考虑全过程优化的支持向量机预测方法

考虑全过程优化的支持向量机预测方法
考虑全过程优化的支持向量机预测方法

支持向量机分类器

支持向量机分类器 1 支持向量机的提出与发展 支持向量机( SVM, support vector machine )是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,最初由V.Vapnik 等人在1995年首先提出,近几年来在其理论研究和算法实现等方面都取得了很大的进展,开始成为克服“维数灾难”和过学习等困难的强有力的手段,它的理论基础和实现途径的基本框架都已形成。 根据Vapnik & Chervonenkis的统计学习理论 ,如果数据服从某个(固定但未知的)分布,要使机器的实际输出与理想输出之间的偏差尽可能小,则机器应当遵循结构风险最小化 ( SRM,structural risk minimization)原则,而不是经验风险最小化原则,通俗地说就是应当使错误概率的上界最小化。SVM正是这一理论的具体实现。与传统的人工神经网络相比, 它不仅结构简单,而且泛化( generalization)能力明显提高。 2 问题描述 2.1问题引入 假设有分布在Rd空间中的数据,我们希望能够在该空间上找出一个超平面(Hyper-pan),将这一数据分成两类。属于这一类的数据均在超平面的同侧,而属于另一类的数据均在超平面的另一侧。如下图。 比较上图,我们可以发现左图所找出的超平面(虚线),其两平行且与两类数据相切的超平面(实线)之间的距离较近,而右图则具有较大的间隔。而由于我们希望可以找出将两类数据分得较开的超平面,因此右图所找出的是比较好的超平面。 可以将问题简述如下: 设训练的样本输入为xi,i=1,…,l,对应的期望输出为yi∈{+1,-1},其中+1和-1分别代表两类的类别标识,假定分类面方程为ω﹒x+b=0。为使分类面对所有样本正确分类并且具备分类间隔,就要求它满足以下约束条件: 它追求的不仅仅是得到一个能将两类样本分开的分类面,而是要得到一个最优的分类面。 2.2 问题的数学抽象 将上述问题抽象为: 根据给定的训练集

实验2分类预测模型_支持向量机

实验2分类预测模型——支持向量机SVM 一、 实验目的 1. 了解和掌握支持向量机的基本原理。 2. 熟悉一些基本的建模仿真软件(比如SPSS 、Matlab 等)的操作和使用。 3. 通过仿真实验,进一步理解和掌握支持向量机的运行机制,以及其运用的场景,特别是 在分类和预测中的应用。 二、 实验环境 PC 机一台,SPSS 、Matlab 等软件平台。 三、 理论分析 1. SVM 的基本思想 支持向量机(Support Vector Machine, SVM ),是Vapnik 等人根据统计学习理论中结构风险最小化原则提出的。SVM 能够尽量提高学习机的推广能力,即使由有限数据集得到的判别函数,其对独立的测试集仍能够得到较小的误差。此外,支持向量机是一个凸二次优化问题,能够保证找到的极值解就是全局最优解。这希尔特点使支持向量机成为一种优秀的基于机器学习的算法。 SVM 是从线性可分情况下的最优分类面发展而来的,其基本思想可用图1所示的二维情况说明。 图1最优分类面示意图 图1中,空心点和实心点代表两类数据样本,H 为分类线,H1、H2分别为过各类中离分类线最近的数据样本且平行于分类线的直线,他们之间的距离叫做分类间隔(margin )。所谓最优分类线,就是要求分类线不但能将两类正确分开,使训练错误率为0,而且还要使分类间隔最大。前者保证分类风险最小;后者(即:分类间隔最大)使推广性的界中的置信范围最小,从而时真实风险最小。推广到高维空间,最优分类线就成为了最优分类面。 2. 核函数 ω

支持向量机的成功源于两项关键技术:利用SVM 原则设计具有最大间隔的最优分类面;在高维特征空间中设计前述的最有分类面,利用核函数的技巧得到输入空间中的非线性学习算法。其中,第二项技术就是核函数方法,就是当前一个非常活跃的研究领域。核函数方法就是用非线性变换 Φ 将n 维矢量空间中的随机矢量x 映射到高维特征空间,在高维特征空间中设计线性学习算法,若其中各坐标分量间相互作用仅限于内积,则不需要非线性变换 Φ 的具体形式,只要用满足Mercer 条件的核函数替换线性算法中的内积,就能得到原输入空间中对应的非线性算法。 常用的满足Mercer 条件的核函数有多项式函数、径向基函数和Sigmoid 函数等,选用不同的核函数可构造不同的支持向量机。在实践中,核的选择并未导致结果准确率的很大差别。 3. SVM 的两个重要应用:分类与回归 分类和回归是实际应用中比较重要的两类方法。SVM 分类的思想来源于统计学习理论,其基本思想是构造一个超平面作为分类判别平面,使两类数据样本之间的间隔最大。SVM 分类问题可细分为线性可分、近似线性可分及非线性可分三种情况。SVM 训练和分类过程如图2所示。 图2 SVM 训练和分类过程 SVM 回归问题与分类问题有些相似,给定的数据样本集合为 x i ,y i ,…, x n ,y n 。其中, x i x i ∈R,i =1,2,3…n 。与分类问题不同,这里的 y i 可取任意实数。回归问题就是给定一个新的输入样本x ,根据给定的数据样本推断他所对应的输出y 是多少。如图3-1所示,“×”表示给定数据集中的样本点,回归所要寻找的函数 f x 所对应的曲线。同分类器算法的思路一样,回归算法需要定义一个损失函数,该函数可以忽略真实值某个上下范围内的误差,这种类型的函数也就是 ε 不敏感损失函数。变量ξ度量了训练点上误差的代价,在 ε 不敏感区内误差为0。损失函数的解以函数最小化为特征,使用 ε 不敏感损失函数就有这个优势,以确保全局最小解的存在和可靠泛化界的优化。图3-2显示了具有ε 不敏感带的回归函数。 o x y 图3-1 回归问题几何示意图 o x y 图3-2 回归函数的不敏感地

支持向量机数据分类预测

支持向量机数据分类预测 一、题目——意大利葡萄酒种类识别 Wine数据来源为UCI数据库,记录同一区域三种品种葡萄酒的化学成分,数据有178个样本,每个样本含有13个特征分量。50%做为训练集,50%做为测试集。 二、模型建立 模型的建立首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理,必要时进行特征提取,之后用训练集对SVM进行训练,再用得到的模型来预测试集的分类。 三、Matlab实现 3.1 选定训练集和测试集 在178个样本集中,将每个类分成两组,重新组合数据,一部分作为训练集,一部分作为测试集。 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; % 相应的训练集的标签也要分离出来 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; % 相应的测试集的标签也要分离出来 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; 3.2数据预处理 对数据进行归一化: %% 数据预处理 % 数据预处理,将训练集和测试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine); [mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine]; % mapminmax为MATLAB自带的归一化函数 [dataset_scale,ps] = mapminmax(dataset',0,1); dataset_scale = dataset_scale';

基于支持向量机的模式识别

基于支持向量机的模式识别 摘要 随着人工智能和机器学习学科的不断发展,传统的机器学习方法已经不能适应学科的快速发展。而支持向量机(Support Vector Machine,SVM)则是根据统计学习理论提出的一种新型且有效的机器学习方法,它以结构风险最小化和VC 维理论为基础,适当的选择函数子集和决策函数,使学习机器的实际风险最小化,通过对有限的训练样本进行最小误差分类。支持向量机能够较好的解决小样本、非线性、过学习和局部最小等实际问题,同时具有较强的推广能力。支持向量机的样本训练问题实质是求解一个大的凸二次规划问题,从而所得到的解也是全局最优的,通常也是唯一的解。 本文以支持向量机理论为基础,对其在模式识别领域的应用进行系统的研究。首先运用传统的增式支持向量机对历史数据分类,该分类结果表明对于较复杂的数据辨识时效果不佳。然后运用改进后的增式支持向量机对历史数据进行分类,再利用支持向量机具有的分类优势对数据进行模式识别。 本文对传统增式支持向量机算法和改进增式支持向量机算法进行了仿真对比,仿真结果体现了改进增式支持向量机算法的优越性,改进增式支持向量机算法减少了训练样本集的样本数量,优化了时间复杂度和空间复杂度,提高了分类效率。该方法应用于模式识别领域中能明显提高系统的准确率。 关键词:支持向量机;模式识别;多类分类;增式算法

Pattern Recognition Based on Support Vector Machine Abstract With the discipline of artificial intelligence and machine learning continues to evolve, traditional machine learning methods can not adapt to the rapid development of disciplines. The support vector machine (Support Vector Machine, SVM) is based on statistical learning theory a new and effective machine learning method, which to base on the structural risk minimization and the VC dimension theory, a function subset of appropriate choice and decision-making function of appropriate choice, the learning machine to minimize the actual risk, through the limited training samples for minimum error classification. SVM can solve the small sample, nonlinear, over learning and local minimum practical issues, but also it has a strong outreach capacity. Sample training problems of Support Vector Machines to solve really a large convex quadratic programming problems, and to the global optimal solution is also obtained, usually the only solution. This paper based on support vector machine theory, its application in the field of pattern recognition system. First, by using the traditional incremental support vector machine classification of historical data, the classification results show that the data for the identification of more complex when the results are poor. And then improved by the use of incremental Support Vector Machines to classify the historical data, and then use the classification of Support Vector Machine has advantages for data pattern recognition. This type of traditional incremental Support Vector Machine and improved incremental Support Vector Machine algorithm was simulated comparison, simulation results demonstrate the improved incremental Support Vector Machine algorithm by superiority, improved incremental Support Vector Machine algorithm reduces the set of training samples number of samples,and to optimize the time complexity and space complexity, improving the classification efficiency. The method is applied to pattern recognition can significantly improve the accuracy of the system. Key words: Support Vector Machine; Pattern Recognition; Multi-class Classification; Incremental Algorithm

支持向量机参数优化的一种新方法

小型微型计算机系统JournalofChineseComputerSystems2008年1月第1期V01.29No.12008 支持向量机参数优化的一种新方法 肇莹,刘红星,高敦堂 (南京大学电子科学与工程系。江苏南京210093) E-mail:xwhzy@sohu.com 摘要:支持向量机(SVM)的性能与SVM参数的选择有关.SVM参数的优化需要一个准则,本文提出了一种以原空间中样本到分类面的最短代数距离最大为准则的SVM参数优化方法.该方法旨在使SVM分类面在原空间中使样本“平分秋色”,更能体现SVM分类器的结构风险最一1、化的原则.算法简单、几何直观性好、易于实现.通过在双螺旋线样本和Iris样本集上所作测试证明了该方法的有效性. 关键词:支持向量机;参数优化 中图分类号:TPl8文献标识码:A文章编号:1000—1220(2008)01—0102—04 ANewMethodforSVMHyper—parametersOptimization ZHAOYing,LIUHong-xing,GAODun—tang (ElectronicScienceandEngineeringDepartment,NanjingUniversity,Nanjing210093,China) Abstract:TheperformanceofSupportVectorMachine(SVM)isdeterminedbyitshyper—parameters.Optimizingthehyper—parametersneedsacriterion.ThispaperpresentsanewSVMhyper—parametersoptimizationmethod,inwhichmaximizingtheminimumalgebraicdistancefromsamplestothecIass—separatinghyper—surfaceininput spaceistakenasthecriterion.The main purposeofthismethodisto’legand leg’thewholeoriginalinputspaceforallthesamples,anditsustainsthestructural riskminimizationprinciplebetter.Themethodissimple,geometricintuitiveandcanbeimplemented easily.Thefeasibilityofthemethodisdisplayedthroughexperimentsontwoclassicalbenchmarkclassificationproblems--TwoSpiralsProblem(TSP)andIrissamples. Keywords:SVM;hyper-parameteroptimization 1引言 支持向量机(SVM)的泛化性能不仅与核函数形式有关,而且与核函数的参数有关.图1是核函数选定为RBF形式、即K。,z,)一exp(一jL掣),而其核函数参数y分别取不同值时,双螺线问题(TSP)的SVM分类结果.图(a)中,y取值过大,使得样本在变换域空间中线性不可分;图(b)中,y (a)y一20时的SVM分类情况(b)y=0.01时的SVM分类情况 图1对TSP问题,选用RBF核函数 Fig.1ForTSPwithRBFkernelfunctionselected 收稿日期:2006—09?20收修改稿日期:2006—12—27基金项目;国家自然科学基金项目(60275041)资助.作者简介:肇莹,女,1973年生,博士研究生,讲师,研究方向为模式识别与人工智能}刘红星,男,1968年生,博士,教授,研究方向为模式识别与人工智能;高敦堂,男,1941 年生,教授,研究方向为人工智能.  万方数据

支持向量机(SVM)在作物需水预测中的应用研究综述

第卷第期农业水土工程研究进展课程论文V ol. Supp. . 2015年11月Paper of agricultural water and soil engineering progress subject Nov.2015 1 支持向量机(SVM)在作物需水预测中的应用研究综述 (1.中国农业大学水利与土木工程学院,北京,100083) 摘要:水资源的合理配置对于社会经济的发展具有重要意义。而在农业水资源的优化配置中常常需要提供精确的作物需水信息才能接下来进行水量的优化配置。支持向量机是基于统计学习理论的新型机器学习方法,因为其出色的学习性能,已经成为当前机器学习界的研究热点。但是目前对支持向量机的研究与应用大多集中在分类这一功能上,而在农业水资源配置中的应用又大多集中于预测径流量,本文系统介绍了支持向量机的理论与一些应用,并对支持向量机在作物需水预测的应用进行了展望。 关键词:作物需水预测;统计学习理论;支持向量机; 中图分类号:S16 文献标志码:A 文章编号: 0引言 作物的需水预测是农业水资源优化配置的前提和基础之一。但目前在解决数学模型中需要输入有预期的预测精度的数据时还是会遇到困难。例如,当大量的用水者的用水需求作为优化模型的输入时,预测精度太低时优化结果可能会出现偏差。此外,不确定性也存在于水的需求中,水需求受到一些影响因子和系统组成的影响(即人类活动,社会发展,可持续性要求以及政策法规),这不仅在不确定性因子间相互作用过程中使得问题更为复杂,也使得决策者在进行水资源分配过程中的风险增加。所以,准确的预测对水资源的需求对制定有效的水资源系统相关规划很重要。而提高需水量预测精度一直是国内外学术界研究难点和热点。 支持向量机(Support V ector Machine,SVM)是根据统计学理论提出的一种新的通用学习方法,该方法采用结构风险最小化准则(Structural Risk Minimization Principle),求解二次型寻优问题,从理论上寻求全局最优解,较好地兼顾了神经网络和灰色模型的优点[1][2],克服了人工神经网络结构依赖设计者经验的缺点,具有对未来样本的较好的泛化性能,较好解决了高维数、局部极小等问题[3]。目前,SVM已成功的应用于分类、函数逼近和时间序列预测等方面,并在水科学领域中取得了一些成果,Liong[4]已将SVM应用于水文预报,周秀平等[5]已将SVM应用于径流预测,王景雷等[6]亦已将SVM应用于地下水位预报。而需水预测问题本身也可以看作是一种对需水量及其影响因子间的复杂的非线性函数关系的逼近问题,但将SVM应用于作物需水预测的研究尚处于起步阶段。本文简要介绍支持向量机并对其研究进展进行综述,最后对未来使用支持向量机预测作物需水量进行展望。 收稿日期:修订日期:1支持向量机 1.1支持向量机国内外研究现状 自 1970 年以来,V apnik[1,2]等人发展了一种新的学习机——支持向量机。与现有的学习机包括神经网络,模糊学习机,遗传算法,人工智能等相比,它具有许多的优点:坚实的理论基础和较好的推广能力、强大的非线性处理能力和高维处理能力。因此这种学习方法有着出色的学习性能,并在许多领域已得到成功应用,如人脸检测、手写体数字识别、文本自动分类、非线性回归建模与预测、优化控制数据压缩及时间序列预测等。 1998年,Alex J. Smola[7]系统地介绍了支持向量机回归问题的基本概念和求解算法。Drucher[8]将支持向量机回归模型同基于特征空间的回归树和岭回归的集成回归技术bagging做了比较;Alessandro verri[9]将支持向量机回归模型同支持向量机分类模型和禁忌搜索(basic pursuit denoising)作了比较,并且给出了贝叶斯解释。通过分析得出了如下结论:支持向量机回归模型由于不依赖于输入空间的维数,所以在高维中显示出了其优越性。为了简化支持向量机,降低其复杂性,已有了一些研究成果。比如,Burges[10]提出根据给定的支持向量机生成缩减的样本集,从而在给定的精度下简化支持向量机,但生成缩减样本集的过程也是一个优化过程,计算比较复杂;1998年Scholkopf[11]等人在目标函数中增加了参数v以控制支持向量的数目,称为v-SVR,证明了参数v与支持向量数目及误差之间的关系,但支持向量数目的减少是以增大误差为代价的。Suykens等人[12]1999年提出的最小二乘支持向量机(LS-SVM)算法具有很高的学习效率,对大规模数据可采用共轭梯度法求解;田盛丰[13]等人提出了LS-SVM与序贯最优化算法(SMO)的混合算法。 1.2支持向量机在水资源领域研究现状

基于支持向量机的故障诊断

基于支持向量机的故障诊断 摘要 在化工生产过程中,为了准确检测故障,减少机械的损失和人员的伤亡,提出了支持向量机算法。支持向量机是基于统计学理论的方法,具有较强的逼近能力和泛化能力。但是在最近几年中,一种基于主元分析的过程监控方法已在工业过程中得到应用,主元分析方法通过正常工况下的历史数据建立的统计模型能很好地检测过程的异常变化和故障的发生。本文主要就这两种方法展开运用。在实际生产过程中,一方面,主元分析方法故障诊断能力有限;另一方面,存在着大量的历史数据,既有正常工况下的数据,又有故障数据,如何充分利用各种类别数据,提高故障诊断能力,具有十分重要的意义。 本文首先运用传统支持向量机算法对历史数据进行分类,分类结果表明该方法对于简单的数据比较容易区分,但是在数据复杂,可辨性较低的情况下,效果不明显。然后运用改进了的传统支持向量机算法对历史数据进行分类,即运用主元分析方法提取各数据的主要特征,再利用支持向量机具有的分类优势对过程数据进行在线诊断,从而提高故障诊断能力。 本文对传统支持向量机算法和改进支持向量机算法进行了仿真比较,仿真结果体现了改进支持向量机算法的优越性;改进支持向量机算法提高了传统支持向量机算法分类的正确率。该种方法在实际工程中能够提高系统的诊断性能,减少不必要的损失。 关键词:支持向量机;故障诊断;主元分析方法;田纳西-伊斯曼过程;

Fault Diagnosis Based on Support Vector Machine Abstract In order to detect faults accurately, reduce mechanical lossesand casualties in the chemical production process, the algorithm of support vector machines was proposed. Based on the statistics theories, support vector machine is a method of approximation ability and generalization ability. Recently, a new method of process monitoring based on principal component analysis is applied in industrial production process. The statistical model built by principal component analysis method using historic data could detect unusual changes and faults happening in the process accurately. This research is on the application of these two methods. In the actual production process, principal component analysis has certain limitations in diagnosing fault. Besides, the vast volume of historical data was collected in both normal and unusual conditions. It is of great importance to make full use of the data to improve the capacity of fault diagnosis. Firstly, this paper classified the historical data by applying the traditional support vector machine algorithm. The results showed that traditionalmethod works well on simple data sets. However, it showed insignificant effects under a complex and low-differentiability condition. In succession, an advanced approach was used to improve the traditional method, which was approached to enhance the ability of fault diagnosis by using principal component analysis to extract the main features of the data, then with the use of support vector machine which has the advantages of online diagnostic on process data to classify. In this paper, the traditional support vector machine algorithm and advanced support vector machine algorithm were compared in simulation process, the results indicates the superiority of the advanced method which improved the correctness of the traditional one on classification. It could also improve the diagnostic performance in the actual process and reduce unnecessary losses consequently. Key words: Support Vector Machine; Fault Diagnosis; Principal Component Analysis; Tennessee Eastman Process

基于支持向量机的分类方法

基于支持向量机的分类方法 摘要:本文首先概述了支持向量机的相关理论,引出了支持向量机的基本模型。当训练集的两类样本点集重合区域很大时,线性支持向量分类机就不适用了,由此介绍了核函数相关概念。然后进行了核函数的实验仿真,并将支持向量机应用于实例肿瘤诊断,建立了相应的支持向量机模型,从而对测试集进行分类。最后提出了一种支持向量机的改进算法,即根据类向心度对复杂的训练样本进行预删减。 1、支持向量机 给定训练样本集1122{[,],[,], ,[,]}()l l l T a y a y a y Y =∈Ω?L ,其中n i a R ∈Ω=,Ω是输入空间,每一个点i a 由n 个属性特征组成,{1,1},1,,i y Y i l ∈=-=L 。分类 就是在基于训练集在样本空间中找到一个划分超平面,将不同的类别分开,划分超平面可通过线性方程来描述: 0T a b ω+= 其中12(;;;)d ωωωω=K 是法向量,决定了超平面的方向,b 是位移项,决定 了超平面与原点之间的距离。样本空间中任意点到超平面的距离为|| |||| T a b r ωω+=。 支持向量、间隔: 假设超平面能将训练样本正确分类,即对于[,]i i a y T ∈,若1i y =+,则有 0T i a b ω+>,若1i y =-,则有0T i a b ω+<。则有距离超平面最近的几个训练样本点使得 11 11 T i i T i i a b y a b y ωω?+≥+=+?+≤-=-? 中的等号成立,这几个训练样本点被称为支持向量;两个异类支持向量到超平面 的距离之和2 |||| r ω=被称为间隔。 支持向量机基本模型: 找到具有最大间隔的划分超平面,即 ,2max ||||..()1,1,2,...,b T i i s t y a b i m ωωω+≥= 这等价于 2 ,||||min 2..()1,1,2,...,b T i i s t y a b i m ωωω+≥= 这就是支持向量机(SVM )的基本模型。 支持向量机问题的特点是目标函数2 ||||2 ω是ω的凸函数,并且约束条件都是 线性的。

用于分类的支持向量机

文章编号:100228743(2004)0320075204 用于分类的支持向量机 黄发良,钟 智Ξ (1.广西师范大学计算机系,广西桂林541000;  2.广西师范学院数学与计算机科学系,广西南宁530001) 摘 要:支持向量机是20世纪90年代中期发展起来的机器学习技术,建立在结构风险最小化原理之上的支持向量机以其独有的优点吸引着广大研究者,该文着重于用于分类的支持向量机,对其基本原理与主要的训练算法进行介绍,并对其用途作了一定的探索. 关键词:支持向量机;机器学习;分类 中图分类号:TP181 文献标识码:A 支持向量机S VM (Support Vector Machine )是AT&T Bell 实验室的V.Vapnik 提出的针对分类和回归问题的统计学习理论.由于S VM 方法具有许多引人注目的优点和有前途的实验性能,越来越受重视,该技术已成为机器学习研究领域中的热点,并取得很理想的效果,如人脸识别、手写体数字识别和网页分类等. S VM 的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界. 1 基本原理 支持向量机理论最初来源于数据分类问题的处理,S VM 就是要寻找一个满足要求的分割平面,使训练集中的点距离该平面尽可能地远,即寻求一个分割平面使其两侧的margin 尽可能最大. 设输入模式集合{x i }∈R n 由两类点组成,如果x i 属于第1类,则y i =1,如果x i 属于第2类,则y i =-1,那么有训练样本集合{x i ,y i },i =1,2,3,…,n ,支持向量机的目标就是要根据结构风险最小化原理,构造一个目标函数将两类模式尽可能地区分开来,通常分为两类情况来讨论,(1)线性可分,(2)线性不可分. 1.1 线性可分情况 在线性可分的情况下,就会存在一个超平面使得训练样本完全分开,该超平面可描述为: w ?x +b =0(1) 其中,“?”是点积,w 是n 维向量,b 为偏移量. 最优超平面是使得每一类数据与超平面距离最近的向量与超平面之间的距离最大的这样的平面.最优超平面可以通过解下面的二次优化问题来获得: min <(w )= 12‖w ‖2(2) Ξ收稿日期:2004202206作者简介:黄发良(1975-),男,湖南永州人,硕士研究生;研究方向:数据挖掘、web 信息检索. 2004年9月 广西师范学院学报(自然科学版)Sep.2004 第21卷第3期 Journal of G u angxi T eachers Education U niversity(N atural Science Edition) V ol.21N o.3

基于支持向量机回归模型的海量数据预测

2007,43(5)ComputerEngineeringandApplications计算机工程与应用 1问题的提出 航空公司在客舱服务部逐步实行“费用包干”政策,即:综合各方面的因素,总公司每年给客舱服务部一定额度的经费,由客舱服务部提供客舱服务,而客舱服务产生的所有费用,由客舱服务部在“费用包干额度”中自行支配。新的政策既给客舱服务部的管理带来了机遇,同时也带来了很大的挑战。通过“费用包干”政策的实施,公司希望能够充分调用客舱服务部的积极性和主动性,进一步改进管理手段,促进新的现代化管理机制的形成。 为了进行合理的分配,必须首先搞清楚部门的各项成本、成本构成、成本之间的相互关系。本文首先对成本组成进行分析,然后用回归模型和支持向量机预测模型对未来的成本进行预测[1-3],并对预测结果的评价和选取情况进行了分析。 2问题的分析 由于客舱服务部的特殊性,“费用包干”政策的一项重要内容就集中在小时费的重新分配问题上,因为作为客舱乘务员的主要组成部分—— —“老合同”员工的基本工资、年龄工资以及一些补贴都有相应的政策对应,属于相对固定的部分,至少目前还不是调整的最好时机。乘务员的小时费收入则是根据各自的飞行小时来确定的变动收入,是当前可以灵活调整的部分。实际上,对于绝大多数员工来说,小时费是其主要的收入部分,因此,用于反映乘务人员劳动强度的小时费就必然地成为改革的重要部分。 现在知道飞行小时和客万公里可能和未来的成本支出有关系,在当前的数据库中有以往的飞行小时(月)数据以及客万公里数据,并且同时知道各月的支出成本,现在希望预测在知道未来计划飞行小时和市场部门希望达到的客万公里的情况下的成本支出。 根据我们对问题的了解,可以先建立这个部门的成本层次模型,搞清楚部门的各项成本、成本构成、成本之间的相互关系。这样,可以对部门成本支出建立一个层次模型:人力资源成本、单独预算成本、管理成本,这三个部分又可以分别继续分层 次细分,如图1所示。 基于支持向量机回归模型的海量数据预测 郭水霞1,王一夫1,陈安2 GUOShui-xia1,WANGYi-fu1,CHENAn2 1.湖南师范大学数学与计算机科学学院,长沙410081 2.中国科学院科技政策与管理科学研究所,北京100080 1.CollegeofMath.andComputer,HunanNormalUniversity,Changsha410081,China 2.InstituteofPolicyandManagement,ChineseAcademyofSciences,Beijing100080,China E-mail:guoshuixia@sina.com GUOShui-xia,WANGYi-fu,CHENAn.Predictiononhugedatabaseontheregressionmodelofsupportvectormachine.ComputerEngineeringandApplications,2007,43(5):12-14. Abstract:Asanimportantmethodandtechnique,predictionhasbeenwidelyappliedinmanyareas.Withtheincreasingamountofdata,predictionfromhugedatabasebecomesmoreandmoreimportant.Basedonthebasicprincipleofvectormachineandim-plementarithmetic,apredictionsysteminfrastructureonanaircompanyisproposedinthispaper.Lastly,therulesofevaluationandselectionofthepredictionmodelsarediscussed. Keywords:prediction;datamining;supportvectormachine;regressionmodel 摘要:预测是很多行业都需要的一项方法和技术,随着数据积累的越来越多,基于海量数据的预测越来越重要,在介绍支持向量机基本原理和实现算法的基础上,给出了航空服务成本预测模型,最后对预测结果的评价和选取情况进行了分析。 关键词:预测;数据挖掘;支持向量机;回归模型 文章编号:1002-8331(2007)05-0012-03文献标识码:A中图分类号:TP18 基金项目:国家自然科学基金(theNationalNaturalScienceFoundationofChinaunderGrantNo.10571051);湖南省教育厅资助科研课题(theResearchProjectofDepartmentofEducationofHunanProvince,ChinaunderGrantNo.06C523)。 作者简介:郭水霞(1975-),女,博士生,讲师,主要研究领域为统计分析;王一夫(1971-),男,博士生,副教授,主要研究领域为计算机应用技术,软件工程技术;陈安(1970-),男,副研究员,主要研究领域为数据挖掘与决策分析。 12

支持向量机的快速优化算法

目录 摘要I Abstract II 目录IV 1引言1 1.1模式识别[35] (1) 1.1.1模式识别的概念 (1) 1.1.2模式识别的研究方法 (1) 1.1.3模式识别的发展和应用 (3) 1.2支持向量机[32] (3) 1.2.1支持向量机的理论背景 (4) 1.2.2SVM算法目前的研究现状 (5) 1.3本文研究内容 (5) 2背景知识7 2.1支持向量机 (7) 2.2其他分类器 (10) 2.2.1双支持向量机 (10) 2.2.2投影双支持向量机 (11) 2.2.3双参数间隔支持向量机 (11) 2.3对偶坐标下降算法 (12) 3clipDCD算法和加速clipDCD算法14 3.1clipDCD算法 (14) 3.2加速clipDCD算法 (15) 3.3问题实现 (16) 3.3.1终止条件 (16) 3.3.2收敛性 (16) III

3.3.3计算复杂度 (17) 3.3.4在线设置 (17) 4数值实验19 4.1实验模拟 (19) 4.2实验分析 (20) 5结论36参考文献37致谢40 IV

上海师范大学硕士学位论文第1章引言 第1章引言 1.1模式识别[35] 1.1.1模式识别的概念 在日常生活、学习和工作中,人们几乎无时无刻不在进行着模式识别(Pattern Recognition)活动。可以说,模式识别能力是我们人类所具有的最基本能力。如:人们经常要“看云识天气”,判断当天天气的冷与暖、晴与雨等。模式识别就是研究用计算机来实现人类模式识别能力的一门学科。如:文字识别、语音识别、图像识别都属于模式识别的范畴。按照广义的定义,模式就是一些供模仿用的完美无缺的样本。模式识别就是识别出特定客体所模仿的标准。其中客体是指具体的客体,是人们能用感官直接或间接接受的外界信息,如声音、文字、心电图、地震波等都是模式,而且像自然系统或人造系统中的某个系统状态等也都可以看做是模式。如医生给病人看病,首先需要根据病情做一些必要检验,根据各项检验指标做出病情的分类决策,上述过程就是一个模式识别过程。因此研究用计算机模拟人的识别能力,提出识别具体客体的基本理论与实用技术,这就是模式识别这一学科的研究内容。根据模式识别的研究内容,可以给出模式与模式识别的定义:把所见到的具体事物称为模式,而将它们归属的类别称为模式类,模式识别就是研究一些自动技术,利用这些技术,计算机自动地把待识别模式分到各自的模式类中。模式识别与人工智能都是研究让机器具有智能,即让机器做一些带“智能”的工作,因此这两门课是有密切关系的。从广义上说,模式识别属于人工智能的范畴,但由于历史的原因,它已经形成了独立的学科,有其自身的理论和方法。目前模式识别主要研究对事物的识别,俗称分类,并且识别的方法主要依靠对事物属性的度量值进行计算,从而达到对事物进行分类的目的。 1.1.2模式识别的研究方法 一个模式识别系统它主要由信息获取、预处理、特征提取与选择、分类器设计以及分类决策五大部分组成。下面对其进行简单的说明。 1.信息获取 为了使计算机能够对客体进行分类识别,必须首先将客体用计算机所接受的形式表示。目前计算机一般只能处理某种形式的电信号,而待识别的样本大多是非电信息,如灰度、色彩、声音等,所以需要将这些以各种不同形式表现的信息通过传感器转化成电信号,电信号再经过变换,最终转换成为能由计算机处理的数字量。通常从客体获得的信息有下列三种类型:(1)二维图像,如文字、指纹和照片等。(2)一维波形,如语音、机 1

相关文档
最新文档