流体管路流动阻力系数的测定实验报告

流体管路流动阻力系数的测定实验报告
流体管路流动阻力系数的测定实验报告

流体管路流动阻力系数的测定 (41007070 兰小霞)

一、 实验目的

1、 掌握层流流体经直路和管件时阻力损失的测定方法。通过实验了解流体流动中能量损失的变化规律。

2、 测定直管摩擦系数λ与雷诺准数Re 的关系。

3、 测定流体流经闸阀等管件时的局部阻力系数ξ。

4、 学会压差计和流量计的使用方法。

5、 观察组成管路的各种管件、阀件,并了解其作用。

二、 实验原理

1、直管摩擦阻力系数λ 的测定:

流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系:

h f =

ρ

f

P ?=2

2

u d

l λ

(1-1)

λ=

2

2u

P l

d

f ??

?ρ (1-2)

Re =

μ

ρ

??u d (1-3)

式中:-

d 管径,m ;

-?f P 直管阻力引起的压强降,Pa ;

-

l 管长,m ; -

u 流速,m/s ; -ρ流体的密度,kg/m 3; -

μ流体的粘度,N ·s/m 2。

直管摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降

△P f 与流速u (流量V)之间的关系。

根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,用式(1-3)计算对应的Re从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re的关系曲线。

2、局部阻力系数 的测定

局部阻力系数的测定

根据局部阻力系数的定义:

(1-4)

式中:ζ—局部阻力系数。

实验时测定流体经过管件时的阻力损失h f及流体通过管路的流速u,其中阻力损失h f可以应用机械能衡算方程由压差计读数求出,再由式(1-4)即可计算出局部阻力系数。在测定阻力损失时,测压孔不能紧靠管件处,因为在紧靠管件处压强差难以测准。通常测压孔都开设在距管件一定距离的管子上,这样测出的阻力损失包括了管件和直管两部分,因此计算管件阻力损失时应扣除直管部分的阻力损失。

三、实验装置与流程

1. 实验装置

实验装置主要由离心泵、流量计、各种阀门、不同管径、材质的管子以及突然扩大和突然缩小组合而成。水由离心泵从水槽中抽出后,经过流量计被送至几根并联的管道,水流经管道和管件后返回水槽。直管阻力损失用U形压差计测定其压差。管内水的流量用涡轮流量计测定。用调节阀调节流量的大小。

实验设备使用注意事项:

(1)离心泵在启动前应灌泵排气。

(2)离心泵要在出口阀关闭的情况下启动。

(3)停车前要先关出口阀。

2.实验装置图

四,实验步骤

1.泵的启动先对水箱注水,然后关闭管路出口阀门,打开总电源和仪表开关,启动水泵。

2.排气待电机转动平稳后,打开三根并联测试管的进口阀,缓缓打开出口阀到最大流量时进行排气操作。

3.压差计导压管的排气及测量管液位的调节待管路排气完成后,关闭管路出口阀门,对三根并联管的倒U形压差计进行先排气、在排水、后连通的操作方式,使其处于待工作状态。

4.实验管路选择选择首先测定的实验管路,使对应管路的进口阀处于开启状态,关闭其余两根管路的进口阀,并在出口阀最大开度下,保持全流量流动5~10min

5.流量调节 1号装置处于手控状态,变频器输出选择100,然后开启管路出口阀,调节流量,流量从1~4m3/h范围内变化,建议每次实验变化量为0.5左右。每次改变流量,待流动达稳定后,记下对应的压差值。在自控状态,流量控制界面设定流量,待流量稳定记录相关数据即可。

6.实验结束关闭出口阀,关闭水泵和仪表电源,清理装置。

五.实验数据与处理

1.实验原始数据记录如下表

离心泵型号:MS60/0.55,额定流量:60L/min, 额定扬程:19.5mN,额定功率:0.55kw 流体温度t=21.3℃

直管基本参数管内径(mm)测量段长度(cm)

局部阻力20 100

光滑管20 100

粗糙管20 100

序号 流量m 3

/h

光滑管(cmH 2O) 粗糙管(cmH 2O)

局部阻力(cmH 2O)

压差 左

压差

压差

1 1 49.1 53.1 4 45.9 52.3 6.4 44.4 49.3 4.9

2 1.5 48.5 56.9 8.4 43.9 57.6 13.7 43.

3 53.5 10.2 3 2.0 47.5 61.7 14.2 40.7 64.9 24.2 41.8 58.6 16.8

4 2.

5 46.4 67.8 21.4 36.7 73.9 37.2 39.8 65.2 25.4 5 3.0 44.4 75.3 30.9 30.8 85.9 55.1 37.2 73.0 35.8

6 2.

7 45.4 70.3 24.9 34.7 78.3 43.6 38.9 67.

8 28.

9 7 2.3 46.6 65.2 18.6 38.4 70.2 31.8 40.7 62.4 21.7 8 1.8 47.9 59.5 11.6 42.0 61.9 19.9 42.4 56.5 14.1 9 1.4 48.2 56.6 7.8 43.7 57.6 13.9 43.4 53.6 10.5 10

0.9

48.8 52.2 3.4 46.3 51.4 5.1 44.6 48.8 4.2

2.根据公式ΔP f =ρgR(注:本实验采用倒U 型压差计)计算出各管道的压差如下

3.由查得水的密度ρ=998.2kg/m 3 ,水的黏度μ=9.81*10^-6,根据公式水的流速

2

900d V u π=

(m/s ),雷诺数μ

ρ

du =

Re

,流体阻力ρ

1000

??=

P H

f

,阻力系数

2

2Lu

d H f =

λ,ξ=

gu2

f

'Δ2ρP ,并以标准单位换算得

光滑管数据处理结果如下表

序号 流量m3/h 光滑管压差(KPa ) 粗糙管压差(KPa ) 局部阻力压差(KPa ) 1 1 0.392 0.627 0.480 2 1.5 0.823 1.343 0.999 3 2.0 1.392 2.372 1.646 4 2.5 2.097 3.645 2.489 5 3.0 3.028 5.400 3.508 6 2.7 2.440 4.273 2.832 7 2.3 1.823 3.116 2.127 8 1.8 1.137 1.950 1.382 9 1.4 0.764 1.362 1.029 10 0.9 0.333 0.500 0.412

粗糙管数据处理结果如下表 序号 流量m 3/h 流速m/s 阻力系数λ 雷诺数Re 流体阻力J/kg

1 1 0.8024 0.032080449 16736.3873 0.6281

2 1.5 1.2036 0.03052098

3 25104.5810 1.345

4 3 2.0 1.6048 0.030326049 33547.8632 2.3763 4 2.

5 2.0060 0.029834818 41840.9684 3.651

6 5 3.0 2.4072 0.030688068 50209.1620 5.409

7 6 2.7 2.1665 0.02997915

8 45188.6630 4.2807 7 2.3 1.8455 0.030132274 38493.2737 3.1216 8 1.8 1.4443 0.030787082 30125.0801 1.9535

9 1.4 1.1234 0.035548329 23431.7766 1.3645 10 0.9 0.7222 0.031560627 15063.5829 0.5009

局部阻力管数据处理结果如下表

序号 流量m 3/h 流速m/s 阻力系数λ

雷诺数Re 流体阻力J/kg 局部阻力系数ξ 1 1 0.8846 0.020709607 17572.2929 0.4809 0.274258232 2 1.5 1.3270 0.019159908 26360.4259 1.0008 0.243785095 3 2.0 1.7693 0.017751092 35146.5723 1.6490 0.19807539 4 2.5 2.2116 0.017176294 43932.7188 2.4935 0.195028076 5 3.0 2.6539 0.01681188 52718.8653 3.5143 0.165909301 6 2.7 2.3885 0.016755064 47446.7801 2.8371 0.167202054 7 2.3 2.0347 0.017337235 40418.6575 2.1308 0.178579909 8 1.8 1.5924 0.014609952 31632.5110 1.3845 0.235138741 9 1.4 1.2385 0.021994793 24602.4020 1.0308 0.419753115 10

0.9

0.7962

0.021914928

15816.2555

0.4127

0.300935915

闸阀全开时的平均ξ= 0.2379

序号 流量m3/h 流速m/s 阻力系数λ 雷诺数Re 流体阻力J/kg

1 1 0.8846 0.020050281 17572.2929 0.3927

2 1.5 1.3270 0.018713595 26360.4259 0.8245

3 2.0 1.7693 0.01779462

4 35146.5723 1.394

5 4 2.5 2.211

6 0.01716304 43932.7181 2.1008 5 3.0 2.6539 0.017209824 52718.8653 3.0335 6 2.

7 2.3885 0.017121124 47446.7801 2.4444 7 2.3 2.0347 0.01762453

8 40418.6575 1.8263 8 1.8 1.5924 0.01794623

9 31632.5110 1.1391 9 1.4 1.2385 0.021482444 24602.4020 0.7654 10 0.9 0.7962 0.021040418 15816.2555 0.3336

4.绘制粗糙管和光滑管的双对数λ-Re曲线如下图示:

粗糙管的相对粗糙度近似为0.006,绝对粗糙度为0.00012 光滑管的相对粗糙度近似为0.0001,绝对粗糙度为0.00002

5.根据光滑管实验结果,对照柏拉修斯方程λ=0.3164/(Re-0.25),计算其误差,计算结果如下,由光滑管的双对数λ-Re曲线可知λ=0.1254/(Re-0.18434)

试验次数阻力系数λ雷诺数Re

柏拉修斯

方程计算

结果

误差相对误差

1 0.759957333 17572.2929 0.027481 0.73247633 26.653918%

2 0.818947207 26360.4259 0.024831 0.79411620 31.980838%

3 0.86354625

4 35146.5723 0.023108 0.8404382

5 36.370012%

4 0.89980642

5 43932.7181 0.021854 0.87795242 40.173534%

5 0.930560811 52718.8653 0.020881 0.90967981 43.564954%

6 0.91266099 47446.7801 0.021438 0.89122299 41.572114%

7 0.886083891 40418.6575 0.022315 0.86376889 38.707994%

8 0.846939088 31632.5110 0.023725 0.82321408 34.698170%

9 0.808593658 24602.4020 0.025263 0.78333065 31.007032%

10 0.745350089 15816.2555 0.028213 0.71713708 25.418675%

流体流动阻力的测定

流体流动阻力的测定 一、实验目的 (1)熟悉测定流体流经直管的阻力损失的实验组织法及测定摩擦系数的工程意义。 (2)观察摩擦系数λ与雷诺数Re 之间的关系,学习双对数坐标纸的用法 (3)掌握流体流经管件时的局部阻力,并求出该管件的局部阻力。 二、实验原理 流体在管内流动时,由于流体具有黏性,在流动时必须克服内摩擦力,因此,流体必须做功。当流体呈湍流流动时,流体内部充满了大小漩涡,流体质点运动速度和方向都发生改变,质点间不断相互碰撞,引起流体质点动量交换,使其产生了湍动阻力,结果也会消耗流体能量,所以流体的黏性和流体的漩涡产生了流体流动的阻力。 流体在管内流动的阻力的计算公式表示为 2 2 u d l h f λ= 或 2 2 12u d l p p p ρλ=-=? 式中:h 为流体通过直管的阻力(J/kg );△p 为流体通过直管的压力降(N/m 2);p 1,p 2为直管上下游界面流动的压力(N/m 2);l 为管道长(m );d 为管道直径(内径)(m );ρ为流体密度(kg/m 3);u 为流体平均流速(m/s );λ为摩擦系数,无因次。 摩擦系数λ是一个受多种因素影响的变量,其规律与流体流动类型密切相关。当流体在管内作层流流动时,根据力学基本原理,流体流动的推动力(由于压力产生)等于流体内部摩擦力(由于黏度产生),从理论上可以推得λ的计算式为 Re 64 = λ 当流体在管内作湍流流动时,由于流动情况比层流复杂得多,湍流时的λ还不能完全由理论分析建立摩擦系数关系式。湍流的摩擦系数计算式是在研究分析阻力产生的各种因素的基础上,借助因次分析方法,将诸多因素的影响归并为准数关系,最后得出如下结论 ??? ??=?? ??????????=d d du k t ε?εμρλRe,2 由此可见,λ为Re 数和管壁相对粗糙度ε/d 的函数,其函数的具体关系通过实验确定。 局部阻力通常有两种表达方式,即当量长度法和阻力系数法。 当量长度法:流体流过某管件时因局部阻力造成的能量损失相当于流体流过与其相同管径的若干米长度的直管阻力损失,用符号l e 来表示,则 2 2 u d l l h e f +=∑λ 阻力系数法:流体通过某一管件的阻力损失用流体在管路中的动能系数来表示

流体阻力实验报告

. 北京化工大学化工原理实验报告 实验名称:流体阻力实验 班级:化工11 姓名: 学号:2011011 序号: 同组人: 设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第套实验日期:2013-11-4

一、实验摘要 本实验使用104实验室UPRS Ⅲ型第7套实验设备,测量了水流经不锈钢管、镀锌管、突扩管、阀门、层流管的阻力损失。确定了摩擦系数和局部阻力系数的变化规律和影响因素。该实验提供了一种测量实际管路阻力系数的方法,其结果可为管路实际应用和工艺设计提供重要的参考。 关键词:流量,压降,雷诺数,摩擦系数,局部阻力系数 二、实验目的 1、测量湍流直管道的阻力,确定摩擦阻力系数。 2、测量湍流局部管道的阻力,确定局部阻力系数。 3、测量层流直管道的阻力,确定摩擦阻力系数。 三、实验原理 1、直管道和局部管道阻力损失e f h u p gZ u p gZ h +++-++=)2()2(2 2 22211 1ρρ (1) 其中h e =0,z 1=z 2,所以测出管道上下游截面的静压能、动能,代入方程即可求得阻力。 2、根据因次分析法可得: (1)直管道阻力损失2 2 u d l h f ?=λ……(2)。其中,l 为管道长度,d 为管道内 径,u 为管内平均流速。只要测定l ,d ,u ,和λ,代入方程即可求得阻力h f 。

其中,λ的理论值计算方法为:25 .0Re 3163.0=湍流λ ; Re 64 = 层流λ。 对于水平无变径直管道,根据式(1)、(2)可得到摩擦系数的计算方法 为221) (2u l p p d ??-=ρλ测量。 (2)管道局部阻力损失2 2 1 u h f ?=ζ……(3)。其中,ζ为管道局部阻力系数, u 为平均流速(突扩管对应细管流速u 1)。将ζ和u 代入方程即可求得局部阻力h f 。 其中,ζ的理论值计算方法为:2 2 1)1(A A - =突扩管ζ ;常数截止阀=ζ;常数球阀=ζ。 对于水平放置的管件,根据式(1)、(3)可得到局部阻力系数的计算方 法为2 21) 2u p p ?-=ρζ(阀门;2 1 122 2) (2-1u p p u ρ ζ-+ =突扩管。 四、实验流程和设备

流动阻力测定思考题

流动阻力测定思考题 The following text is amended on 12 November 2020.

实验1单项流动阻力测定 (1)启动离心泵前,为什么必须关闭泵的出口阀门 答:由离心泵特性曲线知,流量为零时,轴功率最小,电动机负荷最小,不会过载烧毁线圈。 (2)作离心泵特性曲线测定时,先要把泵体灌满水以防止气缚现象发生,而阻力实验对泵灌水却无要求,为什么 答:阻力实验水箱中的水位远高于离心泵,由于静压强较大使水泵泵体始终充满水,所以不需要灌水。 (3)流量为零时,U形管两支管液位水平吗为什么 答:水平,当u=0时柏努利方程就变成流体静力学基本方程: (4)怎样排除管路系统中的空气如何检验系统内的空气已经被排除干净 答:启动离心泵用大流量水循环把残留在系统内的空气带走。关闭出口阀后,打开U形管顶部的阀门,利用空气压强使U形管两支管水往下降,当两支管液柱水平,证明系统中空气已被排除干净。 (5)为什么本实验数据须在双对数坐标纸上标绘 答:因为对数可以把乘、除变成加、减,用对数坐标既可以把大数变成小数,又可以把小数扩大取值范围,使坐标点更为集中清晰,作出来的图一目了然。

(6)你在本实验中掌握了哪些测试流量、压强的方法它们各有什么特点 答:测流量用转子流量计、测压强用U形管压差计,差压变送器。转子流量计,随流量的大小,转子可以上、下浮动。U形管压差计结构简单,使用方便、经济。差压变送器,将压差转换成直流电流,直流电流由毫安表读得,再由已知的压差~电流回归式算出相应的压差,可测大流量下的压强差。 (7)读转子流量计时应注意什么为什么 答:读时,眼睛平视转子最大端面处的流量刻度。如果仰视或俯视,则刻度不准,流量就全有误差。 (8)两个转子能同时开启吗为什么 答:不能同时开启。因为大流量会把U形管压差计中的指示液冲走。 (9)开启阀门要逆时针旋转、关闭阀门要顺时针旋转,为什么工厂操作会形成这种习惯 答:顺时针旋转方便顺手,工厂遇到紧急情况时,要在最短的时间,迅速关闭阀门,久而久之就形成习惯。当然阀门制造商也满足客户的要求,阀门制做成顺关逆开。 (10)使用直流数字电压表时应注意些什么 答:使用前先通电预热15分钟,另外,调好零点(旧设备),新设备,不需要调零点。如果有波动,取平均值。

流体流动阻力测定实验

实验报告 项目名称:流体流动阻力测定实验 学院: 专业年级: 学号: 姓名: 指导老师: 实验组员: 一、实验目的 1、学习管路阻力损失h f和直管摩擦系数λ的测定方法。 2、掌握不同流量下摩擦系数λ与雷诺数Re之间的关系及其变化规律。 3、学习压差测量、流量测量的方法。了解压差传感器和各种流量计的结构、使用方法 及性能。 4、掌握对数坐标系的使用方法。

二、实验原理 流体在管道内流动时,由于黏性剪应力和涡流的存在,会产生摩擦阻力。这种阻力包括流体流经直管的沿程阻力以及因流体运动方向改变或管子大小形状改变所引起的局部阻力。 流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系: h f = ρf P ?=2 2 u d l λ (4-1) 式中: -f h 直管阻力,J/kg ; -d 直管管径,m ; -?p 直管阻力引起的压强降,Pa ; -l 直管管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -λ摩擦系数。 滞流时,λ= Re 64 ;湍流时,λ与Re 的关系受管壁相对粗糙度d ε?的影响,即λ= )(Re,d f ε。 当相对粗糙度一定时,λ仅与Re 有关,即λ=(Re)f ,由实验可求得。 由式(4—1),得 λ= 2 2u P l d f ???ρ (4-2) 雷诺数 Re =μ ρ ??u d (4-3) 式中-μ流体的黏度,Pa*s 测量直管两端的压力差p ?和流体在管内的流速u ,查出流体的物理性质,即可分别计算出对应的λ和Re 。 三、实验装置 1、本实验共有两套装置,实验装置用图4-2所示的实验装置流程图。每套装置中被测光滑直管段为管内径d=8mm ,管长L=1.6m 的不锈钢管;被测粗糙直管段为管内径d=10mm ,管长L=1.6m 的不锈钢管 2、 流量测量:在图1-2中由大小两个转子流量计测量。 3、 直管段压强降的测量:差压变送器或倒置U 形管直接测取压差值。

沿程阻力 中国石油大学(华东)流体力学实验报告

实验七、沿程阻力实验 一、实验目的填空 1.掌握测定镀锌铁管管道沿程阻力系数的方法; 2.在双对数坐标纸上绘制λ-Re的关系曲线; 3.进一步理解沿程阻力系数随雷诺数的变化规律。 二、实验装置 在图1-7-1下方的横线上正确填写实验装置各部分的名称 本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。 另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。 F1——文秋利流量计;F2——孔板流量计;F3——电磁流量计; C——量水箱;V——阀门;K——局部阻力实验管路 图1-7-1 管流综合实验装置流程图 三、实验原理在横线正确写出以下公式 本实验所用的管路是水平放置且等直径,因此利用能量方程式可推得管路两点间的沿程水头

损失计算公式: 2 2f L v h D g λ = (1-7-1) 式中: λ——沿程阻力系数; L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ; g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ; h f ——沿程水头损失,由压差计测定。 由式(1-7-1)可以得到沿程阻力系数λ的表达式: 2 2f h D g L v λ= (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,而在紊流时则与雷诺数、管壁粗糙度有关。 当实验管路粗糙度保持不变时,可得出该管的λ-Re 的关系曲线。 四、实验要求 填空 1.有关常数 实验装置编号:No. 7 管路直径:D = 1.58 cm ; 水的温度:T = 13.4 ℃; 水的密度:ρ= 0.999348g/cm 3; 动力粘度系数:μ= 1.19004 mPa ?s ; 运动粘度系数:ν= 0.011908 cm 2/s ; 两测点之间的距离:L = 500 cm

流体流动阻力的测定化工原理实验报告

北 京 化 工 大 学 实 验 报 告 课程名称: 化工原理实验 实验日期: 2008.10.29 班 级: 化工0602 姓 名:许兵兵 学 号: 200611048 同 组 人 :汤全鑫 阮大江 阳笑天 流体流动阻力的测定 摘要 ● 测定层流状态下直管段的摩擦阻力系数(光滑管、粗糙管和层流管)。 ● 测定湍流状态不同(ε/d)条件下直管段的摩擦阻力系数(突然扩大管)。 ● 测定湍流状态下管道局部的阻力系数的局部阻力损失。 ● 本次实验数据的处理与图形的拟合利用Matlab 完成。 关键词 流体流动阻力 雷诺数 阻力系数 实验数据 Matlab 一、实验目的 1、掌握直管摩擦阻力系数的测量的一般方法; 2、测定直管的摩擦阻力系数λ以及突扩管的局部阻力系数ζ; 3、测定层流管的摩擦阻力 4、验证湍流区内λ、Re 和相对粗糙度的函数关系 5、将所得光滑管的Re -λ方程与Blasius 方程相比较。 二、实验原理 不可压缩流体(如水),在圆形直管中作稳定流动时,由于粘性和涡流的作用产生摩擦阻力;流体在流过突然扩大和弯头等管件时,由于流体运动的速度和方向突然发生变化,产生局部阻力。影响流体流动阻力的因素较多,在工程研究中,利用因次分析法简化实验,引入无因此数群 雷 诺 数: μρ du = Re 相对粗糙度: d ε 管路长径比: d l 可导出: 2)(Re,2u d d l p ??=?εφρ 这样,可通过实验方法直接测定直管摩擦阻力系数与压头损失之间的关系: 22u d l p H f ? ?=?=λρ

因此,通过改变流体的流速可测定出不同Re 下的摩擦阻力系数,即可得出一定相对粗糙度的管子的λ—Re 关系。 在湍流区内,λ = f(Re ,ε/ d ),对于光滑管大量实验证明,当Re 在3×103至105的范围内,λ与Re 的关系遵循Blasius 关系式,即: 25 .0Re 3163.0=λ 对于层流时的摩擦阻力系数,由哈根—泊谡叶公式和范宁公式,对比可得: Re 64=λ 局部阻力: f H =2 2 u ?ξ [J/kg] 三、装置和流程 四、操作步骤 1、启动水泵,打开光滑管路的开关阀及压降的切换阀,关闭其它管路的开关阀和切换阀; 2、排尽体系空气,使流体在管中连续流动。检验空气是否排尽的方法是看当流量为零时候U 形压差计的两液面是否水平; 3、调节倒U 型压差计阀门1、2、3、 4、5的开关,使引压管线内流体连续、液柱等高; 4、打开流量调节阀,由大到小改变10次流量(Re min >4000),记录光滑管压降、孔板压降数据; 5、完成10组数据测量后,验证其中两组数据,确保无误后,关闭该组阀门; 6、测量粗糙管(10组)、突然扩大管(6组)数据时,方法及操作同上; 7、测量层流管压降时,首先连通阀门6、7、8、9、10所在任意一条回流管线,其次打开进入高位水灌的上水阀门11,关闭出口流量调节阀16; 8、当高位水灌有溢流时,打开层流管的压降切换阀,对引压管线进行排气操作; 9、打开倒U 型压差计阀门5,使液柱上升到n 型压差计示数为0的位置附近,然后关闭该阀门,检 图1 流体阻力实验装置流程图 1. 水箱 2.离心泵 3.孔板流量计 4.管路切换阀 5.测量管路 6.稳流罐 7.流量调节阀

流体管路流动阻力系数的测定

五、数据处理 1、局部阻力管的原始数据以及相关处理数据 局部阻力管(不锈钢+闸阀) 18℃水的密度:ρ=998.2kg/m3管内径:20 mm 18℃水的粘度:1.0559×10-3 Pa·s 测量段长度:1000mm 2、光滑管的原始数据以及相关处理数 光滑管(不锈钢) 18℃水的密度:ρ=998.2kg/m3 管内径:20 mm 18℃水的粘度:1.0559×10-3 Pa·s 测量段长度:1000mm

3、粗糙管的原始数据以及相关数据处理 粗糙管(镀锌铁管) 18℃水的密度:ρ=998.2kg/m3管内径:20 mm 18℃水的粘度:1.0559×10-3Pa·s 测量段长度:1000mm

4、根据计算所得的粗糙管和光滑管的实验结果,在同一对数坐标上绘制曲线: 对照《化工基础》教材上的曲线图(如下),估算出两管的相对粗糙度和绝对粗糙度

已知光滑管和粗糙管的管内径都为20mm,将光滑管和粗糙管的λ和Re值代入上图可估算为粗糙管的相对 粗糙度为0.004,绝对粗糙度约为0.00008;光滑管的相对粗糙度约为0.0001,绝对粗糙度约为0.000002。 5、数据方法示例: (1)湍流时流量、流速、以及摩擦力系数的计算取光滑管第一组的数据示例 已知: 光滑管(不锈钢)18℃水的密度:ρ=998.2kg/m3管内径:20 mm 18℃ 水的粘度:1.0559×10-3Pa·s 测量段长度L:1000mm,其中,λ为光滑管阻力摩擦系数,无因次d为光滑管内径, ?p为流体流经 L m 光滑管两端的压力 又有: 流量q v =0.5m3/h 流速 u=q v / A = 4 q v / ∏d2 = 4×0.5/3600×3.14×0.022 m/s = 0.4423≈0.44 m/s 雷诺数 Re=dup /μ=(0.02*0.44*998.2)/0.0010599=8287.73 摩擦阻力系数由?p =ρLλl u2 / 2d得 λ=2d ?p/ρLu2 = 2×0.02×147.13÷(998.2×1×0.442) = 0.03045357 ≈ 0.3045 其中,λ为光滑管阻力摩擦系数,无因次d为光滑管内径?p为流体刘晶L m光滑管两端的压力

流体阻力实验报告

北京化工大学化工原理实验报告 实验名称:流体流动阻力测定 班级:化工10 学号:2010 姓名: 同组人: 实验日期:2012.10.10

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式2 2u l p d ρλ?=,其中ρ为实验温度下流体的密度;流体流速 24d q u v π= ,以及雷诺数μ ρdu =Re (μ为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式2 22 1 21p u u ρζ?+ =- 可求出突然扩大管的局部阻力系数,以及由 Re 64= λ求出层流时的摩擦阻力系数λ,再和雷诺数Re 作图得出层流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。 三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z )

流体流动阻力实验

实验一 流体流动阻力实验 一、实验目的 1、学习直管摩擦阻力f P ?、直管摩擦系数λ的实验方法; 2、掌握不同流量下摩擦系数λ与雷诺数Re 之间的关系及其变化规律; 3、学习局部阻力的测定方法; 4、学习压强差的几种测量方法和技巧; 5、掌握坐标系的选用方法和对数坐标系的使用方法。 二、实验原理 1. 直管摩擦系数 与雷诺数Re 的测定 直管的摩擦阻力系数是雷诺数和相对粗糙度的函数,即)/(Re,d f ελ=,对一定的相对粗糙度而言,(Re)f =λ。 流体在一定长度等直径的水平圆管内流动时,其管路阻力引起的能量损失为: ρ ρf f P P P h ?=-= 2 1 (1) 又因为摩擦阻力系数与阻力损失之间有如下关系(范宁公式) 2 2 u d l P h f f λρ=?= (2) 整理(1)(2)两式得 2 2u P l d f ???=ρλ (3) μ ρ ??= u d Re (4) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ;

-ρ流体的密度,kg / m 3 ; -μ流体的粘度,N ·s / m 2。 在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降 f P ?与流速u (流量V )之间的关系。 测得一系列流量下的f P ?后,根据实验数据和式(3)可计算出不同流速下的直管摩擦系数λ;用式(4)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 2. 局部阻力系数ζ的测定 2 2 'u P h f f ζρ =?= ' (5) 2'2u P f ?????? ??=ρζ (6) 式中:-ζ局部阻力系数,无因次; -?'f P 局部阻力引起的压强降,Pa ; -'f h 局部阻力引起的能量损失,J /kg 。 图3 局部阻力测量取压口布置图 局部阻力引起的压强降'f P ? 可用下面的方法测量:在一条各处直径相等的直管段上,安装待测局部阻力的阀门,在其上、下游开两对测压口a-a ’和b-b ',见图3,使 ab =bc ; a 'b '=b 'c ' 则 △P f ,a b =△P f ,bc ; △P f ,a 'b '= △P f ,b 'c '

流体流动阻力的测定

实验名称:流体流动阻力的测定 一、实验目的及任务: 1.掌握测定流体流动阻力实验的一般方法。 2.测定直管的摩擦阻力系数及突然扩大管的局部阻力系数。 3.验证湍流区内摩擦阻力系数为雷诺数和相对粗糙度的函数。 4.将所得光滑管的方程与Blasius方程相比较。 二、实验原理: 流体输送的管路由直管和阀门、弯头、流量计等部件组成。由于粘性和涡流作用,流体在输送过程中会有机械能损失。这些能量损失包括流体流经直管时的直管阻力和流经管道部件时的局部阻力,统称为流体流动阻力。 1.根据机械能衡算方程,测量不可压缩流体直管或局部的阻力 如果管道无变径,没有外加能量,无论水平或倾斜放置,上式可简化为: Δp为截面1到2之间直管段的虚拟压强差,即单位体积流体的总势能差,通过压差传感器直接测量得到。 2.流体流动阻力与流体性质、流道的几何尺寸以及流动状态有关,可表示为: 由量纲分析可以得到四个无量纲数群: 欧拉数,雷诺数,相对粗糙度和长径比

从而有 取,可得摩擦系数与阻力损失之间的关系: 从而得到实验中摩擦系数的计算式 当流体在管径为d的圆形管中流动时,选取两个截面,用压差传感器测出两个截面的静压差,即可求出流体的流动阻力。根据伯努利方程摩擦系数与静压差的关系,可以求出摩擦系数。改变流速可测得不同Re下的λ,可以求出某一相对粗糙度下的λ-Re关系。 在湍流区内摩擦系数,对于光滑管(水力学光滑),大量实验证明,Re 在氛围内,λ与Re的关系遵循Blasius关系式,即 对于粗糙管,λ与Re的关系以图来表示。 3.对局部阻力,可用局部阻力系数法表示: 对于扩大和缩小的直管,式中的流速按照细管的流速来计算。 对一段突然扩大的圆直管,局部阻力远大于其直管阻力。由忽略直管阻力时的伯努利方程 可以得到局部阻力系数的计算式: 式中,、分别为细管和粗管中的平均流速,为2,1截面的压差。 突然扩大管的理论计算式为:ζ(),、分别为细管和粗管的流通

化工原理实验三单相流体阻力测定实验

实验三 单相流体阻力测定实验 一、实验目的 ⒈ 学习直管摩擦阻力△P f 、直管摩擦系数的测定方法。 ⒉ 掌握不同流量下摩擦系数 与雷诺数Re 之间关系及其变化规律。 ⒊ 学习压差传感器测量压差,流量计测量流量的方法。 ⒋ 掌握对数坐标系的使用方法。 二、实验内容 ⒈ 测定既定管路内流体流动的摩擦阻力和直管摩擦系数。 ⒉ 测定既定管路内流体流动的直管摩擦系数与雷诺数Re 之间关系曲线和关系式。 三、实验原理 流体在圆直管内流动时,由于流体的具有粘性和涡流的影响会产生摩擦阻力。流体在管内流动阻力的大小与管长、管径、流体流速和摩擦系数有关,它们之间存在如下关系。 h f = ρf P ?=2 2 u d l λ (3-1) λ= 22u P l d f ?? ?ρ (3-2) Re = μ ρ ??u d (3-3) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 管内平均流速,m / s ; -ρ流体的密度,kg / m 3 ; -μ流体的粘度,N ·s / m 2 。 摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式3-2可以计算出不同流速(流量V )下的直管摩擦系数λ,用式3-3计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。

四、实验流程及主要设备参数: 1.实验流程图:见图1 水泵8将储水槽9中的水抽出,送入实验系统,首先经玻璃转子流量计2测量流量,然后送入被测直管段5或6测量流体流动的光滑管或粗糙管的阻力,或经7测量局部阻力后回到储水槽, 水循环使用。被测直管段流体流动阻力△p可根据其数值大小分别采用变送器18或空气—水倒置∪型管10来测量。

化工原理实验~流体流动阻力系数的测定实验报告

流体流动阻力系数的测定实验报告 一、实验目的: 1、掌握测定流体流动阻力实验的一般实验方法。 2、测定直管的摩擦阻力系数λ及突然扩大管与阀门的局部阻力系数ξ。 3、验证湍流区内摩擦阻力系数λ为雷诺系数Re与相对粗糙度的函数。 4、将所得光滑管的λ—Re方程与Blasius方程相比较。 二、实验器材: 流体阻力实验装置一套 三、实验原理: 1、直管摩擦阻力 不可压缩流体(如水),在圆形直管中做稳定流动时,由于黏性与涡流的作用产生摩擦阻力;流体在流过突然扩大、弯头等管件时,由于流体运动的速度与方向突然变化,产 生局部阻力。影响流体阻力的因素较多,在工程上通常采用量纲分析方法简化实验,得 到在一定条件下具有普遍意义的结果,其方法如下。 流体流动阻力与流体的性质,流体流经处的几何尺寸以及流动状态有关,可表示为 △P=f (d, l, u,ρ,μ,ε) 引入下列无量纲数群。 雷诺数Re=duρ/μ 相对粗糙度ε/ d 管子长径比l / d 从而得到 △P/(ρu2)=ψ(duρ/μ,ε/ d, l / d) 令λ=φ(Re,ε/ d) △P/ρ=(l / d)φ(Re,ε/ d)u2/2 可得摩擦阻力系数与压头损失之间的关系,这种关系可用试验方法直接测定。 h f=△P/ρ=λ(l / d)u2/2 ——直管阻力,J/kg 式中,h f l——被测管长,m d——被测管内径,m u——平均流速,m/s λ——摩擦阻力系数。 当流体在一管径为d的圆形管中流动时,选取两个截面,用U形压差计测出这两个截面间的静压强差,即为流体流过两截面间的流动阻力。根据伯努利方程找出静压强差 与摩擦阻力系数的关系式,即可求出摩擦阻力系数。改变流速可测出不同Re下的摩擦 阻力系数,这样就可得出某一相对粗糙度下管子的λ—Re关系。 (1)、湍流区的摩擦阻力系数 在湍流区内λ=f(Re,ε/d)。对于光滑管,大量实验证明,当Re在3×103~105范围内,λ与Re的关系遵循Blasius关系式,即λ=0、3163 / Re0、25 对于粗糙管,λ与Re的关系均以图来表示。 2、局部阻力

流体流动阻力的测定

实验一流体流动阻力的测定 一、实验目的 1. 学习液压计及流量计的使用方法; 2.识别管路中的各个管件、阀门并了解其作用; 3.测定流体流经直管时的摩擦系数与雷诺数的关系; 4.测定90。标准弯头的局部阻力系数。 二、实验原理 1. 摩擦系数的测定方法 直管的摩擦系数是雷诺数和管的相对粗糙度(ε/d)的函数,即λ=Ф(Re, ε/d),因此,在相对粗糙度一定的情况下,λ与Re存在一定的关系。根据流体力学的基本理论,摩擦系数与阻力损失之间存在以下关系: (1-1) 式中:h f 阻力损失,J/N; L管段长度,m; d管径,m; u流速,m/s; 摩擦系数; g重力加速度,m/s2。 流体在水平均匀直管中作稳态流动时,由截面1流动到截面2时的阻力损失体现在压强的降低,即 (1-2) 两截面之间管段的压强差(P1-P2)可以用U形压差计测量,故可以计算出h f 。 用涡轮流量计测定流体通过已知管段的流量,在已知管径的情况下流速可以通过体积流量来计算,由流体的密度ρ、粘度μ,因此,对于每一组测得的数据可以分别计算出对应的λ和Re。 2. 局部阻力系数的测定 根据局部阻力系数的定义: (1-3) 式中:ζ—局部阻力系数。 实验时测定流体经过管件时的阻力损失h f及流体通过管路的流速u,其中阻力损失h f可以应用机械能衡算方程由压差计读数求出,再由式(1-3)即可计算出局部阻力系数。在测定阻力损失时,测压孔不能紧靠管件处,因为在紧靠管件处压强差难以测准。通常测压孔都开设在距管件一定距离的管子上,这样测出的阻力损失包括了管件和直管两部分,因此计算管件阻力损失时应扣除直管部分的阻力损失。

实验一流体流动阻力的测定

. 化学实验教学中心 实验报告 化学测量与计算实验Ⅱ 实验名称:流体流动阻力的测定 学生姓名:学号: 院(系):年级:级班 指导教师:研究生助教: 实验日期: 2017.05.26 交报告日期: 2017.06.02

一、实验目的 1.学习直管摩擦阻力、直管摩擦系数的测定方法; 2.掌握直管摩擦阻力系数与雷诺数和相对粗糙度之间的关系及其变化规律; 3.掌握局部阻力的测量方法; 4.学习压强差的几种测量方法和技巧; 5.掌握坐标系的选用方法和对数坐标系的使用方法。 二、实验原理 化工管路是由直管和各种管阀件组合构成的,流体通过管内流动必定存在阻力。因此,在进行管路设计和流体机械造型时,阻力大小是一个十分重要的参数。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管摩擦阻力系数与雷诺数的测定 流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。流体在直管内流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,对水平等径管道,它们之间存在如下关系: (1-1) (1-2) (1-3) 式中,为直管阻力引起的压头损失,;为管径,;为直管阻力引起的压强降,; 为管长,;为流速,;为流体密度,;为流体的粘度,。 直管摩擦阻力系数与雷诺数之间的关系,一般可以用曲线来表示。在实验装置中,直管段长度与管径都已经固定。若水温一定,则水的密度和粘度也是定值。所以本实验实质上是测定直 管段流体阻力引起的压强降与流速(流量V)之间的关系。根据实验数据以及式(1-2)可以计算出不同流速下的直管摩擦系数,用式(1-3)计算对应的,从而整理出直管摩擦系数和雷诺数的关系,绘出两者的关系曲线。

流体阻力实验报告(借鉴材料)

化工原理实验报告 实验名称:流体流动阻力测定 班级: 学号: 姓名: 同组人: 实验日期:

流体阻力实验 一、摘要 通过测定不同阀门开度下的流体流量v q ,以及测定已知长度l 和管径d 的光滑直管和粗糙直管间的压差p ?,根据公式22u l p d ρλ?=,其中ρ为实验温度下流体的密度;流 体流速24d q u v π= ,以及雷诺数μ ρdu =Re (μ为实验温度下流体粘度),得出湍流区光滑直管和粗糙直管在不同Re 下的λ值,通过作Re -λ双对数坐标图,可以得出两者的关系曲线,以及和光滑管遵循的Blasius 关系式比较关系,并验证了湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数。由公式2 22 1 21p u u ρζ ?+ =- 可求出突然扩大管的局 部阻力系数,以及由Re 64=λ求出层流时的摩擦阻力系数λ,再和雷诺数Re 作图得出层 流管Re -λ关系曲线。 关键词:摩擦阻力系数 局部阻力系数 雷诺数Re 相对粗糙度ε/d 二、实验目的 1、掌握测定流体流动阻力实验的一般试验方法; 2、测定直管的摩擦阻力系数λ及突然扩大管的局部阻力系数ζ; 3、测定层流管的摩擦阻力系数λ; 4、验证湍流区内摩擦阻力系数λ为雷诺数Re 和相对粗糙度ε/d 的函数; 5、将所得光滑管的λ-Re 方程与Blasius 方程相比较。 三、实验原理 1、直管阻力损失函数:f (h f ,ρ,μ, l ,d ,ε, u )=0 应用量纲分析法寻找hf (ΔP /ρ)与各影响因素间的关系 1)影响因素 物性:ρ,μ 设备:l ,d ,ε 操作:u (p,Z ) 2)量纲分析 ρ[ML -3],μ[ML -1 T -1], l [L] ,d [L],ε[L],u [LT -1], h f [L 2 T -2] 3)选基本变量(独立,含M ,L ,T ) d ,u ,ρ(l ,u ,ρ等组合也可以) 4)无量纲化非基本变量 μ:π1=μρa u b d c [M 0L 0T 0] =[ML -1 T -1][ML -3]a [LT -1]b [L]c ? a=-1,b=-1,c=-1

流体流动阻力的测定实验报告

银纳米粒子制备及光谱和电化学性能表征 - 1 - 流体流动阻力的测定 王晓鸽 一、实验目的 1. 掌握测定流体流经直管、管件和阀门时阻力损失的实验方法。 2. 测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区λ与Re 的关系曲线。 3. 测定流体流经管件、阀门时的局部阻力系数ξ。 4. 学会流量计和压差计的使用方法。 5. 识辨组成管路的各种管件、阀门,并了解其作用。 二、实验原理 流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力摩擦系数 的测定 流体在水平等径直管中稳定流动时,阻力损失为: 即, 式中: —直管阻力摩擦系数,无因次; —直管内径, ; —流体流经 米直管的压力降, ; —单位质量流体流经 米直管的机械能损失, ;

—流体密度,; —直管长度,; —流体在管内流动的平均流速,。 层流流时, 湍流时是雷诺准数和相对粗糙度的函数,须由实验确定。 欲测定,需确定、,测定、、、等参数。、为装置参数(装置参数表格中给出),、通过测定流体温度,再查有关手册而得,通过测定流体流量,再由管径计算得到。可用型管、倒置型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。求取和后,再将和标绘在双对数坐标图上。 2.局部阻力系数的测定 局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。本实验采用阻力系数法。 流体通过某一管件或阀门时的机械能损失表示为流体在小管径内流动时平均动能的某一倍数,局部阻力的这种计算方法,称为阻力系数法。即: 因此, 式中:—局部阻力系数,无因次; -局部阻力压强降,;(本装置中,所测得的压降应扣除两测压口间直管段的压降,直管段的压降由直管阻力实验结果求取。)—流体密度,; —流体在管内流动的平均流速,。 根据连接阀门两端管径,流体密度,流体温度(查流体物性、),

实验一 流体流动阻力测定实验

4.1 流体流动阻力测定实验 一、实验目的 ⒈学习直管摩擦阻力△P f 、直管摩擦系数λ的测定方法。 ⒉掌握直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系及其变化规律。 ⒊掌握局部阻力的测量方法。 ⒋学习压强差的几种测量方法和技巧。 ⒌掌握双对数坐标系的使用方法。 二、实验内容 ⒈测定实验管路(光滑管和粗糙管)内流体流动的阻力和直管摩擦系数λ。 ⒉测定实验管路内流体流动的直管摩擦系数λ与雷诺数Re 和相对粗糙度之间的关系曲线。 ⒊在本实验压差测量范围内,测量阀门的局部阻力系数。 三、实验原理 ⒈直管摩擦系数λ与雷诺数Re 的测定 流体在管道内流动时,由于流体的粘性作用和涡流的影响会产生阻力。流体在直管内 流动阻力的大小与管长、管径、流体流速和管道摩擦系数有关,它们之间存在如下关系: h f = ρf P ?=22 u d l λ (4-1) λ=22u P l d f ???ρ (4-2) Re = μρ??u d (4-3) 式中:-d 管径,m ; -?f P 直管阻力引起的压强降,Pa ; -l 管长,m ; -u 流速,m / s ; -ρ流体的密度,kg / m 3; -μ流体的粘度,N ·s / m 2。 直管摩擦系数λ与雷诺数Re 之间有一定的关系,这个关系一般用曲线来表示。在实验装置中,直管段管长l 和管径d 都已固定。若水温一定,则水的密度ρ和粘度μ也是定值。所以本实验实质上是测定直管段流体阻力引起的压强降△P f 与流速u (流量V )之间的关系。 根据实验数据和式(1-2)可计算出不同流速下的直管摩擦系数λ,用式(1-3)计算对应的Re ,从而整理出直管摩擦系数和雷诺数的关系,绘出λ与Re 的关系曲线。 ⒉局部阻力系数ζ的测定 22 'u P h f f ζρ=?=' (4-4)

管道流体阻力的测定‘

管道流体阻力的测定 一.实验目的 1. 掌握测定流体流动阻力的一般实验方法; 2. 测定直管摩擦系数λ及管件的局部阻力系数ξ; 3. 验证在一般里湍流区内λ与Re 的关系曲线(ξ/d 为定值)。 二.实验装置 图1 实验装置图 1、本实验有" 2 11、" 1各二套装置,每套装置上设有二根测试用的管路,流体(水)流量用孔板 或文氏管流量计测量,由管路出口处的调节阀5调节其流量。 2、管路上设置三组U型差压计,分别用来测定流量、直管阻力和管件局部阻力相应的静压差,从测压孔引出的高低压管间有平衡阀相连,其连接情况及平衡阀的安装位置见图c 。差压计指示液有水银和四氯化碳。 三.基本原理和方法 不可压缩性流体在直管内作稳定流动时,由于粘滞性而产生摩擦阻力,即直管阻力。流体在流经变径、弯管、阀门等管件时,由于流速及其方向的变化而产生局部阻力。在湍流状态下,管壁的粗糙度也影响流体阻力,通常流体阻力用流体的压头损失H f 或压力降△p 表示,并可用实验方法直接测定。 1、直管阻力H f 及直管摩擦系数λ 直管阻力H f 及直管摩擦系数λ的关系为 2 2 1u d l H f ??=λ [J/kg ] (1) 式中:1l ——直管的测试长度 [m ];d ——测试管的内径 [m ]; u ——管内流体流速 [m /s ]。 流体以一定的速度u 经过内径为d ,长度为l 1的直管所产生的直管阻力H f 可用U型差压计测得,

若已测得的差压计读数为R f (cmccl 4)。根据柏努利方程(0,02 2 =?=?z u )及流体静力学原理可得: g R g R p H f f O H O H ccl O H f ?=???-=?= -006.01022 2 4 2 ρρρρ [J/kg ] (2) 式中:g =9.8072 /s m 流体的流速u 可由孔板或文氏管流量计两边引出的差压计读数R(cm Hg ),按下式求得: n aR u = [m /s ] (3) 其中:"1装置:a =0.4166 n=0.5016 "2装置:a =0.4309 n=0.4896 "3装置:a =0.3621 n=0.5058 "4装置:a =0.3638 n=0.5029 于是由式(1),(2),(3)可得n f f R u l g dR u l dH 2 12 1012.02?= = λ (4) 又已知雷诺数 μ ρ du = Re (5) 式中:ρ——流体(水)的密度 [kg/3 m ]; μ——流体(水)的粘度 [Pas]。 若测得流体的操作温度t ,查取ρ、μ,再根据一对 u f H -值,由式(4),(5)便可求得一对Re -λ值,因而,在不同流速下,可得到一系列Re -λ值,标绘在双对数坐标纸上,即可得到Re -λ关系曲线。 2、局部阻力H ’f 与局部阻力系数ζ; 局部阻力H ’f 与局部阻力系数ζ的关系为: [J/kg] (6) 管件的局部阻力也可由U 型差压计测取,但因管件所引起的流速大小和方向的变化而产生旋涡,需要在相当长的管道内才能消除,故只能先测定包括被测管件在内的一段直管l 2的总阻力∑f H ,然 后减去这一段直管l 2的直管阻力H f1,就可得到管件的局部阻力H ’f 。 1 2 1' l l H H H H H f f f f f ? -=-= ∑∑ (7) 若已测得包括管件在内的压差读数为R ’f (cmHg ),利用式(2)可得: g R H f f ?=∑'126.0 [J/kg] 于是由式(3),(6),(7)得

流体流动阻力的测定实验

流体流动阻力的测定实验 一、实验内容 1.测定流体在特定的材质和ξ/d 的直管中流动时的阻力摩擦系数λ,并确定λ和Re 之间的关系。 2.测定流体通过阀门时的局部阻力系数。 二、实验目的 1.解测定流体流动阻力摩擦系数的工程定义,掌握测定流体阻力的实验组织方法。 2.测定流体流经直管的摩擦阻力和流经管件或阀门的局部阻力,确定直管阻力摩擦系数与雷诺数之间的关系。 3.熟悉压差计和流量计的使用方法。 4.认识组成管路系统的各部件、阀门并了解其作用。 三、实验原理 流体通过由直管和阀门组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。流体流经直管时所造成机械能损失称为直管阻力损失。流体通过阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。 1.直管阻力 流体流动过程是一个多参数过程,)(ερμ、、、、、u l d f h f =。由因次分析法,从诸多影响流体流动的因素中组合流体流经管件时的阻力损失可用下式表示: ?? ????ξμρ=ρ?d ,du ,d l F u P 2 λ=Ψ(Re ,ε/d ) 雷诺准数μ ρdu e = R ;2 2 u d l P h f ??=?=λρ 只要找出λ、ξ就可计算出流体在管道内流动时的能量损失。 g P Hg )R(ρρ-=?

易知,直管摩擦系数λ仅与Re 和 d ε 有关。因此,只要在实验室规模的装置 上,用水做实验物系,进行试验,确定λ与Re 和 d ε 的关系,然后计算画图即可。 2.局部阻力 局部阻力可以用当量长度法或局部阻力系数法来表示,本实验用局部阻力系数法来表示,即流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数 来表示,用公式表示: 2 2 u P h f ξρ=?= 一般情况下,由于管件和阀门的材料及加工精度不完全相同,每一制造厂及每一批产品的阻力系数是不尽相同的。 四、实验设计 由 22 u d l h f ??=λ和2 2u h f ξ=知,当实验装置确定后,只要改变管路中流体流速u 及流量V ,测定相应的直管阻力压差ΔP 1和局部阻力压差ΔP 2,就能通过计算得到一系列的λ和ξ的值以及相应的Re 的值, 【原始数据】在实验中,我们要测的原始数据有流量V ,用来计算直管阻力压差ΔP 1和局部阻力压差ΔP 2的U 型压差计的左右两边水银柱高度,流体的温度t (据此确定ρ和μ),还有管路的直径d 和直管长度l 。 【测量点】在直管段两端和局部两端各设一对测压点,分别测定ΔP 1 和ΔP 2 ,还要在管路中配置一个流量和温度测试点。 【测试方法】温度用温度计测定,流量我们用涡轮流量计来测定,则 Q=f/ξ 其中,f 表示涡轮流量计的转子频率,其值由数显仪表显示;ξ为涡轮流量计的仪表系数;Q 为流量,单位L/s 。 五、实验装置流程及说明 主要设备和部件:离心泵,循环水箱,涡轮流量计,阀门,直管及管件,玻

相关文档
最新文档