石墨烯材料的研究进展论文

石墨烯材料的研究进展论文
石墨烯材料的研究进展论文

石墨烯材料的研究进展

摘要:石墨烯是近年被发现和合成的一种新型二维碳质纳米材料。由于其独特的结构

和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点。综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望。

关键词:石墨烯;纳米复合材料;制备;应用

1,材料的基本情况

石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。石墨烯的理论研究已有60多年的历史,一直被认为是假设性的结构,无法单独稳定存在。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯。石墨烯的出现颠覆了传统理论,使碳的晶体结构形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。

石墨烯的结构非常稳定。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯是构成石墨,木炭,碳纳米管和富勒烯碳同素异形体的基本单元。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管

石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。

石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂,石墨烯是世界上导电性最好的材料。

常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。

2,最热的应用合成

石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域.

根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。最小最快石墨烯晶体管。2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。

石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由

于其高传导性、高比表面积,可适用于作为电极材料助剂纳电子器件方面。室温下石墨烯具有10倍于商用硅片的高载流子迁移率,并且受温度和掺杂效应的影响很小,表现出室温亚微米尺度的弹道传输特性,这是石墨烯作为纳电子器件最突出的优势,使电子工程领域极具吸引力的室温弹道场效应管成为可能。

利用石墨烯加入电池电极材料中可以大大提高充电效率,并且提高电池容量。低成本石墨烯电池或将实现“一分钟充电”。

科学家发现,石墨烯还是目前已知导电性能最出色的材料。石墨烯的这种特性尤其适合于高频电路。

石墨烯还可以以光子传感器的面貌出现在更大的市场上,这种传感器是用于检测光纤中携带的信息的,现在,这个角色还在由硅担当,但硅的时代似乎就要结束。石墨烯作为光电传感器材料的优势就在于其透光性,可以作为制备新型触摸屏的核心部分――透明电极的材料。你想用上屏幕可以来回弯曲折叠的手机也可能变成现实。1月22日,记者从中科院重庆绿色智能技术研究院了解到,该院已经成功制备出国内首片15英寸的单层石墨烯,这样的大尺寸,达到了国内最高水平。它或将为我们的手机、电脑等电子产品带来一场革命。

量子隧穿效应是一种衰减波耦合效应,其量子行为遵守薛定谔波动方程,应用于电子冷发射、量子计算、半导体物理学、超导体物理学等领域。传统势垒材料采用氧化铝、氧化镁等材料,由于其厚度不均、容易出现孔隙和电荷陷阱,通常具有较高的能耗和发热量,影响到了器件的性能和稳定性,甚至引起灾难性失败。基于石墨烯在导电、导热和结构方面的优势,美国海军研究试验室(NRL)将其作为量子隧穿势垒材料的首选。

石墨烯还应用于晶体管、触摸屏、基因测序等领域,同时有望帮助物理学家在量子物理学研究领域取得新突破。碳海绵:碳纳米管和石墨烯共同支撑起无数个孔隙的三维多孔材料。

今年3月,浙江大学高分子系高超教授的课题组制备出了一种超轻气凝胶――它刷新了目前世界上最轻材料的纪录,弹性和吸油能力令人惊喜。

今年5月25日,记者从中科院上海应用物理研究所获悉,我国科学家在对石墨烯这种新兴纳米材料的生物效应,特别是呼吸毒性的研究中获得新进展,相关成果近日在《自然—亚洲材料》上发表。专家表示,由于碳源性纳米粒子是环境颗粒物(如PM 2.5)中主要组分之一,当辐射物质进入大气中时(如福岛事件),就有可能通过大气传播到很远的地方,并进入人体而造成比单纯的污染物更加剧烈的危害。由于这种潜在危害以局部“热点”形式存在,往往难以通过常规的评价放射剂量测试来进行正确评价,因而其负面效应值得引起关注和持续研究

3,材料的应用瓶颈

目前,作为导电性、机械性能都很优异的材料,素来有“黑金子”之称的石墨烯目前在中国市场上的价格近十倍于黄金,超过2000元/克。据此前相关报道称,石墨烯的相关产品目前在国外还处于研发和概念机阶段,尚未有大规模制造及商业化。

要石墨烯的化学性质得到广泛关注有一个不得不克服的障碍:缺乏适用于传统化学方法的样品。这一点未得到解决,研究石墨烯化学将面临重重困难。

如何综合运用各种石墨烯制备方法的优势,取长补短,解决石墨烯的难溶解性和不稳定性的问题,完善结构和电性能等是今后研究的热点和难点,也为今后石墨烯的制备与合成开辟新的道路。

石墨烯纳米复合材料的合成及其相关应用的研究已经取得了很大的进展,但要真正实现石墨烯纳米复合材料大规模的合成和产业化应用,还面临着大量问题和挑战。

4,材料的未来展望

未来得石墨烯势垒将有可能在隧穿晶体管、非挥发性磁性记忆体和可编程逻辑电路中率先得以应用。有望帮助物理学家在量子物理学研究领域取得新突破。目前的石墨烯生产由于种种原因,还仅停留于实验室阶段,而用石墨烯制造的传感器,目前也表现出了照片响应差、噪音多等问题。

今后石墨烯纳米复合材料的研究重点应该放在以下几个方面:

(1)不断改进复合材料的合成方法,丰富石墨烯纳米复合材料的种类,拓展复合材料的应用范围,使与石墨烯复合的纳米粒子向着多元化、系列化、均匀化、功能化的方向发展。

(2)对石墨烯进行可控功能化以提高其在聚合物中的分散性,充分发挥其在聚合物中的改性效果。

(3)对复合材料中石墨烯与纳米粒子之间相互作用的机理进行探讨,并使之系统化、理论化,以减少研究工作的盲目性。

(4)进一步探索复合材料中纳米粒子与石墨烯之间的协同效应可能产生的新性能和用途。相信随着研究的不断深入,必将研制出性能更加优越的新型石墨烯纳米复合材料,更好地发挥其在众多领域的独特作用,并尽快实现工业化大规模的生产与应用

石墨烯作为锂电池负极材料前景渺茫

石墨烯用作锂电负极产业化前景渺茫 2015-06-26 作者: 自从英国曼彻斯特大学物理学家安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)二人因为“二维石墨烯材料的开创性实验”共同获得2010年诺贝尔物理学奖之后,任何与石墨烯有关的新闻或者研究成果都受到了人们极大的关注。最近两年,石墨烯相关“产业”在国内也是如火如荼,与石墨烯有关的数十支概念股一再被爆炒。 国际上当然也没闲着,比如一则轰动性的新闻报道宣称:西班牙Graphenano公司(一家工业规模生产石墨烯的公司)同西班牙科尔瓦多大学合作研究出全球首个石墨烯聚合材料电池,储电量是目前市场最好产品的3倍,用此电池提供电力的电动车最多能行驶1000公里,而充电时间不到8分钟。 Graphenano公司相关负责人称,虽然此电池具有各种优良的性能,但成本并不高,该电池的成本将比一般锂离子电池低77%,完全在消费者承受范围之内。 这则消息在国内被很多媒体转载报道,在新能源汽车界和锂电界引起了很大反响。最近有不少朋友询问笔者:“会做石墨烯电池吗?石墨烯电池前景如何?什么时候量产?”笔者相信,很多锂电界同仁也有类似的问题。并不是所有人都有电化学或者材料学背景,关注石墨烯电池也可能是出于不同目的,所以他们都不会问一个最基本的问题:什么是石墨烯电池? 在本文中,笔者希望能够揭开笼罩在石墨烯电池上面的神秘面纱,让大家真正了解石墨烯在电化学储能方面的应用价值,而不是被一些非专业的记者或者炒作者蒙蔽,即便真相也许并不是那么鼓舞人心。 什么是石墨烯?先来看看维基百科的定义:“石墨烯(Graphene)是一种由碳原子以sp2杂化轨道?成六角型呈蜂巢晶格的平面薄膜,只有一??碳原子厚度的二?材料。石墨烯目前是世上最薄却也是最坚硬的纳米材料,它?缀跏峭耆?该鞯模?晃??.3%的光;导热系?蹈哌_5300W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率超过15000cm2/V·s,又比纳米碳管或硅晶体高,而电阻率只约10-8俜m,比铜或银更低,为世上电阻率最小的材料。”

神奇的石墨烯——石墨烯研究进展

神奇的石墨烯 ——石墨烯的研究进展 石墨烯简介 石墨烯(Graphene),又称单层石墨,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。 石墨烯一直被认为是假设性的结构,无法单独稳定存在[1],直至2004年,英国曼彻斯特大学物理学家安德烈?海姆和康斯坦丁?诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光";导热系数高达5300 W/m?K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V?s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω?cm,比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。 石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾),也可称为“单层石墨”。石墨烯被认为是平面多环芳香烃原子晶体。 石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为1.42?。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。另外,石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯内部电子受到的干扰也非常小。石墨烯是构成下列碳同素异形体的基本单元:石墨,木炭,碳纳米管和富勒烯。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。 石墨烯卷成圆桶形可以用为碳纳米管;另外石墨烯还被做成弹道晶体管(ballistic transistor)并且吸引了大批科学家的兴趣。在2006年3月,佐治亚理工学院研究员宣布, 他们成功地制造了石墨烯平面场效应晶体管,并观测到了量子干涉效应,并基于此结果,研究出以石墨烯为基材的电路. 石墨烯的问世引起了全世界的研究热潮。它是已知材料中最薄的一种,质料非常牢固坚硬,在室温状况,传递电子的速度比已知导体都快。石墨烯的原子尺寸结构非常特殊,必须用量子场论才能描绘。 既然石墨烯这么的神奇,有这么多的特性,那它的制备会不会特别难呢? 事实表明现在大规模的制造石墨烯还比较困难,但小规模的制造用于科研还是比较容易

石墨烯论文正稿

石墨烯研究进展 雷洪 (中国矿业大学化工学院江苏徐州 221116) 摘要:石墨烯是一种由碳原子构成的单层片状结构的新材料,由于碳原子组成的特殊结构使得石墨烯拥有一系类特殊性能,包括特殊的导热性质,电学性质,力学性质等等。特殊的性质使得石墨烯有在很多领域发展的潜力,因此引起了科学界的广泛关注,本文介绍了石墨烯的一些制备方法,性质和应用领域。 关键词:石墨烯制备方法特性应用领域 Advances in graphene research LEI hong (China University of Mining and technology,SCET Xuzhou Jiangsu 221116) Abstract:Graphene is a new material consisting of a single layer of carbon atoms sheet structure,Because of the special structure of carbon atoms makes graphene has a series of special class performance,Including special thermal properties,electrical properties and mechanical properties, etc. Special properties make graphene has the potential in many areas of development,so,it attracted wide attention in the scientific community. This article describes some of graphene preparation methods properties and applications. Keywords:graphene preparation methods properties application areas 0引言 自2004年Novoselov,K.S.等使用微机械剥离法从高定向热解石墨上剥离观测到石墨烯(Graphene)以来,碳元素同素异形体又增加了新的一员.随着2010年诺贝尔物理奖颁给英国曼彻斯特大学51岁的俄裔荷籍教授安德烈.海姆和曾是他的博士生36岁的俄裔英、俄双重国籍的教授康斯坦丁.诺沃肖洛夫之后,“石墨烯”这一专业名词突然进入人们的眼帘,其独特的性能和优良的性质引起了研究人员的极大关注,掀起了一波石墨烯的研究高潮。碳原子呈六角形网状键合的材料“石墨烯”具有很多出色的电特性、热特性以及机械特

多孔石墨烯材料的研究进展

多孔石墨烯材料的研究进展 摘要:多孔石墨烯材料同时结合了石墨烯和多孔材料的优点,具有独特的二维结构及优异的理化性质,是一种具备巨大应用潜力的新型纳米碳质材料。然而单一的石墨烯材料很难充分满足各个领域的应用需求,且石墨烯片层容易堆叠和团聚,制约了其实际应用的发展。通过掺杂、改性、组装和复合等手段制备石墨烯衍生物及石墨烯纳米复合物等石墨烯基材料可以丰富并优化石墨烯的性质,拓展并提升石墨烯的性能,对于促进石墨烯的实际应用具有重大意义。作为一种新型石墨烯衍生物,多孔石墨烯以其二维片状结构、超高比表面积、开放的能带间隙、丰富的活性位点等特性吸引了研究者的很大关注。 关键词:石墨烯;杂化;石墨烯衍生物 引言 如果以化学家的视角将人类和世界写成一本书,碳元素必将会跻身关键词之列:从碳基生命到无机碳素,从史前壁画到太空天梯,从钻木取火到蒸汽革命,再从笔墨纸砚书酒花到柴米油糖酱醋茶,碳的身影无处不在,不可替代。作为世界上最为普遍和奇妙的元素,碳变化多端的魅力归因于其电子轨道杂化方式的多样性及其特殊的成键能力和成键方式。碳原子含有四个价电子,往往以sp,sp2和sp3等杂化形式构成具有不同性质的单质或化合物。以碳单质为例,碳元素存在多种结构、性质迥异的同素异形体。其中sp杂化形式的卡宾碳异常活泼,不易单独稳定存在;sp3杂化的金刚石稳定、超硬、价高,化学修饰较困难;sp2杂化的石墨、石墨烯化学修饰较易且具有独特的电子共轭体系,此外还存在杂化形式介于sp2杂化和sp3杂化之间的富勒烯及包含多种杂化形式碳原子的无定形碳等等。碳家族的众多成员极大丰富了碳质材料的性质,为其在各领域的广泛应用奠定了基础[1]。 1石墨烯及石墨烯基材料 石墨烯即单层或少层石墨薄片,是sp2杂化碳原子按照蜂窝状六元环结构排列而成的二维平面网络结构。2004年,曼彻斯特大学的Novoselov和Geim教授研究组利用机械剥离法成功得到独立存在的单原子层石墨烯,两位物理学家因这一开创性的发现在2010年共同获得诺贝尔物理学奖。然而当我们认真地追根溯源时,会发现石墨烯并非一颗横空出世的新星,围绕石墨烯的讨论已经在科学界

石墨烯技术产业发展现状与趋势

摘要:2013年1月,石墨烯入选欧盟两项“未来和新兴技术旗舰项目”之一(另一项为“人类大脑工程”),欧盟委员会计划在未来十年投入10亿欧元开展石墨烯应用技术研发与产业化,再一次激起了各界对这一革命性材料的关注。 关键字:石墨烯;态势;趋势;技术转移;石墨烯;态势;趋势;技术转移;石墨烯;技术转化;产业化 石墨烯(Graphene)又称单层墨,是一种新型的二维纳米材料,也是目前发现的硬度最高、韧性最强的纳米材料。因其特殊纳米结构和优异的物理化学性能,石墨烯在电子学、光学、磁学、生物医学、催化、储能和传感器等领域应用前景广阔,被公认为21世纪的“未来材料”和“革命性材料”。英国两位科学家因发现从石墨中有效分离石墨烯的方法而获得2010年诺贝尔奖,引起了科学界和产业界的高度关注,石墨烯相关专利开始呈现爆发式增长(2010年353件,2012年达1829件)。世界各国纷纷将石墨烯及其应用技术研发作为长期战略予以重点关注,美国、欧盟各国和日本等国家相继开展了大量石墨烯研发计划和项目。总体看来,石墨烯技术开始进入快速成长期,并迅速向技术成熟期跨越。全球石墨烯技术研发布局竞争日趋激烈,各国的技术优势正在逐步形成,但总体竞争格局还未完全形成。具体发展态势如下: 态势一:制备与改性的突破为产业化提供了技术支撑 一方面,石墨烯制备技术取得突破。石墨烯制备技术与设备是石墨烯生产的基础。一直以来,石墨烯大规模制备技术是阻碍其产业化的最重要因素。近来,石墨烯制备技术取得了若干突破,目前已形成自上而下(Top-Down)和自下而上(Bottom-Up)两种途径,开发出了从简易低成本制造到大面积量产工艺的多种方法,包括:机械剥离、氧化还原法、化学气象沉积(CVD)、外延生长、有机合成、液相剥离等。这些方法各有优缺点,需要根据不同的需求进行选择(表1)。其中,氧化还原法因成本低且易实现,有望成为最具发展前景的制备方法之一。同时,各种方法

石墨烯(论文)

石墨烯的制备,特征,性能及应用的研究 内蒙古工业大学化学工程与工艺徐涛 010051 摘要: 石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文介绍了近几年石墨烯的研究进展, 包括石墨烯的合成、去氧化、化学修饰及应用前景等方面的内容。石墨烯由于其特殊的电学、热学、力学等性质以及在纳米电子器件、储能材料、光电材料等方面的潜在应用,引起了科学界新一轮的碳! 热潮。分析了近1 年来发表在Science、Nature 等期刊上的关于石墨烯的论文, 对石墨烯制备、表征及应用方面的最新进展进行了综述, 并对各种制备技术及表征手段进行了分析评价。 关键字: 石墨烯, 制备, 表征, 应用, 石墨烯氧化石墨烯(GO) 功能化石墨烯传感器 碳是最重要的元素之一,它有着独特的性质,是所有地球生命的基础。纯碳能以截然不同的形式存在,可以是坚硬的钻石,也可以是柔软的石墨。碳材料是一种地球上较普遍而特殊的材料, 它可以形成硬度较大的金刚石, 也可以形成较软的石墨. 近20 年来, 碳纳米材料一直是科技创新的前沿领域, 1985 年发现的富勒烯[1]和1991 年

发现的碳纳米管(CNTs)[2]均引起了巨大的反响, 兴起了研究热潮. 2004 年, Manchester 大学的Geim 小组[3]首次用机械剥离法获得 了单层或薄层的新型二维原子晶体——石墨烯. 石墨烯的发现, 充 实了碳材料家族,形成了从零维的富勒烯、一维的CNTs、二维的石墨 烯到三维的金刚石和石墨的完整体系. 石墨烯是由碳原子以sp2 杂 化连接的单原子层构成的, 其基本结构单元为有机材料中最稳定的 苯六元环, 其理论厚度仅为0.35 nm, 是目前所发现的最薄的二维材料[3]. 石墨烯是构成其它石墨材料的基本单元, 可以翘曲变成零维 的富勒烯, 卷曲形成一维的CNTs[4-5]或者堆垛成三维的石墨(图1). 这种特殊结构蕴含了丰富而奇特的物理现象, 使石墨烯表现出许多 优异的物理化学性质, 如石墨烯的强度是已测试材料中最高的, 达130 GPa[6], 是钢的100 多倍; 其载流子迁移率达1.5×104 cm2〃V-1〃s-1 [7], 是目前已知的具有最高迁移率的锑化铟材料的2 倍, 超过商用硅片迁移率的10 倍, 在特定条件下(如低温骤冷等), 其迁移率甚至可高达2.5×105 石墨烯的热导率可达5×103W〃m-1〃K-1, 是金刚石的3 倍[. 另外, 石墨烯还具有室温量子霍尔效应(Hall effect)[10]及室温铁磁性[11]等特殊性质. 石墨烯的这些优异性引 起科技界新一轮的“碳”研究热潮, 已有一些综述性文章从不同方面对石墨烯的性质进行了报道.,本文仅根据现有的文献报道对石墨烯 的制备方法、功能化以及在化学领域中的应用作一综述

石墨烯材料的研究进展论文

石墨烯材料的研究进展 摘要:石墨烯是近年被发现和合成的一种新型二维碳质纳米材料。由于其独特的结构 和新奇的物化性能,在改善复合材料的热性能、力学性能和电性能等方面具有很大的潜力,已成为纳米复合材料研究的热点。综述了石墨烯纳米复合材料的制备与应用研究进展,并对石墨烯纳米复合材料的发展前景进行了展望。 关键词:石墨烯;纳米复合材料;制备;应用 1,材料的基本情况 石墨烯是碳原子紧密堆积成单层二维蜂窝状晶格结构的碳质材料,是构成其它碳同素异形体的基本单元。石墨烯的理论研究已有60多年的历史,一直被认为是假设性的结构,无法单独稳定存在。2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫用胶带反复剥离高定向热解石墨的方法,得到了稳定存在的石墨烯。石墨烯的出现颠覆了传统理论,使碳的晶体结构形成了从零维的富勒烯、一维的碳纳米管、二维的石墨烯到三维的金刚石和石墨的完整体系。 石墨烯的结构非常稳定。石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。石墨烯是构成石墨,木炭,碳纳米管和富勒烯碳同素异形体的基本单元。完美的石墨烯是二维的,它只包括六边形(等角六边形); 如果有五边形和七边形存在,则会构成石墨烯的缺陷。12个五角形石墨烯会共同形成富勒烯。石墨烯卷成圆桶形可以用为碳纳米管 石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。 石墨烯目前是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高于碳纳米管和金刚石,石墨烯是迄今为止世界上强度最大的材料,据测算如果用石墨烯制成厚度相当于普通食品塑料包装袋厚度的薄膜(厚度约100 纳米),那么它将能承受大约两吨重物品的压力,而不至于断裂,石墨烯是世界上导电性最好的材料。 常温下其电子迁移率比纳米碳管或硅晶体高,而电阻率比铜或银更低,为目前世上电阻率最小的材料。因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。 2,最热的应用合成 石墨烯的应用范围广阔。根据石墨烯超薄,强度超大的特性,石墨烯可被广泛应用于各领域. 根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。最小最快石墨烯晶体管。2011年4月7日IBM向媒体展示了其最快的石墨烯晶体管,该产品每秒能执行1550亿个循环操作,比之前的试验用晶体管快50%。 石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由

石墨烯的发展概况

2015年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:复合材料专题报告学生所在院(系):航天学院 学生所在学科:工程力学 学生姓名:刘猛雄 学号:15S018001 学生类别:学术型 考核结果阅卷人

1 石墨烯的制备 (3) 1.1 试剂 (3) 1.2 仪器设备 (3) 1.3 样品制备 (4) 2 石墨烯表征 (4) 2.1 石墨烯表征手段 (4) 2.2 石墨烯热学性能及表征 (6) 2.2.1 石墨烯导热机制 (6) 2.2.2石墨烯热导率的理论预测与数值模拟 (6) 2.2.3 石墨烯导热性能的实验测定 (7) 3 石墨烯力学性能研究 (9) 3.1石墨烯的不平整性和稳定性 (10) 3.2 石墨烯的杨氏模量、强度等基本力学性能参数的预测 (11) 3.3石墨烯力学性能的温度相关性和应变率相关性 (12) 3.4 原子尺度缺陷和掺杂等对石墨烯力学性能的影响 (13)

石墨烯的材料与力学性能分析石墨烯以其优异的性能和独特的二维结构成为材料领域研究热点,石墨烯是一种由单层碳原子紧密堆积成二维蜂窝状晶格结构的碳质新材料。2004年Geim等用微机械剥离的方法成功地将石墨层片剥离, 观察到单层石墨层片, 这种单独存在的二维有序碳被科学家们称为石墨烯。2004 年英国科学家首次制备出了由碳原子以sp2杂化连接的单原子层构成的新型二维原子晶体—石墨烯,其厚度只有0.3354 nm,是目前世界上发现最薄的材料。石墨烯具有特殊的单原子层结构和新奇的物理性质:强度达130GPa、热导率约5000 J/(m2K2s)、禁带宽度乎为零、载流子迁移率达到23105 cm2/(V2s)、高透明度(约97.7%)、比表面积理论计算值为2630 m2/g,石墨烯的杨氏模量(1100GPa)和断裂强度(125GPa)与碳纳米管相当,它还具有分数量子霍尔效应、量子霍尔铁磁性和零载流子浓度极限下的最小量子电导率等一系列性质。在过去几年中,石墨烯已经成为了材料科学领域的一个研究热点。为了更好地利用石墨烯的这些特性,研究者采用了多种方法制备石墨烯。随着低成本可化学修饰石墨烯的出现,人们可以更好地利用其特性制备出不同功能的石墨烯复合材料。 1 石墨烯的制备 石墨烯的制备从最早的机械剥离法开始逐渐发展出多种制备方法,如:晶体外延生长法、化学气相沉积法、液相直接剥离法以及高温脱氧和化学还原法等。我国科研工作者较早开展了石墨烯制备的研究工作。化学气相沉积法是一种制备大面积石墨烯的常用方法。目前大多使用烃类气体(如CH4、C2H2、C2H4等)作为前驱体提供碳源,也可以利用固体碳聚体提供碳源,如Sun等利用化学气相沉积法将聚合物薄膜沉积在金属催化剂基体上,制备出高质量层数可控的石墨烯。与化学气相沉积法相比,等离子体增强化学气相沉积法可在更低的沉积温度和更短的反应时间内制备出单层石墨烯。此外晶体外延生长法通过加热单晶6H-SiC 脱除Si,从而得到在SiC表面外延生长的石墨烯。但是SiC晶体表面在高温过程中会发生重构而使得表面结构较为复杂,因此很难获得大面积、厚度均一的石墨烯。而溶剂热法因高温高压封闭体系下可制备高质量石墨烯的特点也越来越受研究人员的关注。相比于其他方法,通过有机合成法可以制备无缺陷且具有确定结构的石墨烯纳米带。 1.1 试剂 细鳞片石墨(青岛申墅石墨制品厂,含碳量90%-99.9%,过200 目筛),高锰酸钾(KMnO4,纯度≥99.5%),浓硫酸(H2SO4, 纯度95.0%-98.0%),过氧化氢(H2O2, 纯度≥30%), 浓盐酸(HCl, 纯度36.0%-38.0%)均购自成都市科龙化工试剂厂;氢氧化钠(NaOH, 纯度≥96%)购自天津市致远化学试剂有限公司;水合肼(N2H42H2O, 纯度≥80%)购自成都联合化工试剂研究所. 实验用水为超纯水(>10 MΩ2cm). 1.2 仪器设备 恒温水浴锅(DF-101型,河南予华仪器有限公司), 电子天平(JT2003型,余姚市金诺天平仪器有限公司),真空泵(SHZ-D(Ⅲ)型,巩义市瑞德仪器设备有限公司),超声波清洗器(KQ5200DE型, 昆山市超声仪器有限公司),离心机(CF16RX型, 日本日立公司),数字式pH计(PHS-2C型,上海日岛科学仪器有限公司),超纯水系统(UPT-II-10T型,成都超纯科技有限公司)。

前沿讲座石墨烯研究进展

石墨烯 世界2010年最大的科学笑话? 是“石墨薄片”获2010世界诺贝尔物理学奖? 获奖理由是说:获奖科学家用小学生使用的铅笔,在纸上涂抹下铅笔芯中的石墨粉,再用胶粘纸,进行反复粘贴,石墨粉变薄,而能创造出天下奇迹。也就是石墨粉越薄,强度越大,强得能超过钢铁100倍?越薄越能耐高温?越薄越有超导电性?而没有任何事实根据支持,竟然获奖。 “石墨薄片”获奖,被推荐和评选为2010世界最大笑的理由是:因为在宇宙间,在世界上找不到,永远也找不到,物质越薄,强度越大,越能耐高温,电阻越小的物质和事实存在,诺贝尔奖又是世界上的大事。而宇宙间有数不尽的大自然机器早已作了上百亿年的试验,证据事实数据堆山塞海。人类也进行了数不尽的物质材料验证实验,事实证据也无处不在。无不说明在地球上,人世间绝对没有,物质越薄强度越大……的物质和事实存在。难道宇宙和人类早已进行了千年,万年……. 的辛苦实验,还不如用铅笔在纸上毫无事实根据的胡乱画圈?而世界顶级的科学家们,则对大自然的事实视而不见,就此胡乱的相信和评选.....,还有我们更多无知的吹捧,难道不是天下的大笑话?如果您不相信可以去自作小学生的实验,去看一看变相批评瑞典皇家科学院,2010年物理学评审委员会的建议文章,就会更明白。当

然还有在自由的环境下,用“石墨诺贝尔笑话奖”这个题目就能看到成千上万的科学精英们,对此问题是怎么说的?又是怎么样去看?

科学家将石墨烯聚光能力提高20倍 据美国物理学家组织网8月30日报道,英国科学家表示,他们对石墨烯的最新研究表明,让石墨烯与金属纳米结构结合可将石墨烯的聚光能力提高20倍,改进后的石墨烯设备有望在未来的高速光子通讯中用作光敏器,让速度为现在几十倍的超高速互联网成为现实。相关研究发表于《自然—通讯》杂志上。 2010年,英国曼彻斯特大学的安德烈·盖姆和康斯坦丁·诺沃谢洛夫因在石墨烯研究领域的突出贡献而荣膺诺贝尔奖。现在,他们和剑桥大学科学家做出了这项最新发现,为提高互联网和其他通讯设施的速度铺平了道路。 此前科学家们就发现,将两根紧密排列的金属丝放在石墨烯上方,用光照射于其上会产生电力,这个简单的设备其实是一个基本的太阳能电池。更重要的是,因为石墨烯内的电子拥有高流动性和高速度等独特属性,石墨烯设备处理数据的速度可能是目前最快的互联网光缆的几十倍甚至几百倍。 然而,迄今为止,这些极富应用潜力的设备在实用过程中一直遭遇聚光效率低下这一瓶颈,石墨烯只能吸收照射于其上的3%的光线来产生电力,其余光线全成了“漏网之鱼”。

石墨烯材料研究进展

石墨烯材料研究进展 化学工程与工艺 0909403068 王月 摘要:石墨烯具有非凡的物理及电学性质,如高比表面积、高导电性、高机械强度、易于修饰及大规模生产等。2004年石墨烯的成功剥离,使石墨烯成为形成纳米尺寸晶体管和电路的“后硅时代”的新潜力材料,其产品研发和应用目前正在全球范围内急剧增加。本文通过对石墨烯的特性、制备和应用现状几方面进行了综述。 关键词:石墨烯制备应用进展 石墨烯是碳 原子紧密堆 积成单层二 维蜂窝状晶 格结构的一 种碳质新材 料,是构筑 零维富勒 烯、一维碳 纳米管、三 维体相石墨等sp2杂化碳(即碳以双键相连或连接其他原子)的基本结构单元,如图1所示。石墨烯的理论研究已有60多年的历史,但直至2004年,英国曼彻斯特大学物理学家安德烈〃海姆和康斯坦丁〃诺沃肖洛夫,

利用胶带剥离高定向石墨的方法获得真正能够独立存在的二维石墨 烯晶体,并发现了石墨烯载流子的相对论粒子特性,才引发石墨烯研 究热。这以后,制备石墨烯的新方法层出不穷,人们发现,将石墨烯 引入工业化生产的领域已为时不远了[1]。 1石墨烯的特性 石墨烯是零带隙半导体,有着独特的载流子特性,为相对论力学 现象的研 究提供了一条重要 途径;电子在石墨 烯中传输的阻力很 小,在亚微米距离 移动时没有散射,具 有很好的电子传输 性质;石墨烯韧性 好,它们每100nm 距离上承受的最大 压力可达2.9N [2],是迄今为止发现的力学性能最好的材料之一。石墨烯特有的 能带结构使空穴和电子相互分离,导致了新电子传导现象的产生,如 量子干涉效应、不规则量子霍尔效应。Novoselov 等观察到石墨烯具 有室温量子霍耳效应,使原有的温度范围扩大了10倍。石墨烯在很 多方面具备超越现有材料的特性,具体如图 2 [3]所示,日本企业的 一名技术人员形容单层石墨碳材料“石墨烯”是“神仙创造的材料”。 图2 石墨烯的特点

石墨烯力学性能研究进展

石墨烯力学性能研究进展* 韩同伟‘贺鹏飞2,t骆英‘张小燕“ 江苏大学土木工程与力学学院,江苏镇江212013 2同济大学航空航天与力学学院,上海200092 3江苏大学化学化工学院,江苏镇江212013 摘要石墨烯是近年来发现的由单层碳原子通过共价键结合而成的具有规则六方对称的理想二维晶体,是继富勒烯和碳纳米管之后的又一种新型低维碳材料.由于具有非凡的电学、热学和力学性能以及广阔的应用前景,石墨烯被认为是具有战略意义的新材料,近年来迅速成为材料科学和凝聚态物理等领域最为活跃的研究前沿.本文简要介绍了研究石墨烯力学性能的实验测试、数值模拟和理论分析方法,重点综述了石墨烯力学性能的最新研究进展,主要包括二维石墨烯的不平整性和稳定性,石墨烯的杨氏模量、强度等基本力学性能参数的预测,石墨烯力学性能的温度相关性和应变率相关性、原子尺度缺陷和掺杂等对力学性能的影响以及石墨烯在纳米增强复合材料和微纳电子器件等领域的应用,最后对石墨烯材料与结构的力学研究进行了展望. 关键词石墨烯,力学性能.分子动力学,缺陷 1引言 石墨烯(graphene),又称为二维石墨片,是由单层碳原子通过共价键(碳5pz杂化轨道所形成的二键、二键)结合而成的具有规则六方对称的理想二维晶体11-21,如图1所示,于2004年由英国曼彻斯特大学的安德烈·盖姆(Andre Geim)和康斯坦丁·诺沃肖罗夫(Konstantin Novoselov)首先发现[fll,是继富勒烯(Cso)和碳纳米管(CNTs)之后的又一种新型低维碳材料,其厚度仅为头发丝直径的20万分之一。约为0.335 nm,是目前发现的最薄的层状材料. 在石墨烯中,每个碳原子通过很强的0键(自然界中最强的化学键)与其他3个碳原子相连接,这些很强的碳一碳键致使石墨烯片层具有极其优异的力学性质和结构刚性.碳原子有4个价电子,每个碳原子都贡献一个未成键的兀电子。这些兀电子与平面成垂直的方向可形成二轨道,二电子可在晶体中自由移动,赋予石墨烯良好的导电性.但这些面外离位的二键与相邻层内的二键的层间相互作用远远小于一个6键,即片层间的作用力较弱,因此石墨层间很容易互相剥离,形成薄的石墨片.石墨烯的碳基二维晶体是形成sp“杂化碳质材料的基元,它可以包裹起来形成零维的富勒烯(fullerene, Cso),卷起来形成一维的纳米碳管(carbon nanotube, CNT),层层堆积形成三维的石墨(graphite),石墨烯是构建众多碳质材料的基本结构单元[[3J,如图2所示. 由于独特的二维结构以及优异的晶体品质,石墨烯具有十分优异的电学、热学、磁学和力学性能fl-$1,有望在高性能纳米电子器件、复合材料、场发射材料、气体传感器、能量存储等领域获得广泛应用.石墨烯是零隙半导体,具有一般低维碳材料所无法比拟的载流子特性,是其备受关注的重要原因之一石墨烯成为凝聚态物理学中独一无二的描述无质量狄拉克一费米子(masslessDirac Fermions)的模型体系,这种现象导致了许多新奇的电学性质因此,石墨烯为相对论量子电动力学现象的研究提供了重要借鉴.研究还表明,石墨烯的热导率和机械强度(5kW}m-1}K-1和1.06 TPa)可与宏观石墨材料相媲美,断裂强度与碳纳米管相当f7-sl.此外,石墨烯为制备集超高导电、导热及机械性能等各种优越性能于一体的新型功能复合材料提供了一种理想的纳米填料[fl。一’‘].因此,石墨烯被誉为新一代战略材料,近年来迅速成为材料科学和凝聚态物理领域最为活跃的研究前沿[2,1“一’51. 2009年12月,Science杂志将石墨烯研究取得新进展”列为2009年十大科技进展之一2010年10月,英国曼彻斯特大学的两位科学家安德烈·盖姆和康斯坦丁.诺沃肖罗夫因在二维空间材料石墨烯方面的开创性实验而获得诺贝尔物理学奖,由此引发石墨烯新的研究热潮.

石墨烯的研究进展概述

龙源期刊网 https://www.360docs.net/doc/2011490937.html, 石墨烯的研究进展概述 作者:兰耀海 来源:《建材发展导向》2014年第03期 摘要:由于石墨烯具有独特的结构和优越的性能,现己逐渐应用于电子材料、薄膜材 料、储能材料、液晶材料、催化材料等先进的功能材料领域。石墨烯复合材料是石墨烯应用研究中的重要领域,近年来已成为材料研究的热门领域。文章主要对石墨烯的物理化学性质、制备方法、石墨烯复合材料以及应用领域进行简单总结,并对未来石墨烯复合材料的发展做一展望。 关键词:石墨烯;复合材料;研究进展 1 石墨烯的物理化学性质 石墨烯是一种由碳原子构成的单层片状结构的新材料,是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,是只有一个碳原子厚度的二维材料。石墨烯一直被认为是假设性的结构,无法单独稳定存在,直到2004年,英国科学家成功地在实验中从石墨中分离出石墨烯,从而证实它可以单独存在。石墨烯具有特殊的单原子层结构和奇特的物理性质:强度达130GPa、热导率约5000J/(m·K·S),禁带宽度几乎为零、载流子迁移率达到2×105cm2/(V·s),具有极高的透明度(约为97.7%)、表面积的理论计算值为2630m2/g,石墨烯的杨氏模量(1100GPa)和断裂强度(125GPa)与碳纳米管相当,它还具有分数量子霍尔效应、量子霍尔铁磁性和零载流子浓度极限下的最小量子电导率等一系列优良性质。 石墨烯是一种由碳原子构成的单层片状结构的新材料。是世上最薄却也是最坚硬的纳米材料,它几乎是完全透明的,只吸收大约2.3%的光。石墨烯的物理性能优越可以翘曲成零维的富勒烯,卷成一维的碳纳米管或者堆垛成三维的石墨。石墨烯的基本结构单元为有机材料中最稳定的苯六元环,理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,这赋予石墨烯良好的导电性。 2 石墨烯的制备方法 自从2004年曼彻斯特大学的研究小组发现了单层及薄层石墨烯以来,石墨烯的制备引起学术界的广泛关注。由于二维晶体结构在有限温度下是极不稳定,而考察石墨烯的基本性质并充分发挥其优异性能需要高质量的单层或薄层石墨烯,这就要求寻找一种石墨烯的制备方法来满足日益增长的研究及应用需求。 目前石墨烯的制备方法主要划分为三类:第一类为化学剥离法,这种方法通过制备氧化石墨作为前躯体,使用化学还原,溶剂热还原,热膨胀还原等手段得到对应的石墨烯。第二类为

石墨烯研究现状及应用前景

石墨烯材料研究现状及应用前景 崔志强 (重庆文理学院材料与化工学院,重庆永川402160) 摘要:近几年来, 石墨烯材料以其独特的结构和优异的性能, 在化学、物理和材料学界引起了轰动。本文引用大量最新的参考文献,阐述了石墨烯的制备方法如机械剥离法、取向附生法、加热 SiC 法、爆炸法、石墨插层法、热膨胀剥离法、电化学法、化学气相沉积法、氧化石墨还原法、球磨法等,分析了各种制备方法的优缺点。论述了石墨烯材料在透明电极、传感器、超级电容器、能源储存、复合材料等方面的应用,同时简要分析了石墨烯材料研究的现实意义,展望了其未来的发展前景。 关键词:石墨烯材料;制备方法;现实意义;发展现状;应用前景 中图分类号: TQ323 文献标识码:A 文章编号: Research status and application prospect of graphene materials Cui Zhiqiang (Faculty of materials and chemical engineering, Chongqing Academy of Arts and Sciences, Yongchuan, Chongqing 402160) Abstract: In recent years, graphene has caused a sensation in chemical, physical and material science due to its unique structure and excellent properties. Cited in this paper a large number of the latest references, expounds the graphene preparation methods such as layer method, thermal mechanical stripping method, orientation epiphytic method, heating SiC method, explosion, graphite intercalation expansion stripping method, electrochemical method, chemical vapor phase deposition method, graphite oxide reduction method, ball milling method, and analyze the advantages and disadvantages of various preparation methods. This paper discusses the application of graphene materials in transparent electrodes, sensors, super capacitors, energy storage and composite materials, and briefly analyzes the practical significance of the study of graphene materials, and gives a prospect of its future development. Keywords: graphene materials; preparation methods; practical significance; development status; application prospect 0 引言 1985 年英美科学家发现富勒烯[1]和1991 年日本物理学家Iijima 发现碳纳米管[2],加之英国曼彻斯特大学科学家于2004 年成功制备石墨烯[3]之后,金刚石(三维)、石墨(三维)、石墨烯(二维)、碳纳米管(一维)和富勒烯(零维)组成了一个完整的碳系材料“家族”。从理论上说,石墨烯是除金刚石外所有碳晶体的基本结构单元,如果从石墨烯上“剪”出不同形状的薄片,进一步就可以包覆成零维的富勒烯,卷曲成一维的碳纳米管,堆叠成三维的石墨,如图1 所示[4]。由于石墨烯优异的电学、热学、力学性能,近年来各国科研人员对其的研究日益增长,已经是材料科学领域的研究热点之一。2010 年诺贝尔物理学奖揭晓[5-6]之后,人们对石墨烯的研究和关注越来越多,新的发现不断涌现。在不断深入研究石墨烯的制备方法和性质的过程中,其应用领域也在不断扩大。由于石墨烯缺乏带隙以及在室温下的超高电子迁移率、低于银铜的电阻率、高热导率[7]等,在光电晶体管、生化传感器、电池电极材料和复合材料方面有着很高

石墨烯相变材料论文

石墨烯相变材料的研究 摘要:随着热管理及热存储技术的发展,储热技术逐渐扮演着越来越重要的角色,于此同时寻找高性能的储热材料也成为了研究热潮。近年来,相变材料的发展为储热技术带来了福音,相比于其他热导率低,储热性能差的储热材料,相变材料有着天然的优势。而在相变材料中,石墨烯相变材料是如今发现的储热性能最优异的相变材料,通过将石墨烯作为填充材料,相变材料的储热能力大大提升。 关键词:热存储相变材料储热材料石墨烯 前言: 在热能的存储和利用过程中,常常存在于在供求之间在时间上和空间上不匹配的矛盾,如太阳能的间歇性,电力负荷的峰谷差,周期性工作的大功率器件的散热和工业余热利用等。相变储能材料通过材料相变时吸收或释放大量热量实现能量的储存和利用,可有效解决能量供求在时间和空间上不匹配的矛盾。因此,相变储能技术被广泛应用于具有间歇性或不稳定性的热管理领域,如航空航天大功率器件的管理,周期性间歇式电子工作器件的散热,太阳能利用,电力的“移峰填谷”,工业废热余热的回收利用,民用建筑的采暖及空调的节能领域等。近年来,相变储能技术成为能源科学和材料科学领域中一个十分活跃的前沿研究方向。相变储能材料具有储能密度大储能释能过程近似恒温的特点。但多数相变储能材料存在热导率低,换热性能差等缺点。采用具有高导热,低密度,耐腐蚀和化学稳定性好等优点的碳材料对其进行强化传热,可有效提高系统换热效率。常用的固-液定型相变储能材料实际上是一类复合相变材料,主要是由两种成分组成:一是工作物质;二是载体基质。工作物质利用它的固-液相变进行储能工作物质可以是各种相变材料,如石蜡,硬脂酸,水合盐,无机盐和金属及其合金材料。载体基质主要是用来保证相变材料的不流动性和可加工性,并对其进行强化传热。 石墨烯是一种新型碳材料,它具有由单层碳原子紧密堆积而成的二维蜂窝状紧密堆积结构。它是构建其他维度炭质材料的基本单元。石墨烯本身具有非常高的导热系数,并兼具密度小,膨胀系数低和耐腐蚀等优点有望成为一种理想型散热材料。将石墨烯作为强化传热载体,有可能克服单一相变材料热导率低的缺点,缩短复合体系热响应时间,提高换热效率实现复合材料传热和储热一体化。 本文通过查阅大量文献以及亲自做实验得出了一些数据和结论。 正文 1.根据同济大学田胜力、张东、肖德炎、向阳等人2006年在《材料开发与应用》上发表的文章,他们对脂肪酸相变储能材料的热循环行为进行了系统的研究试验。试验选用了化学纯的癸酸、月桂酸、肉豆蔻酸和棕榈酸等四种脂肪酸为研究对象,利用差示扫描量热技术(DSC)测定了经过56次、112次、200次和400次反复热循环的相变材料的融化温度和融化潜热,加速热循环试验结果显示:癸酸融化温度范围变窄了4℃左右,肉豆蔻酸融化温度范围变宽了3℃左右,月桂酸和棕榈酸的融化温度范围变化不明显,其中以棕榈酸的融化温度变化最小。

基于石墨烯吸波材料的研究进展

Material Sciences 材料科学, 2018, 8(3), 222-234 Published Online March 2018 in Hans. https://www.360docs.net/doc/2011490937.html,/journal/ms https://https://www.360docs.net/doc/2011490937.html,/10.12677/ms.2018.83024 Research Progress of Microwave Absorbing Materials Based on Graphene Xingjun Lv, Yingrui Wu, Hang Li, Wei Li School of Civil Engineering, Dalian University of Technology, Dalian Liaoning Received: Mar. 2nd, 2018; accepted: Mar. 21st, 2018; published: Mar. 28th, 2018 Abstract Graphene, as a new type carbon material, due to its excellent physical and chemical properties, has become a research focus. In this paper, the electromagnetic wave absorbing properties and mechanism of graphene composites are reviewed. The development of graphene based composite absorbing materials is expected. Keywords Graphene, Absorbing Material, Composite 基于石墨烯吸波材料的研究进展 吕兴军,武应瑞,李航,李威 大连理工大学土木工程学院,辽宁大连 收稿日期:2018年3月2日;录用日期:2018年3月21日;发布日期:2018年3月28日 摘要 石墨烯作为一种新型的碳材料,由于其优良的物理化学性能成为研究的热点。本文综述了石墨烯复合材料的电磁波吸收性能和机理等,并对石墨烯基复合吸波材料的发展做了展望。 关键词 石墨烯,吸波材料,复合材料

相关文档
最新文档