2_5_二甲基_4_羟基_3_2H_呋喃酮的合成研究_张精安

2_5_二甲基_4_羟基_3_2H_呋喃酮的合成研究_张精安
2_5_二甲基_4_羟基_3_2H_呋喃酮的合成研究_张精安

对羟基苯乙酮的合成

科研探索 知识创新 与。对羟基苯乙酮在医药、农药、 染料、液晶材料等领域具有重要的应用价值 。 不同生产方法的主要区别在第二步。 方法1:苯酚和乙酐加氯化锌在一定温度下反应,经柱层析可得到对位异构体40%,邻位异构体38%;此方法得率较高, 但反应时间较长,且生成的邻位取代物较多。 方法2:采用三氯化铝——氯化钠复盐作催化剂 合成了对羟 基苯乙酮,收率58.5%纯度98.68%。 综上,我们采用方法3,即以苯酚和乙酐为原料,先进行酯化反应,再通过三氯化铝催化Fries 重排得到产物对羟基苯乙酮,并对酯化反应是否添加催化剂与第二步重排的最佳反应条件进行探究。此方法催化剂易得,产率较高,纯度经精制后很高,是可行的合成方法。3实验 3.1乙酸苯酯的合成 将一定比例的苯酚和已酐混合后加入到50mL 圆底烧瓶中,加入3滴浓硫酸,加热回流一定时间,反应结束后,将反应液冷却至室温,用蒸馏水洗涤至PH 值为6~7,分去水层,保留有机层,用无水硫酸镁干燥后,常压蒸馏,收集190~194℃的馏分,测折光率分析产品。3.2对羟基苯乙酮的合成 在烘干的装有电动搅拌器、温度计、和上部带有干燥管的冷凝管的三口烧瓶中加入一定量的乙酸苯酯和溶剂A ,在剧烈 搅拌下分三次加入一定量的无水三氯化铝,加完后开始加热使反应温度保持在t ℃左右反应一定时间,停止加热。搅拌下加入一定量的水分解多余的无水三氯化铝。将反应液进行水蒸气蒸馏至澄清,将其转移到敞开容器中,冷却至室温后加入 一定量的一定浓度的稀盐酸,至PH 值为1~2。冰盐浴冷却到-2℃析出白色晶体,过滤得对羟基苯乙酮粗品,干燥称重。将粗品转移至小烧杯中加入一定量的水,水浴加热,分去油层后冰盐浴冷却,过滤得白色针状晶体,再次称重,测熔点和红外。 3.3实验结果与讨论 3.3.1反应时间对乙酸苯酯收率的影响 采用酐醇摩尔比1.2,改变反应时间,当回流时间为2h 时, 产率为46.04%,2.5h 时,产率为60.95%,3h 时,产率为67.7%。可见,随着反应时间相对减少,收率逐渐降低。其原因可能是反应时间过短,反应不完全,反应时间过长,逆反应进行程度较大。 3.3.2反应温度对对羟基苯乙酮收率的影响 采用乙酸苯酯、氯苯、催化剂无水三氯化铝摩尔比1:1.2:1.1,改变反应温度,结果表示,随温度升高,对羟基苯乙酮的收率先增加后减少,在70℃时收率最高,大致成抛物线型变化。在相对较低的温度下, 随着温度的升高,单位体积内反应物的活化分子数增多,从而增加了单位时间内单位体积内反应物 分子的有效碰撞的频率,导致反应速率增大

苯并呋喃合成

1、苯并呋喃的基本性质: 苯并呋喃的中文名称:2,3-苯并呋喃,别名:苯并呋喃,β-苯并呋喃,氧茚,香豆酮,古马隆,氧杂茚,苯并[B]呋喃,英文名称:2,3-benzofuran,Coumarone,Benzofuran . 苯并呋喃是一种杂环芳香有机化合物。常温下为油状液体,具有芳香味。能随水蒸气挥发,能被高锰酸钾和其他氧化剂分解。 【英文名】Coumarone; 2,3-Benzofuran; Benzo[b]furan 【分子式】C8H6O 【分子量】118.14 【密度】1.078(15/15℃) 【熔点】-18以下 【沸点】173-174 【闪点】56 【粘度】【蒸气压】【折射率】1.5689(16.5℃) 【毒性LD50】【性状】无色液体,有芳香气 2、实验目的: ⑴了解香豆酮的合成方法及其性质; ⑵掌握苯酚合成香豆酮的方法。 3.实验合成路线:

4.实验内容: 1、实验试剂的基本性质 (1)苯酚:为无色针状结晶或白色结晶熔块,可燃,腐蚀力强,有毒。不纯品在光和空气作用下变为淡红或红色,遇碱变色更快。与大约8水混合可液化。可吸收空气中水分并液化。有特殊臭味和燃烧味,极稀的溶液具有甜味。相对密度1.0576,凝固点41℃,熔点43℃,沸点181.7℃(182℃),折射率1.54178,闪点79.44℃(闭杯),85℃(开杯),自燃点715℃,蒸气密度3.24,蒸气压0.13kPa(40.1℃),蒸气与空气混合物燃烧极限1.7-8.6。1g苯酚溶于约15ml水(0.67,25℃加热后可以任何比例溶解)、12ml苯。易溶于乙醇、乙醚、氯仿、甘油、二硫化碳、凡士林、挥发油、固定油、强碱水溶液。几乎不溶于石油醚。水溶液pH 值约为6.0。 (2)氯仿:无色透明、高折射率、易挥发的液体,有特殊香甜气味。凝固点-63.5℃,沸点61.3℃,熔点-63.2℃,相对密度1.4984(15/4℃),1.4840(20/20℃),折光率1.4476,折射率1.4422,黏度(20℃)0.563mPa·s。不易燃,与火焰接触会燃烧,并放出光气。一般加入0.6-1的乙醇作稳定剂。微溶于水(25℃时1ml能溶于200ml水),能与醇、苯、醚、石油醚、四氯化碳、二硫化碳和油类混溶。临界温度263.4℃,临界压力5.45kPa,在氯甲烷中最易水解成甲酸和HCl,稳定性差,450℃以上发生热分解,能进一步氯化为CCl4。 (3)水杨醛:淡黄色到淡红色,澄清油状液体,有苦杏仁气味,工业品为淡黄色到淡红色。熔点-7℃,沸点196-197℃,闪点76℃。相对密度1.167(20/4℃),折光率1.5735。溶于乙醇、乙醚和苯,微溶于水。

对羟基苯乙酮的合成-20110617

实验七对羟基苯乙酮的合成 一、实验目的 1、掌握Fries重排重排反应的基本原理。 2、熟悉减压蒸馏和水蒸汽蒸馏基本操作。 二、实验原理 醇与酸作用生成酯的反应称作酯化反应。酚类化合物虽然也能起酯化反应, 但比醇困难。这是因为酚中存在的p-π共轭效应,降低了氧周围的电子云密度, 使其亲核性比醇弱。所以酚不能直接与酸成酯,而要与酸酐或酰氯作用才能成酯。 酚酯化在三氯化铝存在下加热,酰基可重排到羟基的邻位或对位,称Fries重排。 通常在低温下易于生成对位异构体。 三、实验材料与设备 1、实验设备与仪器 电动搅拌器、水蒸气发生器、长颈圆底烧瓶、量筒、梨形分液漏斗、蒸馏瓶、直 型冷凝器、球形冷凝器、空气冷凝器、三角烧瓶、尾接管、三口瓶、烧瓶、温度 计。 2、实验材料与试剂 苯酚、醋酐、四氯化碳、硝基苯、氢氧化钠、碳酸氢钠、无水三氯化铝、盐 酸、氢氧化钾、无水硫酸镁、三氯甲烷、无水氯化钙。 四、实验操作步骤 1.乙酰苯酚的制备 取500mL长颈锥形瓶(没有就用500mL三颈瓶替代),加入23.5g苯酚,再加入160ml (10%)NaOH溶液,后加入175g碎冰,最后加入32.5g(30mL)醋酐,猛烈振摇反应容器5min,反应液乳化,生成乙酰苯酚,将混合液倾入500 mL分液漏斗中,加入10 mL CCl 4振摇,静置,分层。水层再用10ml CCl 萃取、合并。酯层用5%~10% NaHCO3 40 mL 4

溶液洗涤至pH7到8,酯层(即CCl 4层)置于250mL三角锥瓶中。用适量无水CaCl 2 约 6克干燥,不时地振摇约1h,然后滤至100 mL蒸馏烧瓶中,旋蒸除去CCl 4 ,然后减压蒸馏收集常压下192~197℃的馏分,称重,计算收率。(油浴开始加热,阶段梯度加热(10+10+5+5+5…℃,当油浴锅指示温度为115℃,温度计指示温度为74℃时开始有馏出液溜出;馏出液呈无色透明。) 2.对羟基苯乙酮的制备(Fries重排反应) 在烘干的装有转子、温度计100mL的三口烧瓶中加入乙酸苯酚10g,硝基苯 25mL,剧烈搅拌下分数次缓慢加入无水三氯化铝16g,加完后开始油浴加热回流 升温至60℃反应2h,停止加热,慢慢倾入到150g冰水中,并迅速搅拌。滴加 6mol/L的盐酸(36%的浓盐酸:水=1:1)酸化至pH1~2,用500mL分液漏斗分出 硝基苯层,用5%~10%KOH溶液中和至微酸性或中性,然后进行水蒸气蒸馏, 至硝基苯蒸净为止(约1h),水层用CHCl 3 提取三次(20mL、15mL、10mL),合并 CHCl 3 提取液置于100mL干燥的三角烧瓶中,加适量的无水硫酸钠干燥,摇匀后 放置约20min,滤除硫酸钠,蒸馏除净CHCl 3 后得粗品。(棕黄色) 3.精制 将对羟基苯乙酮粗品和20 倍量的蒸馏水加入反应瓶中加热至沸腾。分去油 层后添加少量活性炭, 在沸腾状态下脱色 15 m in, 趁热过滤得无色透明液体, 室温下静置, 冷却, 结晶后过滤, 真空干燥得白色针状结晶对羟基苯乙酮。(文 献熔点,对羟基苯乙酮的熔点108~111℃) 五、实验注意事项和该思考的问题 1、(以下为一位同学针对其中一个现象的分析,同学可以思考以下,是否正确) 以硝基苯作溶剂乙酰苯酚在无水三氯化铝的催化作用下进行Fries重排,得 到对羟基苯乙酮;反应液倒入冰水中后,使反应液的温度降低,三氯化铝水解生 成氢氧化铝,溶于水相,对羟基苯乙酮形成其铝盐也溶于水相,这时,反应液分 成三层,上层为水层,中间为絮状的氢氧化铝,下层为硝基苯层,反应液呈酸性, pH为3左右,这是由于三氯化铝水解和对羟基苯乙酮酚羟基上的氢离子电离; 用盐酸酸化至pH1~2,这时,对羟基苯乙酮酚羟基上的铝离子离去而得到氢离子, 不溶于水相而溶于硝基苯;用KOH溶液调pH至中性或微酸性,通过水蒸气蒸馏 出去有机溶剂硝基苯,水层用三氯甲烷(对羟基苯乙酮易溶于三氯甲烷)萃取,

香兰素的合成工艺设计

有机合成课程设计 题目香兰素的合成工艺 系(院)化学与化工系 专业应用化学 班级11应化本2 学生姓名王春莲 学号1114100327 指导教师张圣燕 职称讲师 2013年 12月 20日

香兰素的合成工艺设计 1 产品简介 1.1 中英文名称,化学式,结构式 中文名称:香兰素 别名:香荚兰醛;香荚兰素;香兰醛 化学名称:3-甲氧基-4-羟基苯甲醛 英文名称:Vanillin 分子式:C8H8O3 结构式: CHO OH OCH3 1.2 物化性质 白色至微黄色鳞片状结晶或结晶性粉末,存在有不同熔点的四种结晶变型。呈甜克力香气及强烈的香兰素所独有的芳香气,香气比香兰素强3-4 倍。沸点285 ℃,点76.5 ℃。微溶于水,溶于乙醇、乙醚、甘油、丙二醇、氯仿和碱溶液。基本上无毒害,但其蒸气对皮肤及粘膜有局部刺激作用 1.3 用途 香兰素是重要的食用香料之一,是食用调香剂,具有香荚兰豆香气及浓郁的奶香,是食品添加剂行业中不可缺少的重要原料,广泛运用在各种需要增加奶香气息的调香食品中,如蛋糕、冷饮、巧克力、糖果、饼干、方便面、面包以及烟草、调香酒类、牙膏、肥皂、香水、化妆品、冰淇淋、饮料以及日用化妆品中起增香和定香作用。 香兰素在国外的应用领域很广,大量用于生产医药中间体,也用于植物生长促进剂、杀菌剂、润滑油消泡剂、电镀光亮剂、印制线路板生产导电剂等。国内香兰素主要用于食品添加剂,近几年在医药领域的应用不断拓宽,已成为香兰素应用最

有潜力的领域。 香兰素在国外的应用领域很广,大量用于生产医药中间体,也用于植物生长促进剂、杀菌剂、润滑油消泡剂、电镀光亮剂、印制线路板生产导电剂等。国内香兰素主要用于食品添加剂,近几年在医药领域的应用不断拓宽,已成为香兰素应用最有潜力的领域。目前国内香兰素消费:食品工业占55%,医药中间体占30%,饲料调味剂占10%,化妆品等占5%。 1.4 前景分析 国内外行业现状中国是世界香兰素出口大国,2002年国内需求量2350吨,占产量的30%,其余70%用于出口。而1988年仅出口273吨,1993年为1700吨,2002年为4653吨。1993~2002年,中国香兰素出口量年均增长率为12%。中国香兰素在北美、欧洲、东南亚等地市场享有良好信誉。 2 合成方法 2.1 第一种合成方法——愈创木酚法 (1)合成基本原理 愈创木酚在碱性条件下和乙醛缩合成3-甲氧基-4-羟基苯乙醇酸,3-甲氧基-4-羟基苯乙醇酸在碱性条件下被氧化成3-甲氧基-4-羟基苯乙酮酸(香草扁桃酸),然后在碱性条件下脱羧生成香兰素。其反应方程式如下: OCH 3 OH CHOCOOH CHOHCOOH OH OCH3 O2 OH OCH 3 CCOOH O CHO OH OCH3

苯并呋喃类化合物的合成研究新进展

· 266 ·
广 东 化 工 https://www.360docs.net/doc/2610600056.html,
2010 年 第 6 期 第 37 卷 总第 206 期
苯并呋喃类化合物的合成研究新进展
(华南理工大学 化学与化工学院,广东 广州 510640)
[摘 要]文章介绍了苯并呋喃的生物活性研究及最新应用,并综述了近几年来苯并呋喃类化合物结构骨架的构建与合成方法。 [关键词]苯并呋喃;生物活性;合成 [中图分类号]TQ [文献标识码]A [文章编号]1007-1865(2010)06-0266-02
亓金萍
Advances in the Synthesis of Benzo[b]furans
Qi Jinping (School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China)
Abstract: The paper gave a review on the recent advances of the synthesis of benzo[b]furan compounds, and introduced the bioactivities and some recent applications of benzo[b]furan. Keywords: benzo[b]furan;iological activity;synthesis
苯并呋喃类化合物因其广泛的药理活性以及它们在自然 界的广泛存在而引起人们的注意[1]。比如,从丹参、百部、野 茉莉等植物中提取出来的 2-芳基取代的苯并呋喃类化合物具 有良好的生理活性,如抗病毒、抗肿瘤、抗菌、抗自由基、抗 氧化作用等,常用于选择性腺苷 A1 受体拮抗剂、免疫抑制剂 等[2-7]。 最近又发现官能化的单或二苯并呋喃类衍生物还可以作 为蓝光发光材料[8]应用于 OLED 中,而 Jung 等[9]也对含有苯 并呋喃单体的有机染料聚合物在太阳能电池中的应用进行了 研究;Romagnoli 等[10]合成了一系列 2-(3’,4’,5’-三甲氧基苯甲 酰基)-苯并呋喃衍生物,发现这类化合物在抑制癌细胞的生长 方面具有潜在的活性。 前人对苯并呋喃类化合物的生物活性研究以及从天然产 物中提取筛选并进行化学合成的研究已较深入,庞冀燕[11]等 人对此进行了总结, 但是基于科学的发展日新月异, 文章基础 上对近几年来文献报道的苯并呋喃的合成新方法进行概述。
R OHC Cl Fe 1 O HO K2CO3/CH3CN 6-12h R Fe O 2a-2n O (1)
Carril 等[16]以水做溶剂,使烷基(或芳基)苄基酮衍生物在 CuI- TMEDA 的催化下生成相应的苯并呋喃化合物(Eq. 2)。
O R1 Br R2 CuI, TMEDA H2O, 120℃ R1 O R2 (74-99%)
(2)
1 苯并呋喃衍生物的合成新进展
Yue 等[12]在 2005 年从邻碘代茴香醚出发,先与端基炔发 生 Sonogashira 偶联,后在 I2, PhSeCl, 或者 p-O2NC6H4SCl 的 存在下发生亲电子环化作用, 以较高的收率生成 2,3-二取代苯 并呋喃环(Scheme 1)。Cho 等[13]在此基础上采用并行合成法对 苯并呋喃类化合物进行了库合成, 成功得到了 121 种多取代的 苯并呋喃化合物。
OCH3 I OCH3 E R O E CH2Cl2, r.t.,
Sanz 等[17]从苄基-2-卤代苯醚出发,用 3 当量的 t-BuLi 处 理形成有机锂中间体, 然后再与羧酸酯反应, 再经酸化或者脱 水就得到相应的 2-芳基-3-取代苯并呋喃衍生物(Scheme 2)。
X G O Ar X=Br, I G=Me, Cl,… A=Ph, 1-Np,… G O Li HO Li Ar G O R Ar G O R=Alk, Ar, HetAr R Ar
Scheme 2 Sanz 等[18]从间卤代氨基甲酰酯出发,用 NaH 或 n-BuLi 处理后接着与相应的亲电试剂反应,得到 o-2(F, Cl)-3-卤代苯 氨基甲酰酯,经水解、Sonogashira 偶联及关环反应得到 4-卤 代苯并呋喃衍生物(Scheme 3),4-位的卤素很容易转化为其他 的官能团,而 4-位官能化基团取代的苯并呋喃化合物用其他 的方法是不易得到的。
OCONEt2 OCONEt2 Li X X=Hal X O R=Ar, Alk, X R G , O G=Alk, Ar, SnBu3,… R
R E =ICl, I2, PhSeCl, p-NO2C6H4SCl
Scheme 1 高文涛等[14]氯乙酰基二茂铁与水杨醛或取代水杨醛在聚 乙二醇-400 作相转移催化剂条件下,使 Williamson 反应与 Knoevenagel 反应在一锅内完成,以 40.2 %~70.0 %的总收率 得到了由羰基相连的二茂铁与苯并呋喃组成的结构新颖的闭 环产物(苯并[b]呋喃-2-酰基)二茂铁衍生物 2a-2n,以期取得多 种生物活性的优化叠加(Eq. 1)。 2005 年 Tamariz,J.等[15]报道了路易斯酸催化分子内环化 的方法合成苯并呋喃。 该方法从苯酚出发, 经历醚化、 酯化后, 用 DMA 进行甲叉化,然后路易斯酸催化得到苯并呋喃产物, 后两步反应可用一锅法处理得到苯并呋喃产物。 此外, 该合成 策略也成功的应用于天然产物的合成。
Scheme 3 Chen 等[19]以 2-卤代芳基取代酮为底物,在 CuI 催化下发
[收稿日期] 2010-05-27 [作者简介] 亓金萍(1983-),女,山东莱芜人,在读硕士,主要研究方向为有机合成。

邻羟基苯乙酮生产工艺

邻羟基苯乙酮项目技术调查报告 有机0911 朱耀 43 第一章产品及原料介绍 1.1 邻羟基苯乙酮 中文名称:2-羟基苯乙酮;1-(2-羟苯基)-乙酮;邻羟基苯乙酮;邻乙酰基苯酚;英文名称:1-(2-hydroxyphenyl)-Ethanone;o-hydroxy-acetophenon;1-(2-hydroxyphenyl)ethanone;;2'-hydroxy-acetophenon CAS: 118-93-4 ,分子式: C8H8O2 ,分子质量:136.15 ,沸点: 213℃,熔点: 4-6℃,性质描述: 浅绿至黄色油状液体。沸点 213℃/95.6kPa(717mmHg),106℃/2.3kPa(17mmHg),相对密度 1.131,折光率 1.5584,闪点98。 用途: 心律平的中间体。 结构式: 1.2苯酚 相对分子量或原子量94.11,密度1.071,熔点(℃)40.3,沸点(℃)182 ,折射率1.5425(41),毒性LD50(mg/kg) 大鼠经口530。 性状:无色或白色晶体,有特殊气味。在空气中因为被氧化而显粉红色 溶解情况:溶于乙醇、乙醚、氯仿、甘油、二硫化碳等。易溶于有机溶

液,常温下微溶于水,当温度高于65℃时,能跟水以任意比例互溶。 用途:用于制染料合成树脂、塑料、合成纤维和农药、水杨酸等。作外科消毒,消毒能力大小的标准(石炭酸系数)。 制备或来源:由煤焦油经分馏,由苯磺酸经碱熔。由氯苯经水解,由异丙苯经氧化重排。 其他:加热至65℃以上时能溶于水(在室温下,在水中的溶解度是9.3g,当温度高于65℃时能与水混溶),有毒,具有腐蚀性如不慎滴落到皮肤上应马上用酒精(乙醇)清洗,在空气中易被氧化而变粉红色。在民间有土方用石炭酸来治皮肤顽疾,以毒攻毒,如用来治脚底起泡。 1.3乙酐 中文名称:乙酸酐,英文名称:Acetic Anhydride。别名:醋酸酐;醋酐;乙酐;Ac2O 无水醋酸; 分子式:C4H6O3;(CH3CO)2O。外观与性状:无色透明液体,有刺激性气味(类似乙酸),其蒸气为催泪毒气。分子量:102.09 。蒸汽压:1.33kPa/36℃ 闪点:49℃。熔点:-73.1℃。沸点:138.6℃ 溶解性:溶于苯、乙醇、乙醚,氯仿;渐溶于水(变成乙酸)。 密度:相对密度(水=1)1.08;相对密度(空气=1)3.52 。 折光率:n20D 1.450 。稳定性:稳定。 1.4氯苯 中文名称:氯苯、一氯代苯。英文名称:chlorobenzene、monochlorobenzene CAS: 108-90-7 。分子式: C6H5Cl 。分子量: 112.56 。熔点(℃): -45.2 沸点(℃): 132.2 。相对密度(水=1): 1.10 。相对蒸气密度(空气=1): 3.9 饱和蒸气压(kPa): 1.33(20℃) 。临界温度(℃): 359.2 。临界压力(MPa): 4.52 辛醇/水分配系数的对数值: 2.84 。闪点(℃): 28。引燃温度(℃): 590 爆炸上限%(V/V): 9.6。爆炸下限%(V/V): 1.3 。外观与性状:无色透明液体,具有不愉快的苦杏仁味。 溶解性:不溶于水,溶于乙醇、乙醚、氯仿、二硫化碳、苯等多数有机溶剂。主要用途:作为有机合成的重要原料。

2_3_4_4_四羟基二苯甲酮合成研究

2,3,4,4’2四羟基二苯甲酮合成研究 王振宇,谭卫宁,周志纯,唐 浩 (湖南化工研究院,湖南长沙410007) 摘 要:以焦性没食子酸和对羟基苯甲酸为原料合成2,3,4,4’2四羟基二苯甲酮,通过正交实验对影响反应的因素进行考察,确定了优惠反应工艺条件,结果表明反应收率为83%,产品纯度达98%以上。 关键词:2,3,4,4’2四羟基二苯甲酮;焦性没食子酸;对羟基苯甲酸 中图分类号:TQ22412 文献标识码:A 文章编号:1009-9212(2002)01-0018-02 2,3,4,4’2四羟基二苯甲酮[1,2]是一种重要的有机中间体,可用于微电子集成电路工业的光致抗蚀剂、医药中间体、紫外线吸收剂、树脂稳定剂、染料等,它在微电子工业方面主要是用作紫外正性光刻胶的感光剂中间体[3~5],此种光刻胶微细加工的芯片线宽达013~018μm。目前,我国是世界上集成电路产业主要生产国之一,1999年大规模集成电路产量为21亿块,占全球产量的1/8,需i线紫外正性光刻胶100t/a,相应需要2,3,4,4’2四羟基二苯甲酮约5t/a。我国一些科研院所已开发出i线紫外正性光刻胶,其产业化技术已列入“九五”国家攻关。2, 3,4,4’2四羟基二苯甲酮的开发生产具有良好的市场前景。 2,3,4,4’2四羟基二苯甲酮的合成是经典的Friedel2Crafts酰基化反应。文献报道的2,3,4,4’2四羟基二苯甲酮合成方法主要有氯化锌催化酰化法[6,7]、树脂催化法[8]、三氟化硼催化法[1,9]等。笔者考察研究了三氟化硼催化法。 1 实验部分 111 实验主要原料及其规格 焦性没食子酸、对羟基苯甲酸、三氟化硼乙醚溶液、1,1,2,22四氯乙烷均为化学纯。 112 实验方法 将焦性没食子酸、对羟基苯甲酸与1,1,2,22四氯乙烷混合,缓慢滴加三氟化硼乙醚溶液,加料毕,升温反应一定时间,析出黄色结晶,冷却后,中和,结晶过滤,水洗后干燥,得黄色结晶产物,即为本产品。113 产品分析 仪器型号:美国SSI2P4000型(带可变波长检测器)二元高压梯度液相色谱仪,保留时间测量和峰面积计算均由American Hi2Tech色谱工作站完成。 色谱柱:PRODIGY ODS(3)Φ4.60×250mm (5μm);柱温:室温;流动相:甲醇∶水=60∶40(V/ V)(少量H3PO4,1%二甲基甲酰胺);流速:0.8ml/ min;检测波长:300nm 2 实验结果及讨论 211 探索实验 按上述的实验方法,进行探索实验,实验结果如表1所示: 表1 探索实验结果表 编号产品含量(%)收率(%) TB2198108015 TB2298148112 TB2399108019 TB2498128016 从表1可知,该工艺路线技术上可行,产品收率可达80%以上。 212 正交实验及验证实验 由探索实验发现,影响2,3,4,4’2四羟基二苯甲酮合成的主要因素包括原料配比、催化剂量、反应温度、反应时间等,按4因素3水平进行正交实验,考查上述反应因素对反应结果的影响,优化反应条件,实验结果见表2~表4。 由表4正交实验分析方法计算所得的极差值(R)可知,4种反应因素对反应收率的影响顺序为: A(原料配比)、B(催化剂量)、D(反应时间)、C(反应温度),其中A(原料配比)的极差最大,表明其对反 第32卷第1期2002年2月 精细化工中间体 FIN E CHEM ICAL IN TERM EDIA TS Vol.32No.1 February2002 作者简介:王振宇(1970~),女,湖南长沙人,助理研究员,主要从事精细化工中间体开发研究。收稿日期:2001-11-20

丛枝菌根真菌诱导植物产生酚类物质的研究进展

微生物学通报 AUG 20, 2010, 37(8): 1216?1221 Microbiology China ? 2010 by Institute of Microbiology, CAS tongbao@https://www.360docs.net/doc/2610600056.html, 基金项目:国家自然科学基金项目(No. 30870458) *通讯作者:Tel: 86-20-85286902; : yaoqscau@https://www.360docs.net/doc/2610600056.html, 收稿日期:2009-12-14; 接受日期:2010-04-26 摘 要: 酚类物质是植物体内重要的次生代谢产物, 对病原微生物的侵袭有很好的防御作用。AM 真菌能够诱导植物的酚类物质合成, 而且这种诱导既是原位的、也是系统的, 相关研究已有大量报道。本文对AM 真菌原位和系统诱导酚类物质进行了论述, 并对系统诱导过程中可能的信号分子(SA 、H 2O 2)进行了评述, 最后提出了AM 真菌系统诱导酚类物质产生的可能作用机理, 进一步明确后续工作中的研究方向。 关键词: AM 真菌, 酚类物质, 诱导, 信号分子 Research Progress in the Biosynthesis of Phenols in Plants Induced by Arbuscular Mycorrhizal Fungi ZHANG Rui-Qin 1,2 ZHAO Hai-Quan 2 ZHU Hong-Hui 3 YAO Qing 1* (1. College of Horticulture , South China Agricultural University , Guangzhou , Guangdong 510642, China ) (2. College of Life Science , Anhui Agricultural University , Hefei , Anhui 210095, China ) (3. Guangdong Institute of Microbiology , Guangzhou , Guangdong 510070, China ) Abstract: Phenols are important secondary metabolites in plant tissues, and provide well protection against the attacks by pathogenic microbes. Arbuscular mycorrhizal (AM) fungi can induce the biosyn-thesis of phenols in plants both locally and systematically. Recently, research has been intensively re-ported on this aspect. In this paper, the localized and systematic induction of phenols by AM fungi is reviewed. The possible signaling molecules (SA, H 2O 2) in the induction process are put forward, and the putative action model involved in the biosynthesis of phenols induced by AM fungi is further pre-sented. Some research perspectives for the future are also pointed out. Keywords: AM fungi, Phenols, Induction, Signaling molecules 丛枝菌根真菌(Arbuscular mycorrhizal fungi, 简称AM 真菌)是一类重要的土壤真菌, 能够与80%以上的陆地植物和一些水生植物的根系形成互惠共生体, 即丛枝菌根(Arbuscular mycorrhiza, 简称 AM)[1]。近百年来的研究发现, AM 真菌在与植物建立共生关系之后, 明显地促进植物的生长发育。进一步的机理研究表明, AM 真菌能够在许多方面影响植物的生理过程: 促进植物根系对土壤中矿质元

大分子量二苯甲酮光引发剂的合成及动力学研究

研究简报 大分子量二苯甲酮光引发剂的 合成及动力学研究 王 营1,肖 浦2,戴明之1,吴刚强2,史素青2,聂 俊1,2 (1.北京化工大学材料科学与工程学院北京市新型高分子材料制备与加工重点实验室,北京100029; 2.武汉大学化学与分子科学学院生物医用高分子教育部重点实验室,湖北武汉430072) 摘 要:以4 羟基二苯甲酮(HBP)、甲苯 2,4 二异氰酸酯(TDI)、4,4 二羟基二苯甲酮(DHBP)为原料,通过两步反应,合成了一种大分子量二苯甲酮光引发剂:HBP TDI DH BP TDI H BP (H TDTH).通过实时红外研究了HTDTH 的光聚合动力学.结果表明,HTDTH 是一种有效的光引发剂.采用H TDTH/胺光引发体系引发二缩三丙二醇二丙烯酸酯(T PGDA)聚合时,随着胺和引发剂浓度的增大,反应速率(R p )和单体最终转化率(P )同时增大. 关键词:光聚合;二苯甲酮衍生物/胺;动力学 文章编号:1674 0475(2008)04 0280 05 中图分类号:O64 文献标识码:A 紫外光固化是指在紫外光的作用下,其体系中的光引发剂通过光化学反应生成活性粒子或基团,从而引发体系中的活性树脂进行交联聚合.它具有固化速度快、操作简单、对环境污染小、能耗相对较少等优点.目前紫外光固化主要应用于清漆、纸张、木材、金属等领域[1 4] .光引发剂作为光固化体系中的关键组分,对光固化涂料的光固化速度起决定性作用.目前,光引发剂的一个发展趋势就是在原有小分子光引发剂的基础上,通过化学改性的方法合成出多官能团的大分子量光引发剂[5,6].这类光引发剂具有以下几个特点: (1)具有比较高的分子量,残存引发剂分子或其光解产物在固化涂层中不容易向表面慢性迁移;(2)这类光引发剂的光解碎片相对分子量较大、挥发性较低、气味较弱,其光固化产品有应用在卫生、食品包装材料上的潜力;(3)与单官能团的光引发剂相比,相同分子量情况下,它含有两种或两种以上的自由基. 二苯甲酮(BP)由于结构简单、合成容易、价格低廉、在常用溶剂中的溶解性比较好,收稿日期:2007 09 06;修回日期:2008 01 13.通讯联系人:聂 俊,T el:010 ********,E mail:niejun @mail. https://www.360docs.net/doc/2610600056.html,. 基金项目:国家自然科学基金(50473024). 作者简介:王 营(1982 ),男,硕士研究生,主要从事光引发剂的合成及光聚合动力学性质的研究.280 第26卷 第4期 影像科学与光化学Vo l.26 N o.4 2008年7月Imaging Science and Photochemistry July,2008

苯并呋喃酮

苯并呋喃酮 1.产品介绍: 1.1产品名称:苯并呋喃酮;苯并呋喃-2(3H)-酮;3H-苯并呋喃-2-酮; 2(3H)-苯并呋喃酮; 2-香豆冉酮;苯丙呋喃-2(3H)-酮。 1.2英文名:2-Coumaranone 1.3CAS号:553-86-6 1.4分子式及分子量:C8H6O2=134.13; 1.5用途:农药及医药中间体; 1.6结构式: 1.7理化性质: 2.工艺技术路线介绍 2.1工艺路线A:以邻硝基甲苯为原料在乙醇钠催化下与草酸二乙酯缩合后,经水解、双氧 水氧化、酸化后制得邻硝基苯乙酸;再经还原、重氮化、水解反应得到苯并呋喃酮。 2.1.1原料:邻硝基甲苯、金属钠、草酸二乙酯、乙醇、氢氧化钠、30%双氧水、8%硫化 铵溶液、亚硝酸钠、浓硫酸等九种 2.1.2反应原理: 2.2工艺路线B:以邻氯苯乙腈为原料,经过皂化、水解、酯化、环化合成苯并呋

喃酮。 2.2.1原料:邻氯苯乙腈、氢氧化钠、催化剂A、盐酸、催化剂B、甲苯等六种。 2.2.2反应原理: 2.2.3选用B工艺路线,只有六种原材料,两步合成步聚,具有原料少,反应 工艺步聚少的优点,也具有更加节能降排的优点。所以我们选择是B路线。具体大生产的数据如下: 3. 投料: 3.1在5000L反应釜1#内抽入自来水1200kg,30%液碱2065kg,投料毕,升温 到95~104℃,滴加邻氯苯乙腈600kg,正常保持回流滴加,时间4小时;滴毕104~105℃保温5小时,保温结束抽氨气3.5小时,降温取样。 3.2在不锈钢压力釜2#中,投入8-羟基喹啉铜100kg,把1#釜中的料液转入压力 釜中,升温到95℃,放空6~7秒,自然升温3小时后压力上升到2.8~3公斤,釜温142~147℃,保温6小时,降温到90℃以下,取样分析。 3.32#压力釜内的物料转入到3#釜中,降温到24℃开始滴加30%的盐酸,温度 严格控制在24~27℃,大约滴加到450kg左右,时间6小时左右,最终PH 值为6.5~6.8之间,滴毕,保温1小时,放料、抽滤、离心,母液抽入4#釜,滤饼为8-羟基喹啉铜,回收套用。 3.4母液抽入4#釜内后,温度降低到18~22℃,开始滴加30%的盐酸,大约滴加 680kg左右;滴加结束降温到18℃,加水300kg,再降温到5~8℃,保温1小时,放料离心,得中间体邻羟基苯乙酸。 3.5在3000L反应釜内投入邻羟基苯乙酸,催化剂6~8kg,抽入甲苯1000kg,搅 拌、升温,冷凝器回流分水。直至无水分出,大约要脱水10~13小时,降温到90℃以下,取样分析;降温至24~28℃,加水200kg,搅拌20分钟,静置30分钟,分去水层和乳化层,再加入3.5%盐酸水100kg,搅拌10分钟,静置20分钟,分去水层后,转入脱溶釜;脱溶、负压脱溶,真空度

紫外线吸收剂常见类型

紫外线吸收剂常见类型 本品为一高效光稳定剂,具有广泛的紫外线吸收特性,挥发性低,适用于聚苯乙烯,聚甲基丙烯酸甲酯,聚酯,硬质聚氯乙烯,聚碳酸酯,ABS树脂等。在透明制品及高温加工的工程塑料中尤具效果。与抗氧剂并用有优质的协同效应,可提高制品的耐候性和热氧稳定性。 结构式: 分子量:323 化学文摘登记号:3147-75-9 外观:白色粉末 熔点:103-105℃ 纯度:≥99%(GC) 透光率:440nm,≥98% 500nm,≥99% 挥发份:≤0.3% 包装:1kg,5kg,25kg,50kg。 紫外线吸收剂 具有吸叫紫外线能力,用来防止塑料、涂料等长期暴露在日光下产生光降解作用的物质。 CAS No.:1843-05-6 紫外线吸收剂应该具备以下条件:①可强烈地吸收紫外线(尤其是波长为 290-400nm);②热稳定性好,即使在加工中也不会因热而变化,热挥发性小;③化学稳定性好,不与制品中材料组分发生不利反应;④混溶性好,可均匀地分散在材料中,不喷霜,不渗出;⑤吸收剂本身的光化学稳定性好,不分解,不变色;⑥无色、无毒、无臭;⑦耐浸洗;⑧价廉、易得。紫外线吸收剂按化学结构可分为以下几类:水杨酸酯类、苯酮类、苯并三唑类、取代丙烯腈类、三嗪类和其他类。 紫外线吸收剂用于塑料、涂料、染料、汽车挡风玻璃、化妆品、药物、防晒剂等。 以下是几种常见的紫外线吸收剂 商品名水杨酯苯酯 成分邻羟基苯甲酸苯酯 性能及用途无色结晶粉末。具有令人愉快的芳香气味(冬青油气味)。密度1.250g/cm3,溶点43,沸点(1.6kPa)173。易溶于乙醚、苯和氯仿,溶于乙醇,几乎不溶于水和甘油。含量99%。 本品为一种紫外线吸收剂,用于塑料制品,但吸收波长范围较窄。美国食品药物管理局批准用于接触食品的丙烯酸树脂用品。 包装及贮运纸桶内衬塑料袋包装。按一般化学品规定贮运。 商品名紫外线吸收剂UV-P 成分邻硝基苯胺、对甲苯酚的反应产物

[妆莱]对羟基苯乙酮:妆莱让你正确认知的防腐剂

对羟基苯乙酮:妆莱让你正确认知的防腐剂 在日常生活中,爱护肤的女性购买化妆品时,都只关心化妆品的品牌性和包装,通常在微博和小红书等平台上种草购买。因为每个人的皮肤肤质不同,所以适用的护肤品也大不相同。化妆品的原料往往也容易被忽视。你知道化妆品里有防腐剂吗?防腐剂对化妆品有利还是有弊?这就让你知道对羟基苯乙酮,对防腐剂有更新的认识。 对羟基苯乙酮:在化妆品中发挥优质作用 不知道什么时候化妆品公司开始在化妆品中宣传无添加香料的广告,无添加香料的无防腐剂成为重要的宣传手法。没有防腐剂的化妆品有什么害处呢? 化妆品原料多为油脂和营养成分,受微生物感染后发生变质腐败,产品质量下降。化妆品的变质常表现为混浊、沉淀及颜色变化。微生物代谢产生的酸性产物改变产品的酸度,产生的气体引起发泡发扬,影响产品的外观和气味。微生物产生毒素,可引起使用者皮肤的不适、发红甚至皮肤感染,严重时还可引起败血症。因此,化妆品的生产需要一定程度的防腐手段,增加陈列时间和开封后的使用时间。

防腐剂的作用主要是为了保持产品的新鲜度,避免细菌、真菌的感染。质量差的防腐剂会对皮肤造成损伤,经常接触会引起过敏等反应,因此我们的护肤品和化妆品所使用的防腐剂必须性质温和,成分稳定。对羟基苯乙酮是目前医药界最安全的高温辅助活性稳定剂,常作为防腐剂存在于化妆品中,人体对皮肤无害。据说很多化妆品和护肤品都不添加防腐剂,但是用对羟基苯乙酮代替防腐剂,皮肤完全没有副作用,因为对羟基苯乙酮这个成分的性质非常稳定。 妆莱控股:一家致力于防腐剂生产的优质企业 1998年成立,致力于医药原料生产、化妆品、日化产品的生产和代理加工业务。公司拥有日化系原料:氯苯甘醚、对羟基苯乙酮、辛酰羟肟酸、丹皮酚、阿魏酸、咖啡酸、玻色因、皮傲宁、二氢燕麦生物碱等系列产品。 2019年5月6日正式成立了妆莱控股公司(苏州),公司集化妆品、日化品的生产销售于一体。同年9月,创立了U-KATA品牌,御卡桃Ukata、妆莱控股公司的个人护理品牌致力于美白、抗老化、修复领域。技术团队有30多年的制药经验,以高纯度高效果的原料配方为中心,安全、高效、温和,为亚洲年轻女性提供安全、高效的护肤体验。妆莱致力于构建人文企业、绿色企业和良心企业,在对羟基苯乙酮的生产过程中严格控制所有环节,

【CN110078594A】一种对羟基苯乙醇的合成方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910316845.4 (22)申请日 2019.04.19 (71)申请人 新昌县泰如科技有限公司 地址 312500 浙江省绍兴市新昌县七星街 道上礼泉村大道西路213号 (72)发明人 赵德英  (74)专利代理机构 杭州千克知识产权代理有限 公司 33246 代理人 赵炎英 (51)Int.Cl. C07C 37/055(2006.01) C07C 39/11(2006.01) C07C 67/42(2006.01) C07C 69/16(2006.01) C07C 67/29(2006.01) C07C 69/157(2006.01)C07C 67/08(2006.01) (54)发明名称 一种对羟基苯乙醇的合成方法 (57)摘要 本发明公开了一种以苯乙醇为原料合成对 羟基苯乙醇的方法。首先,苯乙醇与酸酐进行酯 化反应得到苯乙醇酯;然后,苯乙醇酯与酸酐在 催化剂及助催化剂作用下进行亲电取代反应得 到4-酰基苯乙醇酯;再后,4-酰基苯乙醇酯与双 氧水在有机酸中及氧化催化剂作用下进行 Baeyer -Villiger氧化反应得到4-酰氧基苯乙醇 酯;最后,4-酰氧基苯乙醇酯在碱水中进行水解 反应得到对羟基苯乙醇。本发明合成对羟基苯乙 醇的工艺具有原料来源广泛,收率高,工艺简洁, 三废数量少, 易于实现工业化的优点。权利要求书1页 说明书6页CN 110078594 A 2019.08.02 C N 110078594 A

权 利 要 求 书1/1页CN 110078594 A 1.一种对羟基苯乙醇的合成方法,其特征在于,具体包括如下步骤: (1)苯乙醇与酸酐进行酯化反应得到苯乙醇酯; (2)苯乙醇酯与酸酐在催化剂及助催化剂作用下进行亲电取代反应得到4-酰基苯乙醇酯; (3)4-酰基苯乙醇酯与双氧水在有机酸中及氧化催化剂作用下进行Baeyer-Villiger 氧化反应得到4-酰氧基苯乙醇酯; (4)4-酰氧基苯乙醇酯在氢氧化钠水溶液中进行水解反应得到对羟基苯乙醇。 2.根据权利要求1所述的一种对羟基苯乙醇的合成方法,其特征在于,步骤(1)所述的酸酐为乙酸酐、丙酸酐、丁酸酐、异丁酸酐中的一种。 3.根据权利要求1所述的一种对羟基苯乙醇的合成方法,其特征在于,步骤(2)所述的催化剂为AlCl3、AlBr3、SnCl4、SnBr4、ZnCl2、ZnBr2、SnCl2、SnBr2中的一种。 4.根据权利要求3所述的一种对羟基苯乙醇的合成方法,其特征在于,步骤(2)中苯乙醇酯与催化剂的摩尔比例为1:1.2~3.0。 5.根据权利要求1所述的一种对羟基苯乙醇的合成方法,其特征在于,步骤(2)所述的助催化剂为乙酰氯、乙酰溴、丙酰氯、丙酰溴、丁酰氯、丁酰溴、异丁酰氯、异丁酰溴中的一种。 6.根据权利要求5所述的一种对羟基苯乙醇的合成方法,其特征在于,步骤(2)中苯乙醇酯与助催化剂的质量比例为1:0.01~0.05。 7.根据权利要求1所述的一种对羟基苯乙醇的合成方法,其特征在于,步骤(3)中4-酰基苯乙醇酯与双氧水的摩尔比例为1:1.2~5.0。 8.根据权利要求1所述的一种对羟基苯乙醇的合成方法,其特征在于,步骤(3)所述的有机酸为乙酸、丙酸、丁酸、异丁酸中的一种。 9.根据权利要求1所述的一种对羟基苯乙醇的合成方法,其特征在于,步骤(3)所述的氧化催化剂为乙酰丙酮钴、乙酰丙酮锰中的一种。 10.根据权利要求9所述的一种对羟基苯乙醇的合成方法,其特征在于,步骤(3)中4-酰基苯乙醇酯与氧化催化剂的摩尔比例为1:0.005~0.02。 2

相关文档
最新文档