2017_2018学年高中数学第二讲讲明不等式的基本方法达标检测新人教A版选修4_5

2017_2018学年高中数学第二讲讲明不等式的基本方法达标检测新人教A版选修4_5
2017_2018学年高中数学第二讲讲明不等式的基本方法达标检测新人教A版选修4_5

第二讲 讲明不等式的基本方法

达标检测

时间:120分钟 满分:150分

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)

1.用分析法证明不等式的推论过程一定是( ) A .正向、逆向均可进行正确的推理 B .只能进行逆向推理 C .只能进行正向推理

D .有时能正向推理,有时能逆向推理

解析:在用分析法证明不等式时,是从求证的不等式出发,逐步探索使结论成立的充分条件,故只能进行逆向推理. 答案:B

2.已知a >2,b >2,则有( ) A .ab ≥a +b B .ab ≤a +b C .ab >a +b D .ab

解析:作商比较法.

a +

b ab =1b +1

a

,又a >2,b >2, ∴1a <12,1b <12,∴a +b ab <12+12=1. 答案:C

3.用反证法证明命题“如果a 3

b ”时,假设的内容应是( ) A.3a =3b

B .3a <3b

C.3a =3b 且3a >3b

D .3a =3b 或3a <3b

解析:3a 与3b 的大小关系包括3a >3b ,3a =3b ,3a <3

b , ∴应假设的内容为3a =3b 或3a <3

b . 答案:D

4.已知实数a ,b ,c 满足b +c =6-4a +3a 2

,c -b =4-4a +a 2

,则a ,b ,c 的大小关系是( ) A .c ≥b >a B .a >c ≥b C .c >b >a

D .a >c >b

解析:∵c -b =(a -2)2

≥0,∴c ≥b . 由题中两式相减,得b =a 2

+1,

∴b -a =a 2

-a +1=? ????a -122+34

>0,

∴b >a ,∴c ≥b >a . 答案:A

5.已知a >b >c >0,A =a 2a b 2b c 2c

,B =a b +c b c +a c a +b

,则A 与B 的大小关系是( )

A .A >

B B .A

C .A =B

D .不确定

解析:∵a >b >c >0,∴A >0,B >0.

∴A B =a a a a b b b b c c c c a b a c b c b a c a c

b =a a -b a a -

c b b -c b b -a c c -a c c -b =? ???

?a b a -b ? ????a c a -c ? ??

??b c b -c .

∵a >b >0,∴a b

>1,a -b >0. ∴? ??

??a b

a -

b >1. 同理? ????b c

b -

c >1,? ??

?

?a c a -c >1.

∴A B

>1,∴A >B . 答案:A

6.若0

<3x

B .log x 3

C .log 4 x

D .? ????14x

??14y 解析:∵y =3x

在R 上是增函数,且0

<3y

,故A 错误.

∵y =log 3 x 在(0,+∞)上是增函数且0

∴0>1log 3 x >1

log 3 y ,∴log x 3>log y 3,故B 错误.

∵y =log 4 x 在(0,+∞)上是增函数且0

∵y =? ??

??14x

在R 上是减函数,且0

∴? ????14x >? ??

??14y

,故D 错误. 答案:C

7.设a 、b 、c ∈R ,且a 、b 、c 不全相等,则不等式a 3

+b 3

+c 3

≥3abc 成立的一个充要条件是( )

A .a ,b ,c 全为正数

B .a ,b ,c 全为非负实数

C .a +b +c ≥0

D .a +b +c >0

解析:a 3

+b 3

+c 3

-3abc =(a +b +c )(a 2

+b 2

+c 2

-ab -ac -bc )=

12

(a +b +c )[(a -b )2+(b -c )2+(a -c )2],而a 、b 、c 不全相等?(a -b )2+(b -c )2

+(a -c )2>0.

∴a 3

+b 3

+c 3

-3abc ≥0?a +b +c ≥0. 答案:C

8.若实数a ,b 满足a +b =2,则3a +3b

的最小值是( ) A .18 B .6 C .2 3

D .243

解析:3a

+3b

≥23a

·3b

=2·3a +b

=2×3=6(当且仅当a =b =1时,等号成立).

答案:B

9.要使3a -3b <3

a -

b 成立,a ,b 应满足的条件是( ) A .ab <0且a >b B .ab >0且a >b C .ab <0且a

D .ab >0且a >b 或ab <0且a

a -b

?a -b +33ab 2-33a 2b

b , ∴当ab >0时,有3b <3

a ,即

b 3

a ,即

b >a . 答案:D

10.已知a ,b ,c ,d 都是实数,且a 2

+b 2

=1,c 2

+d 2

=1.则ac +bd 的范围为( ) A .[-1,1] B .[-1,2) C .(-1,3]

D .(1,2]

解析:因为a ,b ,c ,d 都是实数, 所以|ac +bd |≤|ac |+|bd |≤a 2+c 22+

b 2+d 22

a 2+

b 2+

c 2+

d 2

2

=1.

所以-1≤ac +bd ≤1. 答案:A

11.在△ABC 中,A ,B ,C 分别为a ,b ,c 所对的角,且a ,b ,c 成等差数列,则B 适合的条件是( ) A .0

4

B .0

3

C .0

2

D .π

2

解析:∵b =

a +c

2,

∴cos B =a 2+c 2-b 2

2ac

a 2+c 2-?

??

??a +c 22

2ac

=3a 2

-2ac +3c 2

8ac

=3a 8c +3c 8a -14≥2·38-14=12

, ∵余弦函数在?

????0,π2上为减函数,

∴0

3,选B.

答案:B

12.若a ∈?

????π,54π,M =|sin α|,N =|cos α|,P =12|sin α+cos α|, Q =

1

2

sin 2α,则它们之间的大小关系为( ) A .M >N >P >Q B .M >P >N >Q C .M >P >Q >N

D .N >P >Q >M

解析:∵α∈?

????π,5π4,∴0>sin α>cos α,∴|sin α|<|cos α|, ∴P =12|sin α+cos α|=12(|sin α|+|cos α|)>1

2(|sin α|+|sin α|)=|sin α|=M ,

排除A 、B 、C ,故选D 项.

答案:D

二、填空题(本大题共4小题,每小题4分,共16分,把答案填在题中的横线上) 13.设a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小顺序是________. 解析:a -b =3-2-6+5=3+5-(2+6), 而(3+5)2

=8+215,(2+6)2

=8+212, ∴3+5>2+ 6.∴a -b >0,即a >b . 同理可得b >c .∴a >b >c . 答案:a >b >c

14.用反证法证明命题“三角形中最多只有一个内角是钝角”时的反设是________. 解析:三角形的内角中钝角的个数可以为0个,1个,最多只有一个即为0个或1个,其对立面是“至少两个”.

答案:三角形中至少有两个内角是钝角 15.已知a ,b ,c ,d 都为正数,且S =a a +b +c +b b +c +d +c c +d +a +d

a +

b +d

,则S 的取

值范围是________. 解析:由放缩法,得

a

a +

b +

c +

d <

a a +

b +

c

a +c

b a +b +

c +

d

d +b

c a +b +c +

d

c +a ;

d

a +

b +

c +

d <

d d +a +b

d +b

.

以上四个不等式相加,得1

16. 请补全用分析法证明不等式“ac +bd

≤ a 2

+b 2

c 2

+d 2

”时的推论过程:要证明ac +bd ≤ a 2

+b 2

c 2

+d 2

, ①______________________________________________________________, 只要证(ac +bd )2

≤(a 2

+b 2

)(c 2

+d 2

),

即要证:a 2c 2

+2abcd +b 2d 2

≤a 2c 2

+a 2d 2

+b 2c 2

+b 2d 2

, 即要证:a 2d 2

+b 2c 2

≥2abcd .

②________________________________________________________________. 解析:对于①只有当ac +bd ≥0时,两边才能平方,对于②只要接着往下证即可. 答案:①因为当ac +bd ≤0时,命题显然成立,所以当ac +bd ≥0时 ②∵(ab -bc )2

≥0,∴a 2d 2

+b 2c 2

≥2abcd ,

高中数学解不等式方法+练习题

不等式 要求层次 重难点 一元二次不等式 C 解一元二次不等式 (一) 知识容 1.含有一个未知数,且未知数的最高次数为2的整式不等式,叫做一元二次不等式. 一元二次不等式的解集,一元二次方程的根及二次函数图象之间的关系如下表(以0a >为例): 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决.其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解. 判别式 24b ac ?=- 0?> 0?= 0?< 二次函数 2y ax bx c =++ (0)a >的图象 一元二次方程 2 0ax bx c ++= (0)a ≠的根 有两相异实根 12,x x = 242b b ac a -±- 12()x x < 有两相等实根 122b x x a ==- 没有实根 一元二次不等式的解集 2 0ax bx c ++> (0)a > {1 x x x < 或}2x x > {R x x ∈,且 2b x a ?≠- ?? 实数集R 20ax bx c ++< (0)a > {}1 2x x x x << ? ? 例题精讲 高考要求 板块一:解一元二次不等式 解不等式

(二)主要方法 1.解一元二次不等式通常先将不等式化为20ax bx c ++>或20 (0)ax bx c a ++<>的形式,然后求出对应方程的根(若有根的话),再写出不等式的解:大于0时两根之外,小于0时两根之间; 2.分式不等式主要是转化为等价的一元一次、一元二次或者高次不等式来处理; 3.高次不等式主要利用“序轴标根法”解. (三)典例分析: 1.二次不等式与分式不等式求解 【例1】 不等式 1 12 x x ->+的解集是 . 【变式】 不等式2230x x --+≤的解集为( ) A .{|31}x x x -或≥≤ B .{|13}x x -≤≤ C .{|31}x x -≤≤ D .{|31}x x x -或≤≥ 【变式】 不等式 25 2(1)x x +-≥的解集是( ) A .132? ?-??? ? , B .132??-????, C .(]11132??????U ,, D .(]11132?? -???? U ,, 2.含绝对值的不等式问题 【例2】 已知n *∈N ,则不等式 220.011 n n -<+的解集为( ) A .{}|199n n n *∈N ≥, B .{}|200n n n *∈N ≥, C .{}|201n n n *∈N ≥, D .{}|202n n n *∈N ≥, 【例3】 不等式 1 11 x x +<-的解集为( ) A .{}{}|01|1x x x x <<>U B .{}|01x x << C .{}|10x x -<< D .{}|0x x < 【变式】 关于x 的不等式2121x x a a -+-++≤的解集为空集,则实数a 的取值围是 _. 【例4】 若不等式1 21x a x + -+≥对一切非零实数x 均成立,则实数a 的最大值是_________. 【例5】 若不等式34x b -<的解集中的整数有且仅有123,,,则b 的取值围为 . 3.含参数不等式问题 【例6】 若关于x 的不等式22840x x a --->在14x <<有解,则实数a 的取值围是( ) A .4a <- B .4a >- C .12a >- D .12a <- 【变式】 ⑴已知0a <,则不等式22230x ax a -->的解集为 . ⑵若不等式897x +<和不等式220ax bx +->的解集相同,则a b -=______.

高中数学不等式练习题

1、设恒成立的c的取值范围是 A.B.C.D. 2、设,且(其中),则M的取值范围是A.B.C.D. 3、若实数、满足,则的取值范围是 A.B.C.D. 4、已知,,,则的最小值是() (A)(B)4(C)(D) 5、若不等式组所表示的平面区域被直线分为面积相等的两部分,则的值是 (A)(B)(C)(D) 6、已知,若在上恒成立,则实数的取值范围是()

A.B.C.D. 7、已知正实数满足,则的最小值为。 8、如图,目标函数可行域为四边形(含边界),若是该目标函数的最优解,则的取值范围是() (A)(B)(C)(D) 的最大值与最小值之和为 9、函数,当时,恒成立,则 D. 10、已知正数满足,则的最小值为 A.3B.C.4D. 11、二次函数轴两个交点的横坐标分别为。(1)证明:;(2)证明:; (3)若满足不等式的取值范围。 12、设满足约束条件,若目标函数的最大值为10,则的最小值为.

13、已知对任意实数x,二次函数f(x)=ax2+bx+c恒非负,且a

(完整版)高二数学不等式练习题及答案(经典)

不等式练习题 一、选择题 1、若a,b 是任意实数,且a >b,则 ( ) (A )a 2>b 2 (B ) a b <1 (C )lg(a-b)>0 (D )(21)a <(2 1)b 2、下列不等式中成立的是 ( ) (A )lgx+log x 10≥2(x >1) (B )a 1 +a ≥2 (a ≠0) (C ) a 1<b 1 (a >b) (D )a 21+t ≥a t (t >0,a >0,a ≠1) 3、已知a >0,b >0且a +b =1, 则()11 )(1122--b a 的最小值为 ( ) (A )6 (B ) 7 (C ) 8 (D ) 9 4、已给下列不等式(1)x 3+ 3 >2x (x ∈R ); (2) a 5+b 5> a 3b 2+a 2b 3(a ,b ∈R ); (3) a 2+b 2≥2(a -b -1), 其中正确的个数为 ( ) (A ) 0个 (B ) 1个 (C ) 2个 (D ) 3个 5、f (n ) = 12+n -n , ?(n )= n 21 , g (n ) = n 12--n , n ∈N ,则 ( ) (A ) f (n )

(新)高一数学不等式测试题

高一数学不等式测试题 一、选择题(本大题共10小题,每小题5分,共50分) 1.若a <b <0,则 ( )A . b 11 2.若|a +c|<b ,则 ( )A . |a |<|b|-|c| B . |a |>|c| -|b| C . |a |>|b|-|c| D . |a |<|c|-|b| 3.设a =26c ,37b ,2-=-=,则a ,b,c 的大小顺序是 ( ) A . a >b >c B . a >c >b C . c >a >b D . b >c >a 4. 设b <0<a ,d <c <0,则下列各不等式中必成立的是 ( )A . a c >bd B . d b >c a C . a +c >b +d D . a -c >b -d 5.下列命题中正确的一个是 ( ) A .b a a b +≥2成立当且仅当a ,b 均为正数 B .222 2b a b a +≥+成立当且仅当a ,b 均为正数 C .log a b +log a b ≥2成立当且仅当a ,b ∈(1,+∞) D .|a +a 1 |≥2成立当且仅当a ≠0 6.函数y =log ??? ? ?-+?+-2134223x x x x 的定义域是 ( ) A .x ≤1或x ≥3 B .x <-2或x >1 C .x <-2或x ≥3 D .x <-2或x >3 7.已知x,y ∈R ,命题甲: |x -1|<5,命题乙: ||x |-1|<5,那么 ( ) A .甲是乙的充分条件,但不是乙的必要条件 B .甲是乙的必要条件,但不是乙的充要条件 C .甲是乙的充要条件 D .甲不是乙的充分条件,也不是乙的必要条件 8.已知实数x ,y 满足x 2+y 2=1,则代数式(1-x y)(1+x y)有 ( ) A .最小值21 和最大值1 B .最小值43 和最大值1 C .最小值21和最大值43 D .最小值1 9.关于x 的方程ax 2+2x -1=0至少有一个正的实根的充要条件是 ( ) A .a ≥0 B .-1≤a <0 C .a >0或-1<a <0 D .a ≥-1 10.函数y =x x x +++132 (x >0)的最小值是 ( ) A .23 B .-1+23 C .1+23 D .-2+23 二、填空题(本大题共4小题,每小题6分,共24分) 11.关于x 的不等式a x 2+b x +2>0的解集是}3 121|{<<-x x ,则a +b=_____________。 12.实数=+=+>x y x y x y x ,此时的最大值是,那么,且,______log log 42022_________,y=_________。 13.方程()02lg 222=-+-a a x x 又一正根一负根,则实数a 的取值范围是 。

高中数学不等式训练习题

不等式训练1 A 一、选择题(六个小题,每题5分,共30分) 1.若02522 >-+-x x ,则221442-++-x x x 等于( ) A .54-x B .3- C .3 D .x 45- 2.函数y =log 2 1(x +11+x +1) (x > 1)的最大值是 ( ) A .-2 B .2 C .-3 D .3 3.不等式x x --213≥1的解集是 ( ) A .{x| 43≤x ≤2} B .{x|4 3≤x <2} C .{x|x >2或x ≤43} D .{x|x <2} 4.设a >1>b >-1,则下列不等式中恒成立的是 ( ) A .b a 11< B . b a 11> C .a >b 2 D .a 2>2b 5.如果实数x,y 满足x 2+y 2=1,则(1-xy) (1+xy)有 ( ) A .最小值 21和最大值1 B .最大值1和最小值4 3 C .最小值43而无最大值 D .最大值1而无最小值 6.二次方程x 2+(a 2+1)x +a -2=0,有一个根比1大,另一个根比-1小, 则a 的取值范围是 ( ) A .-3<a <1 B .-2<a <0 C .-1<a <0 D .0<a <2 二、填空题(五个小题,每题6分,共30分) 1.不等式组? ??->-≥32x x 的负整数解是____________________。 2.一个两位数的个位数字比十位数字大2,若这个两位数小于30, 则这个两位数为____________________。 3.不等式0212<-+x x 的解集是__________________。 4.当=x ___________时,函数)2(22x x y -=有最_______值,其值是_________。 5.若f(n)=)(21)(,1)(,122N n n n n n n g n n ∈= --=-+?,用不等号 连结起来为____________.

高中数学基本不等式知识点归纳及练习题00294

高中数学基本不等式的巧用 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个 正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22 ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽

视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+ 的单调性。例:求函数224y x =+的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=>(2)12,33 y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x = -.;3.203 x <<,求函数(23)y x x =-. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是. 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且191x y +=,求x y +的最小值。

(完整)高中数学不等式习题及详细答案

第三章 不等式 一、选择题 1.已知x ≥2 5 ,则f (x )=4-25+4-2x x x 有( ). A .最大值45 B .最小值4 5 C .最大值1 D .最小值1 2.若x >0,y >0,则221+)(y x +221 +)(x y 的最小值是( ). A .3 B . 2 7 C .4 D . 2 9 3.设a >0,b >0 则下列不等式中不成立的是( ). A .a +b + ab 1≥22 B .(a +b )( a 1+b 1 )≥4 C 22 ≥a +b D . b a ab +2≥ab 4.已知奇函数f (x )在(0,+∞)上是增函数,且f (1)=0,则不等式x x f x f ) ()(--<0 的解集为( ). A .(-1,0)∪(1,+∞) B .(-∞,-1)∪(0,1) C .(-∞,-1)∪(1,+∞) D .(-1,0)∪(0,1) 5.当0<x <2 π时,函数f (x )=x x x 2sin sin 8+2cos +12的最小值为( ). A .2 B .32 C .4 D .34 6.若实数a ,b 满足a +b =2,则3a +3b 的最小值是( ). A .18 B .6 C .23 D .243 7.若不等式组?? ? ??4≤ 34 ≥ 30 ≥ y x y x x ++,所表示的平面区域被直线y =k x +34分为面积相等的两部分,则k 的值是( ). A . 7 3 B . 37 C . 43 D . 34 8.直线x +2y +3=0上的点P 在x -y =1的上方,且P 到直线2x +y -6=0的距离为

(完整)高中数学不等式练习题

高中数学不等式练习题 一.选择题(共16小题) 1.若a>b>0,且ab=1,则下列不等式成立的是() A.a+<<log2(a+b))B.<log2(a+b)<a+ C.a+<log2(a+b)<D.log2(a+b))<a+< 2.设x、y、z为正数,且2x=3y=5z,则() A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 3.若x,y满足,则x+2y的最大值为() A.1 B.3 C.5 D.9 4.设x,y满足约束条件,则z=2x+y的最小值是()A.﹣15 B.﹣9 C.1 D.9 5.已知x,y满足约束条件,则z=x+2y的最大值是()A.0 B.2 C.5 D.6 6.设x,y满足约束条件,则z=x+y的最大值为() A.0 B.1 C.2 D.3 7.设x,y满足约束条件则z=x﹣y的取值范围是()A.[﹣3,0]B.[﹣3,2]C.[0,2]D.[0,3] 8.已知变量x,y满足约束条件,则z=x﹣y的最小值为()A.﹣3 B.0 C.D.3

9.若变量x,y满足约束条件,则目标函数z=﹣2x+y的最大值为()A.1 B.﹣1 C.﹣ D.﹣3 10.若a,b∈R,且ab>0,则+的最小值是() A.1 B.C.2 D.2 11.已知0<c<1,a>b>1,下列不等式成立的是() A.c a>c b B.a c<b c C.D.log a c>log b c 12.已知x>0,y>0,lg2x+lg8y=lg2,则的最小值是() A.2 B.2 C.4 D.2 13.设a>0,b>2,且a+b=3,则的最小值是() A.6 B.C.D. 14.已知x,y∈R,x2+y2+xy=315,则x2+y2﹣xy的最小值是() A.35 B.105 C.140 D.210 15.设正实数x,y满足x>,y>1,不等式+≥m恒成立,则m的最大值为() A.2 B.4 C.8 D.16 16.已知两正数x,y 满足x+y=1,则z=的最小值为()A.B.C.D. 二.解答题(共10小题) 17.已知不等式|2x﹣3|<x与不等式x2﹣mx+n<0的解集相同. (Ⅰ)求m﹣n; (Ⅱ)若a、b、c∈(0,1),且ab+bc+ac=m﹣n,求a+b+c的最小值. 18.已知不等式x2﹣2x﹣3<0的解集为A,不等式x2+x﹣6<0的解集为B.(1)求A∩B;

(完整)高中数学一元二次不等式练习题

一元二次不等式及其解法 1.形如)0)(0(02≠<>++a c bx ax 其中或的不等式称为关于x 的一元二次不等式. 2.一元二次不等式20(0)ax bx c a ++>>与相应的函数2(0)y ax bx c a =++>、相应的方程20(0)ax bx c a ++=>判别式ac b 42-=? 0>? 0=? 0a )的图象 ()002>=++a c bx ax 的解集)0(02>>++a c bx ax 的解集)0(02><++a c bx ax 1、把二次项的系数变为正的。(如果是负,那么在不等式两边都乘以-1,把系数变为正) 2、解对应的一元二次方程。(先看能否因式分解,若不能,再看△,然后求根) 3、求解一元二次不等式。(根据一元二次方程的根及不等式的方向) 不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法:①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3 <0 x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x ≠5}. (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或x>2}. 2 -4 -5 2 2 1 1 3 1

最新高中数学不等式练习题

精品文档 高中数学不等式练习题 一.选择题(共16小题) 1.若a>b>0,且ab=1,则下列不等式成立的是() +ab)<log(a+a+b))B<A.a+.<<log(22<+b))<a()<D.loga+C.a+<log(a+b22xyz,则(=3=5x、y、z为正数,且2)2.设 A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z 满足,则x+2y的最大值为(x,y)3.若 D.9A.1 B.3 C.5 满足约束条件yx,4的最小值是().设,则z=2x+y A.﹣15 B.﹣9 C.1 D.9 满足约束条件,yx)5.已知,则z=x+2y的最大值是( A.0 B.2 C.5 D.6 满足约束条件,则z=x+y的最大值为(.设x,y)6 A.0 B.1 C.2 D.3 满足约束条件y.设x),7z=x则﹣y的取值范围是(

A.[﹣3,0],D .[03] B.[﹣3,2]],[C.02 满足约束条件﹣,则z=xyy.已知变量x,的最小值为()8 .D.0 B.﹣A3 .C3 精品文档. 精品文档 满足约束条件,则目标函数z=﹣2x+y的最大值为(9.若变量x,y) .﹣DC.﹣3A.1 B.﹣1 +的最小值是(,且ab>0),则10.若a,b∈R 2..2 BD.CA.1 11.已知0<c<1,a>b>1,下列不等式成立的是() ccab.D.logc>B.alog<bcA.c >cC ba yx,则lg8,lg2=lg2+12.已知x >0,y>0的最小值是() 2D.2 C.BA.2 .4 ,则的最小值是( +b=3)>0,b>2,且a13.设a ...CDA.6 B 2222﹣xy的最小值是(xy=315,则x+.已知14x,y∈R,xy+y)+ A.35 B.105 C.140 D.210 +≥m1恒成立,则,不等式m的最.设正实数x,y满足x>,y>15)大值为( 16D.2 B..4 C.8

高中数学不等式单元测试题(含有详细答案--

高中数学不等式综合测试题 一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.共60分) 1.(文)设a b <,c d <,则下列不等式中一定成立的是( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ (理)已知a <0,-1> B .2ab ab a >> C .2ab ab a >> D .2 ab a ab >> 2.“0>>b a ”是“2 2 2b a ab +<”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件 D .既不充分也不必要条件 3.(文)关于x 的不等式(1)ax b a ><-的解集为( ) A .R B .φ C .),(+∞a b D .(,)b a -∞ (理)不等式b ax >的解集不可能...是( ) A .φ B .R C .),(+∞a b D .),(a b --∞ 4.不等式022>++bx ax 的解集是)3 1,21(-,则b a -的值等于( ) A .-14 B .14 C .-10 D .10 5.(文)不等式|1|2x -<的解集是( ) A .{|03}x x ≤< B .{|22}x x -<< C .{|13}x x -<< D .{|1,3}x x x <-> (理)不等式||x x x <的解集是( ) A .{|01}x x << B .{|11}x x -<< C .{|01x x <<或1}x <- D .{|10,1}x x x -<<> 6.(文)若0b a <<,则下列结论不正确... 的是( ) A . 11a b < B .2b ab < C .2>+b a a b D .||||||b a b a +>+ (理)若011<+b a a b D .||||||b a b a +>+ 7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为( ) A .)()(x g x f > B .)()(x g x f = C .)()(x g x f < D .随x 值变化而变化 8.下列各式中最小值是2的是( ) A .y x +x y B .4 5 22++x x C .tan x +cot x D .x x -+22 9.下列各组不等式中,同解的一组是( ) A .02>x 与0>x B .01 )2)(1(<-+-x x x 与02<+x C .0)23(log 2 1>+x 与123<+x D .112≤--x x 与112≤--x x 10.(文)如果a x x >+++|9||1|对任意实数x 总成立,那么a 的取值范围是( ) A .}8|{a a C .}8|{≥a a D .}8|{≤a a

高中数学必修(5)不等式专题检测

高中数学必修(5)不等式专题检测 说明:本试卷分第一卷和第二卷两部分,第一卷50分,第二卷100分,共150分;答题时间120分钟。 第Ⅰ卷(选择题共50分) 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代 号填在题后的括号内(每小题5分,共50分). 1.若R c b a ∈,,,且b a >,则下列不等式一定成立的是 ( ) A .c b c a -≥+ B .bc ac > C . 02 >-b a c D .0)(2 ≥-c b a 2.若0< B .a b a 1 1>- C .3 131b a < D .3 2 3 2b a > 3.若关于x 的不等式m x x ≥-42 对任意]1,0[∈x 恒成立,则实数m 的取值范围是( ) A .3-≤m B .3-≥m C .03≤≤-m D .03≥-≤m m 或 4.已知实数x ,y 满足x 2+y 2=1,则(1-xy )(1+xy )有 ( ) A .最小值 21 和最大值1 B .最小值 4 3 和最大值1 C .最小值21和最大值4 3 D .最小值1 5.设x > 0, y > 0,y x y x a +++=1, y y x x b +++=11, a 与b 的大小关系 ( ) A .a >b B .a ---x a x x 在内有解,则实数a 的取值范围是( ) A .4-a C .12->a D .12---x a 则实数a 的取值范围是 ( ) A .1||a D .2||1<

最新高一数学不等式练习题

高一数学不等式练习题 1、不等式1 1 2x <的解集是( ) A .(,2)-∞ B .(2,)+∞ C .(0,2) D .()0,∞-?(2,)+∞ 2、不等式2 01x x -+≤的解集是( ) A .(1)(12]-∞--,, B .[12]-, C .(1)[2)-∞-+∞,, D .(12]-, 3、已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N =( ) (A ){x |x <-2} (B ){x |x >3} (C ){x |-1<x <2} (D ){x |2<x <3} 4 ) A. D. 5、不等式203x x ->+的解集是( ) (A)(-3,2) (B)(2,+∞) (C) (-∞,-3)∪(2,+∞) (D) (-∞,-2)∪(3,+∞) 6、若不等式210x ax ++≥对一切102x ?? ∈ ???,成立,则a 的最小值为( ) A.0 B.2- C.5 2- D.3- 7、设x 、y 为正数,则有(x+y)(1 x +4 y )的最小值为( ) A .15 B .12 C .9 D .6 8、.若对任意∈x R ,不等式x ≥ax 恒成立,则实数a 的取值范围是( ) (A)a <-1 (B)a ≤1 (C) a <1 (D )a ≥1 9、下面给出的四个点中,位于???>+-<-+01, 01y x y x 表示的平面区域内的点是( ) (A )(0,2) (B)(-2,0) (C)(0,-2) (D)(2,0) 10、已知函数()???≥ -<+-=01 1x x x x x f ,则不等式()()111≤+++x f x x 的解集是( ) (A) {}121|-≤≤-x x (B) { }1|≤x x (C) {}12|-≤x x (D) {}1212|-≤≤--x x

高中数学不等式综合练习题

不等式综合练习题 常用不等式有:(1 2211 a b a b +≥≥≥+ ; (2)a 、b 、c ∈R ,222 a b c ab bc ca ++≥++(当且仅当a b c ==时取=;) (3)若0,0a b m >>>,则b b m a a m +<+(糖水的浓度问题)。 常用的放缩技巧有:(1)21111111 1(1)(1)1n n n n n n n n n -=<<=-++-- <<= 1、对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 1 1,0<<<则若; ⑤b a a b b a ><<则 若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ 2、已知c b a >>,且,0=++c b a 则a c 的取值范围是______ 3、设0,10>≠>t a a 且,比较2 1log log 21+t t a a 和的大小 4、设2a >,1 2 p a a =+ -,2422-+-=a a q ,试比较q p ,的大小 5、比较1+3log x 与)10(2log 2≠>x x x 且的大小

6、下列命题中正确的是 A 、1y x x =+的最小值是2 B 、2y =的最小值是2 C 、4 23(0)y x x x =-->的最大值是2- D 、4 23(0)y x x x =-->的最小值是2- 7、若21x y +=,则24x y +的最小值是______ 8、正数,x y 满足21x y +=,则 y x 1 1+的最小值为______ 9、如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________ 10、(1)已知c b a >>,求证:2 22222ca bc ab a c c b b a ++>++ ; (2) 已知R c b a ∈,,,求证:)(222222c b a abc a c c b b a ++≥++; (3)已知,,,a b x y R +∈,且 11,x y a b >>,求证:x y x a y b >++; (4)若a 、b 、c 是不全相等的正数,求证: lg lg lg lg lg lg 222 a b b c c a a b c +++++>++; (5)已知R c b a ∈,,,求证:2222a b b c +22 ()c a abc a b c +≥++; (6)若* n N ∈(1)n +< n ; (7)已知||||a b ≠,求证:|||||||| |||| a b a b a b a b -+≤-+; (8)求证:222111 1223n ++++<。 11、解不等式2 (1)(2)0x x -+≥。 12、不等式(0x -的解集是____

高中数学基本不等式练习题

一.选择题 1.已知直线ax+by=1经过点(1,2),则2a+4b的最小值为() A.B.2C.4 D.4 2.已知x,y都是正数,且xy=1,则的最小值为() A.6 B.5 C.4 D.3 3.若a,b都是正数,则的最小值为() A.7 B.8 C.9 D.10 4.下列关于不等式的结论中正确的是() A.若a>b,则ac2>bc2B.若a>b,则a2>b2 C.若a<b<0,则a2<ab<b2D.若a<b<0,则> 5.若m、n是任意实数,且m>n,则() A.m2>n2B.C.lg(m﹣n)>0 D. 6.若直线=1(a>0,b>0)过点(1,1),则a+b的最小值等于() A.2 B.3 C.4 D.5 7.若直线mx+ny+2=0(m>0,n>0)截得圆(x+3)2+(y+1)2=1的弦长为2,则+的最小值为()A.6 B.8 C.10 D.12 8.已知不等式的解集为{x|a<x<b},点A(a,b)在直线mx+ny+1=0上,其中mn>0,则的最小值为()A.B.8 C.9 D.12 9.若m+n=1(mn>0),则+的最小值为() A.1 B.2 C.3 D.4 10.已知x+3y=2,则3x+27y的最小值为() A. B.4 C. D.6 11.若x<0,则x+的最大值是() A.﹣1 B.﹣2 C.1 D.2 12.已知a,b,c,是正实数,且a+b+c=1,则的最小值为() A.3 B.6 C.9 D.12 二.填空题 1.已知正数x,y满足x+y=1,则的最小值为. 2.已知a>0,b>0,且a+b=2,则的最小值为. 3.已知x>1,则函数的最小值为. 4.设2<x<5,则函数的最大值是. 5.函数f(x)=1+log a x(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny﹣2=0上,其中mn>0,则的最小值为. 6.已知x>1,则函数y=2x+的最小值为.

高中数学必修五不等式测试题(含答案)

4 高中数学必修五不等式测试题 一、选择题(本大题共12小题,每小题5分,共60分。) 1.设a1b B .1a-b >1 a C .a b D .a 2>b 2 2.设,a b R ∈,若||0a b ->,则下列不等式中正确的是( ) A .0b a -> B .330a b +< C .220a b -< D .0b a +> 3.如果正数a b c d ,,,满足4a b cd +==,那么( ) A .ab c d +≤,且等号成立时a b c d ,,,的取值唯一 B .ab c d +≥,且等号成立时a b c d ,,,的取值唯一 C .ab c d +≤,且等号成立时a b c d ,,,的取值不唯一 D .ab c d +≥,且等号成立时a b c d ,,,的取值不唯一 4.已知直角三角形的周长为2,则它的最大面积为( ) A .3-2 2 B .3+2 2 C .3- 2 D .3+ 2 5.已知0,0a b >> ,则11 a b ++ ) A .2 B . C .4 D .5 6.若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是( ) A .1122a b a b + B .1212a a bb + C .1221a b a b + D .1 2 7.当0∣3-x ∣的解集是( ) A .(3,+∞) B .(-∞,-3)∪(3,+∞) C .(-∞,-3)∪(-1,+∞) D .(-∞,-3)∪(-1,3)∪(3,+∞) 11.设y=x 2 +2x+5+21 25 x x ++,则此函数的最小值为( ) A . 174 B .2 C .26 5 D .以上均不对 12.若方程x 2-2x +lg(2a 2-a)=0有两异号实根,则实数a 的取值范围是( ) A .(12 ,+∞) ∪(-∞,0) B .(0,12 ) C .(-12 ,0) ∪(12 ,1) D .(-1,0) ∪(1 2 ,+∞) 二、填空题:(本大题共4小题,每小题5分,共20分。) 13.0,0,a b >> 则a b ++ 的最小值为 . 14.当(12)x ∈,时,不等式2 40x mx ++<恒成立,则m 的取值范围是 . 15.若关于x 的不等式22)12(ax x <-的解集为空集,则实数a 的取值范围是_______. 16.若21m n +=,其中0mn >,则 12 m n +的最小值为_______. 三、解答题:(本大题共4小题,共40分。) 17(1)已知d c b a ,,,都是正数,求证:abcd bd ac cd ab 4))((≥++ (2)已知12,0,0=+>>y x y x ,求证:2231 1+≥+y x 18. 解关于x 的不等式)0( 12 ) 1(>>--a x x a 19. 一农民有基本农田2亩,根据往年经验,若种水稻,则每季每亩产量为400公斤;若种花生,则每季每亩产量为100公斤.但水稻成 本较高,每季每亩240元,而花生只需80元,且花生每公斤5元,稻米每公斤卖3元.现该农民手头有400元,两种作物各种多少,才能获得最大收益? 20.(1)解下列不等式:232+-x x >x +5 (2)当k 为何值时,不等式1364222 2<++++x x k kx x 对于任意实数恒成立。

高中数学-基本不等式测试题

高中数学-基本不等式测试题 自我小测 1.若a >b >1,P Q = 12(lg a +lg b ),lg 2a b R ?? ???+=,则( ). A .R <P <Q B .P <Q <R C .Q <P <R D .P <R <Q 2.设x ,y ∈R ,且x +y =5,则3x +3y 的最小值是( ). A .10 B .. D .3.已知不等式(x +y )(1a x y +)≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为 ( ). A .2 B .4 C .6 D .8 4.下列命题:①1x x +的最小值是22+的最小值是22的最小值是2;④423x x +-的最小值是2,其中正确的命题的个数是( ). A .1 B .2 C .3 D .4 5.若正数a ,b 满足ab =a +b +3,则ab 的取值范围是__________. 6.(1)若x >0,求12()3f x x x = +的最小值; (2)若x <0,求12()3f x x x =+的最大值. 7.求函数25152 x x y x ++=+(x ≥0)的最小值. 8.建造一个容积为8 m 3,深为2 m 的长方体无盖水池,如果池底的造价为每平方米120元,池壁的造价为每平方米80元,求这个水池的最低造价. 9.求函数2212sin cos y αα=+,π02α??∈???? ,时的最小值.

参考答案 1. 答案:B 解析:∵a >b >1?lg a >0,lg b >0, ∴Q =12 (lg a +lg b )P ,12R =(lg a +lg b )=Q ,∴R >Q >P . 2. 答案:D 解析:33x y ≥+. 3. 答案:B 解析:1()1a ax y x y a x y y x ?? ???++=+++211)a ≥++,当且仅当y x 取等号, ∵1 ()9a x y x y ??≥ ??? ++对任意正实数x ,y 恒成立, ∴需21)9≥.∴a ≥4. 4. 答案:A 解析:当x <0时,1x x +无最小值,∴①错误;当x =02+的最小值是2, 2+取得最小值2,但此时x 2 =-3不成立, 2 +取不到最小值2,∴③错误;当x >0时,4 23<0x x --,∴④错误. 5. 答案:[9,+∞) 解析:t (t >0), 由ab =a +b +3≥3,则有t 2≥2t +3, ∴t ≥3或t ≤-1(舍去)3≥. ∴ab ≥9,当a =b =3时取等号. 6. 解:(1)x >0,由基本不等式,得12()312f x x x ≥= +.

相关文档
最新文档