Centre for Discrete Mathematics and Theoretical Computer Science Mathematical Proofs at a C

Centre for Discrete Mathematics and Theoretical Computer Science Mathematical Proofs at a C
Centre for Discrete Mathematics and Theoretical Computer Science Mathematical Proofs at a C

CDMTCS

Research

Report

Series

Mathematical Proofs at a

Crossroad?

C.S.Calude1and S.Marcus2

1University of Auckland New Zealand,

2Romanian Academy,Romania

CDMTCS-236

March2004

Centre for Discrete Mathematics and

Theoretical Computer Science

Mathematical Proofs at a Crossroad?

Cristian S.Calude1and Solomon Marcus2

1University of Auckland,New Zealand,cristian@https://www.360docs.net/doc/2f16810864.html, 2Romanian Academy,Romania,solomon.marcus@imar.ro.

Abstract.For more than2000years,from Pythagoras and Euclid to

Hilbert and Bourbaki,mathematical proofs were essentially based on

axiomatic-deductive reasoning.In the last decades,the increasing length

and complexity of many mathematical proofs led to the expansion of

some empirical,experimental,psychological and social aspects,yester-

day only marginal,but now changing radically the very essence of proof.

In this paper,we try to organize this evolution,to distinguish its di?er-

ent steps and aspects,and to evaluate its advantages and shortcomings.

Axiomatic-deductive proofs are not a posteriori work,a luxury we can

marginalize nor are computer-assisted proofs bad mathematics.There is

hope for integration!

1Introduction

From Pythagoras and Euclid to Hilbert and Bourbaki,mathematical proofs were essentially based on axiomatic-deductive reasoning.In the last decades,the in-creasing length and complexity of many mathematical proofs led to the expan-sion of some empirical,experimental,psychological and social aspects,yesterday only marginal,but now changing radically the very essence of https://www.360docs.net/doc/2f16810864.html,puter-assisted proofs and the multiplication of the number of authors of a proof became in this way unavoidable.

In this paper,we try to organize this evolution,to distinguish its di?erent steps and aspects and to evaluate its advantages and shortcomings.Various criticisms of this evolution,particularly,Ian Stewart’s claim according to which the use of computer programs in a mathematical proof makes it as ugly“as a telephone directory”while purely axiomatic-deductive proofs are“beautiful like Tolstoy’s War and Peace”,will be discussed.

As axiomatic-deductive proofs,computer-assisted proofs may oscillate be-tween ugliness and beauty.The elegance of a computer-program may rival the beauty of a piece of poetry,as the author of the Art of Computer Programming convinced us;however,this may not exclude the possibility that a computer-program assisting a proof hides a central idea or obscures the global aspect of the proof.In particular,the program assisting a proof may not be itself“proven correct”,as it happened in the proof of the four-color problem,even in the latest, improved1996variant.

Computer-assisted proofs are to usual axiomatic-deductive proofs what (high-school)algebraic approaches are to arithmetic approaches or what ana-lytical approaches are to direct geometric approaches.Arithmetic and intuitive

geometry make children’s brains more active,but algebra and analytic geometry, leading to routine and general formulas,diminish the intellectual e?ort and free their brains for new,more di?cult problems.Obviously,each of these approaches has advantages and shortcomings,its beauty and ugliness;they are not antithet-ical,but complementary.Axiomatic-deductive proofs are not a posteriori work, a luxury we can marginalize nor are computer-assisted proofs bad mathematics. There is hope for integration!

2Proofs in general

Proofs are used in everyday life and they may have nothing to do with mathe-matics.There is a whole?eld of research,at the intersection of logic,linguistics, law,psychology,sociology,literary theory etc.,concerning the way people argue: argumentation theory.Sometimes,this is a subject taught to15or16year-old students.

In the“Oxford American Dictionary”[16]we read:

Proof:1.a fact or thing that shows or helps to show that something is true or exists;2.a demonstration of the truth of something,“in proof of my state-ment”;3.the process of testing whether something is true or good or valid,“put it to the proof”.To prove:to give or be proof of;to establish the validity of;to be found to be,“it proved to be a good theory”;to test or stay out.To argue:1.to express disagreement,to exchange angry words;2.to give reasons for or against something,to debate;3.to persuade by talking,“argued him into going”;4.to indicate,“their style of living argues that they are well o?”.

Argument:1.a discussion involving disagreement,a quarrel;2.a reason put forward;3.a theme or chain of reasoning.

In all these statements,nothing is said about the means used“to show or help to show that something is true or exists”,about the means used“in the process of testing whether something is true or good or valid”.In argumentation theory, various ways to argue are discussed,deductive reasoning being only one of them. The literature in this respect goes from classical rhetorics to recent developments such as[28].People argue by all means.We use suggestions,impressions,emo-tions,logic,gestures,mimicry,etc.

What is the relation between proof in general and proof in mathematics? It seems that the longer a mathematical proof is,the higher the possibility to contain elements usually belonging to non-mathematical proofs.We have in view emotional,a?ective,intuitive,social elements related to fatigue,memory gaps, etc.Long proofs are not necessarily computational;the proof of Fermat’s theorem and the proof of Bieberbach’s conjecture did not use computer programs,but they paid a price for their long lengths.

3From proofs to mathematical proofs

Why did mathematical proofs,beginning with Thales,Pythagoras and Euclid, till recently,use only deductive reasoning?First of all,deduction,syllogistic

reasoning is the most visible aspect of a mathematical proof,but not the only one.Observation,intuition,experiment,visual representations,induction,anal-ogy and examples have their role;some of them belong to the preliminary steps, whose presence is not made explicit,but without which proofs cannot be con-ceived.As a matter of fact,neither deduction,nor experiment could be com-pletely absent in a proof,be it the way it was conceived in Babylonian mathemat-ics,predominantly empirical,or in Greek mathematics,predominantly logical. The problem is one of proportion.In the1970s,for the?rst time in the history of mathematics,empirical-experimental tools,under the form of some computer programs,have penetrated massively in mathematics and led to a solution of the four-color problem(4CP),a solution which is still an object of debate and controversy,see Appel and Haken[1],Tymoczko[39],Swart[37],Marcus[27], and A.Calude[10].1

Clearly,any proof,be it mathematical or not,is a very heterogeneous process, where di?erent ingredients are involved in various degrees.The increasing role of empirical-experimental factors may recall the Babylonian mathematics,with the signi?cant di?erence that the deductive component,today impressive,was then very poor.But what is the di?erence between‘proof’and‘mathematical proof’? The di?culty of this question is related to the fact that proofs which are not typically mathematical may occur in mathematics too,while some mathematical reasonings may occur in non-mathematical contexts.Many combinatorial real-life situations require a mathematical approach,while games like chess require deductive thinking(although chess thinking seems to be much more than de-duction).In order to identify the nature of a mathematical proof we should?rst delimit the idea of a‘mathematical statement’,i.e.a statement that requires a mathematical proof.Most statements in everyday life are not of this type.Even most statements of the type‘if...,then...’are not mathematical statements. At what moment does mathematics enter the scene?The answer is related to the conceptual status of the involved terms and https://www.360docs.net/doc/2f16810864.html,ually,problems raised by non-mathematicians are not yet mathematical problems,they may be farther or nearer to this status.The problem raised to Kepler,about the densest packing,in a container,of some apples of similar dimensions,was very near to a mathematical one and it was easy to?nd its mathematical version.The task was more di?cult for the4CP,where things like‘map’,‘colors’,‘neighbor’,and ‘country’required some delicate analysis until their mathematical models were identi?ed.On the other hand,a question such as‘do you love me?’still remains far from a mathematical modelling process.

4Where does the job of mathematicians begin?

Is the transition from statements in general to mathematical statements the job of mathematicians?Mathematicians are divided in answering this question.Hugo Steinhaus’s answer was de?nitely yes,Paul Erd¨o s’s answer was clearly negative. The former liked to see in any piece of reality a potential mathematical problem, 1We have discussed in detail this issue in a previous article[11].

the latter liked to deal with problems already formulated in a clear mathematical language.Many intermediate situations are possible,and they give rise to a whole typology of mathematicians.Goethe’s remark about mathematicians’habit of translating into their own language what you tell them and making in this way your question completely hermetic refers just to this transition,sometimes of high di?culty.

If in mathematical research both above attitudes are interesting,useful and equally important,in the?eld of mathematical education of the general public the yes attitude seems more important than the negative one and deserves prior-ity.The social failure of mathematics to be recognized as a cultural enterprise is due,to a large extent,to the insu?cient attention paid to its links to other?elds of knowledge and creativity.This means that,in general mathematical education, besides the scenario with de?nitions-axioms-lemmas-theorems-proofs-corollaries-examples-applications we should consider,with at least the same attention,the scenario stressing problems,concepts,examples,ideas,motivations,the histor-ical and cultural context,including links to other?elds and ways of thinking. Are these two scenarios incompatible?Not at all.It happens that the second scenario was systematically neglected;but the historical reasons for this mistake will not be discussed here(see more in[29,30]).

Going back to proof,perhaps the most important task of mathematical ed-ucation is to explain why,in many circumstances,informal statements of prob-lems and informal proofs are not su?cient;then,how informal statements can be translated into mathematical ones.This task is genuinely related to the ex-planation of what is the mathematical way of thinking,in all its variants:combi-natorial,deductive,inductive,analogical,metaphorical,recursive,algorithmic, probabilistic,in?nite,topological,binary,triadic,etc.,and,above all,the step-by-step procedure leading to the need to use some means transcending the nat-ural language(arti?cial symbols of various types and their combinations).

5Proofs:from pride to arrogance

With Euclid’s Elements,for a long time taken to be a model of rigor,mathe-maticians became proud of their science,claimed to be the only one giving the feeling of certainty,of complete con?dence in its statements and ways of arguing. Despite some mishaps occurring in the19th century and in the?rst half of the 20th century,mathematicians continued to trust in axiomatic-deductive rigor, with the improvements brought by Hilbert’s ideas on axiomatics and formaliza-tion.With Bourbaki’s approach,towards the middle of the20th century,some mathematicians changed pride into arrogance,imposing a ritual excluding any concession to non-formal arguments.‘Mathematics’means‘proof’and‘proof’means‘formal proof’,is the new slogan.

Depuis les Grecs,qui dit Math′e matique,dit d′e monstration

is Bourbaki’s slogan,while Mac Lane’s[25]austere doctrine reads

If a result has not yet been given valid proof,it isn’t yet mathematics:we should strive to make it such.

Here,the proof is conceived according to the standards established by Hilbert, for whom a proof is a demonstrative text starting from axioms and where each step is obtained from the preceding ones,by using some pre-established explicit inference rules:

The rules should be so clear,that if somebody gives you what they claim is a proof,there is a mechanical procedure that will check whether the proof is correct or not,whether it obeys the rules or not.

And according to Ja?e and Quinn[20]

Modern mathematics is nearly characterized by the use of rigorous proofs.

This practice,the result of literally thousands of years of re?nement,has brought to mathematics a clarity and reliability unmatched by any other science.

This is a linear-growth model of mathematics(see St¨o ltzner[36]),a process in two stages.First,informal ideas are guessed and developed,conjectures are made,and outlines of justi?cations are suggested.Secondly,conjectures and speculations are tested and corrected;they are made reliable by proving them. The main goal of proof is to provide reliability to mathematical claims.The act of?nding a proof often yields,as a by-product,new insights and possibly unex-pected new data.So,by making sure that every step is correct,one can tell once and for all whether a theorem has been proved.Simple!A moment of re?ection shows that the case may not be so simple.For example,what if the“agent”(hu-man or computer)checking a proof for correctness makes a mistake(as pointed out by Lakatos[24],agents are fallible)?Obviously,another agent has to check that the agent doing the checking did not make any mistake.Some other agent will need to check that agent,and so on.Eventually either the process continues unendingly(an unrealistic scenario?),or one runs out of agents who could check the proof and,in principle,they could all have made a mistake!Finally,the linear-growth model is built on an asymmetry of proof and conjecture:Posing the latter does not necessarily involve proof.

The Hilbert-Bourbaki model has its own critics,some from outside mathe-matics such as Lakatos[24]

...those who,because of the usual deductive presentation of mathemat-ics,come to believe that the path of discovery is from axiom and/or de?nitions to proofs and theorems,may completely forget about the pos-sibility and importance of naive guessing

some from eminent mathematicians as Atiyah[2]:

[20]present a sanitized view of mathematics which condemns the subject

to an arthritic old age.They see an inexorable increase in standards and

are embarrassed by earlier periods of sloppy reasoning.But if mathemat-ics is to rejuvenate itself and break new ground it will have to allow for the exploration of new ideas and techniques which,in their creative phase, are likely to be dubious as in some of the great eras of the past.Perhaps we now have high standards of proof to aim at but,in the early stages of new developments,we must be prepared to act in more buccaneering style.

Atiyah’s point meets Lakatos’s[24]views

https://www.360docs.net/doc/2f16810864.html,rmal,quasi-empirical mathematics does not grow through a monotonous increase of the number of indubitably established theorems, but through the incessant improvement of guesses by speculation and crit-icism,by the logic of proof and refutation

and is consistent with the idea that the linear-growth model tacitly requires a ‘quasi-empirical’ontology,as noted by Hirsch in his contribution to the debate reported in[2]:

For if we don’t assume that mathematical speculations are about‘reality’then the analogy with physics is greatly weakened—and there is no rea-son to suggest that a speculative mathematical argument is a theory of anything,any more than a poem or novel is‘theoretical’.

6Proofs:from arrogance to prudence

It is well-known that the doubt appeared in respect to the Hilbert-Bourbaki rigor was caused by G¨o del’s incompleteness theorem,2see,for instance,Kline’s Mathematics,the Loss of Certainty[21].It is not by chance that a similar title was used later by Ilya Prigogine in respect to the development of physics.So, arrogance was more and more replaced by prudence.All rigid attitudes,based on binary predicates,no longer correspond to the new reality,and they should be considered‘cum grano salis’.The decisive step in this respect was accomplished by the spread of empirical-experimental factors in the development of proofs. 2The result has generated a variety of reactions,ranging from pessimism(the?nal, de?nite failure of any attempt to formalise all of mathematics)to optimism(a guar-antee that mathematics will go on forever)or simple dismissal(as irrelevant for the practice of mathematics).See more in Barrow[4],Chaitin[12]and Rozenberg and Salomaa[34].The main pragmatical conclusion seems to be that‘mathematical knowledge’,whatever this may mean,cannot solely be derived only from some?xed rules.Then,who validates the‘mathematical knowledge’?Wittgenstein’s answer was that the acceptability ultimately comes from the collective opinion of the social group of people practising mathematics.

7Assisted proofs vs.long proofs,or from prudence to humility

The?rst major step was realized in1976,with the discovery,using a massive computer computation,of a proof of the4CP.This event should be related to another one:the increasing length of some mathematical proofs.Obviously,the length l(p(s))of the proof p(s)of the statement s should be appreciated in respect to the length l(s)of s.There is a proposal to require the existence of a strictly positive constant k such that,for any reasonable theorem,the ratio l(p(s))/l(s)is situated between1/k and k.But the existence of such a k may remain an eternal challenge.

In the past,theorems with too long a statement were very rare.Early ex-amples of this type can be found in Apollonius’s Conica written some time after200BC.More recent examples include some theorems by Arnaud Denjoy, proved in the?rst decades of the20th century,and Jordan’s theorem(1870) concerning the way a simple closed curve c separates the plane in two domains whose common frontier is c.A strong trend towards long proofs appears in the second half of the20th century.We exclude here the arti?cial situation when theorems with long statements and long proofs can be decomposed into several theorems,with normal lengths.We refer to statements having a clear meaning, whose unity and coherence are lost if they are not maintained in their initial form.The4CP is just of this type.Kepler’s conjecture is of the same type and so are Fermat’s theorem,Poincar′e’s conjecture and Riemann’s hypothesis.What about the theorem giving the classi?cation of?nite simple groups?In contrast with the preceding examples,in this case the statement of the theorem is very long.It may be interesting to observe that some theorems which are in complete agreement with our intuition,like Jordan’s and Kepler’s,require long proofs, while some other theorems,in con?ict with our intuition,such as the theorem asserting the existence of three domains in the plane having the same frontier, have a short proof.Ultimately,everything depends on the way the mathematical text is segmented in various pieces.

The proof of the theorem giving the typology of the?nite simple groups re-quired a total of about?fteen thousand pages,spread in?ve-hundred separate articles belonging to about three-hundred di?erent authors(see Conder[15]). But Serre[31]is still waiting for experts to check the claim by Aschbacher and Smith to have succeeded?lling in the gap in the proof of the classi?cation theo-rem,a gap already discovered in1980by Daniel Gorenstein.The gap concerned that part which deals with‘quasi-thin’groups.Despite this persisting doubt, most parts of the global proof were already published in various prestigious jour-nals.The ambition of rigor was transgressed by the realities of mathematical life. Moreover,while each author had personal control of his own contribution(ex-cepting the mentioned gap),the general belief was that the only person having a global,holistic representation and understanding of this theorem was Daniel Gorenstein,who unfortunately died in1992.So,the classi?cation theorem is still looking for its validity and understanding.

The story of the classi?cation theorem points out the dramatic fate of some mathematical truths,whose recognition may depend on sociological factors which are no longer under the control of the mathematical community.This situation is not isolated.Think of Fermat’s theorem,whose proof(by Wiles) was checked by a small number of specialists in the?eld,but the fact that here we had several‘Gorensteins’,not only one,does not essentially change the situation.

How do exceedingly long proofs compare with assisted proofs?In1996 Robertson,Sanders,Seymour and Thomas[32]o?ered a simpler proof of the 4CP.They conclude with the following interesting comment(p.24):

We should mention that both our programs use only integer arithmetic, and so we need not be concerned with round–o?errors and similar dan-gers of?oating point arithmetic.However,an argument can be made that our“proof”is not a proof in the traditional sense,because it contains steps that can never be veri?ed by humans.In particular,we have not proved the correctness of the compiler we compiled our programs on,nor have we proved the infallibility of the hardware we ran our programs on.

These have to be taken on faith,and are conceivably a source of error.

However,from a practical point of view,the chance of a computer er-ror that appears consistently in exactly the same way on all runs of our programs on all the compilers under all the operating systems that our programs run on is in?nitesimally small compared to the chance of a human error during the same amount of case–checking.Apart from this hypothetical possibility of a computer consistently giving an incorrect an-swer,the rest of our proof can be veri?ed in the same way as traditional mathematical proofs.We concede,however,that verifying a computer program is much more di?cult than checking a mathematical proof of the same length.3

Knuth[22]p.18con?rms the opinion expressed in the last lines of the pre-vious paragraph:

...program–writing is substantially more demanding than book–writing.

Why is this so?I think the main reason is that a larger attention span is needed when working on a large computer program than when doing other intellectual tasks....Another reason is...that programming demands

a signi?cantly higher standard of accuracy.Things don’t simply have to

make sense to another human being,they must make sense to a computer. And indeed,Knuth compared his T E X compiler(a document of about500pages) with Feit and Thompson’s[17]theorem that all simple groups of odd order are cyclic.He lucidly argues that the program might not incorporate as much creativity and“daring”as the proof of the theorem,but they come even when compared on depth of detail,length and paradigms involved.What distinguishes the program from the proof is the“veri?cation”:convincing a couple of(human)

3Our emphasis.

experts that the proof works in principle seems to be easier than making sure that the program really works.A demonstration that there exists a way to compile T E X is not enough!Hence Knuth’s warning:“Beware of bugs in the above code: I have only proved it correct,not tried it.”

It is just the moment to ask,together with R.Graham:“If no human being can ever hope to check a proof,is it really a proof?”Continuing this question,we may ask:What about the fate of a mathematical theorem whose understanding is in the hands of only a few persons?Let us observe that in both cases discussed above(4CP and the classi?cation theorem)it is not only the global,holistic understanding under question,but also its local validity.

Another example of humility some eminent mathematicians are forced to adopt with respect to yesterday’s high exigency of rigor was given recently by one of the most prestigious mathematical journals,situated for a long time at the top of mathematical creativity:Annals of Mathematics.We learn from Karl Sigmund[35]that the proof proposed by Thomas Hales in August1998and the corresponding joint paper by Hales and Ferguson con?rming Kepler’s conjecture about the densest possible packing of unit spheres into a container,was accepted for publication in the Annals of Mathematics,

but with an introductory remark by the editors,a disclaimer as it were, stating that they had been unable to verify the correctness of the250-page manuscript with absolute certainty.

The proof is so long and based to such an extent on massive computations,that the platoon of mathematicians charged with the task of checking it ran out of steam.Robert MacPherson,the Annals’editor in charge of the project,stated that“the referees put a level of energy into this that is,in my experience,un-precedented.But they ended up being only99percent certain that the proof was correct”.However,not only the referees,the author himself,Thomas Hales,‘was exhausted’,as Sigmund observes.He was advised to re-write the manuscript:he didn’t,but instead he started another project,‘Formal Proof of Kepler’(FPK),a project which puts theorem-veri?cation on equal footing with Knuth’s program-veri?cation.Programming a machine to check human reasoning gives a new type of insight which has its own kind of beauty.Here is the bitter-ironical comment by Sigmund:

After computer-based theorem-proving,this is the next great leap forward: computer-based proof checking.Pushed to the limit,this would seem to entail a self-referential loop.Maybe the purists who insist that a proof is

a proof if they can understand it are right after all.On the other hand,

computer-based refereeing is such a promising concept,for reviewers, editors,and authors alike,that it seems unthinkable that the community will not succumb to the temptation.

So,what is the perspective?It appears that FPK will require20man-years to check every single step of Hales’proof.“If all goes well,we then can be100 percent certain”,concludes Sigmund([35],p.67).

Let us recall that Perelman’s recent proof of Poincar′e’s conjecture4is still being checked at MIT(Cambridge)and IHES(Paris)and who knows how long this process will be?We enter a period in which mathematical assessment will increase in importance and will use,in its turn,computational means.The job of an increasing number of mathematicians will be to check the work of other mathematicians.We have to learn to reward this very di?cult work,to pay it at its correct value.

One could think that the new trend?ts the linear–growth model:all experi-ments,computations and simulations,no matter how clever and powerful,belong to and are to stay at the?rst stage of mathematical research where informality and guessing are dominant.This is not the case.Of course,some automated heuristics will belong only to the?rst stage.The shift is produced when a large part of the results produced by computing experiments are transferred to the second stage;they no longer only develop the intuition,they no longer only build hypotheses,but they assist the very process of proof,from discovery to checking, they create a new type of environment in which mathematicians can undertake mathematical research.

For some a proof including computer programs is like a telephone directory, while a human proof may compete with a beautiful novel.This analogy refers to the exclusive syntactic nature of a computer-based proof(where we learn that the respective proof is valid,but we may not(don’t)understand why),contrasting with the attention paid to the semantic aspect,to the understanding process, in the traditional proofs,exclusively made by humans.5The criticism implied by this analogy,which is very strong in Ren′e Thom’s writings,is not always motivated.In fact,an‘elegant’program6may help the understanding process of mathematical facts in a completely new way.We con?ne ourselves to a few examples only:

...if one can program a computer to perform some part of mathematics, then in a very e?ective sense one does understand that part of mathe-matics(G.Tee[38])

If I can give an abstract proof of something,I’m reasonably happy.But if

I can get a concrete,computational proof and actually produce numbers

I’m much happier.I’m rather an addict of doing things on computer, because that gives you an explicit criterion of what’s going on.I have a visual way of thinking,and I’m happy if I can see a picture of what I’m working with(https://www.360docs.net/doc/2f16810864.html,nor,[7])

https://www.360docs.net/doc/2f16810864.html,puter-based proofs are often more convincing than many standard proofs based on diagrams which are claimed to commute,arrows which

4Mathematicians familiar with Perelman’s work expect that it will be di?cult to locate any substantial mistakes,cf.Robinson[33].

5The conjugate pair rigor-meaning deserves to be reconsidered,cf.Marcus[26].

6Knuth’s concept of treating a program as a piece of literature,addressed to human beings rather than to a computer;see[23].

are supposed to be the same,and arguments which are left to the reader (J.-P.Serre[31])

...the computer changes epistemology,it changes the meaning of“to understand.”To me,you understand something only if you can program it.(G.Chaitin[14])

It is the right moment to reject the idea that computer-based proofs are nec-essarily ugly and opaque not only to being checked for their correctness,but also to being understood in their essence.

Finally,do axiomatic-deductive proofs remain an a posteriori work,a luxury we can marginalize?When asked whether“when you are doing mathematics, can you know that something is true even before you have the proof?”,Serre ([31],p.212)answers:“Of course,this is very common”.But he adds:“But one should distinguish between the genuine goal[...]which one feels is surely true, and the auxiliary statements(lemmas,etc.),which may well be intractable(as happened to Wiles in his?rst attempt)or even downright false[...].”

8A possible readership crisis and the globalization of the proving process

Another aspect of very long(human or computer-assisted)proofs is the risk of ?nding no competent reader for them,no professional mathematician ready to spend a long period to check them.This happened with the famous Bieberbach conjecture.In1916,L.Bieberbach conjectured a necessary condition on an ana-lytic function to map the unit disk injectively to itself.The statement concerns the(normalised)Taylor coe?cients a n of such a function(a0=0,a1=1):it then states that|a n|is at most n,for any positive integer n.Various mathe-maticians succeeded in proving the required inequality for particular values of n,but not for every n.In March1984,Louis de Branges(from Purdue Univer-sity,Lafayette)claimed a proof,but nobody trusted him,because previously he made wrong claims for other open problems.Moreover,nobody in USA agreed to read his400-pages manuscript to check his proof,representing seven years of hard work.The readership crisis ended when Louis de Branges proposed to the Russian mathematician https://www.360docs.net/doc/2f16810864.html,in that he check the proof;Milin was the author of a conjecture implying Bieberbach’s conjecture.De Branges travelled to Leningrad,where after a period of three months of confrontation with a team formed by Milin and two other Russian mathematicians,E.G.Emelianov and G.V.Kuzmina,they all reached the conclusion that various mistakes existing in the proof were all benign.Stimulated by this fact,two German mathematicians, C.F.Gerald and C.Pommerenke(Technical University,Berlin)succeeded in simplifying De Branges’s proof.

This example is very signi?cant for the globalization of mathematical re-search,a result of the globalization of communication and of international co-operation.It is no exaggeration to say that mathematical proof has now a global dimension.

9Experimental mathematics or the hope for it

The emergence of powerful mathematical computing environments such as Math-ematica,MathLab,or Maple,the increasing availability of powerful(multi-processor)computers,and the omnipresence of the Internet allowing mathe-maticians to proceed heuristically and‘quasi-inductively’,have created a blend of logical and empirical–experimental arguments which is called“quasi–empirical mathematics”(by Tymoczko[39],Chaitin[13])or“experimental mathematics”(Borwein,Bailey[8],Borwein,Bailey,Girgensohn[9]).Mathematicians increas-ingly use symbolic and numerical computation,visualisation tools,simulation and data–mining.New types of proofs motivated by the experimental“ideol-ogy”have appeared.For example,the interactive proof(see Goldwasser,Micali, Racko?[18],Blum[5])or the holographic proof(see Babai[3]).And,of course, these new developments have put the classical idea of axiomatic-deductive proof under siege(see[11]for a detailed discussion).

Two programatic‘institutions’are symptomatic for the new trend:the Cen-tre for Experimental and Constructive Mathematics(CECM),7and the journal Experimental Mathematics.8Here are their working‘philosophies’: At CECM we are interested in developing methods for exploiting math-ematical computation as a tool in the development of mathematical in-tuition,in hypothesis building,in the generation of symbolically assisted proofs,and in the construction of a?exible computer environment in which researchers and research students can undertake such research.

That is,in doing experimental mathematics.[6]

Experimental Mathematics publishes formal results inspired by exper-imentation,conjectures suggested by experiments,surveys of areas of mathematics from the experimental point of view,descriptions of algo-rithms and software for mathematical exploration,and general articles of interest to the community.

For centuries mathematicians have used experiments,some leading to im-portant discoveries:the Gibbs phenomenon in Fourier analysis,the determinis-tic chaos phenomenon,fractals.Wolfram’s extensive computer experiments in theoretical physics paved the way for his discovery of simple programs having extremely complicated behavior[40].Experimental mathematics—as system-atic mathematical experimentation ranging from hypotheses building to assisted proofs and automated proof–checking—will play an increasingly important role and will become part of the mainstream of mathematics.There are many reasons for this trend:they range from logical(the absolute truth simply doesn’t exist), sociological(correctness is not absolute as mathematics advances by making mis-takes and correcting and re–correcting them),economic(powerful computers will be accessible to more and more people),and psychological(results and success 7www.cecm.sfu.ca.

https://www.360docs.net/doc/2f16810864.html,.

inspire emulation).The computer is the essential,but not the only tool.New the-oretical concepts will emerge,for example,the systematic search for new axioms. Assisted-proofs are not only useful and correct,but they have their own beauty and elegance,impossible to?nd in classical proofs.The experimental trend is not antithetical to the axiomatic-deductive approach,it complements it.Nor is the axiomatic-deductive proof a posteriori work,a luxury we can marginalize. There is hope for integration!

Acknowledgment

We are grateful to Greg Chaitin and Garry Tee for useful comments and refer-ences.

References

1.K.Appel,W.Haken.Every Planar Graph is Four Colorable,Contemporary Math-

ematics98,AMS,Providence,1989.

2.M.Atiyah et al.Responses to‘Theoretical mathematics:Toward a cultural synthe-

sis of mathematics and theoretical physics’,Bulletin of AMS30(1994),178–211.

3.L.Babai.Probably true theorems,cry wolf?Notices of AMS41(5)(1994),453–

454.

4.J.Barrow.Impossibility–The Limits of Science and the Science of Limits,Oxford

University Press,Oxford,1998.

5.M.Blum.How to prove a theorem so no one else can claim it,Proceedings of

the International Congress of Mathematicians,Berkeley,California,USA,1986, 1444–1451.

6.J.M.Borwein.Experimental Mathematics and Integer Relations at www.

https://www.360docs.net/doc/2f16810864.html,/publication/Ercim News/enw50/borwein.html.

7.J.M.Borwein.www.cecm.sfu.ca/personal/jborwein/CRM.html.

8.J.M.Borwein,D.Bailey.Mathematics by Experiment:Plausible Reasoning in the

21st Century,A.K.Peters,Natick,MA,2003.

9.J.M.Borwein,D.Bailey,R.Girgensohn.Experimentation in Mathematics:Com-

putational Paths to Discovery,A.K.Peters,Natick,MA,2004.

10. A.S.Calude.The journey of the four colour theorem through time,The NZ Math.

Magazine38,3(2001),27–35.

11. C.S.Calude,E.Calude,S.Marcus.Passages of Proof,Los Alamos preprint

archive,arXiv:math.HO/0305213,16May2003.

12.G.J.Chaitin.The Unknowable,Springer Verlag,Singapore,1999.

13.G.J.Chaitin.Exploring Randomness,Springer Verlag,London,2001.

14.G.J.Chaitin.Meta Math!,E-book at https://www.360docs.net/doc/2f16810864.html,/CDMTCS/chaitin/

omega.html.

15.M.Conder.Pure mathematics:An art?or an experimental science?NZ Science

Review51,3(1994),99–102.

16. E.Ehrlich,S.B.Flexner,G.Carruth,J.M.Hawkins.Oxford American Dictio-

nary,Avon Publishers of Bard,Camelot,Discus and Flare Books,New York, 1982.

17.W.Feit,J.G.Thomson.Solvability of groups of odd order,Paci?c J.Math.13

(1963),775–1029.

18.S.Goldwasser,S.Micali,C.Racko?.The knowledge complexity of interactive

proof–systems,SIAM https://www.360docs.net/doc/2f16810864.html,put.,18(1)(1989),186–208.

19.R.Hersh.What Is Mathematics,Really?,Vintage,London,1997.

20. A.Ja?e and F.Quinn.Theoretical mathematics:Toward a cultural synthesis of

mathematics and theoretical physics,Bulletin of AMS29(1993),178–211.

21.M.Kline.Mathematics:The Loss of Certainty,Oxford University Press,Oxford,

1982.

22. D.E.Knuth.Theory and practice,EATCS Bull.27(1985),14–21.

23. D.E.Knuth.Literate Programming,CSLI Lecture Notes,no.27,Stanford,Cali-

fornia,1992.

https://www.360docs.net/doc/2f16810864.html,katos.Proofs and Refutations.The Logic of Mathematical Discovery,John

Worrall and Elie Zahar(eds.),Cambridge University Press,Cambridge,1966. 25.S.Mac Lane.Despite physicists,proof is essential in mathematics,Synthese111

(1997),147–154.

26.S.Marcus.No system can be improved in all respects,in G.Altmann,W.Koch

(eds.)Systems;New Paradigms for the Human Sciences,Walter de Gruyter, Berlin,1998,143–164.

27.S.Marcus.Ways of Thinking,Scienti?c and Encyclopedic Publ.House,Bucharest,

1987.(in Romanian)

28. C.Perelman,L.Olbrechts-Tyteca.Trait′e de l’https://www.360docs.net/doc/2f16810864.html, Nouvelle

Rhetorique,′Editions de l’Universit′e de Bruxelles,Bruxelles,1988.

29.G.P′o lya.How to Solve It,Princeton University Press,Princeton,1957.(2nd

edition)

30.G.P′o lya.Mathematics and Plausible Reasoning,Volume1:Induction and Analogy

in Mathematics,Volume2:Patterns of Plausible Inference,Princeton University Press,Princeton,1990.(reprint edition)

31.M.Raussen,C.Skau.Interview with Jean-Pierre Serre,Notices of AMS,51,2

(2004),210–214.

32.N.Robertson,D.Sanders,P.Seymour,R.Thomas.A new proof of the four-colour

theorem,Electronic Research Announcements of AMS2,1(1996),17–25.

33.S.Robinson.Russian reports he has solved a celebrated math problem,The New

York Times,April15(2003),p.D3.

34.G.Rozenberg,A.Salomaa.Cornerstones of Undecidability,Prentice-Hall,New

York,1994.

35.K.Sigmund.Review of George G.Szpiro.“Kepler’s Conjecture”,Wiley,2003,

Mathematical Intelligencer,26,1(2004),66–67.

36.M.St¨o ltzner.What Lakatos could teach the mathematical physicist,in G.

Kampis,L.Kvasz,M.St¨o ltzner(eds.).Appraising Lakatos.Mathematics,Method-ology and the Man,Kluwer,Dordrecht,2002,157–188.

37. E.R.Swart.The philosophical implications of the four-colour problem,American

Math.Monthly87,9(1980),697–702.

https://www.360docs.net/doc/2f16810864.html,puters and mathematics,The NZ Math.Magazine24,3(1987),

3–9.

39.T.Tymoczko.The four-colour problem and its philosophical signi?cance,J.Phi-

losophy2,2(1979),57–83.

40.S.Wolfram.A New Kind of Science,Wolfram Media,2002.

41.Experimental Mathematics:Statement of Philosophy,https://www.360docs.net/doc/2f16810864.html,/expmath

/philosophy.html.

人教版九年级数学上册期末考试试卷

初中数学试卷 2014-2015年九年级上册期末考试试卷 一.选择题(每小题3分,共计15分) 1.在△ABC 中AB=AC ,BC=5cm ,作AB 的垂直平分交另一腰AC 于D ,连接BD 。如果△BCD 的周长为17cm ,则△ABC 的腰长为( ) A.5cm B.7cm C.11cm D.12cm 2. 下列函数是反比例函数的是( ) A . y=x B . y=kx ﹣1 C . y= D . y= 3.已知点P (m ,n )在某反比例函数的图像上,则此图像上还有点( ) A. (-m ,n ) B.(m ,-n ) C.(-m ,-n ) (0,0) 4.下面四个图是同一天四个不同时刻树的影子,其时间由早到晚的顺序为( ) A.1234 B.4312 C.3421 D.4231 5.向上抛掷四枚硬币,落地后出现两个正面朝上,两个正面朝下的概率为 ( ) A.4 1 B.8 3 C.8 5 D.8 1 西 西 西 西 1 2 3 4

二.填空题(每小题3分,共24分) 6.从52张扑克牌(已除去大、小王)中任意抽取两张,则到同一种花色的概率为 。 7.已知y 与x+1成反比例关系,并且当x=2时,y=12;当x=-3时,y 的值为 。 8.一项工程,甲单独完成需要10天,乙单独完成需要15天,现在两人合作,工程完工后厂家需要共付给450元,如按完成的工作量的多少进行分配,甲应得到 元。 9.如图所示,在△ABC 中,D 、E 分别为AB 、AC 的中点,连接DE 、BE 、DC 且BE 、CD 相交于点O ,若1=?DEO S ,则=?OBC S . 10.一个四边形各边的中点的连线组成的四边形为菱形,则原四边形是 形 。 11.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为____ _. 12.如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A=30°,∠ACB=80°,则∠BCE=_________度. 13.十年后,我班学生聚会,见面时相互间均握了一次手,好事者统计:一共握了780次.你认为这次聚会的同学有_________人. 三、解答与证明(共90分) 14.(10分)解方程: (1) x 2+3x+1=0 (2) (x ﹣3)2+4x (x ﹣3)=0 15.(10分)已知关于x 的方程x 2﹣(m+2)x+(2m ﹣1)=0. (1)求证:方程恒有两个不相等的实数根; O A B C D E

初二数学试题及答案(免费)

初二数学试题 (时间:120分钟 满分:150分) 一、选择题:本题共14小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共56分,错选、不选或选出的答案超过一个,均记0分. 1、下列说法中正确的是( ) A. x 的次数是0 B. y 1是单项式 C. 2 1 是单项式 D. a 5 的系数是5 2、下列说法中,不正确的是 ( ) A.单项式中的数字因数叫这个单项式的系数 B.单独一个数或字母也是单项式 C.一个单项式中,所有字母的指数的和叫这个单项式的次数 D.多项式中含字母的单项式的次数即为多项式的次数 3、下列四个图形中,每个小正方形都标上了颜色. 若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是( ) A . B . C .

4、只含有z y x ,,的三次多项式中,不可能含有的项是 ( ) A.32x B.xyz 5 C.37y - D.yz x 24 1 5、与方程12x x -=的解相同的方程是( ) A 、212x x -=+ B 、21x x =+ C 、21x x =- D 、1 2 x x += 6、把方程112 3 x x --=去分母后,正确的是( ) A 、32(1)1x x --= B 、32(1)6x x --= C 、3226x x --= D 、3226x x +-= 7、某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A 、赚16元 B 、赔16元 C 、不赚不赔 D 、无法确定 8、已知线段长3.现延长到点C ,使3.取线段的中点D , 线段的长为( ) A 、4.5 B 、6 C 、7 D 、7.5. 9、在下列单项式中,不是同类项的是( ) A . 2 12 y 和2 B .-3和0 C .2和2 c D .和-8 10、若都是4次多项式, 则多项式的次数为( ) A.一定是4 B.不超过4. C.不低于4. D.一定是8. 11、方程042=-+a x 的解是2-=x ,则a 等于( )

九年级上期末考试数学试题及答案

初三年级期末质量抽测 数学试卷 学校姓名考试编号 考 生 须 知 1.本试卷共8页,共五道大题,29道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上认真填写学校名称、姓名和考试编号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效. 4.考试结束,请将本试卷和答题卡一并交回. 一、选择题(共10道小题,每小题3分,共30分) 下列各题均有四个选项,其中只有一个 ..是符合题意的. 1.在平面直角坐标系中,将点A(﹣2,3)向右平移3个单位长度后得到的对应点A′的 坐标是 A.(1,3)B.(﹣2,﹣3)C.(﹣2,6)D.(﹣2,1) 2.下面四个几何体中,主视图是圆的是 A B C D 3.“双十二”期间,小冉的妈妈在网上商城给小冉买了一个书包,除了书包打八折外还随机 赠送购买者1支笔(除颜色外其它都相同且数量有限).小冉的妈妈购买成功时,还有5支黑 色,3支绿色,2支红色的笔.那么随机赠送的笔为绿色的概率为 A. 1 10 B. 1 5 C. 3 10 D. 2 5 4. 已知⊙O的半径长为5,若点P在⊙O内,那么下列结论正确的是 A. OP>5 B. OP=5 C. 0<OP<5 D. 0≤OP<5 5.如右图,在Rt△ABC中,∠C=90°,AC=4,BC=3,则sin B的值等于 C B A

A . 43 B . 34 C . 45 D . 35 6.已知(2)2m y m x =-+是y 关于x 的二次函数,那么m 的值为 A .-2 B. 2 C. 2± D. 0 7.如右图,线段AB 是⊙O 的直径,弦CD 丄AB ,∠CAB =20°,则∠AOD 等于 A .120° B . 140° C .150° D . 160° 8.二次函数2 23y x x =--的最小值为 A. 5 B. 0 C. -3 D. -4 9.如右图,将△ABC 绕着点C 顺时针旋转50°后得到△A 1B 1C .若∠A =40°, ∠B 1=110°,则∠BCA 1的度数是 10. 如右图,正方形ABCD 和正三角形AEF 都内接于⊙O ,EF 与BC ,CD 分别相交 于点G ,H ,则EF GH 的值为 A. B. 3 2 C. D. 2 二、填空题(共6道小题,每小题3分,共18分) 11.如果cos 2 A = ,那么锐角A 的度数为 . 12.如右图,四边形ABCD 内接于⊙O ,E 是BC 延长线上一点,若∠BAD =105°, 则∠DCE 的度数是 . 13.在一个不透明的口袋中装有5个除了标号外其余都完全相同的小球,把它们分别标号为 1,2,3,4, B 1 B A A 1 A B

小学数学教学中渗透德育案例

小学数学教学中渗透德育案例 《数学课程标准》在分类目标中指出:“根据数学的学科特点,对学生进行学习目的教育,爱祖国、爱社会主义、爱科学的教育,辩证唯物主义观点的启蒙教育,培养学生良好的学习习惯和独立思考、克服困难的精神。”那么如何做好自己的本份工作——在数学统计教学中渗透德育,下面就结合教学案例谈一下浅显的认识。 案例:在教学数学人教版三年级数学上册《数字编码》一课时,教材在77页提供了4种编码,让学生了解数字的编码。教学完例题,学生已掌握了初步的数字编码知识,教师安排了一个实践活动把数字编码知识和本校的实际情况结合起来。 师:我们的学校是双语学校,你们在校园里都记得有几个班级? 生:13个。 师:你们知道这些班级各有多学生吗? 生:不知道。 师:这节课我们就一块去统计校园里的学生数。 经过实践活动,师生共同收集、整理出了数据,汉语言班级6个,民语言班级7个。 师:根据收集到的信息,你能想到什么? 生:………… 学生提出并解决了很多数学问题,教师在关注知识与技能的同时,并没有忘记关注学生的情感、态度和价值观,追问了一句:“在统计校园的树时你们还体会到了什么?” 生1:我们的学校很美,我很喜欢这个学校。 生2:我们的学校是花园式学校,我们要爱护校园里的花草树木。师:我们的学校很美,我们要爱它。我们的生活中充满了数学,数学就在我们身边,我们从小就要学好它。 反思; 一、体会应用,对学生进行学习目的教育 “伟大的目的产生伟大的毅力。”“坚强的意志源于崇高的理想。”教师应通过生动形象的思想教育,以及数学知识在日常生活、生产建

设和科技等方面的广泛应用,不断激发学生的学习兴趣,调动他们学习的主动性和积极性,深入浅出地进行学习目的教育。 比如:案例1中学生通过对校园里班级的统计,不仅体会到生活中处处有数学,还受到了思想的熏陶,产生了爱校、爱护班集体的情感。学习了统计后,还可以让学生统计塑料袋个数的活动,加深对不同统计量意义的理解,并且在活动中综合运用所学的知识和技能,感受到丢弃塑料袋的行为会对大自然造成污染,唤起他们的环保意思。 在数学教学中就要紧密联系生活实际,让学生真正体会到数学的应用价值和重要性,从小树立为振兴中华而学好数学的雄心壮志。 二、深入挖掘,对学生进行爱国主义教育 爱国主义教育,是小学数学教学中的重要内容,它具有很强的现实意义和历史意义。一个学生,只有爱中华民族,爱社会主义祖国,才能有一个明确的学习目的,数学教学中,用形象具体的图表具有说服力的数字材料,古老悠久的数学史,对学生进行这方面的教育。另外教师还可以从报看杂志、电视上获得一些数据信息做为教学内容。 三、言传身教,对学生进行行为示范的指导 案例折射出了,教师要寓情于理、言传身教,对学生进行行为示范的指导。“躬行”是陶冶学生的根本,教师必须在实际行动与道德行为上,能做学生的榜样,以严谨的治学,公正的板书、美的语言,美的行动、美的心灵来影响和感化学生,才能使学生“自生其心”,真正达到教书育人的目的。 德育教学如细雨,润物无声,各科教学是沙土,无时无处不渗透着细雨之水,学生似小草,吮吸着沙土里的水分。数学统计教学中蕴藏着丰富的德育资源,只要教师常以细雨之水“润”之,就会达到“随风潜入夜,润物细无声的教学效果。 黄健 2014年10月

最新人教版九年级数学上册期末考试试题

人教版九年级数学上册 期末试题 一、选择题(每小题3分,共30分) 1、在下列四个图案中,不是中心对称图形的是() A. B. C. D. 2、一元二次方程x2-6x-5=0配方后可变形为() A. (x-3)2=14 B. (x-3)2=4 C. (x+3)2=14 D. (x+3)2=4 3、若二次函数y=x2-mx+1的图象的顶点在x轴上,则m的值是() A. 2 B. -2 C. 0 D. ±2 4、下列事件中,属于随机事件的有() ①任意画一个三角形,其内角和为360°; ②投一枚骰子得到的点数是奇数; ③经过有交通信号灯的路口,遇到红灯; ④从日历本上任选一天为星期天. A. ①②③ B. ②③④ C. ①③④ D. ①②④ 5、已知一元二次方程有一个根为2,则另一根为() A. -4 B. -2 C. 4 D. 2 6、已知⊙O的半径是6 cm,点O到同一平面内直线m的距离为5 cm,则直线m与⊙O的位置关系是( ) A.相交B.相切C.相离D.无法判断 7、已知抛物线y=﹣2(x﹣3)2+5,则此抛物线() A. 开口向下,对称轴为直线x=﹣3 B. 顶点坐标为(﹣3,5) C. 最小值为5 D. 当x>3时y随x的增大而减小 8、如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于D,且CO=CD,则∠PCA=() A. 30° B. 45° C. 60° D. 67.5° 9、某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份平均每月的增长率为x,那么x满足的方程是() A. 50(1+x)2=182 B. 50+50(1+x)+50(1+x)2=182 C. 50(1+2x)=182 D. 50+50(1+x)+50(1+2x)2=182 10、二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=1,给出下列结论: ①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确的结论有() A. 1个 B. 2个 C. 3个 D. 4个 二、填空题(共8小题,每小题3 分,共24 分) 11.在平面直角坐标系内,点P(-2,3)关于原点O对称的点P/的坐标为. 12.从长度分别为3,5,6,9的四条线段中任取三条,则能组成三角形的概率为. 13.如图,可以看作是一个基础图形绕着中心旋转次而生成的,则每次旋转的度数是. 14.一个底面直径是80,母线长为的圆锥的侧面展开图的圆心角的度数为______。 15.关于x的一元二次方程(a+1)x2-ax+a2-1=0的一个根为0,则a= . 16.将抛物线y=(x-1)2+2向左平移3个单位,再向下平移5个单位,得到抛物线的表达式为。 17.一个水平放着的圆柱形水管的截面如图所示,如果水管直径为,水面的高为,那么水面宽AB (不取近似值). 18.如图,在扇形AOB中,∠AOB=90°,点C为OA的中点,CE⊥OA

初二数学经典难题(带答案及解析)

初二数学经典难题 一、解答题(共10小题,满分100分) 1.(10分)已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=15°.求证:△PBC是正三角形.(初二) 2.(10分)已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F. 求证:∠DEN=∠F. 》 3.(10分)如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半. 4.(10分)设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB. 5.(10分)P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.

; 6.(10分)一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水.向容器中注满水的全过程共用时间t分.求两根水管各自注水的速度. 7.(10分)(2009?郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(﹣2,﹣1),且P(﹣1,﹣2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B. (1)写出正比例函数和反比例函数的关系式; (2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等如果存在,请求出点的坐标,如果不存在,请说明理由; (3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形 OPCQ周长的最小值. 8.(10分)(2008?海南)如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在线段BC上,且PE=PB. (1)求证:①PE=PD;②PE⊥PD; (2)设AP=x,△PBE的面积为y. 、 ①求出y关于x的函数关系式,并写出x的取值范围; ②当x取何值时,y取得最大值,并求出这个最大值.

【必考题】九年级数学上期末模拟试题及答案

【必考题】九年级数学上期末模拟试题及答案 一、选择题 1.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( ) A .x(x-20)=300 B .x(x+20)=300 C .60(x+20)=300 D .60(x-20)=300 2.等腰三角形一条边的边长为3,它的另两条边的边长是关于x 的一元二次方程x 2﹣12x+k=0的两个根,则k 的值是( ) A .27 B .36 C .27或36 D .18 3.二次函数236y x x =-+变形为()2 y a x m n =++的形式,正确的是( ) A .()2 313y x =--+ B .()2 313y x =--- C .()2 313y x =-++ D .()2 313y x =-+- 4.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是 A .点A 在圆外 B .点A 在圆上 C .点A 在圆内 D .不能确定 5.设()12,A y -,()21,B y ,()32,C y 是抛物线2 (1)y x k =-++上的三点,则1y , 2y ,3y 的大小关系为( ) A .123y y y >> B .132y y y >> C .231y y y >> D .312y y y >> 6.关于下列二次函数图象之间的变换,叙述错误的是( ) A .将y =﹣2x 2+1的图象向下平移3个单位得到y =﹣2x 2﹣2的图象 B .将y =﹣2(x ﹣1)2的图象向左平移3个单位得到y =﹣2(x+2)2的图象 C .将y =﹣2x 2的图象沿x 轴翻折得到y =2x 2的图象 D .将y =﹣2(x ﹣1)2+1的图象沿y 轴翻折得到y =﹣2(x+1)2﹣1的图象 7.以394c x ±+= 为根的一元二次方程可能是( ) A .230x x c --= B .230x x c +-= C .230-+=x x c D .230++=x x c 8.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是 ( )

初中数学教学中德育渗透的教学案例

初中数学教学中德育渗透的教学一例 一、问题背景: 初二已近尾声,临近初三毕业,还有较多学生学对升学还没有明确的打算,一部分成绩较差同学没有明确的学习奋斗目标,学习缺乏动力.一部分成绩较好的学生对我们学校的高中并不了解,又由于一些兄弟学校的宣传攻势,让我们的优生对我们学校的高中信心不足,不是大面积的优生十分愿意填报我校的高中自愿,往往到毕业自愿填报时班主任作了大量的工作,效果却不是太好.一方面为了激励我们初三学生,具有明确的升学目标,发奋努力学习,另一方面为了能为我校留下更多的优秀生源,减轻毕业时的工作难度,有必要在我们平常的教学中渗透这方面的思想教育,为此我在教学中抓住每一个切入点渗透这方面的思想教育,注意将这方面的教育素材与数学教学有机结合,比如:在我教学“加权平均数”时想到,当初我与教科室胡主任在研究衔接班招生时的综合成绩计算方法里面,每次考试成绩所占的百分比就是加权平均数中的权,是一个绝好的教学素材,于是我将这一与学生息息相关的例子用到了这一课的教学之中,取得了较好的教学效果,下面是这堂课的教学实录。 二、课堂实录: 这是人教版教材八(下20·1加权平均数教学中一个真实的教学片断师:同学们,刚才我们回顾了算术平均数及其计算方法,下面我们一起来研究一个事关同学们人生重大决策的问题。 生1(迫不及待地:老师是什么问题啊? 师:我们即将进入初三,我们学校针对初三学生每届都将组建一个衔接班,你们知道吗?有没有哪位同学就你知道的情况给同学们作个介绍。 生2:老师,我知道一些,我哥就在现在的高二衔接班读书,我当时从龙角转学到外国语,就希望能到初三时像哥一样能进入到衔接班去。我叔到学校来做杂工,婶到学校来当清洁工就是为了我们俩在这里好好读书的。 师:哦,难怪谭华同学这么发奋,原来他早就有十分明确的学习目标,我提议大家向他学习并祝他成功。 (同学们热烈鼓掌 还知道关于衔接班的一些事吗? 生3:我听说衔接班的老师都是很有名气的,教得很好,学生都很优秀,读衔接班不但不缴钱还有奖学金和生活补贴,还组织一些有趣的活动,同学们都很羡慕。 师:是的,我也希望我们班上能有几位同学能冲进衔接班去,到了衔接班不但有刚才同学说的好处,更重要的是提前半年学习高中课程,更有把握考上名牌大学或重点大学。但是你们知道衔接班的同学是怎么录取的吗? 生4:看考试成绩吧! 师:是的,并且是这样计算的学生成绩的:4册期末总分乘以10%+5册中期总分乘以20%+5册期末总分乘以30%+最后选拔考试部分乘以40%=综合得分,再用综合得分排名,能进入前50名的直接进入,若前50名有不愿去的向后依次录取。请同学们思考一下从这种录取计算方法中你发现了什么? (全班同学冷静思考2分钟

浙教版九年级数学上册期末试卷及答案

九年级数学(上)期末模拟试卷 一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有 一项是符合 题目要求的.请将答案填写在题后括号内) 1.如果□+2=0,那么“□”内应填的实数是( ) A .-2 B .- 12 C . 12 D . 2 2.在Rt ⊿ABC 中,若各边的长度同时都扩大2倍,则锐角A 的正弦值与余弦值的情况( ) A .都扩大2倍 B .都缩小2倍 C .都不变 D .正弦值扩大2倍, 余弦值缩小2倍 3.路程s 与时间t 的大致图象如下左图所示,则速度v 与时间t 的大致图象为( ) A . B . C . D . 4.小明与两位同学进行乒乓球比赛,用“手心、手背”游戏确定出场顺序. 设每 人每次出手心、手背的可能性相同. 若有一人与另外两人不同,则此人最后出 场.三人同时出手一次, 小明最后出场比赛的概率为( ) A . 12 B . 13 C .14 D . 1 5 5.如图, 在 ABCD 中, AB=10, AD=6, E 是AD 的中点, 在AB ?上取一点F,? 使 △CBF ∽△CDE, 则BF 的长是( ) A.5 B.8.2 C.6.4 D.1.8 6. 从1到9这九个自然数中任取一个,是2的倍数或是3的倍数的概率为( ) A .19 B . 29 C . 2 3 D . 59 7.如图,小正方形的边长均为l ,则下列图中的三角形(阴影部分)与△ABC 相似的是( ) A B C D 8.如图,己知△ABC ,任取一点O ,连AO ,BO ,CO ,并取它们的中点 D ,E ,F ,得△DEF ,则下列说法正确的个数是( ) ①△ABC 与△DEF 是位似图形; ②△ABC 与△DEF 是相似图形; ③△ABC 与△DEF 的周长比为1:2;④△ABC 与△DEF 的面积比为4:1. A .1 B .2 C .3 D .4 9.已知二次函数c bx ax y ++=2 的图象过点A (1,2),B (3,2),C (5,7).若点M (-2,y 1),N ((-1,y 2),K (8,y 3)也在二次函数c bx ax y ++=2 的图象上,则下列结论正确的是( ) A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 2 A F D E C

初二数学试题及答案免费

初二数学试题 (时间:120分钟 满分:150分) 一、选择题:本题共14小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来.每小题4分,共56分,错选、不选或选出的答案超过一个,均记0分. 1、下列说法中正确的是( ) A. x 的次数是0 B. y 1 是单项式 C. 2 1 是单项式 D. a 5- 的系数是5 2、下列说法中,不正确的是 ( ) A .单项式中的数字因数叫这个单项式的系数 B .单独一个数或字母也是单项式 C .一个单项式中,所有字母的指数的和叫这个单项式的次数 D .多项式中含字母的单项式的次数即为多项式的次数 3、下列四个图形中,每个小正方形都标上了颜色. 若要求一个正方体两个相对面上的颜色都一样,那么不可能是这一个正方体的展开图的是( ) 4 A . D 5A 、、21x =- D 、2 x x += 6、把方程 1 123 x x --=去分母后,正确的是( ) A 、32(1)1x x --= B 、32(1)6x x --= C 、3226x x --= D 、3226x x +-= 7、某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A 、赚16元 B 、赔16元 C 、不赚不赔 D 、无法确定 8、已知线段AB 长3cm.现延长AB 到点C ,使BC=3AB.取线段BC 的中点D , 线段AD 的长为( ) A 、4.5cm B 、6cm C 、7cm D 、7.5cm. 9、在下列单项式中,不是同类项的是( ) A .-2 1 x 2y 和-yx 2 B .-3和0 C .-a 2bc 和ab 2c D .-mnt 和-8mnt 10、若M,N 都是4次多项式, 则多项式M+N 的次数为( ) A . B . C . D .

北师大版九年级上册数学期末考试试题及答案

北师大版九年级上册数学期末考试试题及答案 满分120分(北师大版用) 一、选择题(每小题3分,共18分) 下列各小题均有四个答案,其中只有一个是正确的,请将正确答案的代号字母填入题后括号内。 1. Rt 90ABC C BAC ∠∠ 在△中,=,的角平分线AD 交BC 于 点D ,2C D =,则点D 到AB 的距离是( ) A .1 B .2 C .3 D .4[来源:学科网] 2.一元二次方程230x x -=的解是( ) A .0x = B .1203x x ==, C .1210,3 x x == D .13x = 3.顺次连结任意四边形各边中点所得到的四边形一定是 ( ) A .平行四边形 B .菱形 C .矩形 D .正方形[来源:https://www.360docs.net/doc/2f16810864.html,][来源:https://www.360docs.net/doc/2f16810864.html,] 4.小明拿一个等边三角形木框在阳光下玩,等边三角形木框在地面上形成的投影不可能...是 [来源:学.科.网Z.X.X.K] A B C D 5.某农场的粮食总产量为1500吨,设该农场人数为x 人,平均每人占有粮食数为y 吨,则y 与x 之间的函数图象大致是( ) 6.在李咏主持的“幸运52”栏目中,曾有一种竞猜游戏,游戏规则是:在20个商标牌中,有 5个商标牌的背面注明了一定的奖金,其余商标牌的背面是一张“哭脸” ,若翻到“哭脸”就不 获奖 ,参与这个游戏的观众有三次翻牌的机会,且翻过的牌不能再翻.有一位观众已翻牌两次,一次获奖,一次不获奖,那么这位观众第三次翻牌获奖的概率是 A . 15 B . 29 C . 14 D . 518 二、填空题(每小题3分,共27分) 7.如图,地面A 处有一支燃烧的蜡烛(长度不计),一个人在A 与墙BC 之间运动,则他在墙上的投影长度随着他离墙的距离变小 B A . B . C . D .

数学课渗透德育教育案例

数学课渗透德育教育案例 ——列方程解应用题 王春秀

数学课渗透德育教育案例 列方程解应用题 王春秀 一、学生起点分析: 通过前几节知识的学习,学生已经学会通过分析简单问题中已知量与未知量的关系列出方程解应用题,初步掌握了运用方程解决实际问题的一般过程,但学生在列方程解应用题时常常会遇到一下困难,就是从题设条件中找不到所依据的等量关系,或虽能找到等量关系但不能列出方程。 二、教学任务分析: 本课以“希望工程”义演为例引入课题,通过学生自主探究、协作交流,教师点拨相结合的方式,引导学生借助列表的方法分析问题,体会用图表语言分析复杂问题表达思维方法的优点,从而抓住等量关系“部分量之和等于总量”展开教学活动,让学生经历抽象的符号变换应用等活动,展现运用方程解决实际问题的一般过程。因此,本节教材的处理策略是:展现问题情境——提出问题——分析数量关系和等量关系——列出方程,解方程——检验解的合理性。 三、教学目标: (一)、知识与技能: 借助表格学会分析复杂问题中的数量关系和等量关系,体会间接设未知数的解题思路,从而建立方程解决实际问题。 通过解决实际问题,使学生进一步明确必须检验方程的解是否符合题

意。 (二)、过程与方法:通过对实际问题的解决,体会方程模型的作用,发展学生分析问题、解决问题、敢于提出问题的能力。 (三)、情感态度与价值观:通过对希望工程义演中的数学问题的探讨,进一步体会方程模型的作用,同时,从情感上认识希望工程,懂得珍惜今天的良好的学习生活环境。 四、教学过程设计: 本节课设计了五个教学环节:第一环节:情景引入;第二环节:活动探究;第三环节:运用巩固;第四环节:课堂小结;第五环节:布置作业。 第一环节:情景引入内容:出示六幅图片如下:

九年级上册数学期末试卷(含答案)

九年级上学期期末试卷 一、选择题: 1. 如图是北京奥运会自行车比赛项目标志,则图中两轮所在 圆的位置关系是( ) A. 内含 B. 相交 C. 外切 D. 外离 2. 抛物线()212 12+-- =x y 的顶点坐标是( ) A. ()2,1 B. ()2,1- C. ()2,1- D. ()2,1-- 3. 在ABC ?中, 90=∠C ,若2 3cos = B ,则A sin 的值为( ) A. 3 B. 2 3 C. 3 3 D. 2 1 4. ⊙O 的半径是5cm ,O 到直线l 的距离cm OP 3=,Q 为l 上一点且2.4=PQ cm ,则 点Q ( ) A. 在⊙O 内 B. 在⊙O 上 C. 在⊙O 外 D. 以上情况都有可能 5. 把抛物线2 2x y -=向上平移2个单位,得到的抛物线是( ) A. ()2 22+-=x y B. ()2 22--=x y C. 222 --=x y D. 222 +-=x y 6. 如图,A 、B 、C 三点是⊙O 上的点, 50=∠ABO 则BCA ∠ 的度数是( ) A. 80 B. 50 C. 40 D. 25 7. 如图,在ABC ?中, 30=∠A ,2 3tan = B ,32=A C , 则AB 的长为( ) A. 34+ B. 5 C. 32+ D. 6

8. 已知直线()0≠+=a b ax y 经过一、三、四象限,则抛物线bx ax y +=2 一定经过( ) A. 第一、二、三象限 B. 第一、三、四象限 C. 第一、二、四象限 D. 第三、四象限 9. 如图是一台54英寸的液晶电视旋转在墙角的俯视图,设 α=∠DAO ,电视后背AD 平行于前沿BC ,且与BC 的距 离为cm 60,若cm AO 100=,则墙角O 到前沿BC 的距 离OE 是( ) A. ()cm αsin 10060+ B. ()cm αcos 10060+ C. ()cm αtan 10060+ D. 以上都不对 10. 二次函数()012 2 ≠-++=a a x ax y 的图象可能是( ) 11. 已知点()1,1y -、()2,2y -、()3,2y 都在二次函数12632 +--=x x y 的图象上,则1y 、 2y 、3y 的大小关系为( ) A. 231y y y >> B. 123y y y >> C. 213y y y >> D. 321y y y >> 12. 某测量队在山脚A 处测得山上树顶仰角为 45(如图),测量 队在山坡上前进600米到D 处,再测得树顶的仰角为 60, 已 知这段山坡的坡角为 30,如果树高为15米,则山高为( ) (精确到1米,732.13=) A. 585米 B. 1014米 C. 805米 D. 820米 二、填空题: 13. 抛物线322 +-=x x y 的对称轴是直线 . 14. 如图,圆柱形水管内积水的水面宽度cm CD 8=,F 为? CD

初二数学经典难题及答案

A P C D B 初二数学经典题型 1.已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150 .求证:△PBC 是正三角形. 证明如下。 首先,PA=PD ,∠PAD=∠PDA=(180°-150°)÷2=15°,∠PAB=90°-15°=75°。 在正方形ABCD 之外以AD 为底边作正三角形ADQ , 连接PQ , 则 ∠PDQ=60°+15°=75°,同样∠PAQ=75°,又AQ=DQ,,PA=PD ,所以△PAQ ≌△PDQ , 那么∠PQA=∠PQD=60°÷2=30°,在△PQA 中, ∠APQ=180°-30°-75°=75°=∠PAQ=∠PAB ,于是PQ=AQ=AB , 显然△PAQ ≌△PAB ,得∠PBA=∠PQA=30°, PB=PQ=AB=BC ,∠PBC=90°-30°=60°,所以△ABC 是正三角形。 2.已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线 交MN 于E 、F .求证:∠DEN =∠F . 证明:连接AC,并取AC 的中点G,连接GF,GM. 又点N 为CD 的中点,则GN=AD/2;GN ∥AD,∠GNM=∠DEM;(1) 同理:GM=BC/2;GM ∥BC,∠GMN=∠CFN;(2) 又AD=BC,则:GN=GM,∠GNM=∠GMN.故:∠DEM=∠CFN. 3、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形CBFG ,点P 是EF 的中点.求证:点P 到边AB 的距离等于AB 的一半. 证明:分别过E 、C 、F 作直线AB 的垂线,垂足分别为M 、O 、N , 在梯形MEFN 中,WE 平行NF 因为P 为EF 中点,PQ 平行于两底 所以PQ 为梯形MEFN 中位线, 所以PQ =(ME +NF )/2 又因为,角0CB +角OBC =90°=角NBF +角CBO 所以角OCB=角NBF 而角C0B =角Rt =角BNF CB=BF 所以△OCB 全等于△NBF △MEA 全等于△OAC (同理) 所以EM =AO ,0B =NF 所以PQ=AB/2. 4、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA .求证:∠PAB =∠PCB . 过点P 作DA 的平行线,过点A 作DP 的平行线,两者相交于点E ;连接 BE

小学数学德育渗透案例

小学数学学科中两个德育渗透的案例说起小学数学中的德育渗透,大家脑中或许会闪过“牵强附会”四个字。因为数学似乎没有语文学科中俯拾皆是的德育资源,也没有音美学科中覆盖全程的美育渗透。其实,不然,真正深入到数学学科中,你就会发现,数学中的德育内容不仅全面,还有极强的说服力。若其他学科的德育是以情动人居多,则数学学科中的德育是以理服人为上。 数学从内容到思想方法都充满了唯物辩证法。数学思维的训练使人的思维逐步具有广泛性、深刻性、组织性、批判性、灵活性和创造性的特征。这使学生受益终身。 数学发展史中那些辉煌灿烂的成就足以激发学生的爱国心和民族自豪感。 数学习题中也有很多关于环保、互助、爱国、爱家等德育素材,这些信息提供的数据和实实在在的计算,最具说服力、最真切。 现在只谈数学教学过程中的两个的案例: 案例1:让学生进入数学的角色情景,培养孩子的爱心和自信心、责任心。 又是一个星期一的早晨,在A班上第一节数学课。 学生放松两天后,躁动的心尚未平静,加之又是节稍显枯燥的计算练习课,教室中凳子吱呀不停,小声说话的声音不断。我便也有些烦躁起来,连吓带哄地领着学生做到课本40页第3题。题目提供了这些信息:二年级198人,三年级270人,四年级201人,五年级281人,他们要去儿童剧场看电影,剧场能容纳500人,问题:哪几个年级安排在一起合适?需要安排几场?我让学生先读题目,他们个个有气无力。再让读一遍,读得还

是很勉强。读完让学生自己思考:怎么解决问题?等了片刻,举手者寥寥无几。叫了一个学生,陈述自己的想法,其他学生似听非听,漫不经心。看着学生茫然又漠然的眼神,耐着性子领着说了一遍,又问了几个学生,还是说不太清楚,看到花费了这么多时间,效果却不好,心中非常窝火,忍不住又批评了学生几句。如此这般,折腾掉不少时间,下课铃响了,预定的教学任务没有完成。 带着沮丧的心情来到B班,准备上今天的第二节数学课。看着那些在课间游戏时活蹦乱跳的孩子,忽然觉得刚才的发火多么可笑!浪费时间,破坏心情!这么小的孩子,前面说完后面忘,生气发火只是做了无用功,何苦!想到此,我调整了心态,微笑着面对孩子们。笑容平息了孩子们躁动的心,乱响的桌椅声停了下来,孩子们在淡淡的愉悦中思维飞扬,我的灵感亦被唤起。 同样研究40页第3题,我说:“××小学的同学要去儿童剧院看电影,这么多人,怎么安排才合理呢?在座的哪位校长给出出主意?”孩子们一听,把他们称为“校长”,立马来了劲,赶紧去读题,想题,讨论题,气氛十分热烈。待孩子们思考得差不多时,我笑着说:“哪位校长来安排一下?要说清你的理由。”顿时“高手如林”。我叫了一位平时比较害羞的女孩:“王校长,请!”小女孩被激情点燃,忘记了羞怯,流畅地说出了自己的策略。“王校长的方案合理不合理?”“合理!”全班学生异口同声地回应。小女孩兴奋地涨红着脸坐下了。许多孩子依然高高地举着小手。我又点了一位:“冯校长,你有什么打算?”孩子们面带笑意看向“冯校长”,看向“冯校长”写下的算式,表情是那样专注,反响是那么热烈,跟前一节课中孩子们有气无力的状态形成鲜明的对比。最后我说:“两位校长只花了几分钟

初二数学提高题[附答案]

初二数学提高题[附答案]

综合题 1.如图(1),直角梯形OABC 中,∠A= 90°,AB ∥CO, 且AB=2,OA=2,∠BCO= 60°。 (1)求证:OBC 为等边三角形;(2)如图(2),OH ⊥BC 于点H ,动点P 从点H 出发,沿线 段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向 点A 运动,两点同时出发,速度都为1/秒。设点P 运动的时间为t 秒,ΔOPQ 的面积为S ,求S 与t 之 间的函数关系式,并求出t 的取值范围; (3)设PQ 与OB 交于点M ,当OM=PM 时,求t 的值。3?图(1)60?B C A o 图(2)60?M P Q H B A (备用图)H 60? B C A

333 33333解:1)根据勾股定理,AB=2,OA=2,则BO=4=2AB ,所以△ABO 是一个30°60°90°的三角形。 ∵AB//CO ,∠A=90°∴∠AOC=180°-90°=90° ∵∠AOB=30°,∴∠BOC=90°-30°=60°=∠C ∴△OBC 为等边三角形 2)∵点P 运动的时间为t 秒,∴OQ=PH=t ∵OH ⊥BC ,∴∠CHO=90°, ∴∠COH=30°,OH=( /2)BC=2 ∴∠QOP=60°,OP=2 -t ∴S=1/2t(2 -t)× /2=3/2t- /4t 2,且(0

2. 如图,正比例函数图像直线l经过点A(3,5),点B 在x轴的正半轴上,且∠ABO=45°。AH⊥OB,垂足为点H。 (1)求直线l所对应的正比例函数解析式;  (2)求线段AH和OB的长度;  (3)如果点P是线段OB上一点,设OP=x,△APB的面积为S,写出S与x的函数关系式,并指出自变量x 的取值范围。 解:1)设y=kx为正比例解析式,当x=3,y=5时,3k=5,k=5/3 2)AH即A的纵坐标,∴AH=5 ∵AH⊥BH,∠ABH=45°,∴∠HAB=∠ABH=45°,∴AH=BH=5 OH即A的横坐标,∴OH=3 ∵OB=OH+BH,∴OB=5+3=8 3)∵OB=8,OP=x,∴BP=8-x

人教版九年级数学上册期末考试卷及答案【新编】

九年级(上)期末数学试卷 一、选择题(本大题共10小题,每小题3分,共30分) 1.下列方程中,关于x的一元二次方程是() A.x2+x+y=0 B.x2﹣3x+1=0 C.(x+3)2=x2+2x D. 2.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是() A.40°B.50°C.60°D.80° 3.下列图形中,是中心对称但不是轴对称图形的为() A. B.C.D. 4.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元.如果平均每月增长率为x,则由题意列方程应为() A.100(1+x)2=331 B.100+100×2x=331 C.100+100×3x=331 D.100[1+(1+x)+(1+x)2]=331 5.下列函数中,当x>0时,y随x的增大而减小的是() A.y=x+1 B.y=x2﹣1 C.D.y=﹣(x﹣1)2+1 6.若⊙P的半径为13,圆心P的坐标为(5,12),则平面直角坐标系的原点O与⊙P的位置关系是() A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定 7.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为()A.1:4 B.1:2 C.2:1 D.1: 8.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为() A.0 B.0或2 C.2或﹣2 D.0,2或﹣2 9.已知正六边形的边长为10cm,则它的边心距为() A.cm B.5cm C.5cm D.10cm 10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论: ①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2, 其中正确结论是()

数学德育渗透教学案例

初中数学教学中德育渗透的教学案例 —学困生的转化与数学教学 学困生是指那些数学基础差、智力差或具有厌学情绪等不良习惯的学生,他们是班级学习中的弱势群体,计算能力相对来说,比较薄弱,成为影响他们进一步提高的瓶颈。现针对农村初中学困生的特点,结合自身的工作实践,在培养学困生计算能力方面,谈谈自己的一些粗浅认识。 一、巧用标记,培养计算能力。 农村初中的学困生由于自身因素的原因,这部分同学在学习有理数混合运算时,往往错误百出,成为多数数学教师头疼的问题,有些老师虽然反复让学生进行练习,往往效果不是非常明显,有的甚至越来越差,那么如何解决这一问题,提高学困生计算的正确率呢?在教学实践中,借助标记法,收到了比较理想的教学效果。在教学有理数加减混合运算时,学生也能知道,遇到减法,首先要把减法转化为加法进行计算,要注意两变:一是减号变为加号,二是减数变成它的相反数,但是实际运算过程中,有的学生学生只注意了变号,没有加减数的相反数,造成了计算的错误,为此在教学过程中,我让学生遇到减法的地方做上标记,提醒他们在计算的时候要引起注意两变,同学们按照这样的方法去计算,正确率提高了很多,解决了学生遇到的棘手问题。在随后的有理数的乘除混合运算中,学生采取了这样的方法,学习感到非常的轻松,取得了很好的教学效果。通过标记,易于培养学生的注意力,改掉了许多学困生粗心的毛病,也易于激发他们的学习自信心,培养他们的能力,当然,随着学生能力的增强,计算能力的提高,教学中的标记将逐步弱化,直至最终取消,它只是我们提高学生计算能力的一个措施,是我们给学困生学习的一个拐杖,引导他们最终走向康庄大道的手段。 二、纠错提高,培养计算能力。 在计算的教学过程中,我们教师往往是一讲到底,或者是一练到底,有的即使设计一些判断、改错也是事先预设的,往往缺乏针对性,教学效果不是非常明显。为了改变这种状况,在教学过程中,让学生先进行预习,尝试做好导学案课前预习导学和所有例题,课前进行及时批改,也许学生的课前预习所做的习题正确率不高,有可能全错,但毕竟学生通过自学进行了认真的思考,他们练习中的错误,为我们的课堂教学提供了很好的教学资源,非常具有针对性、典型性。为此,在教学过程中,我只讲学生错误的地方,把学生的错误练习作为教学资源,进行投影,让学生找出错误的地方,引导做错的学生自己当堂纠错,收到了很好的教学效果,因为它具有针对性,避免了盲目性,因此我们的计算教学要一针见血,不要在外面绕圈子。 三、注重口算,培养计算能力。 口算能力,在初中阶段往往是一个被容易忽视的课题,因为他们只注重学生的演算能力的培养。殊不知,口算,不仅能提高学生计算的能力,提高正确率,

相关文档
最新文档