基于场景的光学遥感影像非均匀性校正(IJIGSP-V9-N12-6)

基于场景的光学遥感影像非均匀性校正(IJIGSP-V9-N12-6)
基于场景的光学遥感影像非均匀性校正(IJIGSP-V9-N12-6)

I.J. Image, Graphics and Signal Processing, 2017, 12, 50-57

Published Online December 2017 in MECS (https://www.360docs.net/doc/2715748810.html,/)

DOI: 10.5815/ijigsp.2017.12.06

Scene based Non-uniformity Correction for Optical Remote Sensing Imagery

Lolith Gopan

Department of Computer Science and Engineering, Amrita School of Engineering,

Amrita University, Coimbatore, India.

Email: cb.en.p2cvi15003@https://www.360docs.net/doc/2715748810.html,

E.Venkateswarlu, Thara Nair, G.P.Swamy, B.Gopala Krishna

Data Processing, Products Archival and Web Applications Area,

National Remote Sensing Center, ISRO, Hyderabad, India.

Email: venkateswarlu_e@https://www.360docs.net/doc/2715748810.html,.in, thara_nair@https://www.360docs.net/doc/2715748810.html,.in, swamy_gp@https://www.360docs.net/doc/2715748810.html,.in, bgk@https://www.360docs.net/doc/2715748810.html,.in Received: 16 June 2017; Accepted: 13 July 2017; Published: 08 December 2017

Abstract—In this work, we propose and evaluate different scene based methods for non-uniformity corrections for optical remote sensing data sets. These methods can be used to correct or refine the existing radiometric calibrations, thereby improving the image quality. The performance of each algorithm against different datasets are analyzed and a quantitative comparison of different quality parameters viz. entropy, correlation coefficient, signal to noise ratio, peak signal to noise ratio and structural similarity index are carried out to recommend the best method for each scene. For a given data set, the selected method depends on the severity, type of terrain it covered, etc.

Index Terms—Non-uniformity Correction, gain, bias, mean ratio, median ratio, entropy, radiometric quality

I.I NTRODUCTION

The objective of spectral imaging is that to get the range for every pixel in the image for object detection, identifying materials, or other recognizing processes. Mainly there are two branches of spectral imaging-'Push broom sensor', which read in an image over time and 'Snapshot hyper spectral imaging' which generates an image in an instance. Focal plane arrays are used in many modern spectral sensing and imaging systems like push broom sensor. It consists of an array of light-sensing pixels at the focal plane of a lens. The variability in the response of focal plane array detectors and roughness and presence of the dirt at cameras entrance slit are the main reason of the non-uniformity. It will appear as a striping artifact or fixed pattern noise in the output image or video sequences. Hence the push broom sensor needs the non-uniformity correction (NUC) in order to guarantee that all individual detectors behave uniformly to same input data [1].

For the sensor with linear array, the NUC will be the array of gains and offsets. Correction can be applied as a multiplicative factor for each detector response. But for nonlinear sensors, NUC will be the higher order mathematical expression. For push broom sensor data, usually the non-uniformity will appear as vertical stripes in the output data. Visually it is a disturbance for the users and also affects the result of image processing. Hence the need of non-uniformity correction arises. A good quality non-uniformity correction will increase the image interpretability and reduces the post-processing error. Different scene based methods of non-uniformity correction are studied. A comparative analysis has been carried out using image quality parameters and the best method is recommended based on image statistics.

II.R ELATED WORK

With a particular purpose to fundamentally decrease the non-uniformity in the data, non-uniformity correction (NUC) must be applied. Based upon the accuracy conditions, some post processing strategies can be implemented to correct non-uniformities. These techniques include primary strategies, including calibration-based methods and scene-based methods. Changes in the photo response of the individual detector for same irradiance may lead to fixed pattern noise in the image. Also gain and bias differences [2], variation in parameters will cause non-uniformity from sensor to sensor [3]. This type of fixed pattern noise can be dealt with laboratory calibration. Dark frame method capture the sensor output while no light reaches the photo detectors to acquire a great approximation of it [4, 5]. Then, the ensuing dark body is saved as reference and subtracted at each frame from the sensor output. At the same time as this method is simple and inexpensive, this one-time calibration has the drawback to disregard fixed pattern noise versions brought about by using the sensor working conditions. It is necessary to do calibration frequently for fixed pattern noise due to its uncertainty. This problem can be solved using multiple calibration [6, 7].

A greater cost-effective answer in terms of memory is defined in [8]. At the top of the sensor, a series of black and dark lines more strains being protected from light is located. In particular, black lines have 0 integration time while darkish traces are protected from incident light whilst having the identical exposure as the image [9]. A column fixed pattern noise (FPN) signature can be estimated and should be updated according to conditions. The calibration based method is the simplest and most precise and regular NUC strategy used for correcting the non-uniformities. It incorporates single point correction (SPC), two point correction (TPC), multiple point correction and the enhanced two point correction. In those methods, the gain and offset parameters are predicted with the aid of exposing the focal plane array (FPA) to various uniform blackbody temperatures relying on the set of rules adopted [10]. The calibration based strategies offer reasonably proper estimates of the non-uniformity, and after NUC, the ensuing IR images are radiometrically accurate [11]. In calibration-based techniques, the NUC has to be achieved on a regular basis due to the fact that non-uniformity has a tendency to drift over the time. The single point correction [12] technique may be used to accurate the offset of every pixel inside the infrared focal plane array (IRFPA). That is carried out by putting a non reflecting gray body (emissivity ≥ 0.9) of homogeneous temperature directly in front of the camera lens.

The TPC technique [13] is the most common and broadly used method to correct for non-uniformity of IRFPA. This technique uses uniform blackbody infrared sources at two extraordinary temperatures to estimate detector parameters and then compensate up on non-uniformity.

The piecewise-linear correction technique is simply an extension of the two-point calibration approach [14], to which more measurement points are included. It is used for correct characterization of the nonlinear behavior of the detector response. In this approach, some of unique temperature factors are used to divide the (nonlinear) response curve into several piece-wise linear sections a good way to accurate for non-uniformity.

Scene based non-uniformity correction methods does not require specific scenes or initial conditions for the purpose of calibration [15]. They are able to yield better results than calibration-based techniques. This method has higher machine reliability but higher computational complexity [16]. Scene-based non-uniformity correction (NUC) methods include distinct classes of post-processing-algebraic techniques, and statistical techniques.

As defined in [17], the algebraic techniques employ global motion among the frames within the video datasets and attempt to compensate for the non-uniformity without making statistical assumptions about the non-uniformity [18,19,20]. In [28] motion based non-uniformity correction methods are explained for Division of Focal Plane (DoFP) polarimeters. Ratliff et al. [21] particularly, have proposed an algebraic method based on motion vector estimation. Such techniques provide accurate robustness however, are computationally heavy and no longer without a doubt suitable for real-time correction. On the other hand, statistical techniques version of the fixed pattern noise (FPN) as a random spatial noise and estimate the information of the noise to cast off it [22, 23]. But, they depend on hypotheses concerning the sensor output image so as to separate the FPN from the actual image. It is necessary to make some assumptions for this method by means of the way the sensor captures data. The wrong assumption of the parameters results ghosting artifact [3].

III.A LGORITHM D ESCRIPTION

Push broom sensors gather one spatial line of information at any given moment. The movement of the satellite permits to contribute another spatial line of information. The number of detectors and bands of a data is restricted by the dimensions of the FPA, while the number of lines in the image corresponds to the number of frames recorded. So correction and calibration parameters should be calculated for every detector individually by using following scene based methods. A. Mean ratio method

It is a simple and common NUC method for linear push broom sensors [24]. It makes an assumption that the mean radiance of each detector is approximately the global radiance of the data (Fig. 1).

Fig.1.Mean ratio NUC method

The NUC can be computed as follows:

?Compute the mean of each detector along the column

?Estimate the mean of the data over the entire image

?Calculate the ratio of overall mean value to the mean of individual detector

?Ratio is considered as mean ratio NUC

B. Local mean ratio method

In this method (Fig. 2), the challenge is to find out the uniform sub scene within the scene. The uniform scene is

ideally rooftops, flat fields, ocean etc. [25].

Fig.2.Local mean NUC method

Local mean NUC can be obtained as follows: ? Divide the large image into sub images

? Obtain the standard deviation of each sub image and select the block which has minimum standard deviation

? Calculate the mean for each detector along the column

? Estimate the mean of the uniform sub image

?

Compute the ratio of mean of uniform scene with the mean of each detector

C. Median ratio method

Median ratio method depends on the ratio of adjacent radiance of each detector (Fig. 3). The ratio matrix extracts the strip information alone from the whole image.

Fig.3.Median ratio NUC method

Median ratio NUC can be derived as follows: ? Compute the ratio of each sample radiance with adjacent sample

? Estimate the median of the above data along each detector

? Calculate the ratio of overall median value to the median of individual detector

?

Calculate the rest of the values and consider as NUC coefficients

D. Gain and bias method

If the striping is caused by unequal detector gain and bias in the push broom sensors, this method works well. It will adjust the radiance from each detector to yield the

same mean and standard deviation over the whole image (Fig. 4).

Fig.4. Gain and bias NUC method

For a linear sensor gain and bias are calculated using the mean and standard deviation of the image locally and globally [26].

This method can be summarized as follows.

? Calculate the mean and standard deviation of the

entire image and for each detector

? Ratio of the standard deviation of entire image to

the standard deviation of individual detectors will give the gain

? Difference between the mean of the entire image

and individual detector mean will give the bias ? Use these gain and bias for correcting the non-uniformity

Gain =StddevOriginal

StddevReference

(1)

Bias =Mean difference (reference ?original).(2) E. Frequency domain method

This method makes use of Gaussian low pass filter to cut the high frequency components from the input image (Fig. 5). Individual detector mean of original image is subtracted from the Gaussian filtered

output in

the

log domain [25].

Fig.5.Frequency domain NUC method

The following steps to be followed to obtain the frequency domain correction matrix:

? Compute the average of each detector and find its

logarithmic value

? Use Gaussian low pass filter to cut the higher

frequency components

? Results are subtracted from the log of average of

each detector

? Take the anti-log of the output array. It gives the

NUC

IV. Q UALITY P ARAMETERS

Various quality parameters are evaluated to assess the improvement introduced by different methods under consideration, discussed in the previous section. The analysis can be done both individually and comparatively [27]. From the input and corrected images, correlation coefficient, Peak signal to noise ratio, structural similarity index values can be calculated. For these parameters, the size of both images should same. Entropy and signal to noise ratio are calculated individually for input and output images. A. Entropy

Entropy is a statistical measure of randomness that can be used to characterize the texture of the image. Entropy is defined as

E =?∑p n M?1n=0.?log2(p n ) (3)

Where M is the number of gray levels and p n is the probability associated with gray level n .

B. Correlation Coefficient The correlation coefficient is a measure that determines the degree to which two images are associated. The range of the output lies in the interval [-1 1]. It will give 1 if both images are same. It estimates only the linear relationship between the pixels.

CC =

where x and y are input and output image, m and n are the row and column number of the image, x’ and y’ represents the mean of input and output image respectively. C. Banding

This quality parameter will calculates the percentage of the density of striping in the image. For an image it will divide the whole image into blocks of size 100 in across track direction. Banding gives the plot between banding percentage and block number. Banding can be calculated as follows-

Banding =

√∑(L i n+99i=n ?L ′) / 100

L ′

×100 (5)

Where Li is individual detector mean, L’ is the mean of corresponding block and ‘i‘ is the line number. D. Peak Signal to Noise Ratio (PSNR)

PSNR is the ratio between maximum possible power of the radiance of the image and the corrupting noise (MSE).

PSNR =10?log 10[

R 2

MSE

] (6)

Here R is the highest possible pixel value of the image. MSE is the Mean Squared Error. For a good quality image PSNR will be a higher value.

E. Structural Similarity index (SSIM)

SSIM is the quality metric which is used for measuring the similarity between the images. It is based on the comparison of image luminance, contrast and structure. For two input images x and y

SSIM =

(2m x m y +c 1)(2s xy +c 2)

(m x +m y +c 1)(s x +s y +c 2

) (7)

Where m x , m y are the mean and s x , s y are the standard deviation of input and output images respectively. S xy is the co-variance between x and y. c1 and c2 are constants to stabilize the division with weak parameters.

V. T OOL D ESCRIPTION

The system is developed using Matlab 2015a software. We developed an automated tool

which read the input

image directly from the command line and apply all algorithms and compare the results based on the quality parameters (section IV). It gives the result which has maximum correlation coefficient, PSNR, SSIM and SNR. Also it will save the output image along with the quality

report (Fig 6). In this automated tool, the type of method which is used and all the quality checking operations are hidden from the user.

Fig.6. Snapshot of the log file of quality parameters

An interactive environment is built by using a graphical user interface (GUI) in Matlab (Fig. 7). User can transparently deal with all correction methods. The interactive method will give the comparative analysis in qualitatively and quantitatively for each method.

Fig.7.Snapshot of GUI

The interactive tool will give the input and output image along with its standard deviation plot. All scene based non-uniformity correction methods are given in a way that user can select one at a time. Output image displays along with standard deviation plot and quality measures-entropy, signal to noise ratio, correlation coefficient, peak signal to noise ratio, structural similarity index. The user can also save the output image and quality parameters. View menu provides the option for histogram, banding plots and display the input and output image.

VI.E XPERIMENTAL R ESULTS AND A NALYSIS

The datasets selected for the assessment are from Linear Imaging and Self Scanning Sensor (LISS-3) and Advanced Wide Field Sensor (AWiFS) of IRS-P6. Details are provided in table-1:

Table-1. Details of satellite data used

Each method is applied on all datasets covering different terrain features and performance is estimated. The estimation of quality parameters is done on input and output images individually and comparative analysis (Table II & III) among input and output images. Homogeneous areas are extracted from the input and output images and entropy, signal to noise ratio (SNR) are computed for validating the improvement. Table II. Quality parameters of AWiFS image

bias; FD-frequency domain)

Fig.8.(a) Input image (b) Mean ratio method (c) Local mean ratio

method (d) Median ratio method (e) Gain and bias method (f)

Frequency domain method

Fig- 8 shows the output of the AWiFS image against all correction methods with input image. It is clear that striping effect from the input image is removed by using median ratio method without affecting the brightness and contrast information of the input image. Frequency domain method gives better performance for the given LISS-3 image (Fig 9). Here the median ratio method gave poor performance for this image. If there is any spatially uniform areas are present in the image then the local mean method will give good result.

Table III. Quality parameters of LISS-3 image

bias; FD-frequency domain)

Fig 9.(a) Input image (b) Mean ratio method (c) Local mean ratio method (d) Median ratio method (e) Gain and bias method (f)

Frequency domain method

Gaussian low pass filter is used in frequency domain method to eliminate high frequency components from the image. The high frequency components that are removed from the image contain the striping and noise of the input image. Results of LISS-3 image are shown in Fig-10.

Fig.10.(a) Input image (b) Frequency domain corrected image (c) High frequency component removed (d) power spectrum of high frequency

component

For all input and output images, banding parameter is estimated in percentage for every 100 detectors as one block in across track direction and shown in Fig-11.

Fig.11.Banding plot of LISS-III image

From the banding plot the highest banding percentage is 11.85 in the input image for 500th block. But it is reduced to 3.15 after applying the median and local mean ratio correction. For other methods, banding percentage is less than 1% and the lowest banding rate is given by frequency domain method for the given LISS-3 image.

VII. C ONCLUSIONS

In this paper we analyzed different scene based non-uniformity correction methods on different images in spatial and frequency domain. The output of each algorithm will depend on the type of sensor and the scene that captured. Experimental results show that median ratio method outperforms giving good result for the given AWiFS image. But for the given LISS-3 image frequency domain method gives better result. Based on the

comparative analysis of quality measures, correction method is applied and result is saved in automatic module. But in interactive module, manual intervention is needed. For large size images, median ratio method is more computational intensive because it calculates the ratio between adjacent pixels of the image. In local mean method, it automatically estimate the uniform area from the image by the standard deviation of sub blocks achieved by using divide and conquer approach. Gain and bias parameters are required for the gain and bias method where as mean and median methods directly deal with the image as a whole. Taking the fast Fourier transform instead of DFT also gives good result in terms of time in frequency domain method.

VIII.F UTURE W ORK

In this work, both frequency and spatial domain methods are applied sequentially and the quality parameters are evaluated to recommend the best method. To further improvise on this, we propose to apply a combinational approach on any single image by dividing the whole image into sub images. Main challenges are the automated identification of homogeneous terrains and the application of the best method which suits different homogenous terrains. Another difficulty is to radiometrically normalize the entire image without sacrificing the image quality.

A CKNOWLEDGMENT

The authors would like to place on record their deep gratitude for the support provided by Dr.Y.V.N.Krishna Murthy, Director, NRSC for the successful completion of this work. The authors deeply acknowledge the guidance and encouragement provided by Sri.T.Sivannarayana, Manager, C&DA, DPPA&WAA, NRSC and staff of IODP group for this project.

The authors would also like to thank the Department of Computer Science and Engineering, Amrita School of Engineering, Amrita University, Coimbatore, India for the support throughout the work.

R EFERENCES

[1]Gómez-Chova, Luis, et al. "Correction of systematic

spatial noise in push-broom hyperspectral sensors:

application to CHRIS/PROBA images."Applied Optics

47.28 (2008): F46-F60.

[2]Torres, S., Rodrigo Reeves, and M. Hayat. "Scene-based

nonuniformity correction method using constant-range:

Performance and analysis."Proceedings of 6th World

Multiconference on Systemics, Cybernetics and

Informatics. Vol. 9. No. 1. 2002.

[3]Harris, John G., and Yu-Ming Chiang. "Nonuniformity

correction using the constant-statistics constraint: analog

and digital implementations."AeroSense'97. International

Society for Optics and Photonics, 1997.

[4]Sch?berl, Michael, et al. "Non-linear dark current fixed

pattern noise compensation for variable frame rate moving

picture cameras."Signal Processing Conference, 2009

17th European. IEEE, 2009. [5]Malueg, Richard M. "Detector array fixed-pattern noise

compensation." U.S. Patent No. 3,949,162. 6 Apr. 1976.

[6]Friedenberg, Abraham, and Isaac Goldblatt.

"Nonuniformity two-point linear correction errors in infrared focal plane arrays."Optical Engineering37.4 (1998): 1251-1253.

[7]Newman, J.W.. Method and apparatus for image signal

compensation of dark current, focal plane temperature, and electronics temperature 2007.

[8]Bosco, A., Findlater, K., Battiato, S., Castorina, A.. A

temporal noise reduction filter based on image sensor full-frame data. In: IEEE.International Conference on Consumer Electronics, ICCE 2003. 2003, p. 402 – 403. [9]Collins, Steve. Simplified fixed pattern noise correction

and image display for high dynamic range CMOS logarithmic imagers. Diss. University of Oxford, 2007. [10]Smith, Ronald D. "Correcting non-uniformity in

displays." U.S. Patent No. 6,285,349. 4 Sep. 2001. [11]Hayat, M. M.; Ratliff B. M.; Tyo J.S.; Agi K.;

“Generalized Algebraic Algorithm for Scene-based Nonuniformity Correction,” procspie,5556,122-136, 2004.

[12]Tendero, Y., et al. "Efficient single image non-uniformity

correction algorithm."Security+ Defence. International Society for Optics and Photonics, 2010.

[13]Friedenberg, Abraham, and Isaac Goldblatt.

"Nonuniformity two-point linear correction errors in infrared focal plane arrays."Optical Engineering37.4 (1998): 1251-1253.

[14]Shi, Yan, Tianxu Zhang, and Zhiguo Cao. "A new

piecewise approach for nonuniformity correction in IRFPA."International Journal of Infrared and Millimeter Waves 25.6 (2004): 959-972.

[15]Leathers, R., and T. Downes. "Scene-based nonuniformity

correction and bad-pixel identification for hyperspectral VNIR/SWIR sensors."Proc. IEEE IGARSS. 2006. [16]Huang, Tang, Liu Xiao-Lin, and Shen Yang. "Fixed

pattern noise suppression algorithm based on background modeling."Procedia Engineering 29 (2012): 884-888. [17]Sakoglu, U., Hardie, R., Hayat, M., Ratliff, B., Tyo, J..

Nan algebraic restoration method for estimating fixed pattern noise in infrared imagery from a video sequence.

In: 9th Annual Meeting of the SPIE: Applications of Digital Image Processing XXVII, Denver, CO, SPIE Proc;

vol. 5558. 2004, p. 69–79.

[18]Li, Jing, et al. "Scene-based nonuniformity correction

with adaptively adjusting integration time." Information Science and Technology (ICIST), 2013 International Conference on. IEEE, 2013.

[19]Torres, S., Rodrigo Reeves, and M. Hayat. "Scene-based

nonuniformity correction method using constant-range: Performance and analysis."Proceedings of 6th World Multiconference on Systemics, Cybernetics and Informatics. Vol. 9. No. 1. 2002.

[20]Ratliff, Bradley M., Majeed M. Hayat, and J. Scott Tyo.

"Generalized algebraic scene-based nonuniformity correction algorithm."JOSA A 22.2 (2005): 239-249. [21]Ratliff, B.M., Hayat, M.M., Hardie, R.C.. An algebraic

algorithm for nonuniformity correction in focal-plane arrays. J Opt Soc Am A 2002;19(9):1737–1747.

[22]Hayat, Majeed M., et al. "Statistical algorithm for

nonuniformity correction in focal-plane arrays."Applied optics 38.5 (1999): 772-780.

[23]Zuo, Chao, et al. "Scene-based nonuniformity correction

method using multiscale constant statistics."Optical Engineering 50.8 (2011): 087006-087006.

[24] Leathers, R., and T. Downes. "Scene-based nonuniformity

correction and bad-pixel identification for hyperspectral VNIR/SWIR sensors."Proc. IEEE IGARSS . 2006.

[25] Leathers, Robert A., Trijntje Valerie Downes, and Richard

G. Priest. "Scene-based nonuniformity corrections for optical and SWIR pushbroomsensors."Optics express 13.13 (2005): 5136-5150.

[26] Ratliff, Bradley M., et al. "Combatting infrared focal

plane array nonuniformity noise in imaging polarimeters."Optics & Photonics 2005. International Society for Optics and Photonics, 2005.

[27] Mohammadi, Pedram, Abbas Ebrahimi-Moghadam, and

ShahramShirani. "Subjective and objective quality assessment of image: A survey."arXiv preprint arXiv:1406.7799 (2014).

[28] Kumar, Rakesh, J. Scott Tyo, and Bradley M. Ratliff.

"Motion-based nonuniformity correction in DoFPpolarimeters."Optical Engineering+ Applications . International Society for Optics and Photonics, 2007.

Authors’ Profiles

Lolith Gopan r eceived B.Tech degree in Computer Science and Engineering from Amrita University. He is pursuing M.Tech in Computer Vision and Image Processing at Amrita School of Engineering, Coimbatore. Currently, He is doing the M.Tech project work on ‘Scene Based Non-uniformity Correction for Optical Remote

Sensing imagery” at DPPA&WA Area, National Remote Sensing Centre, ISRO, and Hyderabad. His research interests include Image Processing, Computer Vision and Data Structures.

E.Venkateswarlu , M.Sc., M.Phil. In Mathematics, is currently working as Scientist “SF” in DPPA&WA area of NRSC, ISRO. He has published 6 research papers in reputed conferences and journals. His research interests include Image Processing, Data Quality Assurance, etc.

Thara Nair , M.Tech in Control Systems is working as Scientist “SG” and Head, IRS Optical Data Processing Division in DPPA&WAA, NRSC. She has published few research papers in reputed conferences and journals. Her research interests include Image Processing, system design, etc.

G.P.Swamy , M.Tech in Computer Science is working as Scientist “SG” and Group Head, IRS Optical Data Processing Group, DPPA&WAA, NRSC. He has published few research papers in reputed conferences and journals. His research interests include Image Processing, system design, Data Quality Assurance, etc.

B.Gopala Krishna , received M.Sc.Tech (Electronics) from Andhra University, Visakhapatnam, and M.Tech (Electronics) from IIT, Kharagpur with a specialization in Satellite Communications and Remote Sensing. Currently he is Deputy Director of DPPA&WAA at NRSC, ISRO, and Hyderabad. He has more than 170

publications to his credit in National and International journals. He is a life member of various technical societies viz. INCA, ISRS, IMSA, ISG, ISSE and ASCI. His research interests include digital photogrammetry and mapping, geometrical data processing for remotely sensed data, planetary data processing, and stereo image analysis.

How to cite this paper: Lolith Gopan, E.Venkateswarlu, Thara Nair, G.P.Swamy, B.Gopala Krishna," Scene based Non-uniformity Correction for Optical Remote Sensing Imagery", International Journal of Image, Graphics and Signal Processing(IJIGSP), Vol.9, No.12, pp. 50-57, 2017.DOI: 10.5815/ijigsp.2017.12.06

空间光学遥感仪器的十项主要技术指标浅析

空间光学遥感仪器的十项主要技术指标浅析 空间光学是利用航天飞机、卫星、飞船、空间实验室、空间站等空间飞行器,利用光学手段对目标进行遥感观测和探测的科学技术领域。主要手段是把光波作为信息的载体收集、储存、传递、处理和辨认目标信息的光学遥感技术。 空间光学的优势有很多,一是对地观测优势,空间光学可以对地球环绕观测地球的每一个角落,可以对地表成非常清晰的像,对于大气观测,灾害预报,环境监测,资源探测等方面有很大的优势。二是太空没有国界的限制,地表100公里以上的区域还是一片各方都可以涉足的无主之地。三是对外观测,过去人们曾经建过很多地面望远镜,但是地面望远镜受到大气扰动的影响,达不到望远镜的衍射极限分辨率。空间望远镜处于真空环境下,受到大气扰动小,更有利于达到望远镜的衍射极限分辨率。 空间光学遥感仪器的主要技术指标有以下几项: 1)空间分辨率 空间分辨率是指遥感图像上能够详细区分的最小单元的尺寸或者大小,是用来表征影响分辨地面目标细节的指标。空间分辨率所表示的尺寸、大小,在图像上是离散的、独立的,它反映了图像的空间详细程度。空间分辨率越高,其识别物体的能力越强。 目前的空间遥感仪器基本上都是采用CCD或者CMOS作为探测器收集信息的,如果地面分辨率为1m,意味着CCD的一个像元对应地面宽度是1m。 空间分辨率示意图(资料来源:上帝之眼) 2)调制传递函数MTF 从信息角度来看,光学系统作为一个信息系统,输出的信息相对于输入的信息肯定会丢失一部分。我们常常使用对比度来表征这种信息,即MTF=(输出图像的对比度)/(输入图像的对比度),由于输出图像的对比度总是小于输入图像,所以MTF总是处于0-1之间。再根据不同的空间频率,即可获得系统的MTF图。

常见国产卫星遥感影像数据的简介

北京揽宇方圆信息技术有限公司 常见国产卫星遥感影像数据的简介 本文介绍了常见国产卫星数据的简介、数据时间、传感器类型、分辨率等情况。 中国资源卫星应用中心产品级别说明 ◆1A级和1C级产品均为相对辐射校正产品,只是不同卫星选用的生产参数不同。 ◆2级,2A级和2C级产品均为系统几何校正产品,只是不同卫星选用的生产参数不同。 其中: ■GF-1卫星和ZY3卫星归档产品为1A级,ZY1-02C卫星数据归档产品级别为1C级,其他卫星归档级别为2级! ◆归档产品是指:该类产品已经存在于系统中,仅需要从存储系统中迁移出来.即可供用户下载的数据。 ◆生产产品是指:该类产品不是已经存在的产品,需要对原始数据产品进行生产,然后再提供给用户下载的数据。

■当用户需要的产品级别是上述归档的级别,直接选择相应的产品级别,然后查询即可! ■当用户需要的产品级别不是上述归档的级别,就需要进行生产.本系统提供GF-1卫星和ZY3卫星2A级的生产产品,ZY1-02C卫星2C级的生产产品,在选择需要的级别查询后,无论有没有数据,在查询结果页上方有一个“查询0级景”按钮,点击此按钮后,进行数据查询,如果有数据,选择需要的产品直接订购,即可选择需要的产品级别。 国产卫星 一、GF-3(高分3号) 1.简介 2016年8月10日6时55分,高分三号卫星在太原卫星发射中心用长征四号丙运载火箭成功发射升空。 高分三号卫星是中国高分专项工程的一颗遥感卫星,为1米分辨率雷达遥感卫星,也是中国首颗分辨率达到1米的C频段多极化合成孔径雷达(SAR)成像卫星,由中国航天科技集团公司研制。 2.数据时间 2016年8月10日-现在 3.传感器 SAR:1米 二、ZY3-02(资源三号02星) 1.简介 资源三号02星(ZY3-02)于2016年5月30日11时17分,在我国在太原卫星发射中心用长征四号乙运载火箭成功将资源三号02星发射升空。这将是我国首次实现自主民用立体测绘双星组网运行,形成业务观测星座,

HDR及一些非均匀性校正算法

HDR High Dynamic Range ,即高动态范围,比如所谓的高动态范围图象(HDRI)或者高动态范围渲染(HDRR)。动态范围是指信号最高和最低值的相对比值。目前的16位整型格式使用从“0”(黑)到“1”(白)的颜色值,但是不允许所谓的“过范围”值,比如说金属表面比白色还要白的高光处的颜色值。在HDR的帮助下,我们可以使用超出普通范围的颜色值,因而能渲染出更加真实的3D场景。也许我们都有过这样的体验:开车经过一条黑暗的隧道,而出口是耀眼的阳光,由于亮度的巨大反差,我们可能会突然眼前一片白光看不清周围的东西了,HDR在这样的场景就能大展身手了。 HDR可以用3句话来概括:亮的地方可以非常亮暗的地方可以非常暗亮暗部的细节都很明显。HDR的处理在显卡中可以分为3个步骤:将画面用高光照动态范围渲染,并储存每个象素的亮度特性;将HDRI画面转成低动态范围的画面(RGBA或是sRGB);色彩和Gamma校正后传送到显示设备输出。 计算机在表示图像的时候是用8bit(256)级或16bit(65536)级来区分图像的亮度的,但这区区几百或几万无法再现真实自然的光照情况。HDR文件是一种特殊图形文件格式,它的每一个像素除了普通的RGB信息,还有该点的实际亮度信息。普通的图形文件每个象素只有0 -255的灰度范围,这实际上是不够的。想象一下太阳的发光强度和一个纯黑的物体之间的灰度范围或者说亮度范围的差别,远远超过了256个级别。因此,一张普通的白天风景图片,看上去白云和太阳可能都呈现是同样的灰度/亮度,都是纯白色,但实际上白云和太阳之间实际的亮度不可能一样,他们之间的亮度差别是巨大的。因此,普通的图形文件格式是很不精确的,远远没有纪录到现实世界的实际状况。所以,现在我们就要介绍一下高动态范围图像(简称HDRI)。 HDR高动态范围渲染目前是一种逐渐开始流行的显示技术,其技术出发点就是让计算机能够显示更接近于现实照片的画面质量。目前在民用领域看到最多HDR技术应用的必然是游戏了。 在现实中,当人从黑暗的地方走到阳光下时,我们的眼睛会不由自主的迷起来,那是因为在黑暗的地方,人为了更好的分辨物体,瞳孔张开很大,以便吸收光线;而突然到了光亮处瞳孔来不及收缩,视网膜上的视神经无法承受如此多的光线,人自然会迷上眼睛阻止大量光线冲击视神经。而电脑是不具备这种功能的。所以,HDR的最终效果因该是亮处的效果是鲜亮的,而黑暗处你也可以清晰的分辨物体的轮廓,位置和深度,而不是以前的一团黑。动态、趋近真实的物理环境是HDR的特效表现原则。 实际游戏中会发现井底水面反射的阳光在墙壁上动态的明亮反光,洞口的明亮天空也会稍微变弱些。这样就能更清晰的表现出水面的反光。如果此时低头看水面会发现水面直接将阳光反射到人眼中很刺眼,但仅仅1秒钟时间光线就会减弱,因为人眼适应了直接反射的阳光。 这就是游戏的曝光控制功能,模拟人眼自动适应光线变化的能力,而不是照相机。HDR并不仅仅是反射的光强度要高。在游戏中,如果你盯着一个面向阳光直射的物体,物体表面会出现丰富的光反射;如果盯着不放,物体表面的泛光会渐渐淡出,还原出更多的细节。HDR特效是变化的,因此称作高动态光照。 热成像的非均匀性校正算法有很多种,红外焦平面非均匀性校正算法主要分为基于定标的非均匀校正算法(如一点温度定标算法、二点温度定标算法、多点温度定标算法)和基于场景的自适应非均匀校正算法(如时域高通滤波(THPFC)算法、人工神经网络(ANNC)算法、恒定统计平均(Cs)校正算法等)。目前二点温度定标算法和多点温度定标算法是最为成熟的实用性算法,但是它需要周期性的对它维护,这给红外成像设备维护工作带来很多困难。而基于场景的非均匀

光学遥感常用基础知识_V1.0_20110314

光学遥感常用基础知识 1. 遥感与摄影测量概述 遥感Remote Sensing 遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。 遥感的分类 (1)按遥感平台分 地面遥感:传感器设置在地面平台上,如车载、船载、手提、固定或活动高架平台等。 航空遥感:传感器设置于航空器上,主要是飞机、气球等。 航天遥感:传感器设置于环地球的航天器上,如人造地球卫星、航天飞机、空间站、火箭等。光学和雷达都属于航天遥感范畴。 航宇遥感:传感器设置于星际飞船上,指对地月系统外的目标的探测。 (2)按传感器的探测波段分 紫外遥感:探测波段在0.05~0.38μm之间。 可见光遥感:探测波段在0.38~0.76μm之间。因受太阳光照条件的极大限制,加之红外摄影和多波段遥感的相继出现,可见光遥感已把工作波段外延至近红外区(约0. 9μm)。在成像方式上也从单一的摄影成像发展为包括黑白摄影、红外摄影、彩色摄影、彩色红外摄影及多波段摄影和多波段扫描,其探测能力得到极大提高。因此我们常见的光学遥感属于可见光遥感范畴。 红外遥感:探测波段在0.76~1000μm之间。 微波遥感:探测波段在1mm~10m之间。雷达属于微波遥感范畴。 多波段遥感:指探测波段在可见光波段和红外波段范围内,再分为若干窄波段来探测目标。 (3)按传感器类型分 主动遥感:主动遥感由探测器主动发射一定电磁波能量并接收目标的后向散射信号。我们常用的雷达属于主动遥感范畴。 被动遥感:被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量。我们常用的光学属于被动遥感范畴。 (4)按记录方式分 成像遥感:传感器接收的目标电磁辐射信号可转换成(数字或模拟)图像。 非成像遥感:传感器接收的目标电磁辐射信号不能形成图像。 (5)按应用领域分 可分为环境遥感、大气遥感、资源遥感、海洋遥感、地质遥感、农业遥感、林业遥感等等。 遥感平台Platform 搭载传感器的工具。

自由曲面在空间光学的应用

自由曲面在空间光学中的应用 在当今的生活中,自由曲面(Free-form )扮演着越来越重要的角色。如汽车车身、飞机机翼和轮船船体的曲线和曲面都是自由曲面。到底什么是自由曲面?简单来讲,在工业上我们认为就是不能用初等解析函数完全清楚的表达全部形状,需要构造新的函数来进行研究;在光学系统中,光学自由曲面没有严格确切的定义,通常是指无法用球面或者非球面系数来 表示的光学曲面,主要是指非旋转对称的曲面或者只能用参数向量来表示的曲面。在我们的日常生活中,打印机、复印机以及彩色CRT中都会用到光学自由曲面。鉴于光学自由曲面 在我们的生活中扮演着越来越重要的角色,所以,以下就自由曲面在空间光学方面的情况进 行了调研。 一、自由曲面简介 光学自由曲面没有严格确切的定义,通常指无法用球面或者非球面系数来表示的光学曲 面,主要是指非旋转对称的曲面或者只能用参数向量来表示的曲面。光学自由曲面已经渗透 到我们生活中的各个角落,如能改善人类视觉质量的渐进多焦点眼镜,就是自由曲面技术在 眼用光学镜片中的成功应用。 自由曲面光学镜片主要有两种:一是自然形成的曲面;二是人工形成的曲面。人工形成 的自由曲面又分为一次成型和加工成型两种形式。 二、自由曲面运用的原因 空间遥感光学系统是在离地200km (低轨卫星)以上的轨道对地面目标或空间目标进行光学信息获取,具有遥感成像距离远的特点。如何在几百公里遥感距离下获得较高分辨率的同时保证较宽的成像幅宽是推动空间遥感光学不断发展的源动力。 光学系统的入瞳直径是决定空间相机地面像元分辨率的主要因素之一,在一定F/#的 前提下,入瞳直径越大,空间相机地面像元分辨率越高。但入瞳直径的增加,意味着所有与 孔径相关的像差增加。受空间环境中力学、热学、压力等因素的制约,当入瞳直径增大到一 定程度(通常200 mm以上),光学系统一般采用反射式或折反射式方案。为了简化光学系统形式,仅采用球面镜是无法平衡由于入瞳直径增加而剧增的像差,然而通过运用自由曲面 的应用,可以解决像差增大的问题。由于自由曲面光学元件具有非对称结构形式,能够提供

光学遥感图像多目标检测及识别算法设计与实现

龙源期刊网 https://www.360docs.net/doc/2715748810.html, 光学遥感图像多目标检测及识别算法设计与实现 作者:姬晓飞秦宁丽 来源:《计算机应用》2015年第11期 摘要:针对目前光学遥感图像处理与分析多集中在单目标检测及识别领域的局限性,多目标检测及识别成为了一个非常值得关注的研究课题,提出了一种光学遥感图像多目标检测及识别算法。首先,采用自适应阈值算法对目标快速检测分割;然后,结合图像金字塔思想和基于尺度不变特征变换的特征包(BoFSIFT)特征提出了一种分层的BoFSIFT特征表示目标的全局特征和局部特征,详细地描述了目标的分布特性;最后,采用基于径向基核函数的支持向量机为弱分类器的AdaBoost算法,经过不断更新权重之后得到一个强分类器对待测试目标图像完成分类识别,识别率达到了93.52%。实验结果表明,所提算法对多类遥感图像目标的分割效果显著,特征选取恰当,识别方法快速有效。 关键词:光学遥感图像;多类目标;自适应阈值;基于尺度不变特征变换的特征包特征;AdaBoost算法 中图分类号: TP751.1 文献标志码:A 0引言 光学遥感图像通常是指可见光和部分红外波段传感器获取的影像数据,其直观易理解,空间分辨率通常比较高,在有光照和晴朗的天气条件下,图像内容丰富,目标结构特征明显,便于目标分类识别。随着遥感技术和模式识别技术的发展,对光学遥感图像多目标分类和识别的研究已引起了广泛关注,它的发展对对地观测、军事侦察等领域有广泛的意义[1]。 基于光学遥感图像的多目标检测与识别研究主要涉及目标分割检测、特征提取和目标识别3个阶段。目标的检测分割阶段是提取遥感图像信息的重要准备环节,在目标点检测的基础上,依据特征把图像划分成多个区域[2]。文献[3]对纯海洋背景和海陆背景两种情况下的舰船目标分别用区域生长法和先验法完成目标分割;文献[4]对传统的圆形检测Hough变换方法作了改进,首先是计算目标梯度场检测油库圆心坐标,然后通过计算梯度值加权估计半径值以便对目标准确定位;文献[5]首先用小波分析建筑物目标,然后结合马尔可夫随机场(Markov Random Field,MRF)完成检测分割。 目标的特征提取阶段对识别结果有至关重要的作用,通过提取图像的某些直观自然特征或变换得到的构造特征在实现数据压缩的同时,提高目标之间的特征差异性。文献[6]提出了一

光学遥感

高分辨率遥感卫星的发展综述 ——514104001459鞠乔俊摘要:遥感卫星在近十年内得到了飞速的发展,无论在国民经济建设、减灾防灾与地图测绘,以及军事测绘与情报收集等方面都具有十分广阔的应用前景。目前,高分辨率遥感数据已经成为国家基础性、战略性资源,广泛应用于精确制图、城市规划、土地利用、资源管理、环境监测和地理信息服务等领域。本文对高分辨率成像卫星发展,当前国内外的发展进行了分析研究,对其军事应用与民用现状进行了分析,最后对高分辨率成像卫星及其应用的未来发展做了展望。 关键字:高分辨率遥感卫星发展 1引言 遥感(Remote sensing)是在不直接接触的情况下,对目标或自然现象远距离探测和感知的一种技术。而遥感器用于探测或感测不同波段电磁波谱的发射、反射特性。遥感卫星的问世,使人类研究地球、认识地球的观点从地面、低空扩展到太空,从而可以对地球进行连续、快速、综合和大面积的详细观测,更全面、更清晰、更深刻地了解地球及其周围环境,对国计民生产生巨大的促进作用。遥感卫星也叫对地观测卫星,有光学成像卫星和雷达成像卫星2种,前者携带可见光、红外和多光谱等遥感器,最大优点是分辨率高;后者携带合成孔径雷达等遥感器,最大优点是可以全天候工作。自1999年美国太空成像公司发射世界首颗商业高分辨率遥感卫星IKONOS以来,一度披着神秘面纱的高分辨率卫星影像日益为普通百姓所熟悉,而且正在成为人们生活的一部分。目前,几乎任何人或国家都可以购买世界任何地区的商业高分辨率卫星影像,只要点击鼠标,就能在网上浏览所在城市的高分辨率卫星影像。 高分辨率遥感卫星所带来的巨大军事与经济效益,引起全球民用与军事应用领域的高度重视,出现了各国竞相研究开发高分辨率遥感卫星及其应用技术的热潮,在短短的7年内有了飞速的发展,出现了技术不断扩散的发展趋势。高分辨率遥感卫星的不断发展及技术的扩散,既为我们提供了新的机遇,同时也提出了严峻的挑战。新的机遇是可利用的高分辨率卫星影像资源得到了极大的丰富,面

非均匀性矫正

一、图像的非均匀性矫正

二、图像增强

三、程序代码(MATLAB)%%%%%%%%%%%%%%%%%%%%555555555555555555555555555555555一点矫正HIGH_T=fopen('highdat_151.dat','rb'); HIGH=fread(HIGH_T,[200,200],'uint8'); HIGH=uint8(HIGH); %类型转化为uint8 subplot(321);imshow(HIGH); title('原始高温图像'); subplot(322);mesh(double(HIGH));title('原始高温图像三维显示'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LOW_T=fopen('lowdat_151.dat','rb'); LOW=fread(LOW_T,[200,200],'uint8'); LOW=uint8(LOW); subplot(323);imshow(LOW); title('原始低温图像'); subplot(324);mesh(double(LOW)); title('原始低温图像三维显示'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% HAND_D=fopen('handdat_60.dat','rb'); HAND=fread(HAND_D,[200,200],'uint8'); HAND=uint8(HAND); subplot(325),imshow(HAND); title('原始手形图像'); subplot(326),mesh(double(HAND)); title('原始手形图像三维显示'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%选取低温图进行定标 S=mean2(LOW(:)); % S为定标值 S_LOW=S*ones(200,200); S_LOW=uint8(S_LOW); %S_LOW为定标矩阵 D_LOW=LOW-S_LOW; %校正系数D_LOW figure; HIGH_L=HIGH-D_LOW; subplot(321);imshow(HIGH_L); title('经低温矫正后的高温图像'); subplot(322);mesh(double(HIGH_L)); title('经低温矫正后的高温图像三维显示'); LOW_L=S_LOW; subplot(323);imshow(LOW_L); title('经低温矫正后的低温图像'); subplot(324);mesh(double(LOW_L)); title('经低温矫正后的低温图像三维显示'); HAND_L=HAND-D_LOW; subplot(325);imshow(HAND_L); title('经低温矫正后的原始手图像'); subplot(326);mesh(double(HAND_L)); title('经低温矫正后的原始手图像三维显示'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%选取高温图进行定标 S=mean2(HIGH(:)); % S为定标值 S_HIGH=S*ones(200,200); S_HIGH=uint8(S_HIGH); %S_LOW为定标矩阵 D_HIGH=HIGH-S_HIGH; %校正系数D_HIGH figure; HIGH_H=S_HIGH; subplot(321);imshow(HIGH_H); title('经高温矫正后的高温图像');

炉温均匀性测试作业指导书

有限公司 热处理炉均匀性测试作业指导书 编制: 审核: 批准: 实施时间:

1、目的: 生产中使用的热处理炉TUS(温度均匀性)和使用仪表及热电偶满足公司生产需要以及符合客户需求特制定本作业指导书。 2、范围: 本作业指导书适用于公司热处理炉产品所使用的热处理炉温度均匀性测试。 3、职责 4.1 公司热处理工程师根据客户要求负责热处理工艺编制和最终确认。4.2 技术部与生产部门按照产品热处理工艺选择需要的热处理设备,设备的仪表类型也必须经过国家法定检定机构校检并符合客户要求。 4.3由公司热处理工程师主持相关技术人员对热处理炉进行TUS测试。4、热处理温度均匀性 热处理炉内工作区温度达到稳定化后相对于设定点温度的变化,工作区内任两点的温度偏差不应超过热处理工艺对温均匀性的要求(一般情况下用于正火的热处理炉温度均匀性:±14℃,回火热处理炉温度均匀性±8℃)。 热处理炉等级与温度均匀性范围要求: 5、温度均匀性测试(TUS) 进行TUS时,如果客户没有特别指出热处理炉的装载状态,一般情况下在满载情况下进行测试,装载的产品必须是依据公司工艺文件进行热处理的产品。当下一次进行TUS时也必须是和前一次测试时的装载状态且产

品与上一次相同。 5.2 温度均匀性测试(TUS)步骤 5.2.1通常情况下,在进行TUS时热处理炉必须是室温状态下;如果热处理炉刚进行过生产有一定温度(例如:此时炉内温度是500℃),则下一次进行TUS测试也必须和此次情况相同(500℃)。 5.2.2 热电偶(传感器)的处理。 TUS测试进行之前,热电偶测量端必须用直径不超过13mm(0.5英寸)并且不超过待热处理产品的最薄处、与产品材料一致的长60mm,内部加工出与热电偶直径一样大小深40mm圆孔的圆棒,置于热电偶测量端进行保护。 5.2.3 测量点的选择与位置图 5.2.3.1测量点及热电偶的选择 本公司热处理炉温度均匀性测试,采用10点进行测量,9 TUS+1控温热电偶。如下图所附。

光学遥感卫星影像云检测方法及应用

光学遥感卫星影像云检测方法及应用 光学遥感卫星影像广泛应用于导航定位、农业调查、环境保护、防灾减灾、海洋开发、城镇化研究等领域,但并非所有影像都可满足信息智能化处理的要求,其中一个很重要的因素就是云层的覆盖。云层不仅对地面场景形成了遮挡,还会在一定程度上改变影像的光谱和纹理信息,给遥感影像产品制作中的多个环节造成诸多不利。 基于上述背景和国内外相关研究现状,确立本文的研究内容,即研究针对光学遥感卫星影像的精确、自动、快速云检测方法,以及云检测结果在光学遥感影像产品制作各环节中的应用。本文研究的最终目的在于提取海量光学遥感卫星影像中的有效、优质信息,提高影像的利用率,为后续高精度影像地图制作和信息化智能处理提供数据支持。 具体地,本文研究内容和对应的研究结论如下:1、研究了单幅光学遥感卫星影像快速自动云检测方法。使用高斯混合模型对影像直方图进行自动拟合,通过分析高斯混合模型中各分量的参数特征和临近关系,自适应地计算云与晴空之间的亮度阈值,然后通过形态学运算与分析,消除阈值分割结果中的噪声,并优化调整云的轮廓,填充小面积云缝,使云区趋于连通的整体。 实验结果表明,此方法在大部分情况下检测准确,可定性识别无云影像或得到含云影像的云掩模。方法适应性强、效率高,不需要辅助信息和人工干预,可满足海量卫星影像自动化质量控制等工作的需要,同时也为后续方法提供初始云检测结果。 2、研究了基于视觉显著性分析的云与高亮度人工目标区分方法。使用自适应二维Gabor滤波器提取高分辨率光学遥感卫星影像上人工目标特有的直线边

缘特征,作为视觉显著性的主要测度,在此基础上提取特征显著区域,实现了高分辨率光学遥感影像上人工目标的自动识别,进而实现了云与高亮度人工目标的区分。 将该方法与高斯混合模型阈值分析方法和形态学优化整合策略相结合,实现了大部分场景(不包括积雪)下光学遥感卫星影像的精确云检测。3、研究了公众地理数据辅助的云与高亮度自然地表区分方法。 通过地理坐标将光学遥感影像与可公开下载获取的公众地理数据相关联,直接判断光学遥感卫星影像上某一位置是否为积雪、冰原等高亮度地表,或者通过差异分析的方式定性识别影像中的不变场景,将它们否定为云,实现云与高亮度 自然地表的区分。将该方法与高斯混合模型阈值选取方法、视觉显著性分析方法和形态学优化整合策略相结合,实现了任意场景下光学遥感卫星影像精确云检测。 4、研究了多视角光学遥感卫星影像云检测方法。以多视角成像的像对为研究对象,利用云层高度特征引起的投影视差,将多视角像对中的晴空场景看作不 变的背景,将云层看作变化的、运动的目标,通过像对间的差异分析,辅之以亮度分析和形态学优化整合,实现了精确、高效的云与晴空场景的区分。 相对于基于单幅影像的云检测方法,该方法更有效地解决了对影像中冰雪、建筑物等高亮度似云目标的误判;更准确地识别了无云场景;更有效地避免了对 小面积云和薄云的漏检;更精确地提取了云的轮廓。5、分析了云层对遥感影像处理过程中辐射校正、几何纠正、合成影像制作、数字地表模型制作等环节造成的不同影响,分别选择了对应的云检测策略,对光学遥感影像产品制作过程进行优化,更好地提取了海量影像中的有效、优质信息,提高了影像的利用率。

红外图像非均匀性校正及增强算法研究

红外图像非均匀性校正及增强算法研究 受限于制造工艺的约束,红外焦平面中各探测像元的光电响应率不一致,即存在非均匀性问题,导致图像中出现固定样式噪声,且具有缓慢的时间漂移性。并且,红外探测器的光电响应动态范围较大,而单幅图像场景的温度范围通常在红外探测器总体动态范围中占比小,导致原始红外图像对比度低、物体边界模糊。 因此,非均匀性校正和图像增强是必不可少的红外图像预处理步骤。本文将围绕基于场景的非均匀性校正和红外图像增强技术展开研究,论文的主要研究内容如下:1.凝视型红外探测器中,传统的基于神经网络的非均匀性校正方法通常假设固定样式噪声满足独立同分布,但在低成本非制冷探测器中,非均匀性的条纹噪声强,噪声分布特性不满足假设,导致现有方法难以兼顾边缘保护与条纹噪声抑制。 针对该问题,本文提出了基于自适应稀疏表示以及局部全局联合约束学习率的非均匀性校正方法,引入稀疏表示理论,利用干净的红外图像集训练出的过完备字典中的原子可稀疏地表示图像场景信息的特性,在自适应的误差容限内重建图像,从而保护图像边缘、将噪声成分当作冗余去除。实验结果表明,在均方根误差指标上,本方法相比传统方法降低了1.1652至1.9107不等、降低了约17.92%至26.37%,能够在保护图像边缘的同时有效去除包括条纹噪声在内的固定样式噪声。 2.扫描型红外探测器中,若直接采用凝视型探测器的非均匀性校正方法,则仍需数百帧图像计算校正系数,算法收敛慢。传统的扫描型探测器校正方法利用扫描成像的特性逐列(假设沿行扫描)更新校正系数,在单帧图像内完成校正。 然而,单帧图像内场景辐射多样性通常有限,导致传统方法易陷入局部最优

炉温均匀性测试作业指导书

炉温均匀性测试作 业指导书

有限公司 热处理炉均匀性测试作业指导书 编制: 审核: 批准: 实施时间:

1、目的: 生产中使用的热处理炉TUS(温度均匀性)和使用仪表及热电偶满足公司生产需要以及符合客户需求特制定本作业指导书。 2、范围: 本作业指导书适用于公司热处理炉产品所使用的热处理炉温度均匀性测试。 3、职责 4.1 公司热处理工程师根据客户要求负责热处理工艺编制和最终确认。 4.2 技术部与生产部门按照产品热处理工艺选择需要的热处理设备,设备的仪表类型也必须经过国家法定检定机构校检并符合客户要求。 4.3由公司热处理工程师主持相关技术人员对热处理炉进行TUS测试。 4、热处理温度均匀性 热处理炉内工作区温度达到稳定化后相对于设定点温度的变化,工作区内任两点的温度偏差不应超过热处理工艺对温均匀性的要求(一般情况下用于正火的热处理炉温度均匀性:±14℃,回火热处理炉温度均匀性±8℃)。 热处理炉等级与温度均匀性范围要求: 5、温度均匀性测试(TUS)

进行TUS时,如果客户没有特别指出热处理炉的装载状态,一般情况下在满载情况下进行测试,装载的产品必须是依据公司工艺文件进行热处理的产品。当下一次进行TUS时也必须是和前一次测试时的装载状态且产品与上一次相同。 5.1 温度均匀性测试的设备: 5.2 温度均匀性测试(TUS)步骤 5.2.1一般情况下,在进行TUS时热处理炉必须是室温状态下;如果热处理炉刚进行过生产有一定温度(例如:此时炉内温度是500℃),则下一次进行TUS测试也必须和此次情况相同(500℃)。 5.2.2 热电偶(传感器)的处理。 TUS测试进行之前,热电偶测量端必须用直径不超过13mm(0.5英寸)而且不超过待热处理产品的最薄处、与产品材料一致的长60mm,内部加工出与热电偶直径一样大小深40mm圆孔的圆棒,置于热电偶测量端进行保护。 5.2.3 测量点的选择与位置图 5.2.3.1测量点及热电偶的选择 本公司热处理炉温度均匀性测试,采用10点进行测量,9 TUS+1控

遥感卫星影像数据信息提取

北京揽宇方圆信息技术有限公司 、 遥感卫星影像数据信息提取 北京揽宇方圆信息技术有限公司中科院企业,卫星影像数据服务全国领先。业务包括遥感数据获取与分发、遥感数据产品深加工与处理。按照遥感卫星数据一星多用、多星组网、多网协同的发展思路,根据观测任务的技术特征和用户需求特征,重点发展光学卫星影像、雷达卫星影像、历史卫星影像三个系列,构建由26个星座及三类专题卫星组成的遥感卫星系统,逐步形成高、中、低空间分辨率合理配置、多种观测技术优化组合的综合高效全球观测和数据获取能力形成卫星遥感数据全球接收与全球服务能力。 (1)光学卫星影像系列。 面向国土资源、环境保护、防灾减灾、水利、农业、林业、统计、地震、测绘、交通、住房城乡建设、卫生等行业以及市场应用对中、高空间分辨率遥感数据的需求,提供worldview1、worldview2、worldview3、worldview4、quickbird、geoeye、ikonos、pleiades、spot1、spot2、spot3、spot4、spot5、spot6、spot7、landsat5(tm)、landsat(etm)、rapideye、alos、Kompsat卫星、北京二号、资源三号、高分一号、高分二号等高分辨率光学观测星座。围绕行业及市场应用对基础地理信息、土地利用、植被覆盖、矿产开发、精细农业、城镇建设、交通运输、水利设施、生态建设、环境保护、水土保持、灾害评估以及热点区域应急等高精度、高重访观测业务需求,发展极轨高分辨率光学卫星星座,实现全球范围内精细化观测的数据获取能力。像国产的中分辨率光学观测星座。围绕资源调查、环境监测、防灾减灾、碳源碳汇调查、地质调查、水资源管理、农情监测等对大幅宽、快速覆盖和综合观测需求,建设高、低轨道合理配置的中分辨率光学卫星星座,实现全球范围天级快速动态观测以及全国范围小时级观测。 (2)雷达卫星影像系列 合成孔径雷达(SAR)观测星座。errasar-x、radarsat-2、alos、高分三号卫星围绕行业及市场应用对自然灾害监测、资源监测、环境监测、农情监测、桥隧形变监测、地面沉降、基础地理信息、全球变化信息获取等全天候、全天时、多尺度观测,以及高精度形变观测业务需求,发挥SAR卫星在复杂气象条件下的观测优势,与光学观测手段相互配合,建设高低轨道合理配置、多种观测频段相结合的卫星星座,形成多频段、多模式综合观测能力 (3)历史卫星影像系例 锁眼卫星影像1960年至1980年代的影像,高分辨率0.6米,已在中国各个行业得到广泛应用。 北京揽宇方圆信息技术有限公司公司为北京市创新企业,通过了严格国际质量体系认证,产品和服务质量均有着优良的保证,曾独立提供国家重大遥感图像工程项目和遥感图像处理项目,经过多年在遥感行业的积累,在遥感影像数据供应方面形成了一整套解决方

红外焦平面阵列非均匀性校正算法的研究

红外焦平面阵列非均匀性校正算法的研究 摘要:红外焦平面阵列普遍存在非均匀性,会严重影响红外成像质量。对非均匀性的主要来源和表现形式进行了探讨,介绍了在工程应用中常用的校正方法,两点温度校正法、时域高通滤波法和人工神经网络法,给出详细的推导,并对几种校正算法进行了分析和研究,对这几种校正算法的优点和缺点进行讨论和综合对比,为进一步开展红外焦平面非均匀性校正提供参考意见。 关键词:红外焦平面阵列非均匀性校正算法对比 Study of Non-uniformity Correction Algorithms for IRFPA Abstract:There usually exist a non-uniformity problem for infrared focal plane arrays.This problem may has a severe influence on the imaging quality of them.The non-uniformity of the major sources and manifestations are discussed.Two temperature correction method,constant statistical average,temporal high-pass filtering and artificial neural network which usually applied in engineering are introduced. Three correction algorithms are analysed and researched, giving a detailed derivation,and advantages and disadvantages of the four correction algorithms are discussed and comprehensively compared. providing a reference suggestions for the further development of non-uniformity correction algorithms for IRFPA.

遥感卫星影像数据制图技术流程

北京揽宇方圆信息技术有限公司 遥感卫星影像数据制图技术流程 1.数据准备 1.1地形图 地形图是进行遥感影像几何精纠正的坐标参照系,也是重要的基础数据,包含多种层面的非遥感信息数据。 目前常用的地形数据多为数字地图。对于尚未有数据地图的工作区域,通常收集纸质地图,经过数据扫描,转换为数据地图。扫描分辨率通常设置为200-400dpi。扫描图通常存在变形,需要利用GIS软件进行几何校正,已达到制图精度要求。 对于早期或常规方法获得的成果图件,在建立数据库及系统分析前,通常也采用图形扫面方法,经系统处理,将纸质图形转换为数字图形。 1.2遥感数据源的选择 遥感数据源的选择是整个遥感制图工作中最基本和重要的工作。遥感数据源的选择一般包括遥感图像的空间分辨力、时相及波段的选择。另外在具体的工作中,数据源的选择还要综合其它非图像数据内容本身的因素来考虑,如成果图形的比例要求、精度要求、经费支持强度及遥感图像获取的难易程度等。 1.2.1遥感图像空间分辨力的选择

遥感影像空间分辨力是遥感数据源的一个重要指标,决定了遥感制图所获得的成果数据的精度和准确度。一般各主要成图比例尺对应遥感影像空间分辨力如下: 经过几十年的发展,遥感技术在社会各个领域得到广泛的应用与发展。目前遥感卫星可以提供从小于1米到公里级的影像空间分辨率,可以满足1:2000/3000的比例尺遥感制图精度要求,制图精度能够满足我国现行的制图精度要求。航空遥感影像可以提供厘米级的空间分辨率,可以满足大比例尺制图要求。 目前,国内遥感制图应用比较广泛的是土地利用/土地覆盖(1:1万——1:10万),生态环境监测、城市信息化、大型工程环境监测、灾害监测、遥感找矿…… 如:利用QuickBird/IKONOS进行违章用地监测、城市绿地与城市用地监测 利用eTM/SPOT进行土地利用遥感制图…… 1.2.2遥感信息的时相选择 地表由一个非常复杂的系统组成、时刻处于动态的变化过程。如地表的温度、水份、天气状况、人类活动等影响使得不同时间地表信息反映在遥感影像上也有明显的差异。遥感时相的选择其目的就是依据用户的需求,能够获取高质量的遥感影像。 1.2.3遥感图像的波段选择 一般遥感影像的各个波段都有不同的适用范围,而不同波段的组合则可以充分利用图像的多波段信息。波段组合总的原则是要最大反映信息量,要能从中有效地识别各种专题信息。如利用陆地资源卫星LandSat-TM图像数据进行土地资源调查时,一般采用4、3、2三个波段进行假彩色合成;MODIS 影像数据提供数十个波段数据,可以依据用户需求选择不同的波段组合方式。 2.图像处理

库房温湿度均匀性验证方案

. 确认方案编号: 项目负责人: 验证类别:厂房设施验证 确认领导小组审查汇签:

1.主题容 本方案规定了我公司库房温湿度均匀性验证的围、方法及标准。 2.适用围 本方案适用于我公司库房温湿度均匀性的验证。 3.实施确认人员及职责 4.简介 4.1.概述:我公司库房包括有原辅料常温库、原辅料阴凉库、成品常温库、成品阴凉库、包材库、外 包材库、液体药品库、特殊药品库等,根据GMP要求结合产品自身对温湿度的要求公司对相应库房安装辅助设施,以便能控制并维持该库房的环境温湿度以达到规定要求(各库房具体温湿度要求见下表)。为保证温湿度计在该房间记录的温湿度值是最具有代表性的,拟对该房间进行温湿度均匀性验证。 4.2.验证依据 5.验证依据《确认与验证管理规程》 通过本次验证确定我公司库房温湿度分布均匀性,以确定温湿度计的最佳摆放位置。 6.变更和偏差处理 确认过程中如果出现偏差和变更,应立即通知确认与验证小组并对偏差和变更进行详细记录(参见偏差处理单,变更处理单),分析偏差产生的根本原因并提出解决方法。所有偏差和变更得到有效处理后,确

认方可进入下一步骤。偏差处理单和变更处理单经过批准后其原件必须附在验证报告中。 变更和偏差处理记录 □本次确认无变更和偏差情况□本次确认发生变更和偏差差情况

检查人/日期:复核人/日期: 7.验证容 7.1.验证前准备 7.1.1.文件准备 7.1.2.现场备《留样管理规程》、《稳定性试验管理规程》、《库房温湿度均匀性验证方案》及相关的验证记录,并填写验证文件准备确认表。 验证文件准备确认表 检查人/日期:复核人/日期: 7.1.3.验证用主要仪器准备 7.1.3.1.准备经校验合格并处于校验有效期的温湿度计,并在每个阶段或验证周期开始前对仪器确认,要求经过校验,并在校验有校期,填写《验证主要仪器确认表》,见下表。 验证主要仪器确认表

恒温恒湿箱的温度均匀度需达到的标准及测试范围

恒温恒湿箱的温度均匀度需达到的标准及测试范围 恒温恒湿箱测试LED,化工,塑料,仪器仪表,元器件等产品,在温湿度的条件下,其产品的性能,以检测产品的可靠性和使用性能。适合电子、塑胶制品、电器、仪表、食品、车辆、金属、化学、建材、医疗等制品检测质量之用。本机专门测试各种材料耐热、耐寒、耐干、耐湿的性能。本机可选择中文或英文液晶显示触控式屏幕画面,操作简单,程序编辑容易。可显示完整的系统操作状况相关数据、执行及设定程序曲线。运转中发生异常状况,屏幕即刻自动显示故障原因及提供排除故障方。 恒温恒湿箱的温度均匀度是该设备的重要技术指标,该指标直接影响试验的结果,该指标是恒温恒湿箱的主要性能指标,宝元通生产的恒温恒湿箱完全符合国家相关标准。 恒温恒湿箱技术参数及试验标准: 技术参数: 2. 性能指標 2.1.測試環境條件环境温度:+5℃~+35℃相对湿度≤85%RH 2.2.測試方法GB/T5170.2-2008 温度试验设备 GB/T5170.5-2008 湿热试验设备 2.3溫度範圍-40℃~+150℃ 2.4温度波动度≤0.5℃(注:如按GB/T5170.2-1996表示,波动度为≤±0.25℃)2.5温度偏差优于± 2℃ 2.6温度均匀度±2℃ 2.7升降温速率升温时间:+20℃~+150℃ ≤45min(带载) 降温时间:+20℃~- 40℃ ≤70min(带载) 试验标准: 1.GB11158 高温试验箱技术条件 2. GB10589-89 低温试验箱技术条件 3. GB10592-89 高低温试验箱技术条件 4. GB/T10586-89 湿热试验箱技术条件 5. GB/T2423.1-2001 低温试验箱试验方法 6. GB/T2423.2-2001 高温试验箱试验方法 7. GB/T2423.3-93 湿热试验箱试验方法 恒温恒湿箱相关试验测试记录(该记录仅供参考)

AMS2750E热处理炉炉温均匀性检测报告样本

TestReport 检 测 报 告

测量详细信息 热处理炉炉温均匀性检测报告 报告编号:Name of furnace 热处理炉型号 Furnace model 热处理炉编号 Furnace number 热处理炉制造单位 Furnace manufacturer 炉子级别 Class 炉子测量周期 Instrument type 炉子仪表类型 Use temperature 热处理炉使用温度 Measurement period 热处理炉测温点/℃ Measuring point/℃ 炉温均匀性要求/℃ Uniformity/℃ 负载状况Load condition 气氛 Atmosphere 符合标准 Meet the standards 热处理炉名称 Report number: Heat treatment furnace temperature uniformity test report Measure detailed information 测量仪表名称Instrument number 测量仪表编号Instrument model 测量仪表型号Name of instrument 测量仪表校准日期Sensor name 测量传感器名称Valid period to 测量仪表有效期至Calibration date Correction factor 修正系数Sensor model 测量传感器型号测量传感器校准日期Valid period to 测量传感器有效期至Calibration date Sampling interval 采样间隔测量开始时间End time 测量结束时间Start time 第1页,共18页热处理炉有效加热区尺寸 Effective heating zone size of furnace

库房温湿度均匀性验证方案

确认方案编号: 项目负责人: 验证类别:厂房设施验证

1. 主题内容 本方案规定了我公司库房温湿度均匀性验证的范围、方法及标准。 2. 适用范围 本方案适用于我公司库房温湿度均匀性的验证。 3. 实施确认人员及职责 4. 简介 4.1. 概述:我公司库房包括有原辅料常温库、原辅料阴凉库、成品常温库、成品阴凉库、内包材库、 外包材库、液体药品库、特殊药品库等,根据GMP 要求结合产品自身对温湿度的要求公司对相应库房安装辅助设施, 以便能控制并维持该库房内的环境温湿度以达到规定要求(各库房具体温湿度要求见下表)。为保证温湿度计在该房间内记录的温湿度值是最具有代表性的,拟对该房间进行温湿度均匀性验证。 4.2. 验证依据 5. 验证依据《确认与验证管理规程》 通过本次验证确定我公司库房温湿度分布均匀性,以确定温湿度计的最佳摆放位置。 6. 变更和偏差处理 确认过程中如果出现偏差和变更,应立即通知确认与验证小组并对偏差和变更进行详细记录(参见偏差处理单,变更处理单),分析偏差产生的根本原因并提出解决方法。所有偏差和变更得到有效处理后,确认方可进入下一步骤。偏差处理单和变更处理单经过批准后其原件必须附在验证报告中。 变更和偏差处理记录

检查人/日期:复核人/日期:7.验证内容 7.1.验证前准备 7.1.1.文件准备

7.1.2.现场备《留样管理规程》、《稳定性试验管理规程》、《库房温湿度均匀性验证方案》及相关的验证记录,并填写验证文件准备确认表。 检查人/日期:复核人/日期: 7.1.3.验证用主要仪器准备 7.1.3.1.准备经校验合格并处于校验有效期内的温湿度计,并在每个阶段或验证周期开始前对仪器确认,要求经过校验,并在校验有校期内,填写《验证主要仪器确认表》,见下表。 验证主要仪器确认表

相关文档
最新文档