Microsoft Mathematics求逆矩阵-线性代数中的应用

Microsoft Mathematics求逆矩阵-线性代数中的应用
Microsoft Mathematics求逆矩阵-线性代数中的应用

用Microsoft Mathematics求逆矩阵1. 逆矩阵inverse(A)

输入:A:=matrix{{1, 2, 3}, {2, 2, 1}, {3, 4, 3}}

求逆矩阵:B:=inverse(A)

验证:AB

2. 解矩阵方程

输入:A:=matrix{{2, 1, -3}, {1, 2, -2}, {-1, 3, 2}} B:=matrix{{1, -1}, {2, 0}, {-2, 5}}

解出X:X:=inverse(A)B

输入:A:=matrix{{1, 2, 3}, {2, 2, 1}, {3, 4, 3}} B:=matrix{{2, 1}, {5, 3}}

C:=matrix{{1, 3}, {2, 0}, {3, 1}}

解出X:X:=inverse(A)C inverse(B)

线性代数秩逆

线性代数秩逆

————————————————————————————————作者:————————————————————————————————日期:

一、 矩阵的秩 定义1 在一个n m ?矩阵A 中,任意选定k 行和k 列({}n m k ,m in ≤),位于这些选定的行和列的交点上的2k 个元素按原来的次序所组成的 k k ?矩阵的行列式,称为A 的一个k 阶子式。 例1 在矩阵 ?? ? ? ? ? ? ? ?-=00005000412013 1 1A 中,选第3,1行和第4,3列,它们交点上的元素所成的2阶行列式 155 013= 就是一个2阶子式。又如选第3,2,1行和第4,2,1列,相应的3阶子式就是 .105 00420111= 定义2 非零矩阵的不为零的子式的最高阶数称为该矩阵的秩,零矩阵的秩规定为0。矩阵A 的秩记为()A rank 。 例2 证明:矩阵A 与其转置矩阵T A 有相同的秩。 例3 证明:阶梯形矩阵的秩等于它的非零行的个数。 证 设A 是一个阶梯形矩阵,不为零的行数是r 。选取这r 个非零行以及各非零行第一个非零元素所在的列,由这些行和列交点上的元素所成的r 阶子式是一个上三角行列式,并且主对角线上的元素都不为零,因此它不等于零。而A 的所有阶数大于r 的子式都至少有一行的元素全为零,因而子式为零。所以()r A rank =。 由于矩阵的子式的阶数不超过矩阵的行数及列数,所以n m ?矩阵A 的秩()()n m A rank ,m in ≤。而如果()m A rank =,就称A 是行满秩的;如果 ()n A rank =,就称A 是列满秩的。此外,如果A 的所有1+r 阶子式全为 零,由行列式的定义可知,A 的2+r 阶子式也一定为零,从而A 的所有阶数大于r 的子式全都为零。因此秩有下面等价的定义: 定理1 n m ?矩阵A 的秩为r 充分必要条件是:在A 中存在一个r 阶

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数性质公式

线性代数 第一章行列式 一、相关概念 1.行列式——n阶行列式是所有取自不同行不同列的n个元素的乘积 的代数和,这里是1,2,···n的一个排列。当是偶排列时,该项的前面带正号;当是奇排列时,该项的前面带负号,即 (1.1) 这里表示对所有n阶排列求和。式(1.1)称为n阶行列式的完全展开式。 2.逆序与逆序数——一个排列中,如果一个大的数排列在小的数之前,就称这两个数构成一个逆序。一个排列的逆序总是称为这个排列的逆序数。用表示排列的逆序数。 3.偶排列与奇排列——如果一个排列的逆序数是偶数,则称这个排列为偶排列,否则称为奇排列。 4.2阶与3阶行列式的展开——, 5.余子式与代数余子式——在n阶行列式中划去所在的第i行,第j列的元素,剩下的元素按原来的位置排法构成的一个n-1阶的行列式 称为的余子式,记为;称为的代数余子式,记为,即。

6.伴随矩阵——由矩阵A的行列式|A|所有的代数余子式所构成的形如,称为A的伴随矩阵,记作。 二、行列式的性质 1.经过转置行列式的值不变,即→行列式行的性质与列的性质是对等的。 2.两行互换位置,行列式的值变号。特别地,两行相同(或两行成比例),行列式的值为0. 3.某行如有公因子k,则可把k提出行列式记号外。 4.如果行列式某行(或列)是两个元素之和,则可把行列式拆成两个行列式之和: 5.把某行的k倍加到另一行,行列式的值不变: 6.代数余子式的性质——行列式任一行元素与另一行元素的代数余子式乘积之和为0 三、行列式展开公式 n阶行列式的值等于它的任何一行(列)元素,与其对应的代数余子式乘积之和,即 |A|按i行展开的展开式 |A|按j列展开的展开式 四、行列式的公式 1.上(下)三角形行列式的值等于主对角线元素的乘积; 2.关于副对角线的n阶行列式的值 3.两个特殊的拉普拉斯展开式:如果A和B分别是m阶和n阶矩阵,则 4.范德蒙行列式 5.抽象n阶方阵行列式公式(矩阵) 若A、B都是n阶矩阵,是A的伴随矩阵,若A可逆,是A的特征值:

线性代数矩阵性及应用举例

线性代数矩阵性及应用举例

————————————————————————————————作者:————————————————————————————————日期:

华北水利水电学院线性代数解决生活中实际问题 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2012年11月7日

关于矩阵逆的判定及求逆矩阵方法的探讨 摘 要:矩阵的可逆性判定及逆矩阵的求解是高等代数的主要内容之一。本文给出 判定矩阵是否可逆及求逆矩阵的几种方法。 关键词:逆矩阵 伴随矩阵 初等矩阵 分块矩阵 矩阵理论是线性代数的一个主要内容,也是处理实际问题的重要工具,而逆矩阵在矩阵的理论和应用中占有相当重要的地位。下面通过引入逆矩阵的定义,就矩阵可逆性判定及求逆矩阵的方法进行探讨。 定义1 n 级方阵A 称为可逆的,如果n 级方阵B ,使得 AB=BA=E (1) 这里E 是n 级单位矩阵。 定义2 如果B 适合(1),那么B 就称为A 的逆矩阵,记作1 -A 。 定理1 如果A 有逆矩阵,则逆矩阵是唯一的。 逆矩阵的基本性质: 性质1 当A 为可逆阵,则A A 1 1 = -. 性质 2 若A 为可逆阵,则k kA A (,1 -为任意一个非零的数)都是可逆阵,且A A =--1 1)( )0(1)(1 1≠= --k A k kA . 性质3 111 ) (---=A B AB ,其中A ,B 均为n 阶可逆阵. 性质4 A ()()'11 '=--A . 由性质3有 定理2 若)2(,21≥n A A A n Λ是同阶可逆阵,则n A A A Λ21,是可逆阵,且21(A A 下面给出几种判定方阵的可逆性及求逆矩阵的方法: 方法一 定义法 利用定义1,即找一个矩阵B ,使AB=E ,则A 可逆,并且B A =-1 。 方法二 伴随矩阵法 定义3 设)(ij a A =是n 级方阵,用ij A 表示A 的),(j i 元的代数余子式)1,(n j i Λ=,

矩阵与线性代数计算

第三章 矩阵与线性代数计算 MATLAB ,即“矩阵实验室”,它是以矩阵为基本运算单元。因此,本章从最基本的运算单元出发,介绍MATLAB 的命令及其用法。 3.1矩阵的定义 由m×n 个元素a ij (i=1,2,…m;j=1,2,…n)排列成的矩形阵称为一个m 行n 列的矩阵,或m×n 阶矩阵,可以简记为A=(a ij ) m×n ,其中的a ij 叫做矩阵的第i 行第j 列元素。 ???? ??????=m n m m n n a a a a a a a a a A 2 1 222 21 11211 当m=n 时,称A 为n 阶方阵,也叫n 阶矩阵; 当m=1,n ≥2时,即A 中只有一行时,称A 为行矩阵,或行向量(1维数组); 当m ≥2,n=1时,即A 中只有一列时,称A 为列矩阵,或列向量; 当m=1,n=1时,即A 中只有一个元素时,称A 为标量或数量(0维数组)。 3.2矩阵的生成 1.实数值矩阵输入 MATLAB 的强大功能之一体现在能直接处理向量或矩阵。当然首要任务是输入待处理的向量或矩阵。 不管是任何矩阵(向量),我们可以直接按行方式输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔,且空格个数不限;不同的行用分号(;)分隔。所有元素处于一方括号([ ])内;当矩阵是多维(三维以上),且方括号内的元素是维数较低的矩阵时,会有多重的方括号。如: 【例3-1】矩阵的生成例。 a=[1 2 3;4 5 6;7 8 9] b=[1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9; 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9; 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9] Null_M = [ ] %生成一个空矩阵

线性代数习题[第三章] 矩阵的初等变换与线性方程组

习题 3-1 矩阵的初等变换及初等矩阵 1.用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形. 2.用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵. 3.设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =. 4.设A是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B. (1) 证明B可逆(2)求1 AB-.

习题 3-2 矩阵的秩 1.求矩阵的秩: (1)310211211344A ????=--????-?? (2)11121212221 2n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????01,2,,i i a b i n ≠????=?? 2.设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =.

3. 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系是 . .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()()1 d R A R B R A ≥≥- 4. 矩阵???? ??????-------815073*********的秩R= . a.1; b . 2; c . 3; d . 4. 5. 设n (n ≥3)阶方阵????? ???????=111 a a a a a a a a a A 的秩R (A )=n -1,则a = . a . 1; b . n -11; c . –1; d . 1 1-n . 6.设A 为n 阶方阵,且2 A A =,试证: ()()R A R A E n +-=

(完整版)线性代数重要知识点及典型例题答案

线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??==、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D 等于零 特殊行列式: ①转置行列式:33 23133222123121 11333231232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式 ⑤上(下)三角形行列式:

刘三阳线性代数第二版第一章标准答案

刘三阳线性代数第二版第一章答案

————————————————————————————————作者:————————————————————————————————日期:

第一章矩阵及其应用习题解答 本章需要掌握的是: 1)矩阵的定义,以及矩阵的运算(加、减、数乘和乘法); 2)方阵的幂和多项式,以及矩阵转置的性质; 3)逆阵的定义,以及逆阵的4条性质; 4)分块矩阵的运算规则; 5)矩阵的三种初等变换及行阶梯矩阵和行最简矩阵; 6)三种初等矩阵,以及定理1.4(左乘行变,右乘列变)、1.5、1.6和1.7;7)求逆阵的方法:定义法和初等变换法。 1、设方阵A满足,求。 题型分析:此类题型考核的知识点是逆阵的定义,即。因此无论题中给出的有关矩阵A的多项式(如本题是)多么复杂,只 需要把该多项式配方成“(所求逆的表达式)*(配方后的因子)=E”即可,即本题是要配成(A-E)*(?)=E。 解: %配出2003A可提取的(A-E) %配出1998可提取的(A-E) %提取公因式(A-E) %将只有单位阵的那一项移至等式右端 %写成“AB=BA=E”的形式

%由逆阵定义可知 巩固练习:教材第38页第13题 2、设,求。其中k为正整数。 题型分析:此类题型考核的知识点是矩阵的乘法和幂运算。解题思路为依次计算 最多到,通常这时已经可以看出规律,依此规律解题即可。 解:,,因此推论,用数学归纳法证明如下: 1)当k=1时,成立; 2)假设当k=n-1时,上式成立,即,则有 当k=n时,也成立。 所以 巩固练习:教材第41页二、填空题(3) 3、设A=E-uu T ,E为n阶单位阵,u为n维非零列向量,u T 为u的转置,证明:1)A2=A的充要条件是u T u=1; 2)当u T u=1时,A是不可逆的。 题型分析:这道题综合了矩阵这一章的大部分知识点,是个综合题,对于刚学了第一章的同学们来说也是一道难题。解题思路首先要明确u为n为非零向量是指u是一个只有一行 或一列的矩阵,题中有即告诉我们u是一个n*1阶列矩阵即列向量。

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

线性代数秩和逆

一、 矩阵的秩 定义1 在一个n m ?矩阵A 中,任意选定k 行和k 列({}n m k ,min ≤),位于这些选定的行和列的交点上的2k 个元素按原来的次序所组成的k k ?矩阵的行列式,称为A 的一个k 阶子式。 例1 在矩阵 ?????? ? ??-=0000500041201311A 中,选第3,1行和第4,3列,它们交点上的元素所成的2阶行列式 15501 3= 就是一个2阶子式。又如选第3,2,1行和第4,2,1列,相应的3阶子式就是 .105 004201 11= 定义2 非零矩阵的不为零的子式的最高阶数称为该矩阵的秩,零矩阵的秩规定为0。矩阵A 的秩记为()A rank 。 例2 证明:矩阵A 与其转置矩阵T A 有相同的秩。 例3 证明:阶梯形矩阵的秩等于它的非零行的个数。 证 设A 是一个阶梯形矩阵,不为零的行数是r 。选取这r 个非零行以及各非零行第一个非零元素所在的列,由这些行和列交点上的元素所成的r 阶子式是一个上三角行列式,并且主对角线上的元素都不为零,因此它不等于零。而A 的所有阶数大于r 的子式都至少有一行的元素全为零,因而子式为零。所以()r A r a n k =。 由于矩阵的子式的阶数不超过矩阵的行数及列数,所以n m ?矩阵A 的秩()()n m A rank ,min ≤。而如果()m A rank =,就称A 是行满秩的;如果()n A rank =,就称A 是列满秩的。此外,如果A 的所有1+r 阶子式全为零,由行列式的定义可知,A 的2+r 阶子式也一定为零,从而A 的所有阶数大于r 的子式全都为零。因此秩有下面等价的定义: 定理1 n m ?矩阵A 的秩为r 充分必要条件是:在A 中存在一个r 阶子式不为零,且在()()n m A rank ,min <时,矩阵A 的所有1+r 子阶式都为零。

线性代数习题第三章 矩阵的初等变换与线性方程组

习题3-1 矩阵的初等变换及初等矩阵 1、用初等行变换化矩阵 1021 2031 3043 A - ?? ?? =?? ?? ?? 为行最简形、 2、用初等变换求方阵 321 315 323 A ?? ?? =?? ?? ?? 的逆矩阵、 3、设 412 221 311 A - ?? ?? =?? ?? - ?? , 3 22 31 - ?? ?? ?? ?? - ?? 1 B=,求X使AX B =、 4、设A就是n阶可逆矩阵,将A的第i行与第j行对换后得矩阵B、 (1) 证明B可逆(2)求1 AB-、

习题 3-2 矩阵的秩 1、求矩阵的秩: (1)310211211344A ????=--????-?? (2)111212122212n n n n n n a b a b a b a b a b a b B a b a b a b ??????=??????L L L L L L L 01,2,,i i a b i n ≠????=?? L 2、设12312323k A k k -????=--????-?? 问k 为何值,可使 (1)()1R A =; (2)()2R A =; (3)()3R A =、

3、 从矩阵A 中划去一行,得矩阵B ,则)(A R 与)(B R 的关系就是 、 .()()a R A R B = .()()b R A R B <; .()()1c R B R A >-; .()()() 1.d R A R B R A ≥≥- 4、 矩阵???? ??????-------815073*********的秩R= 、 a 、1; b 、 2; c 、 3; d 、 4、 5、 设n (n ≥3)阶方阵????? ???????=111ΛΛΛΛΛΛΛΛa a a a a a a a a A 的秩R (A )=n -1,则a = 、 a 、 1; b 、 n -11; c 、 –1; d 、 1 1-n 、 6、设A 为n 阶方阵,且2A A =,试证: ()()R A R A E n +-=

线性代数习题及解答

线性代数习题 说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,||:. ||表示向量:.的长度,:.T表示向量:.的转置, 单位矩阵,A|表示方阵A的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列岀的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 a11a12 a133耳13a123a13 1.设行列式 a21a22 a23=2,则_a31_a32_a33=( ) a31932a33a21 — a31a22 — a32323 —a33 A . -6 B. -3 C. 3 D. 6 2 .设矩阵A,X为同阶方阵,且A可逆,若A (X七)=E,则矩阵X=( ) ■1 A. E +A 1 B. E-A ■1 C. E+A D. E-A 1 3?设矩阵A,B均为可逆方阵,则以下结论正确的是( ) A 1A可逆,且其逆为"< A; B 1A不可逆 I B丿丿I B丿 r B、% )A-1 C.. 可逆,且其逆为 D .. 可逆,且其逆为 I B丿

线性代数第一章行列式试题及答案

如何复习线形代数 线性代数这门课的特点主要有两个:一是试题的计算量偏大,无论是行列式、矩阵、线性方程组的求解,还是特征值、特征向量和二次型的讨论都涉及到大量的数值运算,稍有不慎,即会出错;二是前后内容紧密相连,纵横交织,既相对独立又密不可分,形成了一个完整、独特的知识体系. 在掌握好基本概念、基本原理和基本方法的前提下,下面谈谈在复习过程中应注意的一些问题. 一、加强计算能力训练,切实提高计算的准确性 二、扩展公式结论蕴涵,努力探索灵活解题途径 三、注重前后知识联系,努力培养综合思维能力 线性代数不仅概念多,公式结论多,而且前后知识联系紧密,环环相扣,几乎从任何一个知识点都可切入将前后知识联系起来考查 四、加强综合题型训练,全面系统地掌握好知识 计算能力的提高不是一朝一夕的事,除了要不断归纳总结一些重要公式和结论并加以巧妙、适当的应用外,还要靠平时的积累,要养成踏踏实实、有始有终将最后结果计算出来的习惯,只要持之以恒、坚持练习,计算准确性的提高并不是一件困难的事. 而对整个知识的融会贯通、综合应用也有赖于适当地多做这方面的练习, 第一章行列式 一.概念复习 1. 形式和意义 形式:用n2个数排列成的一个n行n列的表格,两边界以竖线,就成为一个n阶行列式: a11 a12 (1) a21 a22 (2) ………. a n1 a n2…a nn 如果行列式的列向量组为1,2, …,n,则此行列式可表示为|1,2, …,n|. 意义:是一个算式,把这n2个元素按照一定的法则进行运算,得到的数值称为这个行列式的值. 请注意行列式和矩阵在形式上和意义上的区别. 当两个行列式的值相等时,就可以在它们之间写等号! (不必形式一样,甚至阶数可不同.) 每个n阶矩阵A对应一个n阶行列式,记作|A|. 行列式这一讲的的核心问题是值的计算,以及判断一个行列式的值是否为0. 2. 定义(完全展开式) 一般地,一个n阶行列式 a11 a12 (1) a21 a22 (2) ……… a n1 a n2…a nn 的值是许多项的代数和,每一项都是取自不同行,不同列的n个元素的乘积,其一般形式为: n nj j j a a a 2 1 2 1 ,这里把相乘的n个元素的行标按自然顺序排列,它们的列标j1j2…j n构成1,2, …,n的一个全排列(称为一个n元排列), 一个n元排列的总项数共有n!个,因此n阶行列式的值是n!项的代数和。 所谓代数和是在求总和时每项先要乘+1或-1.规定(j1j2…j n)为全排列j1j2…j n的逆序数,全排列的逆序数即小数排列在大数右面的现象出现的个数. 逆序数可如下计算:标出每个数右面比它小的数的个数,它们的和就是逆序数.例如求436512的逆序数: 2 3 2 3 215 6 3 4,(436512)=3+2+3+2+0+0=10. 则项 n nj j j a a a 2 1 2 1 所乘的是. )1 () (2 1n j j j 即逆序数是偶数时,该项为正;逆序数是奇数时,该项为负;在一个n元排列的n!项中,奇排列和偶排列各有n!/2个。至此我们可以写出n阶行列式的值: a11 a12 (1) a21 a22…a2n =. )1 ( 2 1 2 1 2 1 2 1 ) ( n n n nj j j j j j j j j a a a ……… a n1 a n2…a nn 这里 n j j j 2 1 表示对所有n元排列求和.称此式为n阶行列式的完全展开式. 用完全展开式求行列式的值一般来说工作量很大.只在有大量元素为0,使得只有少数项不为0时,才可能用它作行列式的计算. 3、对角行列式计算

线性代数知识点总结

第一部分:基本要求(计算方面) 四阶行列式的计算; N阶特殊行列式的计算(如有行和、列和相等); 矩阵的运算(包括加、减、数乘、乘法、转置、逆等的混合运算); 求矩阵的秩、逆(两种方法);解矩阵方程; 含参数的线性方程组解的情况的讨论; 齐次、非齐次线性方程组的求解(包括唯一、无穷多解); 讨论一个向量能否用和向量组线性表示; 讨论或证明向量组的相关性; 求向量组的极大无关组,并将多余向量用极大无关组线性表示; 将无关组正交化、单位化; 求方阵的特征值和特征向量; 讨论方阵能否对角化,如能,要能写出相似变换的矩阵及对角阵; 通过正交相似变换(正交矩阵)将对称矩阵对角化; 写出二次型的矩阵,并将二次型标准化,写出变换矩阵; 判定二次型或对称矩阵的正定性。 第二部分:基本知识 一、行列式 1.行列式的定义 用n^2个元素aij组成的记号称为n阶行列式。 (1)它表示所有可能的取自不同行不同列的n个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算 一阶|α|=α行列式,二、三阶行列式有对角线法则; N阶(n>=3)行列式的计算:降阶法 定理:n阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。 方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。 特殊情况 上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积; (2)行列式值为0的几种情况: Ⅰ行列式某行(列)元素全为0; Ⅱ行列式某行(列)的对应元素相同; Ⅲ行列式某行(列)的元素对应成比例; Ⅳ奇数阶的反对称行列式。 二.矩阵 1.矩阵的基本概念(表示符号、一些特殊矩阵――如单位矩阵、对角、对称矩阵等); 2.矩阵的运算 (1)加减、数乘、乘法运算的条件、结果; (2)关于乘法的几个结论: ①矩阵乘法一般不满足交换律(若AB=BA,称A、B是可交换矩阵); ②矩阵乘法一般不满足消去律、零因式不存在;

线性代数矩阵相关练习题

向量组的线性相关性----习题课 如何正确理解线性相关(无关)的定义 判断下列命题是否正确。如果对,加以证明;如果错,举出反例。 (1)若有不全为0的数m λλλ,,,21Λ使 01111=+++++m m m m b b a a λλλλΛΛ 成立,则m a a ,,1Λ线性相关, m b b ,,1Λ亦线性相关. 解:错。原式可化为0)()(111=++++m m m b a b a λλΛ 取m m m b e a b e a b e a -==-==-==,,,222111Λ 其中m e e ,,1Λ为单位向量,则原式成立, 而m a a ,,1Λ;m b b ,,1Λ均线性无关。 (2)若向量组m a a a ,,,21Λ 是线性相关的,则其中每个向量都是其余向量的线性组合。 解 错。 反例1:设)0,,0,0,1(11Λ==e a ,032====m a a a Λ 满足m a a a ,,,21Λ线性相关, 但1a 不能由,,,2m a a Λ线性表示. 反例2:)0,0,1(1=a ,)0,0,12-= (a ,)1,0,0(3=a (3) 如果向量组的一个线性组合等于零向量,那么该向量组线性相关。 解:不一定。因为任何一个向量组都有一个性质: 系数全为0的线性组合一定是零向量。 若还有系数不全为零的线性组合也是零向量,则线性相关; 否则线性无关。 (4)若a 能表示为m m a a a λλ++=Λ11 则向量组a a a m ,,,1Λ线性相关. 解:正确。 (7) 若有一组不全为0的数m λλλ,,,21Λ使 0αλαλm m 11≠++Λ成立,则m a a ,,1Λ线性无关. 解:错。任何一组数满足上式才行。 (6) 若021====m λλλΛ时,有 0αλαλm m 11=++Λ成立,则m a a ,,1Λ线性无关. 解:错。将“若…… ”改为“只有……”,结论才正确。 反例:)0,0,1(1=a ,)0,1,02(=a ,)0,1,1(3=a ,线性相关; )0,0,1(b 1=,)0,1,0b 2(=,)1,0,0(b 3=,线性无关。

线性代数(同济六版)知识点总结

1.二阶行列 式--------对角线法则: 2.三阶行列式 ①对角线法则 ②按行(列)展开法则 3.全排列:n 个不同的元素排成一列。 所有排列的种数用表示,=n ! 逆序数:对于排列 … ,如果排在元素前面,且比大的元素个数有个,则这个元素的逆序数为。 整个排列的逆序数就是所有元素的逆序数之和。 奇排列:逆序数为奇数的排列。偶排列:逆序数为偶数的排列。n 个元素的所有排列中,奇偶各占一半,即 对换:一个排列中的任意两个元素对换,排列改变奇偶性. 4. 其中:是1,2,3的一个排列, t( )是排列 的逆序数 5. 下三角行列式: 副三角跟副对角相识 对角行列式: 副对角行列式: 6.行列式的性质: ①行列式与它的转置行列式相等.(转置:行变列,列变行)。D = ②互换行列式的两行(列),行列式变号。推论:两行(列)相同的行列式值为零。互换两行: ③行列式的某一行(列)中的所有元素都乘以同一个数k ,等于用数k 乘此行列式。第i 行乘k :xk 推论:行列式中某一行(列)的公因子可以提到行列式符号外面 ④行列式中如果有两行(列)元素成比例,则此行列式等于0 ⑤若行列式的某一列(行)的元素都是两个元素和,则此行列式等于两个行列式之和。如: ⑥把行列式的某行(列)的各元素同一倍数后加到另一行(列)的对应元素上去,行列式的值不变。如 第j 列的k 倍加到第i 列上: 7.重要性质:利用行列式的性质 或 ,可以把行列式化为上(下)三角行列式,从而计算n 阶 行列式的值。(P11页例7) 8.行列式按行(列)展开法则(***重要***) ①重要概念: 余子式:在n 阶行列式中,把元素a ij 所在的第i 行和第j 列划去,剩下的(n?1)2个元素按原来的排法构 成的n?1阶行列式叫做a ij 的余子式,记为M ij 代数余子式:记A ij =(?1)i+j M ij 为元素a ij 的代数余子式。 ②重要性质,定理 1)第i 行各元素的余子式,代数余子式与第i 行元素的取值无关。 2)行列式按行(列)展开法则:行列式等于它的任意一行(列)的各元素与其对应的代数余子式乘积之和, 即: 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.即 33 323123 2221131211 a a a a a a a a a 3221312312332211a a a a a a a a a 13++=312213332112322311a a a a a a a a a ---321321233123222113 12113j 2j 1j ) j j t (j 33 a a a a a a a a a a a a 1) (∑-=n n 22 11n n n 2n 1222111 ...a a a a ...a a 0a a a =O M M n ...λλλλλλ21n 2 1 =O n 2 1 λ λλN n 212 1) n(n λλλ1)(ΛΛ--=in in i2i2i1i1A a A a A a D +++=ΛΛnj nj 2j 2j 1j 1j A a A a A a D +++=ΛΛ或

线性代数(同济六版)知识点总结归纳

1. 二阶行列式--------对角线法则 : 2. 三阶行列式 ①对角线法则 ②按行(列)展开法则 3. … 且比大的元素个数有个, 则。 排列中,奇偶各占一半,即 对换:一个排列中的任意两个元素对换,排列改变奇偶性4. 其中: 数 5. 下三角行列式: 副三角跟副对角相识 对角行列式: 副对角行列式: 6. 行列式的性质: ①行列式与它的转置行列式相等. (转置:行变列,列变行)。D = ②互换行列式的两行(列),行列式变号。 推论 :两行(列)相同的行列式值 33 323123 222113 1211a a a a a a a a a 3221312312332211a a a a a a a a a 13++=31 2213332112322311a a a a a a a a a ---31 2111 a a a n n 2211n n n 2n 1222111 ...a a a a ...a a 0 a a a = n ...λλλλλλ21n 21 = n 2 1 λλλ n 212 1) n(n λλλ1) ( --=

为零。 互换两行: ③行列式的某一行(列)中的所有元素都乘以同一个数k ,等于用数 k 乘此行列式。第i 行乘k : x k 推论 :行列式中某一行(列)的公因子可以提到行列式符号外面 ④行列式中如果有两行(列)元素成比例 ,则此行列式等于0 第列上:7. (下) 8. 剩下的( 的余子ij 代数余子式:记 A ij = ( ?1 ) i+j M ij 为元素 a ij 的代数余子式 。 ②重要性质,定理 1)第i 行各元素的余子式,代数余子式与第i 行元素的取值无关。 2)行列式按行(列)展开法则:行列式等于它的任意一行(列)的各元素与 其对应的代数余子式乘积之和, 即: in in i2i2i1i1A a A a A a D +++= nj nj 2j 2j 1j 1j A a A a A a D +++= 或

(精选)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A|=5,则|A*|=__125____,|2A|=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

华东理工大学线性代数第一章矩阵复习

矩阵 第章 第一章矩阵

矩阵乘法转置求逆运算规律 1、矩阵乘法、转置、求逆运算规律); ()(BC A C AB =)); (),()()(为数其中λλλλB A B A AB ==A ; )(, )(CA BA A C B AC AB C B +=++=+. I A A A I n n m n m n m m ×××==般地则称若一般地,,,BA AB BA AB =≠B A 与. 是可交换的矩阵乘法一般不满足消去律,即: . Y X AY AX ==一般推不出

逆矩阵 定义,, 使如果存在矩阵阶方阵为设B n A ( 矩阵、满或非奇异的、非退化的是可逆的则称矩阵A I BA AB ==的逆矩阵唯的. ),的逆矩阵称为且矩阵秩的A B . ,, 1 A A A ?的逆 的逆矩阵是唯一的则有逆矩阵若A 矩阵记作

()() ; 1A A T T =() A A =??1 1()();2T T T B A B A +=+() ;1 1 1 ???+≠+B A B A ()(); 3T T A A λλ=T (). 111 ??=A A λ λ()(). 4T T A B AB =() . 1 11 ???=A B AB (?()). T T A A 11 ? =

一些特殊的矩阵2些特殊的矩阵 对称矩阵 T . ,,为对称矩阵则称如果阶方阵为设A A A n A =反对称矩阵 ,,为反对称则称如果阶方阵为设A A A n A T ?=. 矩阵幂等矩阵 . ,,2 为幂等矩阵则称如果阶方阵为设A A A n A =

正交矩阵 A A ,,正交矩阵为则称如果阶方阵为设A I A A n A T T ==.对角矩阵 其余素全角线阶阵,,其余元素全如果主对角线以外阶方阵为设n A . ,为对角矩阵则称为零 A

相关文档
最新文档