脱硫塔强度校核

脱硫塔强度校核
脱硫塔强度校核

1.气象条件如下:

最大风速8级17.2 m/s————20.7m/s

2.塔本体重量约为55t(不算底部框架本身),护栏和附属设备重30t,总高.框架材料是Q235钢,屈服强度是235MPa。框架结构如CAD图所示(有附图)。校核框架强度是否安全。框架梁立柱由350H型钢制造,框架横梁式由300 H型钢制造.

3受力分析

假设风从西边和南边同时吹在设备上,并且按照最大风力处理。

—风力

—风阻系数

A—迎风面积

8级风速17.2 m/s————20.7m/s,这里取20.7m/s

根据上式子可以计算出西边风力:

=

西边风力:

同时可以计算出南面风力:

南边迎风面积

南边风力:

考虑整个设备高度是.取高度中间作为风力力作用点,于是西风施加在设备上翻转力矩为:

南风施加在整个设备上翻转力矩为:

近似认为框架4个支脚所受重力相同,于是每个支脚受到重力分量是:

考虑西方向风翻转力矩,每个支脚所受力如图:

考虑南方向风翻转力矩,每个支脚所受力如图:

将以上数据代入ANSYS中建立模型分析得如下结果:

根据图进行观察,发现应力最大的构件是支撑立柱3,并且最大应力是为了使所求结果更准确,采取力学知识再进行一次演算:

如图框架,代入相关数据求4个支脚受力:

根据计算结果发现立柱4受到压力最大,压力为

并且利用材料力学方法求出其应力。

因为立柱为350H型钢,查表截面面积是

两种方法结果有一定差距,分析后发现数学方法没有考虑横梁对立柱作用力,所以所求应力值偏小。

反复检查后,取有限元分析结果,此框架最大应力是

又Q235屈服强度时左右,查资料钢压缩变形安全系数取1.5-2.5。于是许用应力:

强度合格。

脱硫设计计算

4.2废气处理工艺选择 综上比较可知,几种主要的湿法除硫的比较可知:双碱法不仅脱硫效率高(>95%),吸收剂利用率高(>90%)、能适应高浓度SO2烟气条件、钙硫比低(一般<1.05)、采用的吸收剂价廉易得、管理方便、能耗低、运行成本低,不产生二次污染,所以本次设计采用双碱法进行脱硫。 4.2.2 工艺说明 脱硫工艺原理: 干燥塔废气经洗涤塔进行降温后,进入旋风除尘器除尘,然后进入双碱法脱硫除尘系统,双碱法脱硫除尘系统采用NaOH作为脱硫吸收剂,将脱硫剂经泵打入脱硫塔与烟气充分接触,使烟气中的二氧化硫与脱硫剂中的NaOH进行反应生成Na2SO3,从脱硫塔排出的脱硫废水主要成分是Na2SO3溶液,Na2SO3溶液与石灰反应,生成CaSO3和NaOH,CaSO3经过氧化,生成CaSO4沉渣,经过沉淀池沉淀,沉淀池内清液送入上清池,沉渣经板框压滤机进一步浓缩、脱水后制成泥饼送至煤灰场,滤液回收至上清池,返回到脱硫塔/收集池重新利用,脱硫效率可达95%以上。 工艺过程分为三个部分: 1石灰熟化工艺: 生石灰干粉由罐车直接运送到厂内,送入粉仓。在粉仓下部经给料机直接供熟化池。为便于粉仓内的生石灰粉给料通畅,在粉仓底部设有气化风装置和螺旋输送机,均匀地将生石灰送入熟化池内,同时按一定比例加水并搅拌配制成一定浓度的Ca(OH)2浆液,送入置换池。 配制浆液和溶液量通过浓度计检测。 2吸收、再生工艺: 脱硫塔内循环池中的NaOH溶液经过循环泵,从脱硫塔的上部喷下,以雾状液滴与烟气中的SO2充分反应,生成Na2SO3溶液,在塔内循环,当PH值降低到一定程度时,将循环液打入收集池,在置换池内与Ca(OH)2反应,生成CaSO3浆液。将浆液送入氧化池氧化,生成CaSO4沉渣,送入沉淀池。向置换池中加Ca(OH)2和NaOH都是通过PH 计测定PH值后加入碱液,脱硫工艺要求的PH值为9~11。 3废液处理系统:

脱硫塔设计

目录 1.设计任务书 (2) 1.1 设计题目 (2) 1.2 设计内容 (2) 1.3 主要设计参数 (3) 2.脱硫工艺的选择与工艺流程简介 (3) 2.1 脱硫工艺的选择 (3) 2.2 工艺流程简介 (4) 3. 工艺流程中主要发生的化学反应 (5) 4. 脱硫塔设计 (6) 4.1 物料衡算 (6) 4.1.1 入塔的煤气质量 (6) 4.1.2 出塔煤气的变化量 (8) 4.1.3 m3的计算 (12) 4.1.4 m4的计算 (12) 4.1.5 脱硫塔的液气比 (12) 4.2 热量衡算 (12) 4.2.1 入塔脱硫煤气带入的热量 (12) 4.2.2 出脱硫塔的煤气带走的热量 (13) 4.2.3 脱硫过程中发生的熔解热和反应热 (14) 4.2.4 总的热量衡算 (15) 4.3 设备计算 (15) 4.3.1 选择填料 (15) 4.3.2 塔径的计算 (16) 4.3.3 传质面积和填料高度 (17) 5.脱硫塔工艺设计结果表 (18) 5.1 总表 (18) 5.2 煤气入塔物质汇总表 (19) 5.3 出塔物质汇总表 (20) 5.4 其他数据 (20) 6.设计小结 (20) 7.参考文献 (23)

1. 设计任务书 1.1 设计题目 干煤气量为 40000Nm 3/h 的炼焦煤气的脱硫的工艺计算。 入口煤气 出口煤气 温度/℃ 34 36 压力(表压)/Pa 17000 15000 煤气中S H 2含量/g/Nm 3 99.5 1.0 入口煤气中杂质的含量: 组分 焦油 苯 S H 2 HCN 3NH 萘 水汽 含量/g/Nm 3 微量 28.45 5.99 1.57 8.37 0.4 23.97 剩余氨水:12470Kg/h ,t=75℃,P=0.45MPa ,氨的质量分数10%。 1.2 设计内容 (1)脱硫工艺的选择与工艺流程介绍; (2)脱硫塔的物料衡算; (3)脱硫塔的工艺尺寸计算; 3NH S H 2 2CO HCN 挥发氨 24Kg/h 97%3NH 0.18g/L 1.3g/L 0.04g/L 固定氨 18Kg/h 90%3NH

脱硫塔的设计

目录 1 处理烟气量计算 (3) 2 烟气道设计 (3) 3吸收塔塔径设计 (3) 4 吸收塔塔高设计 (3) 5 浆液浓度的确定 (5) 6 喷淋区的设计 (5) 7 除雾器的设计 (7) 8 氧化风机与氧化空气喷管 (9) 9 塔内浆液搅拌设备 (9) 10 排污口及防溢流管 (9) 11 附属物设计 (10) 12 防腐 (10)

脱硫塔的结构设计,包括储浆段、烟气入口、喷淋层、烟气出口、喷淋层间距、喷淋层与除雾器和脱硫塔入口的距离、喷喷嘴特性(角度、流量、粒径分布等)、喷嘴数量和喷嘴方位的设计 烟道设计 塔体设计: 脱硫塔上主要的人孔、安装孔管道孔:除雾器安装孔,每级至少一个;喷淋浆液管道安装孔,至少一个;脱硫塔底部清渣孔,至少一个;烟气入口烟道设置一人孔,以便大修时清理烟道可能的积垢。 脱硫塔上主要的管孔:循环泵浆液管道入口,一般为3个;液位计接口,一般为2~3个,石膏浆液排出口1~2个;排污口1个;溢流口1个;滤液返回口1个;事故罐浆液返回口1个;地坑浆液返回1个;搅拌机接口2~6个;差压计接口2~4个。 储液区:一般塔底液面高度h1=6m~15m; 喷淋区:最低喷淋层距入口顶端高度h2=1.2~4m;最高喷淋层距入口顶端高度h3≥vt,v为空塔速度,m/s,t为时间,s,一般取t≥1.0s;喷淋层之间的间距h4≥1.5~2.5m; 除雾区:除雾器离最近(最高层)喷淋层距离应≥1.2m,当最高层喷淋层采用双向喷嘴时,该距离应≥3m;除雾器离塔出口烟道下沿距离应≥1m; 喷淋泵 喷淋头 曝气泵

1 处理烟气量计算 得到锅炉烟气量,根据实际的气体温度转化成当时的处理烟气量。根据燃料的属性计算出烟气中SO2的含量,并根据国家相关环保标准以及甲方的要求确定烟气排放SO2的含量,并计算脱硫效率 2 烟气道设计 进气烟道中的气速一般为13m/s,排气烟道中的气速一般为11m/s,由此算出截面积,烟道截面一般为矩形,自行选取长宽。 3吸收塔塔径设计 直径由工艺处理烟气量及其流速而定。根据国内外多年的运行经验,石灰法烟气脱硫的典型操作条件下,吸收塔内烟气的流速应控制在u<4.0m/s为宜。(一般配30万kW机组直径为Φ13m~Φ14m,5万kW机组直径约为Φ6m~Φ7m)。 喷淋塔塔径D: 则喷淋塔截面面积 将D代入反算出实际气流速度u`: 4 吸收塔塔高设计 4.1 浆液高(h1) 由工艺专业根据液气比需要的浆液循环量及吸收SO2后的浆液在池内逐步氧化反应成石膏浆液所需停留时间而定,一个是停留时间大于4.5min 4.2 烟气进口底部至浆液面距离(c) 一般定为800mm~1200mm范围为宜。考虑浆液鼓入氧化空气和搅拌时液位有所波动;入口烟气温度较高、浆液温度较低可对进口管底部有些降温影响;加之该区间需接进料接管, 4.3 烟气进出口高度

机械设计强度计算

第3章 剪切和挤压的实用计算 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面 相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 剪切和挤压的强度计算

剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2F F Q = 图3-2 由于受剪构件的变形及受力比较复杂,剪切面上的应力分布规律很难用理论方法确定,因而工程上一般采用实用计算方法来计算受剪构件的应力。在这种计算方法中,假设应力在剪切面内是均匀分布的。若以A 表示销钉横截面面积,则应力为 A F Q =τ (3-1) τ与剪切面相切故为切应力。以上计算是以假设“切应力在剪切面上均匀分布”为基础的,实际上它只是剪切面内的一个“平均切应力”,所以也称为名义切应力。 当F 达到b F 时的切应力称剪切极限应力,记为b τ。对于上述剪切试验,剪切极限应力为 A F b b 2= τ 将b τ除以安全系数n ,即得到许用切应力

脱硫塔技术方案范本

脱硫塔技术方案

第一章项目条件 1.1 工程概述 本技术方案适用于陶瓷有限公司干燥塔窑炉排出的粉尘、烟气、二氧化硫(SO2)排放超标的问题,经过对现有系统的技术分析,做出改造方案。 为了保护公司周围的生产、生活环境,并使排放的粉尘、烟气达到国家的排放标准,同时满足地方环保总量控制要求,需配套建设成熟高效的布袋式除尘和湿法烟气脱硫装置。 1.2 工程概况 本工程属环境保护项目,对干燥塔、窑炉排出的烟气的粉尘、二氧化硫(SO2)进行综合治理,达到达标排放,计划为合同生效后3个月内建成并满足协议要求。 1.3 基础数据 喷雾干燥塔窑炉排出的烟气的基础数据

窑炉排出的烟气的基础数据 第二章设计依据和要求 2.1 设计依据 2.2 主要标准规范 综合标准 序号编号名称 1 《陶瓷行业大气污染物排放标准》 2 GB3095- 《环境空气质量标准》 3 GB8978- 《环境空气质量标准》 4 GB12348- 《工厂企业界噪声标准》 5 GB13268∽3270-97 《大气中粉尘浓度测定》 设计标准 序号编号名称 1 GB50034- 《工业企业照明设计标准》

2 GB50037-96 《建筑地面设计规范》 3 GB50046- 《工业建筑防蚀设计规范》 4 HG20679-1990 《化工设备、管道外防腐设计规定》 5 GB50052- 《供配电系统设计规范》 6 GB50054- 《低压配电设计规范》 7 GB50057- 《建筑物防雷设计规范》 8 GBJ16- 《建筑物设计防火规范》 9 GB50191- 《构筑物抗震设计规范》 10 GB50010- 《混凝土结构设计规范》 11 GBJ50011- 《建筑抗震设计规范》 12 GB50015- 《建筑给排水设计规范》 13 GB50017- 《钢结构设计规范》 14 GB50019- 《采暖通风与空气调节设计规范》 15 GBJ50007- 《建筑地基基础设计规范》 16 GBJ64-83 《工业与民用电力装置的过电压保护设计规范》 17 GB7231- 《工业管道的基本识别色和识别符号的安全知识》 18 GB50316- 《工业金属管道设计规范》 19 GBZ1- 《工业企业设计卫生标准》 20 HG/T20646-1999 《化工装置管道材料设计规定》 21 GB4053.4-1983 《固定式钢斜梯及工业钢平台》 设备、材料标准 序号编号名称 1 GB/T13927- 《通用阀门压力试验》

轴结构设计和强度校核

一、轴的分类 按承受的载荷不同, 轴可分为: 转轴——工作时既承受弯矩又承受扭矩的轴。如减速器中的轴。虚拟现实。 心轴——工作时仅承受弯矩的轴。按工作时轴是否转动,心轴又可分为: 转动心轴——工作时轴承受弯矩,且轴转动。如火车轮轴。 固定心轴——工作时轴承受弯矩,且轴固定。如自行车轴。虚拟现实。 传动轴——工作时仅承受扭矩的轴。如汽车变速箱至后桥的传动轴。 固定心轴转动心轴

转轴 传动轴 二、轴的材料 轴的材料主要是碳钢和合金钢。钢轴的毛坯多数用轧制圆钢和锻件,有的则直接用圆钢。 由于碳钢比合金钢价廉,对应力集中的敏感性较低,同时也可以用热处理或化学热处理的办法提高其耐磨性和抗疲劳强度,故采用碳钢制造尤为广泛,其中最常用的是45号钢。 合金钢比碳钢具有更高的力学性能和更好的淬火性能。因此,在传递大动力,并要求减小尺寸与质量,提高轴颈的耐磨性,以及处于高温或低温条件下工作的轴,常采用合金钢。 必须指出:在一般工作温度下(低于200℃),各种碳钢和合金钢的弹性模量均相差不多,因此在选择钢的种类和决定钢的热处理方法时,所根据的是强度与耐磨性,而不是轴的弯曲或扭转刚度。但也应当注意,在既定条件下,有时也可以选择强度较低的钢材,而用适当增大轴的截面面积的办法来提高轴的刚度。

各种热处理(如高频淬火、渗碳、氮化、氰化等)以及表面强化处理(如喷丸、滚压等),对提高轴的抗疲劳强度都有着显著的效果。 高强度铸铁和球墨铸铁容易作成复杂的形状,且具有价廉,良好的吸振性和耐磨性,以及对应力集中的敏感性较低等优点,可用于制造外形复杂的轴。 轴的常用材料及其主要力学性能见表。

结构设计及强度校核

专业综合训练任务书: 49.9米150吨冷藏船结构设计及总纵强度计算 一、综合训练目的 1、通过综合训练,进一步巩固所学基础知识,培养学生分析解决实际工程问题的能力,掌握静水力曲线的计算与绘制方法。 2、通过综合训练,培养学生耐心细致的工作作风和重视实践的思想。 3、为后续课程的学习和走上工作岗位打下良好的基础。 二、综合训练任务 1.150吨冷藏船结构设计,提供主要构件的计算书。 2.参考该船图纸和相关静水力资料、邦戎曲线图,按照《钢质内河船舶建造规范》的要求进行总纵 强度计算,提供总纵强度计算书。 3.参考资料: 1)中国船级社. 钢质海船入级与建造规范 2009 2)王杰德等. 船体强度与结构设计北京:国防工业出版社,1995 3)聂武等. 船舶计算结构力学哈尔滨:哈尔滨工程大学出版社,2000 三、要求: 1、专业综合训练学分重,应予以足够重视; 2、计算书格式要符合要求; 如船体结构设计计算书应包括:(a)对设计船特征(船型、主尺度、结构形式等)的概述,设计所根据的规范版本的说明等;(b)应按船底、船侧、甲板的次序,分别写出确定每一构件尺寸的具体过程,并明确标出所选用的尺寸。(c)计算书应简明、清晰、便于检查。 3、强度计算: a)按第一、二章的要求和相关表格做,如静水平衡计算,静水弯矩计算等; b)波浪弯矩等可按规范估算; c)相关表格用计算器计算,表格绘制于“课程设计”本上 注意:请班长到教材室领取课程设计的本子和资料袋(档案袋),各位同学认真填写资料袋封面。 4、专业综合训练总结:300~500字。 四、组织方式和辅导计划: 1、参考资料: a)船体强度与结构设计教材 b)某船的构件设计书 c)某船的总纵强度计算书 d)《钢质内河船舶建造规范》,最好2009版 2、辅导答疑地点:等学校安排。 五、考核方式和成绩评定: 1、平时考核成绩:参考个人进度。 2、须经老师验收合格,故应提前一周交资料,不合格的则需回去修改。 3、第18周星期三下午4:00前必须交资料,资料目录见第2页。 4、一旦发现打印、复印、数据格式完全相同等抄袭现象,均按规定以不及格计。 5、成绩由指导教师根据学生完成质量以及学生的工作态度与表现综合评定,分为优、良、中、及格、 不及格五个等级。 六、设计进度安排: 1、有详细辅导计划,但具体进度可根据个人情况可以自己定。 附录:档案袋内资料前2页如下

(完整word版)烟气脱硫设计计算..docx

烟气脱硫设计计算 1130t/h 循环流化床锅炉烟气脱硫方案 主要参数:燃煤含 S 量1.5% 工况满负荷烟气量285000m3/h 引风机量 1台,压力满足 FGD 系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口 SO2含量200mg/Nm 3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气 经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2→ MgSO3 + H2O MgSO3 + SO2 + H2O→ Mg(HSO3)2 Mg(HSO3)2 + Mg(OH)2→ 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3 氧化成 MgSO4 。这个阶段化学反应如下: MgSO3 + 1/2O2→ MgSO4 Mg(HSO3)2 + 1/2O2→ MgSO4 + H2SO3 H2SO3 + Mg(OH)2→ MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH 由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH 低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀, 至 pH 达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产 生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底 部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有 非常多的应用业绩,其中在日本已经应用了100 多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160 亿吨 ,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃 肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高

脱硫塔烟气系统

本体.吸收塔为圆柱形,尺寸为Φ15.3×36.955m,结构如图8-1 所示。 由锅炉引风机来的烟气,经增压风机升压后,从吸收塔中下部进入吸收塔,脱硫除雾后的净烟气从塔顶侧向离开吸收塔。塔的下部为浆液池,设四个侧进式搅拌器。氧化空气由四根矛式喷射管送至浆池的下部,每根矛状管的出口都非常靠近搅拌器。烟气进口上方的吸收塔中上部区域为喷淋区,喷淋区的下部设置一合金托盘,托盘上方设三个喷淋层,喷淋层上方为除雾器,共二级。塔身共设六层钢平台,每个喷淋层、托盘及每级除雾器各设一个钢平台,钢平台附近及靠近地面处共设六个人孔门。 图8-1 吸收塔本体1-烟气出口2-除雾器3-喷淋层4-喷淋区5-冷却区6-浆液循环泵7-氧化空气管8-搅拌器9-浆液池10-烟7进口11-喷淋管12-除雾器清洗喷嘴13-碳化硅空心锥喷嘴 技术特点该FGD 装置吸收塔采用美国B&W公司开发并具有多年成功运行经验的带托盘的就地强制氧化喷淋塔,该塔具有以下特点: 1)吸收塔包括一个托盘,三层喷淋装置,每层喷淋装置上布置有549 +122 个空心锥喷嘴,流量为51. 8m3/h 的喷嘴549 个,喷嘴流量为59.62m3/h 的122 个,进口压头为103.4KPa,喷淋层上部布置有两级除雾器。 2)液/气比较低,从而节省循环浆液泵的电耗。 3)吸收塔内部表面及托盘无结垢、堵塞问题。 4)优化了PH 值、液/气比、钙/硫比、氧化空气量、浆液浓度、烟气流速等性能参数,从而保证FGD 系统连续、稳定、经济地运行。 5)氧化和结晶主要发生在吸收塔浆池中。吸收塔浆液池的尺寸保证能提供足够的浆液停留时间完成亚硫酸钙的氧化和石膏(CaSO4.2H2O)的结晶。吸收塔浆池上设置4 台侧进式搅拌器使浆液罐中的固体颗粒保持悬浮状态并强化亚硫酸钙的氧化。 6)吸收塔浆池中的混合浆液由浆液循环泵通过喷淋管组送到喷嘴, 形成非常细小的液滴喷入塔内。 7)在吸收塔浆池的溢流管道上设置了吸收塔溢流密封箱,它可以容纳吸收塔在压力密封时发生的溢流。密封箱的液位由周期性地补充工艺水来维

烟气脱硫设计计算

烟气脱硫设计计算 1?130t/h循环流化床锅炉烟气脱硫方案 主要参数:燃煤含S量1.5% 工况满负荷烟气量285000m3/h 引风机量1台,压力满足FGD系统需求 要求:采用氧化镁湿法脱硫工艺(在方案中列出计算过程) 出口SO2含量?200mg/Nm3 第一章方案选择 1、氧化镁法脱硫法的原理 锅炉烟气由引风机送入吸收塔预冷段,冷却至适合的温度后进入吸收塔,往上与逆向流下的吸收浆液反应, 氧化镁法脱硫法 脱去烟气中的硫份。吸收塔顶部安装有除雾器,用以除去净烟气中携带的细小雾滴。净烟气经过除雾器降低烟气中的水分后排入烟囱。粉尘与脏东西附着在除雾器上,会导致除雾器堵塞、系统压损增大,需由除雾器冲洗水泵提供工业水对除雾器进行喷雾清洗。 吸收过程 吸收过程发生的主要反应如下: Mg(OH)2 + SO2 → MgSO3 + H2O MgSO3 + SO2 + H2O → Mg(HS O3)2 Mg(HSO3)2 + Mg(OH)2 → 2MgSO3 + 2H2O 吸收了硫分的吸收液落入吸收塔底,吸收塔底部主要为氧化、循环过程。

氧化过程 由曝气鼓风机向塔底浆液内强制提供大量压缩空气,使得造成化学需氧量的MgSO3氧化成MgSO4。这个阶段化学反应如下: MgSO3 + 1/2O2 → MgSO4 Mg(HSO3)2 + 1/2O2 → MgSO4 + H2SO3 H2SO3 + Mg(OH)2 → MgSO3 + 2H2O MgSO3 + 1/2O2 → MgSO4 循环过程 是将落入塔底的吸收液经浆液循环泵重新输送至吸收塔上部吸收区。塔底吸收液pH由自动喷注的20 %氢氧化镁浆液调整,而且与酸碱计连锁控制。当塔底浆液pH低于设定值时,氢氧化镁浆液通过输送泵自动补充到吸收塔底,在塔底搅拌器的作用下使浆液混合均匀,至pH达到设定值时停止补充氢氧化镁浆液。20 %氢氧化镁溶液由氧化镁粉加热水熟化产生,或直接使用氢氧化镁,因为氧化镁粉不纯,而且氢氧化镁溶解度很低,就使得熟化后的浆液非常易于沉积,因此搅拌机与氢氧化镁溶液输送泵必须连续运转,避免管线与吸收塔底部产生沉淀。 镁法脱硫优点 技术成熟 氧化镁脱硫技术是一种成熟度仅次于钙法的脱硫工艺,氧化镁脱硫工艺在世界各地都有非常多的应用业绩,其中在日本已经应用了100多个项目,台湾的电站95%是用氧化镁法,另外在美国、德国等地都已经应用,并且目前在我国部分地区已经有了应用的业绩。 原料来源充足 在我国氧化镁的储量十分可观,目前已探明的氧化镁储藏量约为160亿吨,占全世界的80%左右。其资源主要分布在辽宁、山东、四川、河北等省,其中辽宁占总量的84.7%,其次是山东莱州,占总量的10%,其它主要是在河北邢台大河,四川干洛岩岱、汉源,甘肃肃北、别盖等地。因此氧化镁完全能够作为脱硫剂应用于电厂的脱硫系统中去。 脱硫效率高

煤气脱硫塔施工方案

脱硫塔施工方案 1、安装方案 1.1制造安装工艺流程 施工准备——会审图纸、备料——技术交底——筒体卷弧胎具、胀圈、组装平台等技术措施准备——划线、号料套裁——筒体壁板分片制作——塔内件、人孔、接管附件制作——塔体单节筒体组对——于基础上组对安装塔底及相关内件——分段预组对塔体——筒节焊接质量检测——安装塔内填料支撑、液体再分布器、附件等——塔体分段吊装立式正装组对——液体分布器及喷喷淋试验——焊缝无损检测、塔器安装压力、致密性试验。 1.2 施工准备 (1)仔细了解图纸中有关塔器结构、细节尺寸及各技术样图之间的衔接和要求有无矛盾; (2)会审图纸,明确工艺、材料要求及特别的制作要求,并据此提供材料采购计划(塔体尽量采用原平板以提高塔体的强度和韧性)。 (3)施工技术负责人组织人员进行技术交底和安全文明教育;详细明确塔器的具体制作步骤、图样、技术法规、标准规范,现场条件、质量标准、必要的技术措施等。 (4)根据施工现场平面布置图清理、规划制作场地,预留吊装机械等车辆行走路线,与建设单位沟通架设施工用用电线路、电焊机棚等临时设施; (5)铺设9×15.6 m钢板平台用以制作单塔节及分段组对塔体;配置相应的施工设备、工具、准备工卡具、样板和检测量具、胎具、胀圈等;并将设备机具按施

工现场平面布置图规定的位置就位;卷板机放置于规定场地,若放置处有电缆沟需铺设钢板垫板并找平; (6)现场的安全设施配置齐全,按施工现场平面布置图布置做好隔离防护措施;充分与建设单位协调沟通做好安全工作;保护好现有生产设施。 1.3 基础的检查 (1)校验基础是否符合设计要求(位置、几何尺寸),提请建设单位及土建基础施工单位提供的地耐力试验及预压和沉降方面的资料,确保具备施工条件;(2)验证基础的水平度以及中心线、标高、地脚螺栓孔的数量间距等是否符合设计及施工要求; 1.4 材料的存放与保管 (1)购进的钢板、型材和附件,应符合设计要求,并有质量证明书;板材规格尽量考虑长宽尺寸符合筒体展开尺寸,以减少焊缝并增加塔体强度; (2)塔体用钢板逐张进行外观检查,钢板表面不得有气孔、结疤、拉裂、折叠,尤其不得有分层; (3)对于设计要求的特种钢材或屈服强度较高的板材,应由建设单位会同供料单位进行要的检测; (4)钢板做标记,并按材质、规格、厚度等分类存放;存放过程中,应防止钢板变形,严禁用带棱角的物件垫底; 1.5筒体壁板的预制与组对(因塔体直径较大,故筒体壁板采用分片制作、分段组对) (1)放样划线:依设计尺寸合理的套裁下料以节约钢板,预留加工余量; (2)画线切割时,为保证筒体卷圆后的圆柱度,应用画规确定板边的垂直度,

塔设备设计说明书

《化工设备机械基础》 塔设备设计 课程设计说明书 学院:木工学院 班级:林产化工0 8 学号: 姓名:万永燕郑舒元 分组:第四组 目录 前言............................................................... 错误!未定义书签。 摘要 (2) 关键字 (2) 第二章设计参数及要求 (2) 1.1符号说明 (2) 1.2.设计参数及要求 (3) 3 3 第二章材料选择 (4) 2.1概论 (4) 2.2塔体材料选择 (4) 2.3 裙座材料的选择 (4) 第三章塔体的结构设计及计算 (5) 3.1 按计算压力计算塔体和封头厚度 (5) 3.2 塔设备质量载荷计算 (5) 3.3 风载荷和风弯矩 (6) 3.4 地震弯矩计算 (7) 3.5 各种载荷引起的轴向应力 (7) 3.6 塔体和裙座危险截面的强度与稳定校核 (8) 3.7 塔体水压试验和吊装时的应力校核 (9) 3.7.1 水压试验时各种载荷引起的应力 (9) 9 3.8塔设备结构上的设计 (10) 10 10 板式塔的总体结构 (11) 小结 (11) 附录 (11) 附录一有关部件的质量 (11)

附录二矩形力矩计算表 (12) 附录三螺纹小径与公称直径对照表 (12) 参考文献 (12) 前言 摘要 塔设备是化工、石油等工业中广泛使用的重要生产设备。塔设备的基本功能在于提供气、液两相以充分接触的机会,使质、热两种传递过程能够迅速有效地进行;还要能使接触之后的气、液两相及时分开,互不夹带。因此,蒸馏和吸收操作可在同样的设备中进行。根据塔内气液接触部件的结构型式,塔设备可分为板式塔与填料塔两大类。板式塔内沿塔高装有若干层塔板(或称塔盘),液体靠重力作用由顶部逐板流向塔底,并在各块板面上形成流动的液层;气体则靠压强差推动,由塔底向上依次穿过各塔板上的液层而流向塔顶。气、液两相在塔内进行逐级接触,两相的组成沿塔高呈阶梯式变化。填料塔内装有各种形式的固体填充物,即填料。液相由塔顶喷淋装置分布于填料层上,靠重力作用沿填料表面流下;气相则在压强差推动下穿过填料的间隙,由塔的一端流向另一端。气、液在填料的润湿表面上进行接触,其组成沿塔高连续地变化。目前在工业生产中,当处理量大时多采用板式塔,而当处理量较小时多采用填料塔。蒸馏操作的规模往往较大,所需塔径常达一米以上,故采用板式塔较多;吸收操作的规模一般较小,故采用填料塔较多。 板式塔为逐级接触式气液传质设备。在一个圆筒形的壳体内装有若干层按一定间距放置的水平塔板,塔板上开有很多筛孔,每层塔板靠塔壁处设有降液管。气液两相在塔板内进行逐级接触,两相的组成沿塔高呈阶梯式变化。板式塔的空塔气速很高,因而生产能力较大,塔板效率稳定,造价低,检修、清理方便 关键字 塔体、封头、裙座、。 第二章设计参数及要求 1.1符号说明 Pc ----- 计算压力,MPa; Di ----- 圆筒或球壳内径,mm; [Pw]-----圆筒或球壳的最大允许工作压力,MPa; δ ----- 圆筒或球壳的计算厚度,mm; δn ----- 圆筒或球壳的名义厚度,mm; δe ----- 圆筒或球壳的有效厚度,mm;

脱硫塔设计

1、 筒体壁厚计算(所选材料为Q235B )。 筒体承受内压 []c t c p D p i -?=φσδ2 式中 δ:计算厚度 mm c p :计算压力 157.6a MP φ:焊接接头系数 φ=0.85 []t σ:设计温度下的材料许用应力157.6a MP ,在工作压力下材料的许用应力为 157.6a MP i D :筒体内径 3000mm 工作压力Pw=1010.353毫米汞柱=1010.353×13.6×9.8=0.135MPa ,所以设计压力P=1.1Pw=0.1485MPa ,Pc=P=0.1485MPa []mm p D p c t c i 07.2.148505.806.157230001485.02=-???=-?=φσδ 由《塔器设计技术规定》中有关规定,mm 6.51000/22800m in =?=δ,所以 mm 6.5=δ。 负偏差 mm C 8.01= 腐蚀裕量 mm C 22= 名义厚度为mm C C n 4.821=++=δδ,做塔设备时综合考虑取mm n 12=δ. 2、塔顶处封头壁厚计算(所选材料为Q235B ) 选用半顶角为α=45°的折边锥型封头,由公式 []αcos 12c c t c p D p -=φσδ 式中 Dc —锥壳计算内直径,mm δ—锥壳计算厚度,mm α—锥壳半顶角,(°)。 mm 03.245cos 1 1485.05.806.15723000 1485.0=??-???=δ 因mm 6.5m in =δ,所以mm 6.5=δ。

名义厚度为mm C C n 4.821=++=δδ,选取锥形封头壁厚与筒体的壁厚相同, mm n 12=δ,由《化工设备机械基础》表8-30查得,公称直径为2800mm 的折边锥形封头, H=0.562×2800=1573.6mm ,直边高度为mm h 25=。 3、各管管径的计算 1)半水煤气进口 u :半水煤气流速,取u =14 m/s Vs :半水煤气流量,Vs=16866.57 m 3/h m u d i 65.01414.3360057 .1686643600Vs 4=???=???==∴π 管子规格:φ720×8mm 管法兰:HG20592-97 法兰 PLDN700-0.6 RF 2)半水煤气出口 u :半水煤气流速,取u =13 m/s Vs :半水煤气流量,Vs=16866.57 m 3/h m u d i 68.01314.3360057 .1686643600Vs 4=???=???==∴π 管子规格:φ720×8mm 管法兰:HG20592-97 法兰 PLDN700-0.6 RF 3)人孔的设计 由《化工设备设计全书》中关于人孔的有关规定,选取人孔公称直径DN=500mm ,公称压力PN=1.0 外伸接管规格:φ530×8mm 管法兰:HG20592-97 法兰 PLDN500-1.0 RF 人孔手柄:选用φ20mm 圆钢 4)脱硫液进口 u :脱硫液流速,取u =1m/s V h :脱硫液流量,V h =333m 3/h m u d i 343.0114.33600333 43600Vh 4=???=???==∴π 管子规格:φ400×4mm 管法兰:HG20592-97 法兰 PLDN400-0.6 RF 5)脱硫液出口 u :脱硫液流速,取u =1 m/s

脱硫塔技术方案

第一章项目条件1.1 工程概述 )排放超本技术方案适用于陶瓷有限公司干燥塔窑炉排出的粉尘、烟气、二氧化硫(SO 2 标的问题,通过对现有系统的技术分析,做出改造方案。 为了保护公司周围的生产、生活环境,并使排放的粉尘、烟气达到国家的排放标准,同时满足地方环保总量控制要求,需配套建设成熟高效的布袋式除尘和湿法烟气脱硫装置。 窑炉排出的烟气的基础数据

4GB12348-2008《工厂企业界噪声标准》5GB13268∽3270-97《大气中粉尘浓度测定》设计标准 序号编号名称1GB50034-2013《工业企业照明设计标准》

2GB50037-96《建筑地面设计规范》 3GB50046-2008《工业建筑防蚀设计规范》 4HG20679-1990《化工设备、管道外防腐设计规定》 5GB50052-2009《供配电系统设计规范》 6GB50054-2011《低压配电设计规范》 17GB7231-2003《工业管道的基本识别色和识别符号的安全知识》18GB50316-2008《工业金属管道设计规范》 19GBZ1-2010《工业企业设计卫生标准》 20HG/T20646-1999《化工装置管道材料设计规定》

21GB4053.4-1983《固定式钢斜梯及工业钢平台》 设备、材料标准 序号编号名称 1GB/T13927-2008《通用阀门压力试验》 2GB/T3092-2008《低压流体输送焊接钢管》 施工及验收标准 序号编号名称 1GB50205-2001《钢结构工程施工质量验收规范》2GB50212-2002《建筑防腐蚀工程施工及验收规范》

曲轴设计加工及强度仿真校核方法

Value Engineering 0引言 曲轴的破坏形式主要是疲劳断裂和轴颈严重磨损,疲劳断裂抗力或疲劳寿命及其耐磨性,主要取决于以下两点:①合理选择曲轴的材质,并用先进的加工技术和强化 工艺。 ②曲轴的结构。主要取决于产品的设计问题曲轴有组合式和整体式之分。前者用于重型和低速发动机中,后者主要用于中大功率发动机中。对于整体结构的曲轴,球铁材质的可以制成空心的,它比实心结构的疲劳强度(抗力)能提高10%左右,如果适当加大曲轴连杆轴颈的过渡圆半径,还能提高疲劳抗力5%。在曲轴上合理地开卸载槽也能提高疲劳抗力。 1内燃机曲轴结构设计的基本要求 对内燃机曲轴的抗弯疲劳强度和扭转刚度有影响的,主要是内燃机曲轴部分的结构形状和主要尺寸,因而内燃机曲轴设计须主要满足以下要求: ①合理配置平衡块,减轻主轴承负荷和振动。应根据各种内燃机的不同特点,结合总体设计综合考虑,上述各项设计要求相互关联,又相互制约。②合理的曲柄排列,改善轴系的扭振情况,扭矩均匀,使其工作时运转平稳。③轴颈—轴承副油孔布置合理,具有足够的承压面积和较高的 耐磨性。④为保证活塞连杆组和曲轴各轴承可靠工作, 应保证足够的刚度,减少曲轴挠曲变形,以尽量避免在工作转速范围内发生共振,提高曲轴的自振频率。⑤功率输出端的静强度、扭转疲劳强度以及曲柄部分的弯曲疲劳强度,都要进行保证。 2曲轴材料和加工工艺的选择①锻钢曲轴(如图1所示)按照曲轴的工作条件,材料在通过强化处理后,应具有优良的综合机械性能,较高的强度和韧性;良好的疲劳抗力,防止疲 劳断裂,提高寿命;良好的耐磨性。 曲轴的材料一般为中碳钢与合金钢,如35CrMoA 、42CrMoA 等。大功率、大排量柴油机多采用综合机械性能较高的锻钢曲轴,但其消耗大量优质合金材料和加工工时,生产周期长,昂贵的设备,使得一般企业难以具备。 ②锻造曲轴(如图2所示)锻造曲轴具有成本低,耐磨性好,吸振能力强,缺口敏感性低以及抗扭转疲劳强度高,变形小,有良好的自润滑能力,抗氧化性好等优点,因此,国内 外中小型内燃机多倾向采用锻造球铁曲轴,这是由于用球铁制造曲轴,可充分利用锻造工艺的优越性,制作复杂的曲柄和内部油腔等,能够得到理想的结构形状,使应力分布更加合理,材料利用的更加充分,同时加工余量小,加工方便,生产周期短,便于大量生产。表1为部分锻造球铁与锻钢曲轴材料的性能比较。 通过上表可以看出,运用不同材料和加工工艺得到的 曲轴在机械性能和硬度方面有较大的差异。 3曲轴的应力分析及强度校核 为对内燃机曲轴进行应力分析及强度校核,内燃机曲 轴的应力分析及强度校核广泛应用CAE 软件-ANSYS , 下面以单缸机分析为例来具体说明。即利用建立的有限元模性来进行校核和分析。 3.1三维模型的建立将在UG5.0中建立的曲轴模型另存为CATIA 模型文件(*.model )格式,导入到AN -SYS10.0如图3所示。 —————————————————————— —作者简介:尤杨(1984-),女,河北唐山人,工学学士,助教,研究方 向为汽车底盘电控和发动机电控。 浅谈曲轴设计加工及强度仿真校核方法 Process and Strength Simulation Test Method in Crankshaft Design 尤杨YOU Yang (天津机电职业技术学院,天津300410) (Tianjin Institute of Mechanical &Electrical Engineering , Tianjin 300410,China )摘要:在内燃机曲轴设计时曲轴的结构强度和材料选择具有重要的作用,一方面通过对内燃机曲轴疲劳破坏形式及其主要原因 的分析;另一方面通过计算机仿真来进行强度振动分析,曲轴的质量优劣直接影响着发动机的性能和寿命。 Abstract:Crankshaft quality directly affects the engine performance and life.In the design of internal combustion engine crankshaft, crankshaft structure strength and material selection plays an important role.On the one hand,the paper analyzes the internal combustion engine crankshaft fatigue failure forms and main reason;on the other hand,it makes strength vibration analysis through the computer simulation. 关键词:内燃机;曲轴设计;强度仿真Key words:internal combustion engine ;crankshaft design ;strength simulation 中图分类号:TG519.5+4文献标识码:A 文章编号:1006-4311(2013)02-0051-02 图1锻钢曲轴 表1锻造球铁与锻钢曲轴材料的性能比较 材料机械性能硬度HB 抗拉强度 σb (N/mm 2 )屈服强度 σs (N/mm 2 )延伸率δ5(%)35CrMoA 42CrMoA QT700-2QT800-2 9801080700800 835930420480 121222 170-217280-320225-305245-335 图2锻造曲轴 ·51·

脱硫塔喷淋

2.7.2 喷淋层 喷淋层又可以称为液体分布器,它是由喷淋管和喷嘴组成,将夜通过喷淋管的分配作用达到均匀分布的每个喷嘴,由喷嘴喷出,与逆向流动的烟气充分接污染气体即在此吸收。 触,SO 2 1 喷淋层中喷淋管及管网的设计 ①喷淋层中的喷淋管目前主要有2种材质和结构形式:(1)全玻璃钢(FRP)材质,由于玻璃钢的材料特性,这种结构需要在喷淋管底部设置支撑梁。(2)主管用碳钢,内外衬胶,支管用FRP管,主管和支管之间用法兰连接,主采用等径钢管,管径大、壁厚,自身起到支撑梁的作用,FRP支管底部可以不设支撑梁。据了解国外支管都用柔性接头,而我国只能做插管手糊加强性连接,考虑此连接部受弯和喷浆时可能由颤抖现象而引起疲劳开裂(因为喷头处压力为0.07MPa,喷头质量有8kg,支管呈悬臂梁状态工作而且浆液流动也没有柔性连接畅通)。欧洲大部分用FRP(玻璃纤维增强塑料)材料制作,质量较轻。而日本、台湾则有用钢管内外衬橡胶的,质量较重。签于国内制造厂商不能保证欧洲国家那样制作的FRP管的质量,而国内引进的这些装置在我国刚运行不久,还需经过较长时间的观察、考核。国内初次设计,为了保证安全起见,暂按钢管内外衬橡胶设计,但用FRP管肯定是今后国内发展的方向。在实际运行中,全玻璃钢喷淋层底部的支撑梁有被上部喷嘴喷出的浆液击穿破坏的现象。为避免由此带来的隐患,本工程喷淋层采用第2种形式,喷淋FRP支管底部不设支撑梁。吸收塔喷淋区域塔径,喷淋FRP支管较长,要求喷淋层供应商利用管道分析软件对喷淋层进行受力分析,选择合理管壁厚,通过在支管上加筋提高FRP支管的强度和刚度,并对其各个生产环节进行认真监督检验。最上层喷浆管至第一段除雾器高差。根据喷浆后雾滴大小及烟气上升流速考虑,一般在3m~3.5 m左右。 ②喷淋层中管网的作用是浆液通过分布在喷淋管上的喷嘴喷出雾状液以吸收烟气中的S02。要求管内外均耐磨蚀,管内同时要求耐浆液腐蚀,管表面要求耐浆液冲刷。其设计,首先要考虑喷头的布置,应保证塔内喷出浆液匀称,避免疏密不均。喷头的数量根据液/气比需要的浆液量而定。为保证浆液与烟气的接触充分,一般喷浆管分成3~4层(极个别厂有用2层的,但用的是锥尾式单向喷头),喷淋层间距通常为lm~2m,一般按1.5~1.7m计。

齿轮结构设计和校核

直齿锥齿轮传动是以大端参数为标准值的。在强度计算时,则以齿宽中点处的当量齿轮作为计算的依据。对轴交角刀=90。的直齿锥齿轮传动,其 齿数比u锥距R(图<直齿锥齿轮传动的几何参数>)、分度圆直d i,d2、平均分度圆直径 d ml, d m2、当量齿轮的分度圆直径d vl, d v2之间的关系分别为: Zj "亠 =■? 现以g表示当量直齿圆柱齿轮的模数,亦即锥齿轮平均分度圆上轮齿的模数(简称平均模数),则当量齿数z v为(a) 丘二胆*勇诃娠屁丙pl 2 2 1________________ R (b) V 2 2 _ dm2 _ R - ~ =~R- 令? R=b/R,称为锥齿轮传动的齿宽系数,通常取? R=0.25-0.35,最常用的值为~c = ? R=1/3 由右图可 找出当量 直齿圆柱 齿轮得分 度圆半径 r v与平均 分度圆直 径d m的关 系式为 AjIL 2cos8 --(e)直齿锥齿轮传动的几何参数

(0 显然,为使锥齿轮不至发生根切,应使当量齿数不小于直齿圆柱齿轮 的根切齿数。另外,由式(d)极易得出平均模数mm和大端模数m的关系为 111^=111(1-0.5^)------------------------------------ (h) 、直齿圆锥齿轮的背锥及当量齿数 为了便于设计和加工,需要用平面曲线来近似球面曲线,如下图 OAB为分度圆锥,和为轮齿在球面上的齿顶高和齿根高,过点A作直线AO丄AO与圆锥齿轮轴线交于点O,设想以OO为轴线,OA为母线作一圆锥OAB,称为直齿圆锥齿轮的背锥。由图可见A、B附近背锥面与球面非常接近。因此,可以用背锥上的齿形近似地代替直齿圆锥齿轮大端球面上的齿形。从而实现了平面近似球面。

相关文档
最新文档