多面体的体积和表面积计算公式大全

多面体的体积和表面积计算公式大全
多面体的体积和表面积计算公式大全

常见几何体的体积和表面积公式及三视图

常见几何体的体积和表面积公式及三视图 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

常见几何体的体积和表面积公式及三视图谨记常见几何体的三视图特点:一般情况下,(1)视图中有两个是矩形的几何体是柱体;(2)视图中有两个是三角形的几何体是锥体;(3)视图有两个是梯形的几何体是台体;(4)视图中有两个是圆的几何体是球. (2016年全国II高考)下图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为(2016年山东高考)有一个半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为 【2011全国新课标,理6】在一个几何体的三视图中,正视图和俯视图如下图所示,则相应的侧视图可以为( )【2017浙江,3】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是 【2013课标全国Ⅰ,理8】某几何体的三视图如图所示,则该几何体的体积为(2016年浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的表面积是 cm2,体积是 cm3. (2016年全国I高考)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是 28π3,则它的表面积是 【2017山东,理13】由一个长方体和两个1 4 圆柱体构成的几何体的三视图如右图,则该 几何体的体积为 . 【2014课标Ⅰ,理12】如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()【2017北京,理7】某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为 【2017课标1,理7】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为【2017课标II,理4】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为()

专题18多面体的表面积和体积(解析版)

专题18 多面体的表面积和体积(解析版)多面体,因其具有考查直观想象、逻辑推理、数学抽象的素养的特性,越来越引起出题专家组的青睐。 易错点1:基础知识不扎实 (1)对立几中一些常见结论要做到了然于胸,如:关于三棱锥中顶点在底面三角形上的射影问题的相关条件和结论要在理解的基础上加以熟记; (2)在思维受阻时,要养成回头看条件的习惯,问一问自己条件是否都用了呢? 易错点2:平面化处理意识不强,简单的组合体画不出适当的截面图致误 易错点3:“想图、画图、识图、解图”能力的欠缺,多面体与几何体的结构特征不清楚导致计算错误 易错点4:空间想象能力欠缺 题组一 1.(2016年全国III)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为 A.18+B.54+C.90 D.81 【解析】由三视图可得该几何体是平行六面体,上下底面是边长为3的正方形,故面积都是9,前后两个侧面是平行四边形,一边长为3、该边上的高为6,故面积都为18,左右 两个侧面是矩形,边长为3,故面积都为,则该几何体的表面积为2(9 +18+ 2.(2016全国II)如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为

A .20π B .24π C .28π D .32π 【解析】该几何体是圆锥与圆柱的组合体, 设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h . 由图得2r =,2π4πc r ==,由勾股定理得:()222234l =+=, 21π2 S r ch cl =++表4π16π8π=++28π=,故选C . 3.(2015新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几 何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r = A .1 B .2 C .4 D .8 【解析】由三视图可知,此组合体是由半个圆柱与半个球体组合而成,其表面积为 22222422016r r r r ππππ+++=+,所以2r =. 题组二 4.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视 图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为

专题18多面体的表面积和体积(解析版)

1 8 专题18 多面体的表面积和体积(解析版) 多面体,因其具有考查直观想象、逻辑推理、数学抽象的素养的特性,越来越引起出题专家组的青睐。 易错点1:基础知识不扎实 (1)对立几中一些常见结论要做到了然于胸,如:关于三棱锥中顶点在底面三角形上的射影问题的相关条件和结论要在理解的基础上加以熟记; (2)在思维受阻时,要养成回头看条件的习惯,问一问自己条件是否都用了呢? 易错点2:平面化处理意识不强,简单的组合体画不出适当的截面图致误 易错点3:“想图、画图、识图、解图”能力的欠缺,多面体与几何体的结构特征不清楚导致计算错误 易错点4:空间想象能力欠缺 题组一 1.(2016年全国III )如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三 视图,则该多面体的表面积为 A .18+ B .54+ C .90 D .81 【解析】由三视图可得该几何体是平行六面体,上下底面是边长为3的正方形,故面积都是 9,前后两个侧面是平行四边形,一边长为3、该边上的高为6,故面积都为18,左右 两个侧面是矩形,边长为3 ,故面积都为,则该几何体的表面积为2(9 +18+ 2.(2016全国II )如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积 为

2 8 A .20π B .24π C .28π D .32π 【解析】该几何体是圆锥与圆柱的组合体, 设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h . 由图得2r =,2π4πc r ==,由勾股定理得:( ) 2 2223 4l =+=, 21 π2 S r ch cl =++表4π16π8π=++28π=,故选C . 3.(2015新课标Ⅰ)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几 何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为16 + 20π,则r = A .1 B .2 C .4 D .8 【解析】由三视图可知,此组合体是由半个圆柱与半个球体组合而成,其表面积为 22222422016r r r r ππππ+++=+,所以2r =. 题组二 4.(2017新课标Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视 图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为

多面体的体积和表面积计算公式大全

多面体的体积和表面积 「-一个蛆含三馅形的面积 M -粗合三角形的个数 u-惟底备嗣角皤交点 S = Q71+ 气+ 0 Si=an 国荏: 矿=*?』 5 = 2?cfi ? h +3寂。 6 ■ 2trR * h 空心直回柱: F =双中T 气=由耕 s= Mjnmdj?顼) 尺寸符号 体税(/)底面积(月 表面税(罚刨表面积(用) 『 =(? 4 =物' 长 方 体 A 棱 住 V V =a*b*h S = + a ? fi +b * h) d 三J/w*十护 V = ^F*h 3 S 二刀?丁 ■+ F 3\= ?!?/

矿?上如 3 § = 2上'七= ftr/ s 4 7 ntf‘ 5 V - _q ------------- 0.52W 3 3 6 h H =/ni 2 H ■三仲电曜44鬼 3 5=号伽+tn = 157g+d) GUX 员=使儡+AJ 矿.晋.(炉+ F + &) & M H?侦廿)

方-球缺的高 「-球缺半径 《-平切圆直径跖 =曲面面积『球缺 表面积 成-球半径 出。-底面半径 有-腰局 & -球心。至带底回心3)的距离 为-中间断面直径 I-底直径 [-桶高 a,b,c-半轴 r—圈注半役 tJ-?柱长F = *(『_鸟 3 43 $?点仲小) 芥=飒为-的) 矿小snfw’ S-4^2Ry?/以■明4无阳 矿.史(3爬+3词+殆 S = +西村 +的) 对于胭物嬲形棉体 J/ =史(2户+应4■兰占。 15 4 对于圆形橘体 4君渺十户) p = H]_

冬5-下底边长m-上底迓长卜上、下底遭距离(高) 尺寸符号V- -[(2^ +flj)& +口灼+a)6J 6 二一[口8 H 口中口U(b+ 四)+豹刀 6 fl = /? = 0.77^ 4 = 1414? =1.414./? J郭L+勺 -'血 fin er 2 常用图形求面积公式 田-边长 b-对角投 d"厂对墙恭 Ct-对龟钱夹侑 面积(F)表面积(S)

最常用的面积体积计算公式

用求面积、体积公式 1 平面图形面积 平面图形面积见表1-73。 平面图形面积表1-73 2 多面体的体积和表面积 多面体的体积和表面积见表1-74。 多面体的体积和表面积表1-74 3 物料堆体积计算 物料堆体积计算见表1-75。 物料堆体积计算表1-75 4 壳体表面积、侧面积计算 1-3-4-1 圆球形薄壳(图1-1) 图1-1 圆球形薄壳计算图 4-2 椭圆抛物面扁壳(图1-2) 图1-2 椭圆抛物面扁壳计算图1-3-4-3 椭圆抛物面扁壳系数计算 见图1-2,壳表面积(A)计算公式:

A=S x ·S y =2a×系数K a ×2b×系数K b 式中 K a 、K b ——椭圆抛物面扁壳系数,可按表1-76查得。 椭圆抛物面扁壳系数表表1-76 查表说明 [例]已知2a=24.0m,2b=16.0m,h x =3.0m,h y =2.8m,试求椭圆抛物面扁壳表面 积A。 先求出h x /2a=3.0/24.0=0.125 h y /2b=2.8/16.0=0.175 分别查表得系数K a 为1.0402和系数K b 为1.0765,则扁壳表面积A=24.0×1.0402× 16.0×1.0765=429.99m2 1-3-4-4 圆抛物面扁壳(图1-3) 图1-3 圆抛物面扁壳计算图 1-3-4-5 单、双曲拱展开面积 1.单曲拱展开面积=单曲拱系数×水平投影面积。 2.双曲拱展开面积=双曲拱系数(大曲拱系数×小曲拱系数)×水平投影面积。 单、双曲拱展开面积系数见表1-77。单双曲拱展开面积计算图见图1-4。 图1-4 单、双曲拱展开面积计算图

空间几何体的表面积和体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3 、 台体 ① 棱台:h c c S )(2 1 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2 、 锥体 ① 棱锥 ② 圆锥

3、 ① 棱台 ② 圆台 4、 球体 ① 球: r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h ' 计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2 的圆柱形容器内装一个最大的 球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 4 23 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) + = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1 由相似三角形的性质得: PF PE AB CD =

空间几何体的表面积和体积讲解及经典例题

空间几何体的表面积和体积 一.课标要求: 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。 二.命题走向 近些年来在高考中不仅有直接求多面体、旋转体的面积和体积问题,也有已知面积或体积求某些元素的量或元素间的位置关系问题。即使考查空间线面的位置关系问题,也常以几何体为依托.因而要熟练掌握多面体与旋转体的概念、性质以及它们的求积公式.同时也要学会运用等价转化思想,会把组合体求积问题转化为基本几何体的求积问题,会等体积转化求解问题,会把立体问题转化为平面问题求解,会运用“割补法”等求解。 由于本讲公式多反映在考题上,预测2009年高考有以下特色: (1)用选择、填空题考查本章的基本性质和求积公式; (2)考题可能为:与多面体和旋转体的面积、体积有关的计算问题;与多面体和旋转体中某些元素有关的计算问题; 三.要点精讲 1.多面体的面积和体积公式 长。 2.旋转体的面积和体积公式 12

下底面半径,R 表示半径。 四.典例解析 题型1:柱体的体积和表面积 例1.一个长方体全面积是20cm 2 ,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2 得:x 2 +y 2 +z 2 +2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2 =16 即l 2 =16 所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt △A 1NA ≌Rt △A 1MA,∴A 1M=A 1N , 从而OM=ON 。 ∴点O 在∠BAD 的平分线上。 (2)∵AM=AA 1cos 3 π =3×21=23 ∴AO=4 cos πAM =223 。 又在Rt △AOA 1中,A 1O 2 =AA 12 – AO 2 =9- 29=2 9,

各种多面体体积、面积计算公式大全(施工员必备)

多面体的体积和表面积 y = F*h E - (c +b +u)? A + ; F E\=g +&+f ) ? #2 I 評耳+马+应) £ =㈱H ■巧十尽 5j = cm 图形 尺寸符号 体积(町唐面积(F ) 表輪⑸佩俵翻斶) 口-楼 止-寰面积 侧表面积 r = a 3 £=討 商=4a a 长 方 体 A 棱 柱 V 龟以1边按 。-尿面对角线的交点 f 二2仗*方+Q ?丙+B*月) 51 = 2^+^) 棱 锥 棱 厶 务马-两平行底面的面积 h ■麻面间距盅 位-Y 爼台棉殛的面科 皿-殂合梯幣埶 口,冊-述长 b ■高 F -底直积 口 L 底面中钱的敦 f-一①组舍三请形的面枳 腥-组合三轴我的个数 0-镀底各刑第钱交直 棱 柱

覇=时偽十址) 球 V 圆 台 ”克径 BS : r -鹿面半径 用—高 J 世錢长 球 扇 形 A 球 楔 「-碌半径 用-弓形底圆直径 h-弓托高 艮-外芈径 一内半径 !-柱壘厚愛 卩-平均半轻 场=内汁侧面积 R?■-底面半 径 h -奩 廿胪+胖二曲』 r= -^^ = 20^3* 3 屈=吃(联+町=157班価+百 U 岛-棗才'高度 阳-最丸高度 r-底面半孫 £■圖坯+岛)斗寸—(1+—i —) coscr V ■—宀------- 0.5236^ 3 6 S u JrtT 2 - mF 八争(C? Sj = nf(J?+r) 百=$1十试沪十宀 "4学 圆 柱 和 空 心、 圆 柱 A 管 V 斜 线 直 圆 柱 £ = 2?rji ?/] 4-2JC JE^ § = 2n-R * h 空心苴圆柱■ F =锁/—田=2碑朽 £=2机 卫4町;!+2代皿一以) $ =2囲只+H

高一数学空间几何体的表面积和体积知识点及题型例题

空间几何体的表面积和体积例题解析 一.课标要求了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆,理解为主)。二.命题走向----用选择、填空题考查本章的基本性质和求积公式; 三.要点精讲 1.多面体的面积和体积公式 表中S表示面积,c′、c分别表示上、下底面周长,h表斜高,h′表示斜高,l表示侧棱长。2.旋转体的面积和体积公式 表中l、h分别表示母线、高,r表示圆柱、圆锥与球冠的底半径,r1、r2分别表示圆台上、下底面半径,R表示半径。 四.典例解析 题型1:柱体的体积和表面积

例1.一个长方体全面积是20cm 2,所有棱长的和是24cm ,求长方体的对角线长. 解:设长方体的长、宽、高、对角线长分别为xcm 、ycm 、zcm 、lcm 依题意得:? ??=++=++24)(420 )(2z y x zx yz xy )2()1( 由(2)2得:x 2+y 2+z 2+2xy+2yz+2xz=36(3) 由(3)-(1)得x 2+y 2+z 2=16 即l 2=16所以l =4(cm)。 点评:涉及棱柱面积问题的题目多以直棱柱为主,而直棱柱中又以正方体、长方体的表面积多被考察。我们平常的学习中要多建立一些重要的几何要素(对角线、内切)与面积、体积之间的关系。 例2.如图1所示,在平行六面体ABCD —A 1B 1C 1D 1中,已知AB=5,AD=4,AA 1=3,AB ⊥AD ,∠A 1AB=∠A 1AD= 3 π 。 (1)求证:顶点A 1在底面ABCD 上的射影O 在∠BAD 的平分线上; (2)求这个平行六面体的体积。 图1 图2 解析:(1)如图2,连结A 1O ,则A 1O ⊥底面ABCD 。作OM ⊥AB 交AB 于M ,作ON ⊥AD 交AD 于N ,连结A 1M ,A 1N 。由三垂线定得得A 1M ⊥AB ,A 1N ⊥AD 。∵∠A 1AM=∠A 1AN , ∴Rt△A 1NA≌Rt△A 1MA,∴A 1M=A 1N ,从而OM=ON 。∴点O 在∠BAD 的平分线上。

空间几何体的表面积与体积公式大全

空间几何体的表面积与体积公式大全 一、 全(表)面积(含侧面积) 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥:h c S ‘ 底棱锥侧21= ② 圆锥:l c S 底圆锥侧2 1 = 3、 台体 ① 棱台:h c c S )(21 ‘下底上底棱台侧+= ② 圆台:l c c S )(2 1 下底上底棱台侧+= 4、 球体 ① 球:r S 24π=球 ② 球冠:略 ③ 球缺:略 二、 体积 1、 柱体 ① 棱柱 ② 圆柱 2、 锥体 ① 棱锥

② 圆锥 3、 ① 棱台 ② 圆台 4、 ① 球:r V 33 4 π=球 ② 球冠:略 ③ 球缺:略 说明:棱锥、棱台计算侧面积时使用侧面的斜高h '计算;而圆锥、圆台的侧面积计算时使用母线l 计算。 三、 拓展提高 1、 祖暅原理:(祖暅:祖冲之的儿子) 夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。 最早推导出球体体积的祖冲之父子便是运用这个原理实现的。 2、 阿基米德原理:(圆柱容球) 圆柱容球原理:在一个高和底面直径都是r 2的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3 2 。

分析:圆柱体积:r r h S V r 3 222)(ππ=?==圆柱 圆柱侧面积:r h c S r r 2 42)2(ππ=?==圆柱侧 因此:球体体积:r r V 333 423 2ππ=?=球 球体表面积:r S 24π=球 通过上述分析,我们可以得到一个很重要的关系(如图) = 即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和 3、 台体体积公式 公式: )(3 1 S S S S h V 下下 上 上台++= 证明:如图过台体的上下两底面中心连线的纵切面为梯形ABCD 。 延长两侧棱相交于一点P 。 设台体上底面积为S 上,下底面积为S 下高为h 。 易知:PDC ?∽PAB ?,设h PE 1=, 则h h PF +=1

求多面体外接球体积和面积

求多面体外接球体积和面积 一、一般方法:利用平面性质先找外心,再找球心。 1.一个四面体的所有棱长都为√2,四个顶点在同一球面上,求外接球的表面积。(3π) 二、正方体/长方体外接球:体对角线=直径 三、补全法:补成正方体或长方体 2.若三棱锥的三条侧棱两两垂直,且侧棱长均为√3,求其外接球的表面积。(9π) 3.例题1. 4. 正四棱锥S-ABCD 的底面边长和各侧棱长都为√2,点S、A、B、C、D都在同一球面上,求此球的体积。(4/3π) 5. 在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B-AC-D,求四面体ABCD的外接球的体积.(125/6π) 立体几何 1.如图,四棱锥P-ABCD 中,四边形ABCD为矩形,三角形PAD为等腰三角形,∠APD=90°,平面PAD⊥平面ABCD,且AB=1,AD=2,E、F分别为PC和BD的中点. (1)证明:EF//平面PAD; (2)证明:平面PDC⊥平面PAD; (3)求四棱锥P-ABCD 的体积.

2.如图1-5所示,四棱锥P - ABCD的底面是边长为8的正方形,四条侧棱长均为2√17.点G,E, F,H分别是棱PB,AB,CD,PC上共面的四点,平面GEFH⊥平面ABCD,BC∥平面GEFH. (1)证明:GH∥EF; (2)若EB=2,求四边形GEFH的面积(18) 3.如图1-4所示四棱锥P-ABCD中,底面是以O为中心的菱形,PO⊥底面ABCD,AB=2, ∠BAD=π/3,M为BC上一点,且BM=1/2 . (1)证明:BC⊥平面POM; (2)若MP⊥AP,求四棱锥P-ABMO的体积.(5/16) 圆锥曲线

空间几何体的表面积和体积练习题

一、 知识回顾 (1)棱柱、棱锥、棱台的表面积 = 侧面积 + ______________; (2)圆柱:r 为底面半径,l 为母线长 侧面积为_______________;表面积为_______________. 圆锥:r 为底面半径,l 为母线长 侧面积为_______________;表面积为_______________. 圆台:r ’、r 分别为上、下底面半径,l 为母线长 侧面积为_______________;表面积为_______________. (3)柱体体积公式:________________________;(S 为底面积,h 为高) 锥体体积公式:________________________;(S 为底面积,h 为高) 台体体积公式:________________________; (S ’、S 分别为上、下底面面积,h 为高) 二、 例题讲解 题1:如图(1)所示,直角梯形ABCD 绕着它的底 边AB 所在的直线旋转一周所得的几何体的表面 积是______________;体积是______________。 图(1) 题2:若一个正三棱柱的三视图如图(2)所示, 求这个正三棱柱的表面积与体积 左视图 俯视图 主视图 8 B

图(2) 题3:如图(3)所示,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且ADE ?,BCF ?均为正三角形,EF 3233342 36cm4cm 1111D C B A ABCD -11B A 11D AB E - 图(4) 3、已知某几何体的俯视图是如图(5)所示的矩形,正 视图(或称主视图)是一个底边长为8、高为4的等腰三 角形,侧视图(或称左视图)是一个底边长为6、高为4 的等腰三角形. E A B D C F C B A D C 1 B 1 E A 1 D 1

高中数学空间几何体的表面积与体积练习题及答案

空间几何体的表面积与体积专题 一、选择题 1.棱长为2的正四面体的表面积是( C ). A. 3 B .4 C .4 3 D .16 解析 每个面的面积为:12×2×2×3 2= 3.∴正四面体的表面积为:4 3. 2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的 ( B ). A .2倍 B .22倍 C.2倍 D.3 2倍 解析 由题意知球的半径扩大到原来的2倍,则体积V =4 3πR 3,知体积扩大到原来的22倍. 3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为( B ). A.1423 B.2843 C.2803 D.140 3 解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积 V =V 长方体-V 正三棱锥=4×4×6-13 ×? ?? ??12×2×2×2= 284 3 . 4.某几何体的三视图如下,则它的体积是( A) A .8-2π3 B .8-π 3 C .8-2π D.2π 3 解析 由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半 径为1,高为2的圆锥,所以V =23-13×π×2=8-2π 3 . 5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( A)A .24-32π B .24-π3 C .24-π D .24-π 2 据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分 别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-12×π×12×3=24-3π 2. 6.某品牌香水瓶的三视图如图 (单位:cm),则该几何体的表面积为( C )

空间几何体的表面积和体积公式汇总表

空间几何体的表面积和体 积公式汇总表 Prepared on 24 November 2020

空间几何体的表面积和体积公式汇总表 1.多面体的面积和体积公式 2.旋转体的面积和体积公式 3.(1)圆柱的侧面展开图是一个 ,设底面半径为r ,母线长为l ,那么圆柱的底面积 =底S ,侧面积=侧S ,表面积S = 。 (3)圆锥的侧面展开图是一个 ,设圆锥的底面半径为r ,母线长为l ,那么它的底面积 =底S ,侧面积=侧S ,表面积S = 。 (4)圆台的侧面展开图是一个 ,设上、下底面圆半径分别为r '、r ,母线长为l ,那么上底面面积=上底S ,下底面面积=下底S 那么表面=S 。 4、正四面体的结论:设正四面体的棱长为a ,则这个正四面体的 (1)全面积:S 全2a ; (2)体积:3a ; (3)对棱中点连线段的长:a ; (4)对棱互相垂直。 (5)外接球半径:R= a ; (6)内切球半径; r= a 5、正方体与球的特殊位置结论; 空间几何体练习题 1.已知圆柱与圆锥的底面积相等,高也相等,它们的体积分别为1V 和2V ,则 1V :2V 是( ) A. 1:3 B. 1:1 C. 2:1 D. 3:1 2.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ) A. ππ221+ B. ππ421+ C. ππ21+ D. π π241+ 3.一个圆锥的展开图如图所示,其中扇形的圆心角为0120,已知 底面圆的半径为1,求该圆锥的体积。 4. 已知棱长为a ,各面均为等边三角形的四面体ABC S -,求它的表面积。

5.圆柱的侧面展开图是长、宽分别为6π和π4的矩形,求圆柱的体积。 6.若圆台的上下底面半径分别为1和3,它的侧面积是两底面面积和的2倍,则圆台的母线长是( ) A. 2 B. C. 5 D. 10 7.圆柱的侧面展开图是长为12cm ,宽8cm 的矩形,则这个圆柱的体积为( ) A. π288 3cm B. π192 3cm C. π288 3cm 或 π192 3cm D. π1923cm 8.一个圆柱的底面面积是S ,侧面展开图是正方形,那么该圆柱的侧面积为( ) A. 4s π B. S π2 C. S π D. S π3 32

空间几何体的表面积与体积教案

空间几何体的表面积与体积 一、柱体、锥体、台体的表面积 A .多面体的表面积 1.多面体的表面积求法:求平面展开图的面积 注:把多面体的各个面平铺在平面上,所得图形称之为多面体的平面积展开图. 2.直棱柱的侧面积与全面积 (1)侧面积 ①求法:侧面展开(如图); ②公式:S cl =(其中c 为底面周长,l 为侧棱长); (2)表面积:侧面积+两底面积. (3)推论: ①正棱柱的侧面积:S cl =(其中c 为底面周长,l 为侧棱长). ②长方体的表面积:2()S ab bc ca =++.(其中,,a b c 分别为长方体的长宽高) ③正方体的表面积:26S a =(a 为正方体的棱长). 3.斜棱柱侧面积与全面积 (1)侧面积: ①求法:作出直截面(如图); 注:这种处理方法蕴含着割补思想. ②公式:S cl =(其中c 为直截面周长,l 为侧棱长); (2)表面积:侧面积+两底面积. 4.正棱锥的侧面积与全面积 (1)侧面积 ①求法:侧面展开(如图); ②公式:12 S ch '=(其中c 为底面周长,h '为斜高); (2)表面积:侧面积+底面积. 5.正棱台的侧面积与全面积 (1)侧面积 ①求法:侧面展开(如图); ②公式:1()2 S c c h ''=+(其中c 、c '为底面周长,h '为斜高); (2)表面积:侧面积+两底面积. 6.正棱柱、正棱锥、正棱台的侧面积公式间的内在联系: B .旋转体的表面积 2r π l r

1.圆柱的侧面积与全面积 (1)侧面积: ①求法:侧面展开(如图); ②公式:2S rl π=(r 为两底半径,l 为母线长); (2)表面积:2()S r r l π=+. 2.圆锥的侧面积与表面积 (1)侧面积 ①求法:侧面展开(如图); ②公式:S rl π=; (2)表面积:()S r r l π=+(r 为两底半径,l 为母线长). 事实上:圆锥侧面展开图为扇形,扇形弧长为2r π,半径为圆锥母线l ,故面积为122 r l rl ππ??= . 3.圆台的侧面积与表面积 (1)侧面积 ①求法:侧面展开(如图); ②公式:()S r R l π=+; 事实上:圆台侧面展开图为扇环,扇环的弧长分别为2r π、2R π,半径分别为x 、x l +,故圆台侧面积为 1 12()2()22S R x l r x R r x Rl ππππ=??+-??=-+,∵()x l R r x rl r R r =?-=-,∴()S r R l π=+. (2)表面积:22()r R r R l πππ+++.(r 、R 分别为上、下底面半径,l 为母线长) 4.圆柱、圆锥、圆台的侧面积公式间的内在联系: 二、柱体、锥体、台体的体积 A .棱柱、棱锥、棱台的体积 1.棱柱体积公式:V Sh =(h 为高,S 为底面面积); 2.棱锥体积公式:1 3 V Sh =(h 为高,S 为底面面积); 3.棱台体积公式:121 ()3 V S S h =棱台 (h 为高,1S 、2S 分别为两底面面积). 事实上,设小棱锥高为x ,则大棱锥高为x h +.于是212211111()()3333 V S x h S x S h S S x =+-=+-. ∵ x x x x h h +, ∴221211111()33333 V S h x S h S S h =+=+=. 4.棱柱、棱锥、棱台体积公式间的内在联系: 2r π l l r h 2 S x 1 S 2R π 2r π x R r x l

相关文档
最新文档