,n. 再根据教材中的定理1知,ABBAE.所以A是可逆的. 证法2设A在基 1,2,,n下的矩阵为A,即 A(,,,n)(A,A,,A n)(,,,n)A. 121212 由教材中的定理2可知,A可逆的充要条件是矩阵A可逆. 因此,如果A是可逆的,那么矩阵A可逆,从而A 1,A2,,A n也是V的一组基,即是线性无 关的.反之,如果A AA是线性无关,从而是V的一组基,且A是从基 1,2,,n到1,2,,n A1,A2,,A n的过渡矩阵,因此A是可逆的.所以A是可逆的线性变换. 『方法技巧』方法1利用了上一题的结论及教材中的定理1构造A的逆变换;方法2借助教材中的定理2,将线性变换A可逆转化成了矩阵A可逆. 9.设三维线性空间V上的线性变换A在基1,2,3下的矩阵为 aaa 111213 A aaa. 212223 aaa 313233 1)求A在基3,2,1下的矩阵;

第一章 线性空间与线性变换概述

第一章 线性空间与线性变换 线性空间与线性变换是学习现代矩阵论时经常用到的两个极其重要的概念.本章先简要地论述这两个概念及其有关理论,然后再讨论两个特殊的线性空间,这就是Euclid 空间和酉空间. §1.1 线性空间 线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础,所考虑的数域是实数域(记为R)和复数域(记为C),统称数域F . 一、线性空间的定义及性质 定义1 设V 是一个非空集合,F 是一数域.如果存在一种规则,叫做V 的加法运算:对于V 中任意两个元素,αβ,总有V 中一个确定的元素γ与之对应.γ称为αβ与的和,记为γαβ=+.另有一种规则,叫做V 对于F 的数乘运算:对于F 中的任意数k 及V 中任意元素α,总有V 中一个确定的元素σ与之对应,σ叫做k 与α的数乘,记为k σα=.而且,以上两种运算还具有如下的性质: 对于任意α,β,V γ∈及k ,l F ∈,有 1)αββα+=+; 2)()()αβγαβγ++=++; 3)V 中存在零元素0,对于任何V α∈,恒有αα+=0; 4)对于任何V α∈,都有α的负元素V β∈,使0αβ+=; 5)1αα=; 6)()()k l kl αα=;(式中kl 是通常的数的乘法) 7)()k l k l ααα+=+;(式中k l +是通常的数的加法) 8)()k k k αβαβ+=+. 则称V 为数域F 上的一个线性空间,也称向量空间. V 中所定义的加法及数乘运算统称为线性运算,其中数乘又称数量乘 法.在不致产生混淆时,将数域F 上的线性空间简称为线性空间. 需要指出,不管V 的元素如何,当F 为实数域R 时,则称V 为实线性空间;当F 为复数域C 时,就称V 为复线性空间. 线性空间{0}V =称为零空间.

第七章线性变换总结篇

第 7章 线性变换 7、1知识点归纳与要点解析 一.线性变换的概念与判别 1、线性变换的定义 数域P 上的线性空间V 的一个变换σ称为线性变换,如果对V 中任意的元素,αβ与数域P 中的任意数k ,都有:()()()σαβσασβ+=+,()()k k σασα=。 注:V 的线性变换就就是其保持向量的加法与数量乘法的变换。 2、线性变换的判别 设σ为数域P 上线性空间V 的一个变换,那么: σ为V 的线性变换?()()()k l k l ,,V ,k,l P σαβσασβαβ+=+?∈?∈ 3、线性变换的性质 设V 就是数域P 上的线性空间,σ为V 的线性变换,12s ,,,,V αααα?∈L 。 性质1、 ()()00,σσαα==-; 性质2、 若12s ,,,αααL 线性相关,那么()()()12s ,,,σασασαL 也线性相关。 性质3、 设线性变换σ为单射,如果12s ,,,αααL 线性无关,那么()()()12s ,,,σασασαL 也线性无关。 注:设V 就是数域P 上的线性空间,12,,,m βββL ,12,,,s γγγL 就是V 中的两个向量组, 如果: 11111221221122221122s s s s m m m ms s c c c c c c c c c βγγγβγγγβγγγ=+++=+++=+++L L L L L L 记: ()()1121112222121212,,,,,,m m m s s s ms c c c c c c c c c βββγγγ?? ? ? = ? ??? L L L L M M M L 于就是,若()dim V n =,12,,,n αααL 就是V 的一组基,σ就是V 的线性变换, 12,,,m βββL 就是V 中任意一组向量,如果:

第七章 线性变换练习题参考答案

第七章 线性变换练习题参考答案 一、填空题 1.设123,,εεε是线性空间 V 的一组基,V 的一个线性变换σ在这组基下的矩阵是33112233(),,ij A a x x x V αεεε?==++∈则 σ在基321,,εεε下的矩阵B =1,T AT -而可逆矩阵T =001010100?? ? ? ??? 满足1,B T AT -=σα在基123,,εεε下的坐标为123x A x x ?? ? ? ??? . 2.设A 为数域P 上秩为r 的n 阶矩阵,定义n 维列向量空间n P 的线性变换:(),n A P σσξξξ=∈,则1(0)σ-={}|0,n A P ξξξ=∈,()1dim (0)σ-=n r -,()dim ()n P σ=r . 3.复矩阵()ij n n A a ?=的全体特征值的和等于1n ii i a =∑ ,而全体特征值的积等于 ||A . 4.设σ是n 维线性空间V 的线性变换,且σ在任一基下的矩阵都相同,则σ为__数乘__变换 . 5.数域P 上n 维线性空间V 的全体线性变换所成的线性空间()L V 为2n 维线性空间,它与n n P ?同构. 6.设n 阶矩阵A 的全体特征值为12,,,n λλλ ,()f x 为任一多项式,则()f A 的全体特征值为12(),(),,()n f f f λλλ . 7.设???? ??=2231A ,则向量??? ? ??11是A 的属于特征值 4 的特征向量. 8.若????? ? ?--=100001011A 与1010101k B k ?? ?=-- ? ???相似,则k = -1/2 . 9.设三阶方阵A 的特征多项式为322)(23+--=λλλλf ,则=||A 3 .

2。2线性变换的基本性质

§2.2线性变换的基本性质 教学目标: 一、知识与技能: 会证明定理1和定理2;理解矩阵变换把平面上的直线变成直线,即)(21βλαλ+A = βλαλA A 21+ 二、方法与过程 分析可逆的线性变换将直线变成直线,平行四边形变成平行四边形这一结论,得到定理1和定理 2的证明,寻求线性变换在向量上的作用等式。 三、情感、态度与价值观 感受数学活动充满探索性和创造性,激发学生乐于探究的热情。增强学生的符号意识,培养学生的逻辑推理能力。 教学重点:定理的探究及证明 教学难点:定理的探究 教学过程 一、复习引入: 1、基本概念 (1)二阶矩阵:由四个数a ,b ,c ,d 排成的正方形数表??? ? ??d c b a 称为二阶矩阵。特别地, 称二阶矩阵???? ??0000为零矩阵,简记为0。称二阶矩阵??? ? ??1001为二阶单位矩阵,记为2E 。 (2)向量:向量(y x ,)是一对有序数对,y x ,叫做它的两个分量,且称??? ? ??y x 为列向量,(y x ,)为行向量。同时,向量、点以及有序实数对三者不加区别。 2、败类特殊线性变换及其二阶矩阵 (1)线性变换 在平面直角坐标系中,把形如???+=+=dy cx y by ax x ``(其中a ,b ,c ,d 为常数)的几何变换叫做线性 变换。 (2)旋转变换

坐标公式为???+=-=α αααcos sin sin cos ``y x y y x x ,变换对应的矩阵为??? ? ??-αα αα cos sin sin cos (3)反射变换 ①关于x 的反射变换坐标公式为???-==y y x x ``对应的二阶矩阵为? ??? ??-1001; ②关于y 的反射变换坐标公式为???=-=y y x x ``对应的二阶矩阵为???? ??-1001; ③关于x y =的反射变换坐标公式为???==x y y x ``对应的二阶矩阵为? ?? ? ??0110; (4)伸缩变换 坐标公式为???==y k y x k x 2`1`对应的二阶矩阵为??? ? ??21 0k k ; (5)投影变换 ①投影在x 上的变换坐标公式为???==0``y x x 对应的二阶矩阵为???? ??0001; ②投影在y 上的变换坐标公式为???==y y x ``0对应的二阶矩阵为???? ??1000 (6)切变变换 ①平行于x 轴的切变变换坐标公式为???=+=y y sy x x ``对应的二阶矩阵为???? ??101s ? ??? ??101s ②平行于y 轴的切变变换坐标公式为???+==y sx y x x ``对应的二阶矩阵为??? ? ??101s 二、新课讲解 定理1 设A =??? ? ??d c b a ,???? ??=111y x X ,???? ??=222y x X ,t ,k 是实数。则以下公式成立: (1) A (t 1X )=t (A 1X ) (2) A 1X +A 2X =A (1X +2X ) (3) A (t 1X +k 2X )=t A 1X +k A 2X

第七章 线性变换

MATLAB软件应用第七章线性变换 例1:求矩阵 122 212 221 A ?? ?? =?? ?? ?? 的特征值与特征向量,并将其对角化. 解1:建立m文件v1.m如下: clc A= [1 2 2;2 1 2; 2 2 1]; E=eye(3); syms x f=det(x*E-A) %矩阵A的特征多项式 solve(f) %矩阵A的特征多项式的根,即A的特征值 %所以A的特征值为x1=5,x2=x3=-1. %(1)当x1=5时,求解(x1*E—A)X=0,得基础解系syms y y=5; B=y*E-A; b1=sym(null(B)) %b1为(x1*E—A)X=0基础解系 %(2)当x2=-1时,求解(x2*E—A)X=0,得基础解系y=-1; B=y*E-A; b2=sym(null(B)) %b2为(x2*E—A)X=0基础解系 T=[b1,b2] %所有特征向量在基下的坐标所组成的矩阵 D=T^-1*A*T %将矩阵A对角化,得对角矩阵D 运行结果如下: f = x^3-3*x^2-9*x-5 ans = 5 -1 -1 b1 = sqrt(1/3) sqrt(1/3) sqrt(1/3) b2 = [ sqrt(2/3), 0] [ -sqrt(1/6), -sqrt(1/2)] [ -sqrt(1/6), sqrt(1/2)] T =

[ sqrt(1/3), sqrt(2/3), 0] [ sqrt(1/3), -sqrt(1/6), -sqrt(1/2)] [ sqrt(1/3), -sqrt(1/6), sqrt(1/2)] D = [ 5, 0, 0] [ 0, -1, 0] [ 0, 0, -1] 解2:建立m文件v2.m如下: clc A= [1 2 2;2 1 2; 2 2 1]; d=eig(A) %求全部特征值所组成的向量 [V,D]=eig(A) %求特征值及特征向量所组成的矩阵inv(V)*A*V %A可对角化,且对角矩阵为D 运行结果如下: d = -1 -1 5 V = 247/398 1145/2158 780/1351 279/1870 -1343/1673 780/1351 -1040/1351 1013/3722 780/1351 D = -1 0 0 0 -1 0 0 0 5 ans = -1 * * * -1 * * * 5 例2:求矩阵 110 430 102 A -?? ?? =-?? ?? ?? 的特征值与特征向量,并判别A 是否可以对角化. 解:建立m文件v3.m如下:clc a=[-1 1 0;-4 3 0;1 0 2]; [V,D]=eig(a)

高等代数第七章 线性变换复习讲义

第七章线性变换 一.线性变换的定义和运算 1.线性变换的定义 (1)定义:设V是数域p上的线性空间,A是V上的一个变换,如果对任意α,β∈V和k∈P都有A(α+β)=A(α)+A(β),A(kα)=kA(α)则称A为V的一个线性变换。(2)恒等变换(单位变换)和零变换的定义:ε(α)=α,ο(α)=0,任意α∈V. 它们都是V的线性变换。 (3)A是线性变换的充要条件:A(kα+lβ)=kA(α)+lA(β),任意α,β∈V,k,l∈P. 2.线性变换的性质 设V是数域P上的线性空间,A是V的线性变换,则有(1)A(0)=0; (2)A(-α)=-A(α),任意α∈V; (3)A(∑kiαi)=ΣkiA(α),α∈V,ki∈P,i=1,…,s;(4)若α1,α2,…,αs∈V,且线性相关,则A(α1),A (α2),…,A(αs)也线性相关,但当α1,α2,…,α s线性无关时,不能推出A(α1),A(α2),…,A(α

s)线性无关。 3.线性变换的运算

4.线性变换与基的关系 (1)设ε1,ε2,…,εn是线性空间v的一组基,如果线性变换A和B在这组基上的作用相同,即Aεi=Bεi,i=1,2,…,n,则有A=B. (2)设ε1,ε2,…,εn是线性空间v的一组基,对于V 中任意一组向量α1,α2,…,αn,存在唯一一个线性变换A 使Aεi=αi,i=1,2,…,n. 二.线性变换的矩阵 1.定义:设ε1,ε2,…,εn是数域P上n维线性空间v的一组基,A是V中的一个线性变换,基向量的像可以被基线性表出 Aε1=a11ε1+a21ε2+…an1εn Aε2=a12ε1+a22ε2+…an2εn …… Aεn= a1nε1+a2nε2+…annεn 用矩阵表示就是A(ε1,ε2,…,εn)=(ε1,ε2,…,εn)A,其中 a 11 a 12 …… a 1n a 21 a 22 …… a 2n A= …… a n1 a n2 …… a nn 称为A在基ε1,ε2,…,εn下的矩阵。 2.线性变换与其矩阵的关系 (1)线性变换的和对应于矩阵的和; (2)线性变换的乘积对应于矩阵的乘积; (3)线性变换的数量乘积对应于矩阵的数量乘积;

第七章 线性变换 习题答案

第七章 线性变换 3.在[]P x 中,()()f x f x '=A ,()()f x xf x =B ,证明: -=A B BA =E . 『解题提示』直接根据变换的定义验证即可. 证明 任取()[]f x P x ∈,则有 ()()()()(())(())f x f x f x xf x f x '-=-=-=A B BA A B BA A B (())()()()xf x xf x f x f x ''=-==E , 于是-=A B BA =E . 4.设,A B 是线性变换,如果-=A B BA =E ,证明: 1 ,1k k k k k --=>A B BA A . 『解题提示』利用数学归纳法进行证明. 证明 当2k =时,由于-=A B BA =E ,可得 22()()2-=-+-=A B BA A A B BA A B BA A A , 因此结论成立. 假设当k s =时结论成立,即1 s s s s --=A B BA A .那么,当1k s =+时,有 1 1 ()()(1)s s s s s s s s s s ++-=-+-=+=+A B BA A A B BA A B BA A A A A , 即对1k s =+结论也成立.从而,根据数学归纳法原理,对一切1>k 结论都成立. 『特别提醒』由0 =A E 可知,结论对1k =也成立. 5.证明:可逆映射是双射. 『解题提示』只需要说明可逆映射既是单射又是满射即可. 证明 设A 是线性空间V 上的一个可逆变换.对于任意的,V ∈αβ,如果=αβA A ,那么,用1 -A 作用左右两边,得到1 1 ()()--===ααββA A A A ,因此A 是单射;另外,对于任意的V ∈β,存在 1V -=∈αβA ,使得1()-==αββA A A ,即A 是满射.于是A 是双射. 『特别提醒』由此结论可知线性空间V 上的可逆映射A 是V 到自身的同构.

第七章线性变换.

第七章线性变换 计划课时:24 学时.(P 307—334) §7.1 线性变换的定义及性质( 2 学时) 教学目的及要求:理解线性变换的定义,掌握线性变换的性质 教学重点、难点:线性变换的定义及线性变换的性质 本节内容可分为下面的两个问题讲授. 一. 线性变换的定义(P307) 注意:向量空间V到自身的同构映射一定是V上的线性变换,反之不然。 二. 线性变换的性质 定理7.1.1 (P309) 定理7.1.2 (P309) 推论7.1.3 (P310) 注意: 1.定理7.1.2 给出了在有限维向量空间构造线性变换的方法,且说明了一个线性变换完全被它对基向量的作用所决定。 2. 两个线性变换相等当且仅当它们对任意一个向量的作用结果相等,推论7.1.3 (P310)告诉我们,只要这两个线性变换对某个基中的每个基向量的作用结果相等即可。 作业:习题七P330 1 ,2, 3. §7.2 线性变换的运算( 4 学时) 教学目的及要求:掌握线性变换的运算及线性变换可逆的条件教学重点、难点:线性变换的运算及线性变换可逆的条件 本节内容分为下面四个问题讲授: 一. 加法运算 定义 1 (P310) 注意:+ 是V的线性变换. 二. 数乘运算 定义 2 (P311) 显然k 也是V的一个线性变换. 定理7.2.1 L(V)对于线性变换的加法与数乘运算构成数域F上的一个向量空间. 三. 乘法运算 (1). 乘法运算 定义 3 (P311-312)

注意:线性变换的乘法适合结合律,但不适合交换律及消去律. 两个非零线性变换的乘积可能是零变换. (2). 线性变换的方幂 四. 可逆线性变换定义 4 ( P313) 线性变换可逆的充要条件例 2 ( P314) 线性变换的多项式的概念( 阅读 内容). 作业:P330 习题七4, 5. §7.3 线性变换的矩阵( 6 学时) 教学目的及要求:理解线性变换关于一个基的矩阵的定义,掌握与( ) 关于同一个基的坐标之间的关系、线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系、 同一个线性变换在不同基下的矩阵是相似的理论,掌握L(V)与M(F)的同构理 论。 教学重点、难点: 1. 线性变换关于一个基的矩阵的定义。 2. L(V)与M(F)的同构理论,线性变换与它们的和、数乘、乘积在同一个基下的矩阵的关系。 本节内容分为下面四个问题讲授: 一.线性变换关于基的矩阵 定义 ( P316) 。 注意:取定n维向量空间V的一个基之后,对于V的每一个线性变换,有唯一确定的n阶矩阵与 它对应. 例 1 ( P316 ) 注意:一个线性变换在不同基下的矩阵通常是不同的. 例 2 ( P317) 例 3 ( P317) 二.与( )关于同一个基的坐标之间的关系. 定理7.3.1 例 4 ( P318 ) 三? L(V)与M(F)的同构 定理7.3.2 (P320) 定理7.3.3 (P320) 注意:1.定理732 ( P320)的证明是本章的难点,在证明之前应复习证明所用到的知识点。 2. 由于L(V) 同构于M n ( F ) ,所以就把研究一个很复杂的向量空间L(V) 的问题转化成研究一个很直观具体的向量空间M n(F) 的问题。同构是高等代数课程的一个基本概念。 3. 定理7.3.3 不仅给出了在有限维向量空间判定一个线性变换可逆的方法,而且给出了求 逆变换的方法。 四. 同一个线性变换在不同基下的矩阵之间的关系定理7.3.4 (P321). 作业:P331 习题七6,9,12,17.

第七章线性变换(小结)

第七章 线性变换(小结) 本章的重点: 线性变换的矩阵以及它们对角化的条件和方法. 本章的难点: 不变子空间的概念和线性变换与矩阵的一一对应关系. 线性变换是线性代数的中心内容之一,它对于研究线性空间的整体结构以及向量之间的内在联系起着重要作用.线性变换的概念是解析几何中的坐标变换、数学分析中的某些变换替换等的抽象和推广,它的理论和方法,(特别是与之相适应的矩阵理论和方法)在解析几何、微分方程等许多其它应用学科,都有极为广泛的应用. 本章的中心问题是研究线性变换的矩阵表示,在方法上则充分利用了线性变换与矩阵对应和相互转换. 一、线性变换及其运算 1. 基本概念: 线性变换,可逆线性变换与逆变换; 线性变换的值域与核,秩与零度; 线性变换的和与差, 乘积和数量乘法, 幂及多项式. 2. 基本结论 (1) 线性变换保持零向量、线性组合与线性关系不变; 线性变换把负向量变为象的负向量、把线性相关的向量组变为线性相关的向量组 (2) 线性变换的和、差、积、数量乘法和可逆线性变换的逆变换仍为线性变换. (3) 线性变换的基本运算规律(略). (4) 一个线性空间的全体线性变换关于线性变换的加法与数量乘法作成一个线性空间. (5) 线性空间V 的线性变换A 的象Im(A )= A V 与核ker A = A -1(0) (a) A 的象Im(A )= A V 与核ker A = A -1(0)是V 的(A -)子空间. (b)若dim(V )=n ,则Im(A )由V 的一组基的象生成: 即设V 的一组基 n ααα,...,,21, Im(A )= A V =L(A α1, A α2,… ,A αn )={ A α|α∈V }. ker A = A -1(0)= { α∈V | A α=0}. (c)A 的秩(dim Im(A ))+A 的零度(dim ker A )=n . (d)A 是双射?A 是单射? Ker(A )={0}?A 是满射.

第七章 线性变换复习

第七章线性变换 §1 线性变换的定义 一、线性变换的定义 线性空间V到自身的映射称为V 的一个变换. 定义1线性空间V的一个变换A称为线性变换,如果对于V中任意的元素β α,和数域P中任意数k,都有 α+)=A (α)+A (β); A (β A(αk)=A k(α). 一般用花体拉丁字母A,B,…表示V的线性变换,A (α)或Aα代表元素α在变换A下的像. §3 线性变换和矩阵 一、线性变换关于基的矩阵 设V是数域P上n维线性空

间.n εεε,,,21 是V 的一组基,现在建立线性变换与矩阵关系. 空间V 中任意一个向量ξ可以被基n εεε,,,21 线性表出,即有关系式n n x x x εεεξ+++= 2211 其中系数是唯一确定的,它们就是ξ在这组基下的坐标.由于线性变换保持线性关系不变,因而在ξ的像A ξ与基的像A 1ε,A 2ε,…,A n ε之间也必然有相同的关系: A ξ=A (n n x x x εεε+++ 2211) =1x A (1ε)+2x A (2ε)+…+n x A (n ε) 上式表明,如果知道了基n εεε,,,21 的像,那么线性空间中任意一个向量ξ的像也就知道了,或者说 1. 设n εεε,,,21 是线性空间V 的一

组基,如果线性变换?与?在这组基上的作用相同,即 A i ε= B i ε, ,,,2,1n i = 那么A = B . 结论1的意义就是,一个线性变换完全被它在一组基上的作用所决定.下面指出,基向量的像却完全可以是任意的,也就是 2. 设n εεε,,,21 是线性空间V 的一组基,对于任意一组向量n ααα,,,21 一定有一个线性变换?使 A i ε=i α .,,2,1n i = 定理1 设n εεε,,,21 是线性空间V 的一组基,n ααα,,,21 是V 中任意n 个向量.存在唯一的线性变换?使 A i ε=i α .,,2,1n i = 定义2 设n εεε,,,21 是数域P 上n

相关文档
最新文档