倒立摆PD控制

倒立摆PD控制
倒立摆PD控制

倒立摆PD控制

摘要:倒立摆系统是一个比较复杂的不稳定、多变量、带有非线性和强耦合特性的高阶机

械系统,它的稳定控制是控制理论应用的一个典型范例[1]。倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统的受到不确定因素的干扰。通过对它的研究不仅可以解决控制中的理论问题,还将控制理论涉及的相关主要学科:机械、力学、数学、电学和计算机等综合应用。在多种控制理论与方法的研究和应用中,特别是在工程中,存在一种可行性的实验问题,将其理论和方法得到有效的验证,倒立摆系统可以此提供一个从控制理论通过实践的桥梁。有很多种倒立摆的研究方法,本文采用的是一种基于精确模型极点配制的PD控制器设计方法。

关键词:倒立摆、PD控制

Abstract: Inverted pendulum system is a complex of instability, multivariable, nonlinear and strong coupling features advanced mechanical system, its stability control is a typical example of control theory in [1]. Inverted pendulum system exists serious uncertainty, on the one hand is the uncertainty of the parameters of the system, on the one hand is the uncertainty of disturbance of the system.Through the study of it can not only solve the problem of control in theory, will also control theory involving major courses: mechanical, mechanics, mathematics, electrical and computer integrated application. In a variety of control theory and method of research and application, especially in engineering, there is a kind of feasible experiment, it effectively validation of the theory and method, an inverted pendulum system can be provided from the control theory, through the practice of the bridge. There are many kinds of research methods of inverted pendulum, this paper USES is a PD controller design method based on the precise model of pole configuration.

一、倒立摆的分类:

倒立摆系统诞生之初为单级直线形式,即仅有的一级摆杆一端自由,另一端铰接于可以在直线导轨上自由滑动的小车上。在此基础上,人们又进行拓展,产生了多种形式的倒立摆。

按照基座的运动形式,主要分为三大类:直线倒立摆、环形倒立摆和平面倒立摆,每种形式的倒立摆再按照摆杆数量的不同可进一步分为一级、二级、三级及多级倒立摆等[4]。摆杆的级数越多,控制难度越大,而摆杆的长度也可能是变化的。多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。目前,直线型倒立摆作为一种实验仪器以其结构相对简单、形象直观、构件参数易于改变和价格低廉等优点,已经广泛运用于教学[5]。关于直线倒立摆的控制技术已经基本趋于成熟,在该领域所出的成果也相当丰富。尽管环形倒立摆的基座运动形式与直线倒立摆有所差异,但二者相同之处是基座仅有一个自由度,可以借鉴比较成熟的直线倒立摆的研究经验,所以近几年来也产生了大量的理论成果。平面倒立摆是倒摆系统中最复杂的一类,这是因为平面倒立摆的基座可以在平面内自由运动,并且摆杆可

以沿平面内的任一轴线转动,使系统的非线性、耦合性、多变量等特性更加突出,从而增加了控制的难度,而且机械和电子器件发展遇到瓶颈性的困难,给平面倒立摆的工程实现也带来了一定的难度。

按摆杆的材质不同,倒立摆系统分为刚体摆杆倒立摆系统和柔性倒立摆系统。在柔性倒立摆系统中,摆杆本身己经变成了非线性分布参数系统。

根据研究的目的和方法不同,倒立摆系统又分为悬挂式倒立摆、球平衡系统和平行式倒立摆。其中,研究比较多的是悬挂式倒立摆。这种倒立摆开始工作时,摆杆处于自由下垂状态。控制开始时,首先使摆杆按自由振荡频率摆动,随着摆杆振荡幅度的加大,当摆杆接近于倒立摆竖直倒立位置时,自动转换控制方法,使其稳定于倒置状态。

根据导轨的形状小同,倒立摆的运动轨道可以是水平的,也可以是倾斜的。倾斜倒立摆对实际机器人的步行稳定控制研究非常有意义。

尽管倒立摆系统的结构形式多种多样,但是无论属于哪一种结构,就其本身而言,都是一个非线性、多变量、强耦合、绝对不稳定性系统[6]

二、倒立摆的控制方法:

倒立摆系统的输入为小车的位移(即位置)和摆杆的倾斜角度期望值,计算机在每一个采样周期中采集来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动电机实现倒立摆的实时控制。电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力平行于轨道的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平导轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使摆杆摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。

因此,倒立摆系统的控制原理可简述如下:用一种强有力的控制方法对小车的速度作适当的控制,从而使摆杆倒置稳定于小车正上方。倒立摆刚开始工作时,首先使小车按摆杆的自由振荡频率摆动,摆杆随之大幅度摆动。经过几次摆动后,摆杆能自动直立起来。这种被控量既有角度,又有位置,且它们之问又有关联,具有非线性、时变、多变量耦合的性质

。四:单级倒立摆建模:

1.直线一级倒立摆系统的硬件组成以及工作原理

倒立摆系统包含倒立摆本体、电控箱及出计算机和运动控制卡组成的控制平台三大部分,组成了一个闭环系统。其结构件图如图2.1所示:

图2.1 一级倒立摆系统结构简图

其中电控箱内主要有以下部件:(1)交流伺服驱动器;(2)I/O接口板;(3)开关电源。控制平台主要部分组成:(1)与IBM PC/AI机兼容的PC机,带PCI/SCI总线插槽;(2)GT400一SV—PCI运动控制卡;(3)GT400.SV—PCI运动控制卡用户接口软件。电机通过同步带驱动小车在滑杆上来回运动,以保持摆杆平衡。

直线一级倒立摆系统的工作原理如图2.2所示:

图2.2 倒立摆系统工作原理框图

电机编码器和角码器向运动控制卡反馈小车和摆杆位置,小车的位移可以根据光Ffl码盘l的反馈通过换算获得,速度信号可以通过对位移的差分得到,并同时反馈给伺服驱动器和运动控制卡;摆杆的角度由光电码盘2测量得到,而角速度信号可以通过对角度的差分得到,并同时反馈给控制卡和伺服驱动器。计算机从运动控制卡中读取实时数据,确定控制决策(小车向哪个方向移动,移动速度,加速度等),并由运动控制卡来实现控制决策,产生相

应的控制量,使电机转动,带动小车运动,保持摆杆平衡。

下面来介绍一级倒立摆系统的一些硬件组成:

(1)伺服电机

伺服电机又称为执行电动机,在自动控制系统中作为执行元件,它将输入的电压信号变换成转轴的角位移或者角速度输出。输入的电压信号又称为控制信号或者控制电压。改变控制电压可以变更伺服电机的转速和转向。

自动控制系统对伺服电机的基本要求如下:

1)宽广的调速范围伺服电机的转速随着控制电压的改变能在宽广的范围内实现连续调节。

2)机械特性和调节特性均为线性伺服电机的机械特性是指控制电压一定时转速随转距的变化关系;调节特性是指电机转矩一定时,转速随控制电压的变化关系。线性的机械特性和调节特性有利于提高自动控制系统的动态精度。

3)无“自转”现象伺服电机在控制电压为零时,能够自行停转。

4)快速响应电机的机电常数要小,相应的伺服电机要有较大的堵转转矩和较小的转动惯量。这样,电机的转速便能随着控制电压的改变而迅速变化。

(2) 编码器

编码器作为检测转速、线速度、角速度、线位移、角位移的一种传感器,是利用码盘将这些信号转换成亮、暗光信号,再用各种光电器件的光电效应将信号转换成电信号输出。可以说是一种最简单的数字式传感器,精度高且可靠,应用非常广泛。

编码器有两种形式:增量式编码器和绝对编码器。

(3)限位开关

限位开关又称行程开关,可以安装在相对静止的物体(如固定架、门框等,简称静物)上或者运动的物体(如行车、门等,简称动物)上。当动物接近静物时,开关的连杆驱动开关的接点引起闭合的接点分断或者断开的接点闭合。由开关接点开、合状态的改变去控制电路和机构的动作。

限位开关也可分为旋转限位开关及直行限位开关。

(4)运动控制器

3.2建立单级倒立摆的数学模型

数学模型是分析、设计、预报和控制系统的基础。建立系统数学模型有两种方法:一种是从基本物理定律,即利用各个专门学科领域提出来的物质和能量的守恒性、连续性原理,以及系统的结构数据推导出模型。这种方法得出的数学模型称为机理模型或解析模型,这种建立模型的方法称为解析法。另一种是系统运行和实验数据建立系统的模型(模型结构和参数),这种方法称为系统辨识。倒立摆的形状较为规则,而且是一个不稳定系统,无法通过测量频率特性方法获取其数学模型,故适合用数学工具进行理论推导[16]。

直线倒立摆系统是一个机电一体化系统,由小车和摆杆组成。小车可以沿水平方向上的导轨运动,导轨的一端固定有位置传感器,可以测量小车的位移;摆杆通过转轴固定在小车上,小车和摆杆的连接处固定有共轴角度传感器,用以测量摆杆的角度。直流永磁力矩电机和位置传感器固定在同一侧,直流电机通过传送带驱动小车沿导轨运动。导轨的两端装有行程开关,限制小车的左右位置。

为了在数学上推导和处理问题的方便,可作出如下假设:

(1)摆杆在运动中是不变形的刚体;

(2)齿型带与轮之间无相对滑动,齿型带无拉长现象;

(3)小车在运动过程中,摩擦系数一定;

(4)忽略空气阻力;

基于以上几点,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统(图2.3)

图2.3 一级倒立摆小车摆杆位置图

首先,对小车进行受力分析,小车的受力分析如图2.4所示。

图2.4 小车隔离受力图

其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。其余字母同图2.3中的说明。图2.4中,N 和P 为小车与摆杆相互作用力的水平和垂直方向分量,F 为小车受到的作用力,x 为小车位移,β为摆杆与垂直向上方向的夹角,θ为摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)。

分析小车水平方向所受的合力,可以得到以下方程: 22dt

x d M N F u =-- (2-1) dt

dx b F = (2-2) 其次,对摆杆进行受力分析,摆杆的受力如图2.5所示。

图2.5 摆杆受力分析图

P

)sin (22

θl x dt

d m N += (2-3) 即: θθθθsin cos 2ml ml x

m N -+= (2-4)

把这个等式代入上式中,就得到系统的第一个运动方程:得

F ml ml x b x

m M =-+++θθθθsin cos )(2 (2-5) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析(图2.5),可以得到下面方程:

)cos (22

θl dt

d m mg p =- (2-6) 即:

θθθθ

cos sin 2 ml ml mg P --=- (2-7)

力矩平衡方程为

θ

θθ I Nl Pl =--cos sin (2-8) 注意:此方程中力矩的方向,由于φπθ

+=,θφcos cos -=,θφsin sin -=,

故等式前面有负号。

为了推出系统的第二个运动方程,我们合并这两个方程,约去P 和N ,得到第二个运动方程: θθθcos sin )(2x

ml mgl ml I -=++ (2-9) 用U 来代表被控对象的输入力F ,则运动方程组为:

?????-=++=-+++θθθθθθcos sin )(cos )(22x m l m gl m l I u m l m l x b x m M

设φπθ+=(φ是摆杆与垂直向上方向之间的夹角),假设φ无限趋近于零,则可以进行

近似处理:1cos -=θ,φθ-=sin ,0)(

2=dt d θ,用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:

?????=-++-=-+u m l x b x m M x m l m gl m l I φφφ

)()(2 (2-10) 对上式做拉普拉斯变换,得:

?????=-++=-+)

()()()()()()()()(22222s U s s m l s s bX s s X m M s s m lX s m gl s s m l I φφφ (2-11) 注意:推导传递函数时假设初始条件为0。由于输出为角度为Φ,求解方程组(2-11)的第一个方程,可以得到:

)()()(22s s g ml

ml I s X φ??????-+= (2-12) 把式(2.12)代入方程组(2.9)的第二个方程,得到:

)()()()()()()()(222222s U s s ml s s ml s s s g ml

ml I b s s s g ml ml I m M =--??????+++??????-++φφφφ

整理后得到传递函数为[18]:

s q

bmgl s q mgl m M s q ml I b s s q ml s U s -+-++=23242)()()()(φ (2-13) 由于系统状态空间方程表达式为:

?

??+=+=Du Cx y Bu Ax x (2-14) 方程组(2-14)对x ,θ

解代数方程,得到解如下: ?????

??????++++++==++++++==u Mml m M I ml Mml M m I m M mgl u Mml m M I ml I Mml m M I gl m x x x 2222222)()()()()()(θθθ

θθ (2-15) 式2-15为直线一级倒立摆系统在平衡点附近局部线性化以后得到的状态方程。将该式写成矩阵形式可以得到系统的状态空间方程为[19]:

u Mm l m M I m l Mm l m M I m l I Mm l m M l M m m g Mm l m M I m lb

Mm l m M l gl m Mm l m M I b m l I x x ?????????

???????????++++++??????+++++-+++++-??????=??????????????2222222222)(0)(00100)()()(00)()()(010000φφ (2-16) u x x x y ??????+??????

??????????????=??????=0000100001φφφ (2-17) 由此可见,一级倒立摆实际上是一个单输人多输出的系统。只要将直线一级倒立摆的实际结构参数(kg M 096.1=,m L 250.0=,kg m 109.0=,20034.0m kg J ?=,

s kg 100.0=μ,s

m kg f 20020.0?=)代入上面两式,得: u x x x x ????????????+????????????????????-??????=??????

? ??3566.208832.0001008285.272357.0006293.00883.0010000φφφφ

对应系数矩阵为:

010000.08830.62930.0047000100.235727.82850.2084A ????--??=????-??,00.883202.3565B ??????=????-??

, 10000010C ??=????, 00D ??=????

四:系统描述

假设不考虑小车的控制问题,被控对象取单位寄倒立摆,取.

12,x x θθ==,则动态方程如下

.12x x =

.

2()()x f x g x u =+

式中

2121121sin cos sin /()()(4/3cos /())

c c g x mlx x x m m f x l m x m m -+=-+,121cos /()()(4/3cos /())c c x m m f x l m x m m +=-+ 12x 和x 分别为摆角和摆速,g=9.8m/2s ,c m 为小车质量,c m =1kg,m 为摆件质量,m=0.1kg,l 为摆长的一半,l=0.5,u 为控制输入。

五 仿真实例

位置指令为d x =0.1sin(t).令e=1d x x -,将控制律设计为u=.

p d k e k e +,倒立摆初始状态为

【/60,0π】仿真结果如图13-2所示。

仿真程序

(1)Simulibk主程序:

(2).控制器S函数:

function [sys,x0,str,ts]=spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes; %调用初始化的子函数case 1,

sys=mdlDerivatives(t,x,u); %写入微分方程

case 3,

sys=mdlOutputs(t,x,u); %调入输出子函数

case {2, 4, 9 }

sys = [];

otherwise

error(['Unhandled flag = ',num2str(flag)]); %错误处理

end

function [sys,x0,str,ts]=mdlInitializeSizes %变量初始化

sizes = simsizes; %用于设置模块参数的结构体用simsizes来生成sizes.NumContStates = 2; %模块连续状态变量的个数

sizes.NumDiscStates = 0; %模块离散状态变量的个数

sizes.NumOutputs = 2; %模块输出变量的个数

sizes.NumInputs = 1; %模块输入变量的个数

sizes.DirFeedthrough = 0; %模块是否存在直接贯通

sizes.NumSampleTimes = 0; %模块的采样时间个数

sys=simsizes(sizes); %设置完后赋给sys输出

x0=[pi/60 0];

str=[];

ts=[];

function sys=mdlDerivatives(t,x,u) %写入微分方程

g=9.8;mc=1.0;m=0.1;l=0.5; %变量赋值

S=l*(4/3-m*(cos(x(1)))^2/(mc+m));

fx=g*sin(x(1))-m*l*x(2)^2*cos(x(1))*sin(x(1))/(mc+m);

fx=fx/S;

gx=cos(x(1))/(mc+m);

gx=gx/S;

sys(1)=x(2);

sys(2)=fx+gx*u;

function sys=mdlOutputs(t,x,u)

sys(1)=x(1);

sys(2)=x(2);

控制对象S函数:

function [sys,x0,str,ts]=spacemodel(t,x,u,flag)

switch flag,

case 0,

[sys,x0,str,ts]=mdlInitializeSizes; %调用初始化子函数

case 1,

sys=mdlDerivatives(t,x,u); %调用微分函数

case 3,

sys=mdlOutputs(t,x,u); %计算输出子函数

case {2, 4, 9 } %非执行的flags值

sys = [];

otherwise

error(['Unhandled flag = ',num2str(flag)]); %提示错误信息

end

function [sys,x0,str,ts]=mdlInitializeSizes %初始化

sizes = simsizes; %用于设置模块参数的结构体用simsizes来生成sizes.NumContStates = 2; %模块连续状态变量的个数

sizes.NumDiscStates = 0; %模块离散状态变量的个数

sizes.NumOutputs = 2; %模块输出变量的个数

sizes.NumInputs = 1; %模块输入变量的个数

sizes.DirFeedthrough = 0;%输入信号是否直接在输出端出现,取值为0或1 sizes.NumSampleTimes = 0; %模块的采样周期的个数

sys=simsizes(sizes); %设置完后赋给sys输出

x0=[pi/60 0]; %设定初始值

str=[];

ts=[]; %表示系统连续

function sys=mdlDerivatives(t,x,u)

g=9.8;mc=1.0;m=0.1;l=0.5; %初始赋值

S=l*(4/3-m*(cos(x(1)))^2/(mc+m)); %运算结果赋值

fx=g*sin(x(1))-m*l*x(2)^2*cos(x(1))*sin(x(1))/(mc+m);

fx=fx/S;

gx=cos(x(1))/(mc+m);

gx=gx/S;

sys(1)=x(2);

sys(2)=fx+gx*u;

function sys=mdlOutputs(t,x,u)

sys(1)=x(1);

sys(2)=x(2);

作图程序:

close all;

figure(1); %创建窗口

subplot(211); %在第一块绘图

plot(t,y(:,1),'r',t,y(:,2),':','linewidth',2); %绘制曲线

xlabel('time(s)');ylabel('Position tracking'); %添加横纵坐标名称

legend('Ideal position signal','Position signal tracking'); 添加横坐标名称和纵坐标名称

subplot(212); %在第二块绘图

plot(t,0.1*cos(t),'r',t,y(:,3),':','linewidth',2); %绘制图形

xlabel('time(s)');ylabel('Speed tracking'); %添加横纵坐标的名称legend('Ideal speed signal','Speed signal tracking');

figure(2); 创建另一个绘图窗口

plot(t,ut(:,1),'r','linewidth',2); %绘制图形

xlabel('time(s)');ylabel('Control input'); %添加横纵坐标的名称

11.参考文献:

[1] 《先进PID控制MATLAB仿真》刘金琨编著电子工业出版社

[2]鄢景华. 《自动控制原理》.哈尔滨:哈尔滨工业大学出版社.2000.

一级倒立摆的建模与控制分析

控制工程与仿真课程设计报告 报告题目直线一级倒立摆建模、分析及控制器的设计 组员1专业、班级14自动化1 班姓名朱永远学号1405031009 组员1专业、班级14自动化1 班姓名王宪孺学号1405031011组员1专业、班级14自动化1 班姓名孙金红学号1405031013 报告评分标准 评分项目权重评价内容评价结果项目得分 内容70设计方案较合 理、正确,内容 较完整 70-50分 设计方案基本合 理、正确,内容 基本完整 50-30分 设计方案基本不 合理、正确,内 容不完整 0-30分 语言组织15语言较流顺,标 点符号较正确 10-15分语言基本通顺, 标点符号基本正 确 5-10分 语言不通顺,有 错别字,标点符 号混乱 5分以下 格式15 报告格式较正 确,排版较规范 美观 10-15分 报告格式基本正 确,排版不规范 5-10分 报告格式不正 确,排版混乱 5分以下总分

直线一级倒立摆建模、分析及控制器的设计 一状态空间模型的建立 1.1直线一级倒立摆的数学模型 图1.1 直线一级倒立摆系统 本文中倒立摆系统描述中涉及的符号、物理意义及相关数值如表1.1所示。

图1.2是系统中小车的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。 图1.2 系统中小车的受力分析图 图1.3是系统中摆杆的受力分析图。F s 是摆杆受到的水平方向的干扰力, F h 是摆杆受到的垂直方向的干扰力,合力是垂直方向夹角为α的干扰力F g 。

图1.3 摆杆受力分析图 分析小车水平方向所受的合力,可以得到以下方程: ()11- 设摆杆受到与垂直方向夹角为α 的干扰力Fg ,可分解为水平方向、垂直方向的干扰力,所产生的力矩可以等效为在摆杆顶端的水平干扰力FS 、垂直干扰力Fh 产生的力矩。 ()21- 对摆杆水平方向的受力进行分析可以得到下面等式: ()θsin 22 l x dt d m F N S +=- ()31- 即: αθθθθsin sin cos 2f F ml ml x m N +-+= ()41- 对图1.3摆杆垂直方向上的合力进行分析,可以得到下面方程: ()θcos 22 l l dt d m F mg P h -=++- ()51- 即 θθθθ αcos sin cos 2 ml ml F mg P g +=++- ()61- 力矩平衡方程如下: 0cos sin sin cos cos sin =++++θθθθαθα I Nl Pl l F l F g g ()71- 代入P 和N ,得到方程: () 0cos 2sin sin 2cos sin cos 2cos sin 2222=+-++++θθθθθθθαθαx ml ml mgl ml I l F l F g g ()81- 设φπθ+=,(φ是摆杆杆与垂直向上方向之间的夹角,单位是弧度),代入上式。假设φ<<1,则可进行近似处理: φφφφφφφ===?? ? ??==2sin ,12cos ,0,sin ,1cos 2 dt d N x f F x M --= α sin g S F F =α cos g h F F =

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

一级倒立摆控制方法比较

一级倒立摆控制方法比较 摘要:倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的自然不稳定系统。针对一级倒立摆系统,首先利用牛顿力学的知识建立了数学模型,然后利用Simulink 及其封装功能建立倒立摆的仿真模型,使模型更具灵活性,给仿真带来很大方便。根据状态方程判断系统的能控、能观性。通过LQR控制算法和极点配置设计控制器使系统达到稳定状态,分析两种方法的优缺点,并利用Matlab仿真加以证实。 关键词:倒立摆; LQR ;极点配置 ;Matlab DISCUSSION ON CONTROLOF INVERTED PENDULUM Abstract:the inverted pendulum system is a typical multi-variable, nonlinear, strong coupling and rapid movement of the natural unstable system. According to the level of inverted pendulum system, firstI make use of Newtonian mechanics knowledge to establishthe mathematical model, and use the Simulink and packaging function to establish inverted pendulum simulation model.The model is more flexibility, bringing a lot of convenience for simulation. By the equation of state, controllability and observablityof system can be sure. Designing the LQR control algorithm and pole-place makes the system stable state, analyzes the advantages and disadvantages of two methods confirmed through the simulation of MATLAB. Key words:Inverted pendulum ;LQR ;pole-place ;Matlab 0引言 倒立摆系统作为研究控制理论的一种典型的实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点。研究倒立摆系统具有很强的理论意义,同时也具有深远的实践意义。许多抽象的控制概念如稳定性、能控性和能观性,都可以通过倒立摆系统直观地表现出来。希望对倒立摆的研究能够加深对控制理论的了解,为后面学习奠定坚实的基础。 倒立摆[1]的稳定控制主要可分为线性控制和智能控制两大类,下面分别对其归纳介绍。 1)线性理论控制方法 应用线性控制方法的基本前提是倒立摆处在平衡点附近,偏移很小时,系统可以用

倒立摆姿态控制模型

倒立摆 倒立摆百度文库解释: 倒立摆系统的输入为小车的位移(即位置)和摆杆的倾斜角度期望值,计算机在每一个采样周期中采集来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 倒立摆系统简介 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。 倒立摆分类

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

一级倒立摆的建模与控制分析

研究生《现代控制理论及其应用》课程小论文 一级倒立摆的建模与控制分析 学院:机械工程学院 班级:机研131 姓名:尹润丰 学号: 201321202016 2014年6月2日

目录 1. 问题描述及状态空间表达式建立..............................................................- 1 - 1.1问题描述.......................................................................................................................................- 1 - 1.2状态空间表达式的建立...............................................................................................................- 1 - 1.2.1直线一级倒立摆的数学模型 ..........................................................................................- 1 - 1.2.2 直线一级倒立摆系统的状态方程 .................................................................................- 5 - 2.应用MATLAB分析系统性能 .....................................................................- 6 - 2.1直线一级倒立摆闭环系统稳定性分析 ......................................................................................- 6 - 2.2 系统可控性分析.........................................................................................................................- 7 - 2.3 系统可观测性分析.....................................................................................................................- 8 - 3. 应用matlab进行综合设计.........................................................................- 8 - 3.1状态反馈原理...............................................................................................................................- 8 - 3.2全维状态反馈观测器和simulink仿真 .......................................................................................- 9 - 4.应用Matlab进行系统最优控制设计 ........................................................ - 11 - 5.总结 ............................................................................................................. - 13 -

倒立摆的H∞控制-文献综述

引言 近三十年来,随着控制理论技术和航空航天技术的迅猛发展,一种典型的系统在控制理论的领域中一直成为被关注的焦点,即倒立摆系统。 倒立摆的特点为支点在下,重心在上,是一种非常快速并且不稳定的系统。但正由于它本身所具有的这种特性,许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来。因此在欧美等许多发达国家的高等院校中,倒立摆系统已经成为必备的控制理论教学实验设备。学生们可以通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,更容易对课程加深理解。 倒立摆装置被公认为自动控制理论中的典型实验设备,也是控制理论教学中不可多得的典型物理模型。它深刻揭示了自然界的一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有良好的稳定性。由于倒立摆系统本身所具有的高阶次、不稳定、多变量、非线性和强耦合特性,许多现代控制理论的研究人员一直将它视为典型的研究对象[1-4]。通过对倒立摆系统的研究,不仅可以解决控制中的理论问题,还能将控制理论所涉及的三个基础学科:力学、数学和电学(含计算机)有机的结合起来,在倒立摆系统中进行综合应用。在多种控制理论与方法的研究与应用中,特别是在工程实践中,也存在一种可行性的试验问题,将其理论和方法得到有效的经验,倒立摆为此提供了一个从控制理论通往实践的桥梁。所以,研究倒立摆系统对以后的教育研究领域具有非常深远的影响。 本文为建立倒立摆系统的数学研究模型,在熟悉线性系统的基本理论和非线性系统线性化的基本方法的基础上确定研究的系统方案和实施的控制方法,通过MATLAB软件对其进行编程,以达到完成倒立摆的仿真实验,实现了倒立摆的平衡控制。

单级倒立摆经典控制系统

单级倒立摆经典控制系统 摘要:倒立摆控制系统虽然作为热门研究课题之一,但见于资料上的大多采用现代控制方法,本课题的目的就是要用经典的方法对单级倒立摆设计控制器进行探索。本文以经典控制理论为基础,建立小车倒立摆系统的数学模型,使用PID控制法设计出确定参数(摆长和摆杆质量)下的控制器使系统稳定,并利用MATLAB软件进行仿真。 关键词:单级倒立摆;经典控制;数学模型;PID控制器;MATLAB 1绪论 自动控制理论是研究自动控制共同规律的技术科学。它的发展初期,是以反馈理论为基础的自动调节原理,并主要用于工业控制。 控制理论在几十年中,迅速经历了从经典理论到现代理论再到智能控制理论的阶段,并有众多的分支和研究发展方向。 1.1经典控制理论 控制理论的发展,起于“经典控制理论”。早期最有代表性的自动控制系统是18世纪的蒸汽机调速器。20世纪前,主要集中在温度、压力、液位、转速等控制。20世纪起,应用范围扩大到电压、电流的反馈控制,频率调节,锅炉控制,电机转速控制等。二战期间,为设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统及其他基于反馈原理的军用装备,促进了自动控制理论的发展。

至二战结束时,经典控制理论形成以传递函数为基础的理论体系,主要研究单输入-单输出、线性定常系统的分析问题。经典控制理论的研究对象是线性单输入单输出系统,用常系数微分方程来描述。它包含利用各种曲线图的频率响应法和利用拉普拉斯变换求解微分方程的时域分析法。这些方法现在仍是人们学习控制理论的入门之道。 1.2倒立摆 1.2.1倒立摆的概念 图1 一级倒立摆装置 倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂、多变量、存在严重非线性、非自治不稳定系统。

一级倒立摆【控制专区】系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计 一、设计目的 倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。 二、设计要求 倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。 三、设计原理 倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。 四、设计步骤 首先画出一阶倒立摆控制系统的原理方框图 一阶倒立摆控制系统示意图如图所示: 分析工作原理,可以得出一阶倒立摆系统原理方框图:

一阶倒立摆控制系统动态结构图 下面的工作是根据结构框图,分析和解决各个环节的传递函数! 1.一阶倒立摆建模 在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置 θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度 根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 (2) 摆杆重心的运动方程为 得 sin cos ..........(1)y x J F l F l θθθ=-2 22 2(sin ) (2) (cos ) (3) x y d F m x l d t d F mg m l d t θθ=+=-

小车倒立摆系统开题报告

开题报告填表说明 1.开题报告是毕业设计(论文)过程规范管理的重要环节,是培养学生严谨务实工作作风的重要手段,是学生进行毕业设计(论文)的工作方案,是学生进行毕业设计(论文)工作的依据。 2.学生选定毕业设计(论文)题目后,与指导教师进行充分讨论协商,对题意进行较为深入的了解,基本确定工作过程思路,并根据课题要求查阅、收集文献资料,进行毕业实习(社会调查、现场考察、实验室试验等),在此基础上进行开题报告。 3.课题的目的意义,应说明对某一学科发展的意义以及某些理论研究所带来的经济、社会效益等。 4.文献综述是开题报告的重要组成部分,是在广泛查阅国内外有关文献资料后,对与本人所承担课题研究有关方面已取得的成就及尚存的问题进行简要综述,并提出自己对一些问题的看法。 5.研究的内容,要具体写出在哪些方面开展研究,要突出重点,实事求是,所规定的内容经过努力在规定的时间内可以完成。 6.在开始工作前,学生应在指导教师帮助下确定并熟悉研究方法。 7.在研究过程中如要做社会调查、实验或在计算机上进行工作,应详细说明使用的仪器设备、耗材及使用的时间及数量。 8.课题分阶段进度计划,应按研究内容分阶段落实具体时间、地点、工作内容和阶段成果等,以便于有计划地开展工作。 9.开题报告应在指导教师指导下进行填写,指导教师不能包办代替。 10.开题报告要按学生所在系规定的方式进行报告,经系主任批准后方可进行下一步的研究(或设计)工作。 一、课题的目的意义: 倒立摆系统作为一个实验装置,形象直观,结构简单,构件组成参数和形状易于改变,成本低廉;作为一个被控对象,它又相当复杂,就其本身而言,是一个高阶次、不稳定、多变量、非线性、强耦合系统,只有采取行之有效的控制方法方能使之稳定。 理论是工程的先导,倒立摆的研究具有重要的工程背景。机器人行走类似倒立摆系统,尽管第一台机器人在美国问世以来已有几十年的历史,但机器人的关键技术至今仍未很好解决。由于倒立摆系统的稳定与空间飞行器控制和各类伺服云台的稳定有很大相似性,也是日常生活中所见到的任何重心在上、支点在下的控制问题的抽象。因此,倒立摆机理的研究又具有重要的应用价值,成为控制理论中经久不衰的研究课题。 文献综述(分析国内外研究现状、提出问题,找到研究课题的切入点,附主要参考文献,约2000字): 倒立摆系统的最初分析开始于二十世纪五十年代,是一个比较复杂的不稳定,多变量,带有强耦合特性的高阶机械系统。倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统受到不确定因素的干扰。其控制方法和思路在处理一般工业过程中有很广泛的用途,此外,其相关的研究成果也在航天科技和机器人学习方面得到了大量的应用,如机器人行走过程中平衡控制,火箭发射中的垂直度控制和卫星飞行中的姿态控制等,因此,倒立摆系统是进行控制理论研究的理想平台。 倒立摆是机器人技术﹑控制理论﹑计算机控制等多个领域﹑多种技术的有机结合,其被控

单级倒立摆控制的极点配置方法

一级倒立摆控制的极点配置方法 摘要 倒立摆系统是一个典型的多变量、非线性、强耦合和快速运动的自然不稳定系统。因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。 本文通过极点配置, 实现了用现代控制理论对一级倒立摆的控制。利用牛顿第二定律及相关的动力学原理等建立数学模型,对小车和摆分别进行受力分析,并采用等效小车的概念,列举状态方程,进行线性化处理想, 最后通过极点配置,得到变量系数阵。利用Simulink建立倒立摆系统模型,特别是利用Mask封装功能, 使模型更具灵活性,给仿真带来很大方便。实现了倒立摆控制系统的仿真。仿真结果证明控制器不仅可以稳定倒立摆系统,还可以使小车定位在特定位置。 关键词:倒立摆,数学建模,极点配置

THE POLE PLACEMENT CONTROL TO A SINGLE INVERTED PENDULUM Abstract Inverted pendulum system is multivariable, nonlinear, strong-coupling and instability naturally. The research of inverted pendulum has many important realistic meaning in the research such as, the walking of biped robot, the lunching process of rocket and flying control of helicopter, and many correlative productions has applications in the field of technology of space flight and subject of robot. Through the pole placement method, the control of the inverted pendulum is realized. We get the mathematic model according to the second law of Newton and the foundation of the dynamics, analysis the force of the cart and pendulum, and adopt the concept of "the equivalent cart”. During writing the equitation of the system, the equitation has been processed by linear. At last,we get coefficient of the variability. The simulation of inverted pendulum system is done by the SIMULINK Tool box. Specially Mask function is applied, it makes simulation model more agility, the simulation work become more convenient. The result shows that it not only has quite goods ability, but also is able to make the cart of the pendulum moving to the place where it is appointed by us in advance along the orbit. Key words: inverted pendulum, mathematic model, pole placement

一级直线倒立摆系统模糊控制器设计---实验指导书

一级直线倒立摆系统模糊控制器设计 实验指导书

目录 1 实验要求................................................................................. . (3) 1.1 实验准备................................................................................. . (3) 1.2 评分规则................................................................................. . (3) 1.3 实验报告容................................................................................. .. (3) 1.4 安全注意事项................................................................................. .. (3) 2 倒立摆实验平台介绍................................................................................. .. (4) 2.1 硬件组成................................................................................. . (4) 2.2 软件结构................................................................................. . (4) 3 倒立摆数学建模(预习 容) .............................................................................. (6) 4 模糊控制实验................................................................................. (8) 4.1 模糊控制器设计(预习容)............................................................................... (8) 4.2 模糊控制器仿真................................................................................. (12) 4.3 模糊控制器实时控制实验................................................................................. .. (12) 5 附录:控制理论中常用的MATLAB 函

倒立摆PD控制

倒立摆PD控制 摘要:倒立摆系统是一个比较复杂的不稳定、多变量、带有非线性和强耦合特性的高阶机 械系统,它的稳定控制是控制理论应用的一个典型范例[1]。倒立摆系统存在严重的不确定性,一方面是系统的参数的不确定性,一方面是系统的受到不确定因素的干扰。通过对它的研究不仅可以解决控制中的理论问题,还将控制理论涉及的相关主要学科:机械、力学、数学、电学和计算机等综合应用。在多种控制理论与方法的研究和应用中,特别是在工程中,存在一种可行性的实验问题,将其理论和方法得到有效的验证,倒立摆系统可以此提供一个从控制理论通过实践的桥梁。有很多种倒立摆的研究方法,本文采用的是一种基于精确模型极点配制的PD控制器设计方法。 关键词:倒立摆、PD控制 Abstract: Inverted pendulum system is a complex of instability, multivariable, nonlinear and strong coupling features advanced mechanical system, its stability control is a typical example of control theory in [1]. Inverted pendulum system exists serious uncertainty, on the one hand is the uncertainty of the parameters of the system, on the one hand is the uncertainty of disturbance of the system.Through the study of it can not only solve the problem of control in theory, will also control theory involving major courses: mechanical, mechanics, mathematics, electrical and computer integrated application. In a variety of control theory and method of research and application, especially in engineering, there is a kind of feasible experiment, it effectively validation of the theory and method, an inverted pendulum system can be provided from the control theory, through the practice of the bridge. There are many kinds of research methods of inverted pendulum, this paper USES is a PD controller design method based on the precise model of pole configuration. 一、倒立摆的分类: 倒立摆系统诞生之初为单级直线形式,即仅有的一级摆杆一端自由,另一端铰接于可以在直线导轨上自由滑动的小车上。在此基础上,人们又进行拓展,产生了多种形式的倒立摆。 按照基座的运动形式,主要分为三大类:直线倒立摆、环形倒立摆和平面倒立摆,每种形式的倒立摆再按照摆杆数量的不同可进一步分为一级、二级、三级及多级倒立摆等[4]。摆杆的级数越多,控制难度越大,而摆杆的长度也可能是变化的。多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。目前,直线型倒立摆作为一种实验仪器以其结构相对简单、形象直观、构件参数易于改变和价格低廉等优点,已经广泛运用于教学[5]。关于直线倒立摆的控制技术已经基本趋于成熟,在该领域所出的成果也相当丰富。尽管环形倒立摆的基座运动形式与直线倒立摆有所差异,但二者相同之处是基座仅有一个自由度,可以借鉴比较成熟的直线倒立摆的研究经验,所以近几年来也产生了大量的理论成果。平面倒立摆是倒摆系统中最复杂的一类,这是因为平面倒立摆的基座可以在平面内自由运动,并且摆杆可

直线一级倒立摆控制系统设计(1)

内蒙古科技大学课程设计 内蒙古科技大学 控制系统仿真设计说明书 题目:直线一级摆的PID控制与校正 学生姓名:罗鹏飞 学号:0967112208 专业:测控技术与仪器 班级:2009-2班 指导教师:张勇

摘要 倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。 本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。 本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。 关键词:一级倒立摆,PID,MATLAB仿真

目录 摘要...................................................................I 目录..................................................................II 第1章 MATLAB仿真软件的应用.. (1) 1.1 MATLAB的基本介绍 (1) 1.2 MATLAB的仿真 (1) 1.3 控制系统的动态仿真 (2) 1.4 小结 (4) 第2章直线一级倒立摆系统及其数学模型 (5) 2.1 系统组成 (5) 2.1.1 倒立摆的组成 (6) 2.1.2 电控箱 (6) 2.1.4 倒立摆特性 (7) 2.2 模型的建立 (7) 2.2.1 微分方程的推导 (8) 3.2.2 传递函数 (10) 3.2.3 状态空间结构方程 (10) 2.2.4 实际系统模型 (12) 2.2.5 采用MATLAB语句形式进行仿真 (13) 第3章直线一级倒立摆的PID控制器设计与调节 (16) 3.1 PID控制器的设计 (16) 3.2 PID控制器设计MATLAB仿真 (18) 结论 (21) 参考文献 (22)

直线一级倒立摆控制详细报告

直线一级倒立摆控制 一、课程设计目的 学习直线一级倒立摆的数学建模方法,运用所学知识设计PID控制器,并应用MATLAB进行仿真。通过本次课程设计,建立理论知识与实体对象之间的联系,加深和巩固所学的控制理论知识,增加工程实践能力。 二、课程设计要求 1. 应用动力学知识建立直线一级倒立摆的数学模型(微分方程形式),并建立系统的开环传递函数模型。 2. 运用经典控制理论知识,按设计要求设计控制器。 3. 应用MATLAB的Simulink建立控制系统的仿真模型,得出仿真结果。 4. 控制要求: ※小车的位置x和摆杆角度的稳定时间小于10秒; ※阶跃响应摆杆角度的摆幅小于2°; ※θ有≤8°扰动时,摆杆的稳定时间小于三秒。 对比仿真结果与控制要求,修正设计值,使之满足设计要求。 三、控制系统建模过程 1、控制对象示意图

/ 10 1 图1.控制对象示意图 图中对象参数: M 小车质量 1.32kg l 摆杆转动中心到杆质心的距离 0.27m m 摆杆质量 0.132kg F 作用在系统上的外力

/ 10 2 X 小车位移 θ 摆杆与竖直方向的夹角,以垂直向上为起始位置,取逆时针方向为正方向。 b 小车摩擦阻尼系数 0.1N/m/sec 2. 控制系统模拟结构图: 图2.系统的模拟结构图 其中G1(s )表示关于摆角θ的开环传递函数,D(S) 表示PID 控制器的传递函数,G2(s )表示小车位移x 的传递函数。由于摆角与垂直向上方向夹角为0时为平衡状态,故摆角的理想输出值应为R (S )=0。 3. 建模过程: T 图3.小车及摆杆的受力分析图 如图3所示,对小车及摆杆进行受力分析,得到以下平衡方程: 对小车有: 22..................................(1)dx d x F F b N M dt dt =--=∑小车 对摆杆有:

基于PID控制的一级倒立摆系统的研究

本科生毕业设计(论文) 论文题目:基于PID控制的一级倒立摆系统的研究 姓名: 学院: 专业: 班级、学号: 指导教师:

摘要 本文的研究对象为一级倒立摆系统,主要是基于PID控制的一级倒立摆控制系统的设计。利用PID参数整定的多种方法对PID的三个参数进行调节,并对其优化,然后用利用Matlab对其进行仿真,并对最后仿真图的结果进行分析与比较。 倒立摆是一种典型的非线性、多变量、强耦合、快速的、自然不稳定的系统。在实际生产生活中有很多类似的系统,故研究一级倒立摆系统的PID控制具有很大的实际意义。本文介绍了多种PID参数整定算法,主要采用了的是Z-N整定法,并详细介绍了PID参数整定算法的相关理论和具体操作方法。在本文中还建立了一级倒立摆的数学模型和物理模型。本文着重讲述了Z-N整定法和试凑法对PID三个参数的进行优化的具体方法。用Matlab对一级倒立摆系统进行了仿真,并且比较这些方法的优缺点,对最后的仿真图结果研究和分析。得出PID参数整定方法的优缺点。 关键词: PID控制器参数整定一级倒立摆 Matlab仿真

Abstract Object of this paper is an inverted pendulum system is mainly based on PID control an inverted pendulum control system design. Use a variety of PID parameter tuning method to adjust the three parameters of PID, and its optimization, and then use them using matlab simulation, and the results of the last simulation diagram analysis and comparison. Inverted pendulum is a typical non-linear, multi-variable, strong coupling, fast, naturally unstable system. In real life there are a lot of similar production systems, it is of an inverted pendulum system PID control has great practical significance. This article describes a variety of PID parameter tuning algorithm, the main use of the Z-N entire titration, and details of the PID parameter tuning algorithms related theory and specific methods of operation. In this article, also established a mathematical model of the inverted pendulum and physical models. This paper focuses on the ZN Tuning Method for PID and genetic algorithms to optimize the three parameters of specific methods. Using Matlab on an inverted pendulum system is simulated, and compare the advantages and disadvantages of these methods, drawing on the final results of the simulation study and

相关文档
最新文档