偏最小二乘法算法

偏最小二乘法算法
偏最小二乘法算法

偏最小二乘法 1.1 基本原理

偏最小二乘法(PLS )是基于因子分析的多变量校正方法,其数学基础为主成分分析。但它相对于主成分回归(PCR )更进了一步,两者的区别在于PLS 法将浓度矩阵Y 和相应的量测响应矩阵X 同时进行主成分分解:

X=TP+E Y=UQ+F

式中T 和U 分别为X 和Y 的得分矩阵,而P 和Q 分别为X 和Y 的载荷矩阵,E 和F 分别为运用偏最小二乘法去拟合矩阵X 和Y 时所引进的误差。

偏最小二乘法和主成分回归很相似,其差别在于用于描述变量Y 中因子的同时也用于描述变量X 。为了实现这一点,数学中是以矩阵Y 的列去计算矩阵X 的因子。同时,矩阵Y 的因子则由矩阵X 的列去预测。分解得到的T 和U 矩阵分别是除去了大部分测量误差的响应和浓度的信息。偏最小二乘法就是利用各列向量相互正交的特征响应矩阵T 和特征浓度矩阵U 进行回归:

U=TB

得到回归系数矩阵,又称关联矩阵B :

B=(T T T -1)T T U

因此,偏最小二乘法的校正步骤包括对矩阵Y 和矩阵X 的主成分分解以及对关联矩阵B 的计算。 1.2主成分分析

主成分分析的中心目的是将数据降维,以排除众多化学信息共存中相互重叠的信息。他是将原变量进行转换,即把原变量的线性组合成几个新变量。同时这些新变量要尽可能多的表征原变量的数据结构特征而不丢失信息。新变量是一组正交的,即互不相关的变量。这种新变量又称为主成分。

如何寻找主成分,在数学上讲,求数据矩阵的主成分就是求解该矩阵的特征值和特征矢量问题。下面以多组分混合物的量测光谱来加以说明。假设有n 个样本包含p 个组分,在m 个波长下测定其光谱数据,根据比尔定律和加和定理有:

A n×m =C n×p

B p×m

如果混合物只有一种组分,则该光谱矢量与纯光谱矢量应该是方向一致,而大小不同。换句话说,光谱A 表示在由p 个波长构成的p 维变量空间的一组点(n 个),而这一组点一定在一条通过坐标原点的直线上。这条直线其实就是纯光谱b 。因此由m 个波长描述的原始数据可以用一条直线,即一个新坐标或新变量来表示。如果一个混合物由2个组分组成,各组分的纯光谱用b1,b2表示,则有:

1122

T T T i i i a c b c b =+ 有上式看出,不管混合物如何变化,其光谱总可以用两个新坐标轴b1,b2来表示。因此可以

推出,如果混合物由p 个组分组成,那么混合物的光谱就可由p 个主成分轴的线性组合表示。

因而现在的问题就变成了如何求解这些主成分轴。而寻找这些坐标轴的基本原则是使新坐标轴包含原数据的最大方差。即沿着新坐标轴的方向,使方差达到最大。而其他方向,使方差达到最小。从几何角度看,就是变量空间中所有的点到这个新坐标轴的距离最短。

以二维空间的为例说明如何寻找主成分坐标轴。变量空间的每一个数据点(一个样本)都可以用通过该点与坐标原点的一个矢量x i 表征。

x2

x1

上图中直角三角形的三个边长分别以a,b,c 表示,那么这n 个点到第一个主成分轴v 1距离的平方和可以通过勾股定理与矢量点积得出:

222

1

1

()n

n

i i i i i b c a ===-∑∑

因为2||||i i c x =与 11||||||||cos T i i x v x v θ=??,所以

22

211

1(||||

())n n

T i

i

i i i b x x v ===-∑∑

2

2111||||()n

n

T i i i i x x v ===-∑∑

2

1111

||||()()n

n

T

T i i i i i x v x x v ===-∑∑

2111

||||n

T T i i x v X Xv ==-∑ min 上式等价于

11T

T v X Xv max (最大特征值λ)

上式中v 1表示第一个主成分轴矢量,即第一个特征矢量,所对应的最大值称为特征值,

用λ1表示。从上面推导看出,寻找主成分轴就是求X 矩阵的协方差矩阵X T X 中的最大特征

值(λi )和特征向量(v i )。

下面考虑变量数为m 的一般情况。 在m 为空间中新变量可以表示为:

11111221221122221122i i i m im i i i m im im m i m i mm im

u v x v x v x u v x v x v x u v x v x v x =+++=+++=+++

其中系数矩阵V 为

V =

1112121221112

m

m m mm v v v v v v v v v ??

??

????

?

?

??

用u 和x 分别表示新变量和原始矢量,则

12

i i im u u u u ??????=?????? ,12i i im x x x x ??????=??????

u V x =?

上述m 维主成分系数必须满足下面两个条件

(1) 正交条件:任意两个主成分u k 、u r ,其系数的乘积之和为0。

11220k r k r km rm v v v v v v +++=

(2)归一化条件:对于任一主成分系数的平方和等于1。

222121k k km v v v +++=

满足这两个条件的矩阵,称之为正交矩阵。正交矩阵具有如下性质:

1,T T V V I V V -==

1.3 矩阵的主成分分解

根据特征向量和特征值的定义

,1,2,,T T i i i v X Xv i m λ== (*)

同时令X 的协方差矩阵为

T Z X X =

(*)式两边同时左乘v i ,有

,1,2,,i i i Zv v i m λ==

主成分系数矩阵V 也可写为

12(,,,)m V v v v =

因此可得

{}i ZV V diag λ=?

其中{}i diag λ表示一个对角矩阵,即对角线元素为i λ,非对角线元素为0的矩阵。 上式两边同时左乘V T ,得

{}T i V ZV diag λ=

(){}T T T T i V ZV V X XV XV XV diag λ===

令T XV =,则上式变为{}T i T T diag λ=将式T XV =右乘1

V -得

T X TV =

上式是矩阵X 的主成分分解的一种表达式,由上式得求解T 和V 的方法

1()T T T V T T T X -= 1()T T XV V V -=

依据矩阵乘法规则即可获得矩阵V 和T 中每一个矢量的计算公式:

/,/T T T T

j j j j j j v t X t t t Xv v t ==

根据上面两个公式可以设计主成分分解的迭代法算法如下:

(1) 取X 中任意一列作为起始的t 。 (2) 由此t 计算:/T T T

v t X t t =

(3) 将v T 归一化:/T T T

new old old v v v =

(4) 计算新的t :/T

t Xv v v =

(5) 比较步骤4所得的t 和上一步的t 。若二者相等(在给定的误差范围内),则按(T

t t λ=)计算特征值,转第六步继续进行;否则返回第二步继续迭代。

(6) 从Y 中减去T

t v ?的贡献:T

X X t v =-?。返回1,继续运行,直到最后Y 趋近于零。 从理论上讲,在m 空间中,可以获得m 个主成分。但是在实际应用中一般只取前几个对方差贡献最大的主成分,这样就使高维空间的数据降到低维,如二维或三维空间,非常有益于数据的观察,同时损失的信息量还不会太大。取前p 个主成分的依据为

比率(%)1

1

/p m

i

i

i i λλ===

∑∑

一般推荐,比率(%)≥80% 1.4偏最小二乘法算法

(1) 矩阵X 和Y 的标准化处理

(2) 取Y 中任意一列赋给作为起始的u 对于X 矩阵 (3) w T =u T X/u T u

(4) 归一化:/||||T T T

new old old w w w =

(5) 计算新的t :t=Xw/w T w 对于Y 矩阵 (6) q T =t T Y/t T t

(7) 归一化:/||||T T T

new old old q q q =

(8) u=Yq/q T q 收敛判据:

(9) 将步骤8所得的u 与前一次迭代的结果相比较,若等于(在允许误差范围内),到步骤

10,否则返回3。 (10) p T =t T X/t T t

(11) 归一化:/||||T T T

new old old p p p =

(12) t new = t old ·|| p old ||

(13) /||||T T T new old old w w p =

计算回归系数b 以用于内部关联: (14) b=u T t/t T t 对于主成分h 计算残差: (15) 1T

h h h h E E t p -=-

(16) 1T

h h h h h F E b t wq -=-

之后回到步骤(2),去进行下一主成分的运算,直到残差趋近于零。 未知样品预测

(17) 如校正部分,将X 矩阵标准化 (18) h=0,y=0

(19) h=h+1,T h h t XW =,T h h h y y b t wq =+,T

h h x x t p =-

(20) 若h>a(主成分数),到步骤(21)。否则返回步骤(19)

(21) 得到的Y 已经标准化,因此需要按标准化步骤的相反操作,将之复原到原坐标注意的是对预测集进行标准化处理的时,使用的是训练集的均值和标准偏差。因此,在进行反标准化操作时,使用的也应该是训练集的均值和标准偏差。

1.5 程序框图与程序代码程序框图:

用C语言编制的PLS程序源代码:

C语言的源程序的各函数和功能如下:

data_input(); /*数据的输入*/

data_standardization (); /*数据的标准化*/

pctest() /*在主成分分解时判断t 的收敛*/ principalcomponent(); /*主成分分解*/

factornum(); /*确定必要的主成分分数*/ normaleq(); /*正规方程的建立*/

test(int k) /*迭代求解系数矩阵的收敛检验*/ iteration(); /*迭代法求解*/

predict(); /*未知样品预测*/

bias(); /*计算预测标准偏差*/

report(); /*输出结果*/

main(argc,argv) /*主函数*/

PLS程序源代码

#include

#include

#include

#include

#define N 25

#define M 11

#define L 4

#define TN 8

#define H 5

FILE *infp,*outfp;

double train_x[N][M], train_y[N][L];

double test_x[TN][M], test_y[TN][L];

double avg_x[M],std_x[M];

double avg_y[L],std_ y[L];

double error_value[TN][L]

double u[N],new_u[N];

double

save_p[H][N],save_q[H][L],save_w[H][M],save_d[H];

double predictvalue[TN][L],bias[L];

void data_input() /*数据的输入*/

{ int i,j;

for(j=0;j

for(i=0;i

fscanf(infp,“%lf”,&train_x[i][j]);

for(i=0;i

for(j=0;j

fscanf(infp,“%lf”,&train_y[i][j]);

for(j=0;j

for(j=0;j

new_u[i]+=train_y[i][j]*q[j];

new_u[i]/=sq;

}

mask=pctest();

}

while(mask);

for(j=0;j

save_q[ih][j]=q[j];

for(st=0,i=0;i

st+=t[i]*t[i];

for(j=0;j

{

p[j]=0.0;

for(i=0;i

p[j]+=t[i]*train_x[i][j];

p[j]/=st;

}

for(sp=0,j=0;j

sp+=p[j]* p[j];

sp=sqrt(sp);

for(j=0;j

{ p[j]/=sp;

save_p[ih][j]=p[j];

}

for(i=0;i

t[i]*=sp;

for(i=0;i

{ w[i]*=sp;

save_w[ih][i]=w[i];

for(i=0;i

fscanf(infp,“%lf”,&test_x[i][j]);

for(i=0;i

for(j=0;j

fscanf(infp,“%lf”,&test_y[i][j]);

fclose(infp);

}

void data_standardization () /*数据的标准化*/

{

int i,j;

for(j=0;j

{ avg_x[j]=std_x[j]=0.0;

for(i=0;i

avg_x[j]+=train_x[i][j];

avg_x[j]/=N;

for(i=0;i

std_x[j]+=pow((train_x[i][j]-avg_x[j]),2); std_x[j]=sqrt(std_x[j])/(N-1);

}

for(i=0;i

for(j=0;j

train_x[i][j]= (train_x[i][j]-avg_x[j])/std_x[j]; for(i=0;i

for(j=0;j

train_x[i][j]= (train_x[i][j]-avg_x[j])/std_x[j]; for(j=0;j

{ avg_y[j]=std_y[j]=0.0;

for(i=0;i

avg_y[j]+=train_y[i][j];

avg_y[j]/=N;

for(i=0;i

std_y[j]+=pow((train_y[i][j]-avg_y[j]),2); std_y[j]=sqrt(std_y[j])/(N-1);

}

for(i=0;i

for(j=0;j

train_y[i][j]= (train_y[i][j]-avg_y[j])/std_y[j]; }

pctest() /*检验收敛*/

{ int i,j;

double count=0.0;

for(i=0;i

{ count+=pow((new_u[i]-u[i]),2);

}

for(st=0,i=0;i

st+=t[i]*t[i];

for(b=0,i=0;i

b+=new_u[i]*t[i];

b/=st;

save_d[ih]=b;

for(i=0;i

for(j=0;j

train_x[i][j]-=t[i]*p[j];

for(i=0;i

for(j=0;j

train_y[i][j]-=b*t[i]*q[j];

ih++;

}

while(ih

}

predict() /*计算校正集的浓度*/ {

int i,j,k;

double pt[TN]

for(i=0;i

for(j=0;j

predictvalue[i][j]=0.0;

for(k=0;k

{ for(i=0;i

{ pt[i]=0.0;

for(j=0;j

pt[i]+=test_x[i][j]*save_w[k][j];

}

for(i=0;i

for(j=0;j

predictvalue[i][j]+=save_d[k]*pt[i]*save_q[k][j]; for(i=0;i

for(j=0;j

test_x[i][j]-=pt[i]*save_p[k][j];

}

for(i=0;i

for(j=0;j

test_x[i][j]-=pt[i]*save_p[k][j];

}

for(i=0;i

for(j=0;j

{ predictvalue[i][j]*=std_y[i];

predictvalue[i][j]+=avg_y[j];

}

}

statistics() /*计算结果评估*/

u[i]=new_u[i];

}

count=sqrt(count);

if(count<1e-12)

return 0;

else

return 1;

}

calibration() /*模型的建立*/

{ int i,j,ih,mask;

double su,sw,st,sq,sp,b;

double t[N],w[M],p[M],q[L];

ih=0;

do{ for(i=0;i

u[i]=train_y[i][l];

do{ for(su=0,i=0;i

su+=u[i]*u[i];

for(j=0;j

{ w[j]=0.0;

for(i=0;i

w[j]+=u[i]*train_x[i][j];

w[j]/=su;

}

for(sw=0,j=0;j

sw+=w[j]*w[j];

sw=sqrt(sw);

for(j=0;j

w[j]/=sw;

for(sw=0,j=0;j

sw+=w[j]*w[j];

for(i=0;i

{ t[i]=0.0;

for(j=0;j

t[i]+=train_x[i][j]*w[j];

t[i]/=sw;

}

for(st=0,i=0;i

st+=t[i]*t[i];

for(j=0;j

{ q[j]=0.0;

for(i=0;i

q[j]+=t[i]*train_y[i][j];

{ int i,j;

for(i=0;i

for(j=0;j

error_value[i][j]=test_y[i][j]-predictvalue[i][j]; for(j=0;j

{ bias[j]=0.0;

for(i=0;i

bias[j]/=TN;

bias[j]=sqrt(bias[j]);

}

}

report() /*输出结果*/

{ int i,j;

fprintf(outfp,“预测的浓度值为:\n”);

for(i=0;i

for(j=0;j

fprintf(outfp, “%9.4lf”, predictvalue[i][j]);

fprintf(outfp,“\n”);

}

fprintf(outfp,“预测结果的误差为:\n”);

for(i=0;i

{

for(j=0;j

fprintf(outfp, “%9.4lf”, error_value[i][j]);

}

fprintf(outfp,“\n”);

fprintf(outfp,“相对于各组分的校正标准偏差为\n”); for(i=0;i

fprintf(outfp, “%10.4lf”, bias[i]);

}

void main(argc,argv)

int argc;

char*argv[];

{ if(argc!=3)

{ printf(“you’v forgot enter a filename.\n”);

exit(1);

if((infp=fopen(argv[1],“r”))==0

{ printf(“can’t open data file\n”);

q[i]=/st;

}

for (sq=0, j=0;j

sq+=q[j]*q[j];

sq=sqrt(sq);

for(j=0;j

q[j]=/sq;

for (sq=0, j=0;j

sq+=q[j]*q[j];

for(i=0;i

{ new_u[j]=0.0;

exit(1);}

if((outfp=fopen(argv[2],“w”)) = = 0)

{ printf(“can’t open output file\n” ); exit(1);

data_input();

data_standardization(); calibration();

predict();

statistics();

report();

}

递推最小二乘法算法

题目: (递推最小二乘法) 考虑如下系统: )()4(5.0)3()2(7.0)1(5.1)(k k u k u k y k y k y ξ+-+-=-+-- 式中,)(k ξ为方差为0.1的白噪声。 取初值I P 610)0(=、00=∧ )(θ。选择方差为1的白噪声作为输入信号)(k u ,采用PLS 法进行参数估计。 Matlab 代码如下: clear all close all L=400; %仿真长度 uk=zeros(4,1); %输入初值:uk(i)表示u(k-i) yk=zeros(2,1); %输出初值 u=randn(L,1); %输入采用白噪声序列 xi=sqrt(0.1)*randn(L,1); %方差为0.1的白噪声序列 theta=[-1.5;0.7;1.0;0.5]; %对象参数真值 thetae_1=zeros(4,1); %()θ初值 P=10^6*eye(4); %题目要求的初值 for k=1:L phi=[-yk;uk(3:4)]; %400×4矩阵phi 第k 行对应的y(k-1),y(k-2),u(k-3), u(k-4) y(k)=phi'*theta+xi(k); %采集输出数据 %递推最小二乘法的递推公式 K=P*phi/(1+phi'*P*phi); thetae(:,k)=thetae_1+K*(y(k)-phi'*thetae_1); P=(eye(4)-K*phi')*P; %更新数据 thetae_1=thetae(:,k); for i=4:-1:2 uk(i)=uk(i-1); end uk(1)=u(k); for i=2:-1:2 yk(i)=yk(i-1);

几种最小二乘法递推算法的小结

一、 递推最小二乘法 递推最小二乘法的一般步骤: 1. 根据输入输出序列列出最小二乘法估计的观测矩阵?: ] )(u ... )1( )( ... )1([)(T b q n k k u n k y k y k ------=? 没有给出输出序列的还要先算出输出序列。 本例中, 2)]-u(k 1),-u(k 2),-1),-y(k -[-y(k )(T =k ?。 2. 给辨识参数θ和协方差阵P 赋初值。一般取0θ=0或者极小的数,取σσ,20I P =特别大,本例中取σ=100。 3. 按照下式计算增益矩阵G : ) ()1()(1)()1()(k k P k k k P k G T ???-+-= 4. 按照下式计算要辨识的参数θ: )]1(?)()()[()1(?)(?--+-=k k k y k G k k T θ?θθ 5. 按照下式计算新的协方差阵P : )1()()()1()(---=k P k k G k P k P T ? 6. 计算辨识参数的相对变化量,看是否满足停机准则。如满足,则不再递推;如不满足, 则从第三步开始进行下一次地推,直至满足要求为止。 停机准则:ε???<--) (?)1(?)(?max k k k i i i i 本例中由于递推次数只有三十次,故不需要停机准则。 7. 分离参数:将a 1….a na b 1….b nb 从辨识参数θ中分离出来。 8. 画出被辨识参数θ的各次递推估计值图形。 为了说明噪声对递推最小二乘法结果的影响,程序5-7-2在计算模拟观测值时不加噪 声, 辨识结果为a1 =1.6417,a2 = 0.7148,b1 = 0.3900,b2 =0.3499,与真实值a1 =1.642, a2 = 0.715, b1 = 0.3900,b2 =0.35相差无几。 程序5-7-2-1在计算模拟观测值时加入了均值为0,方差为0.1的白噪声序列,由于噪 声的影响,此时的结果为变值,但变化范围较小,现任取一组结果作为辨识结果。辨识结果为a1 =1.5371, a2 = 0.6874, b1 = 0.3756,b2 =0.3378。 程序5-7-2-2在计算模拟观测值时加入了有色噪声,有色噪声为 E(k)+1.642E(k-1)+0.715E(k-2),E(k)是均值为0,方差为0.1的白噪声序列,由于有色噪声的影响,此时的辨识结果变动范围远比白噪声时大,任取一组结果作为辨识结果。辨识结果为a1 =1.6676, a2 = 0.7479, b1 = 0.4254,b2 =0.3965。 可以看出,基本的最小二乘法不适用于有色噪声的场合。

偏最小二乘法

偏最小二乘法 ( PLS)是光谱多元定量校正最常用的一种方法 , 已被广泛应用 于近红外 、 红外 、拉曼 、核磁和质谱等波谱定量模型的建立 , 几乎成为光谱分析中建立线性定量校正模型的通用方法 〔1, 2〕 。近年来 , 随着 PLS 方法在光谱分析尤其是分子光谱如近红外 、 红外和拉曼中应用 的深入开展 , PLS 方法还被用来解决模式识别 、定量校正模型适用性判断以及异常样本检测等定性分析问题 。 由于 PLS 方法同时从光谱阵和浓度阵中提取载荷和得分 , 克服主成分分析 ( PCA)方法没有利用浓度阵的缺点 , 可有效降维 , 并消除光谱间可能存在的复共线关系 , 因此取得令人非常满意的定性分析结果 〔3 ~ 5〕 。 本文主要介绍PLS 方法在光谱定性分析方面的原理及应用 实例 。 偏最小二乘方法(PLS-Partial Least Squares))是近年来发展起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。该种方法,在化合物结构-活性/性质相关性研究中是一种非常有用的手段。如美国Tripos 公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处理部分主要是PLS 。在PLS 方法中用的是替潜变量,其数学基础是主成分分析。替潜变量的个数一般少于原自变量的个数,所以PLS 特别适用于自变量的个数多于试样个数的情况。在此种情况下,亦可运用主成分回归方法,但不能够运用一般的多元回归分析,因为一般多元回归分析要求试样的个数必须多于自变量的个数。 §§ 6.3.1 基本原理 6.3 偏最小二乘(PLS ) 为了叙述上的方便,我们首先引进“因子”的概念。一个因子为原来变量的线性组合,所以矩阵的某一主成分即为一因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一定,因为一因子可由某一成分经坐标旋转而得。 在主成分回归中,第一步,在矩阵X 的本征矢量或因子数测试中,所处理的仅为X 矩阵,而对于矩阵Y 中信息并未考虑。事实上,Y 中亦可能包含非有用的信息。所以很自然的一种想法是,在矩阵X 因子的测试中应同时考虑矩阵Y 的作用。偏最小二乘正是基于这种思想的一种回归方法。 偏最小二乘和主成分分析很相似,其差别在于用于描述变量Y 中因子的同时也用于描述变量X 。为了实现这一点,在数学上是以矩阵Y 的列去计算矩阵X 的因子,与此同时,矩阵Y 的因子则由矩阵X 的列去预测。其数学模型为: E P T X +'=F Q U Y +'=

偏最小二乘法算法

偏最小二乘法 1.1 基本原理 偏最小二乘法(PLS )是基于因子分析的多变量校正方法,其数学基础为主成分分析。但它相对于主成分回归(PCR )更进了一步,两者的区别在于PLS 法将浓度矩阵Y 和相应的量测响应矩阵X 同时进行主成分分解: X=TP+E Y=UQ+F 式中T 和U 分别为X 和Y 的得分矩阵,而P 和Q 分别为X 和Y 的载荷矩阵,E 和F 分别为运用偏最小二乘法去拟合矩阵X 和Y 时所引进的误差。 偏最小二乘法和主成分回归很相似,其差别在于用于描述变量Y 中因子的同时也用于描述变量X 。为了实现这一点,数学中是以矩阵Y 的列去计算矩阵X 的因子。同时,矩阵Y 的因子则由矩阵X 的列去预测。分解得到的T 和U 矩阵分别是除去了大部分测量误差的响应和浓度的信息。偏最小二乘法就是利用各列向量相互正交的特征响应矩阵T 和特征浓度矩阵U 进行回归: U=TB 得到回归系数矩阵,又称关联矩阵B : B=(T T T -1)T T U 因此,偏最小二乘法的校正步骤包括对矩阵Y 和矩阵X 的主成分分解以及对关联矩阵B 的计算。 1.2主成分分析 主成分分析的中心目的是将数据降维,以排除众多化学信息共存中相互重叠的信息。他是将原变量进行转换,即把原变量的线性组合成几个新变量。同时这些新变量要尽可能多的表征原变量的数据结构特征而不丢失信息。新变量是一组正交的,即互不相关的变量。这种新变量又称为主成分。 如何寻找主成分,在数学上讲,求数据矩阵的主成分就是求解该矩阵的特征值和特征矢量问题。下面以多组分混合物的量测光谱来加以说明。假设有n 个样本包含p 个组分,在m 个波长下测定其光谱数据,根据比尔定律和加和定理有: A n×m =C n×p B p×m 如果混合物只有一种组分,则该光谱矢量与纯光谱矢量应该是方向一致,而大小不同。换句话说,光谱A 表示在由p 个波长构成的p 维变量空间的一组点(n 个),而这一组点一定在一条通过坐标原点的直线上。这条直线其实就是纯光谱b 。因此由m 个波长描述的原始数据可以用一条直线,即一个新坐标或新变量来表示。如果一个混合物由2个组分组成,各组分的纯光谱用b1,b2表示,则有: 1122 T T T i i i a c b c b =+ 有上式看出,不管混合物如何变化,其光谱总可以用两个新坐标轴b1,b2来表示。因此可以 推出,如果混合物由p 个组分组成,那么混合物的光谱就可由p 个主成分轴的线性组合表示。

数值计算_第6章 曲线拟合的最小二乘法

第6章曲线拟合的最小二乘法 6.1 拟合曲线 通过观察或测量得到一组离散数据序列,当所得数据比较准确时,可构造插值函数逼近客观存在的函数,构造的原则是要求插值函数通过这些数据点,即。此时,序列与 是相等的。 如果数据序列,含有不可避免的误差(或称“噪音”),如图6.1 所示;如果数据序列无法同时满足某特定函数,如图6.2所示,那么,只能要求所做逼近函数最优地靠近样点,即向量与的误差或距离最小。按与之间误差最小原则作为“最优”标准构造的逼近函数,称为拟合函数。 图6.1 含有“噪声”的数据 图6.2 一条直线公路与多个景点 插值和拟合是构造逼近函数的两种方法。插值的目标是要插值函数尽量靠近离散点;拟合的目标是要离散点尽量靠近拟合函数。 向量与之间的误差或距离有各种不同的定义方法。例如: 用各点误差绝对值的和表示: 用各点误差按模的最大值表示: 用各点误差的平方和表示: 或(6.1)

其中称为均方误差,由于计算均方误差的最小值的方法容易实现而被广泛采用。按 均方误差达到极小构造拟合曲线的方法称为最小二乘法。本章主要讲述用最小二乘法构造拟合曲线的方法。 在运筹学、统计学、逼近论和控制论中,最小二乘法都是很重要的求解方法。例如,它是统计学中估计回归参数的最基本方法。 关于最小二乘法的发明权,在数学史的研究中尚未定论。有材料表明高斯和勒让德分别独立地提出这种方法。勒让德是在1805年第一次公开发表关于最小二乘法的论文,这时高斯指出,他早在1795年之前就使用了这种方法。但数学史研究者只找到了高斯约在1803年之前使用了这种方法的证据。 在实际问题中,怎样由测量的数据设计和确定“最贴近”的拟合曲线?关键在选择适当的拟合曲线类型,有时根据专业知识和工作经验即可确定拟合曲线类型;在对拟合曲线一无所知的情况下,不妨先绘制数据的粗略图形,或许从中观测出拟合曲线的类型;更一般地,对数据进行多种曲线类型的拟合,并计算均方误差,用数学实验的方法找出在最小二乘法意义下的误差最小的拟合函数。 例如,某风景区要在已有的景点之间修一条规格较高的主干路,景点与主干路之间由各具特色的支路联接。设景点的坐标为点列;设主干路为一条直线 ,即拟合函数是一条直线。通过计算均方误差最小值而确定直线方程(见图6.2)。 6.2线性拟合和二次拟合函数 线性拟合 给定一组数据,做拟合直线,均方误差为 (6.2) 是二元函数,的极小值要满足 整理得到拟合曲线满足的方程:

最小二乘法的原理及其应用

最小二乘法的原理及其应用 一、研究背景 在科学研究中,为了揭示某些相关量之间的关系,找出其规律,往往需要做数据拟合,其常用方法一般有传统的插值法、最佳一致逼近多项式、最佳平方逼近、最小二乘拟合、三角函数逼近、帕德(Pade)逼近等,以及现代的神经网络逼近、模糊逼近、支持向量机函数逼近、小波理论等。 其中,最小二乘法是一种最基本、最重要的计算技巧与方法。它在建模中有着广泛的应用,用这一理论解决讨论问题简明、清晰,特别在大量数据分析的研究中具有十分重要的作用和地位。随着最小二乘理论不断的完善,其基本理论与应用已经成为一个不容忽视的研究课题。本文着重讨论最小二乘法在化学生产以及系统识别中的应用。 二、最小二乘法的原理 人们对由某一变量t或多个变量t1…..tn 构成的相关变量y感兴趣。如弹簧的形变与所用的力相关,一个企业的盈利与其营业额,投资收益和原始资本有关。为了得到这些变量同y之间的关系,便用不相关变量去构建y,使用如下函数模型 , q个相关变量或p个附加的相关变量去拟和。 通常人们将一个可能的、对不相关变量t的构成都无困难的函数类型充作函数模型(如抛物线函数或指数函数)。参数x是为了使所选择的函数模型同观测值y相匹配。(如在测量弹簧形变时,必须将所用的力与弹簧的膨胀系数联系起来)。其目标是合适地选择参数,使函数模型最好的拟合观测值。一般情况下,观测值远多于所选择的参数。 其次的问题是怎样判断不同拟合的质量。高斯和勒让德的方法是,假设测量误差的平均值为0。令每一个测量误差对应一个变量并与其它测量误差不相关(随机无关)。人们假设,在测量误差中绝对不含系统误差,它们应该是纯偶然误差,围绕真值波动。除此之外,测量误差符合正态分布,这保证了偏差值在最后的结果y上忽略不计。 确定拟合的标准应该被重视,并小心选择,较大误差的测量值应被赋予较小的权。并建立如下规则:被选择的参数,应该使算出的函数曲线与观测值之差的平方和最小。用函数表示为:

偏最小二乘法(PLS)简介

偏最小二乘法(PLS)简介 偏最小二乘法(PLS )简介 偏最小二乘法(PLS )简介 简介 偏最小二乘法是一种新型的多元统计数据分析方法,它于1983年由伍德(S.Wold)和阿巴诺(C.Albano)等人首次提出。近几十年来,它在理论、方法和应用方面都得到了迅速的发展。 偏最小二乘法 长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。这是多元统计数据分析中 的一个飞跃。 偏最小二乘法在统计应用中的重要性体现在以下几个方面: 偏最小二乘法是一种多因变量对多自变量的回归建模方法。偏最小二乘法可以较好的解决许多以往用 普通多元回归无法解决的问题。 偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 主成分回归的主要目的是要提取隐藏在矩阵X 中的相关信息,然后用于预测变量Y 的值。 这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分 进行挑选,那样又太困难了。 偏最小二乘回归可以解决这个问题。它采用对变量X 和Y 都进行分解的方法,从变量X 和Y 中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了 基本概念 偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模 型来描述独立变量Y 与预测变量组X 之间的关系: 偏最小二乘法(PLS) 简介

普通最小二乘法(OLS)

普通最小二乘法(OLS ) 普通最小二乘法(Ordinary Least Square ,简称OLS ),是应用最多的参数估计方 法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。 在已经获得样本观测值 i i x y ,(i=1,2,…,n )的情况下 (见图2.2.1中的散点),假如模型(2.2.1)的参数估计量 已经求得到,为^0β和^ 1β,并且是最合理的参数估计量,那 么直线方程(见图2.2.1中的直线) i i x y ^ 1^0^ββ+= i=1,2,…,n (2.2.2) 应该能够最好地拟合样本数据。其中 ^ i y 为被解释变量的估计值,它是由参数估计量和解释 变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。 ),()(102 2101ββββQ u x y Q i i n i i ==--=∑∑= ()() ),(min ????1 02 1 102 12?,?1 1 ββββββββQ x y y y u Q n i i n i i i =--=-==∑∑∑== (2.2.3) 为什么用平方和?因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。 由于 2 1 ^ 1^01 2 ^ ))(()(∑∑+--=n i i n i i x y y y Q ββ= 是 ^ 0β、^ 1β的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q 对^ 0β、 ^ 1β的一阶偏导数为0时,Q 达到最小。即

曲线拟合——最小二乘法算法

曲线拟合——最小二乘法算法 一、目的和要求 1)了解最小二乘法的基本原理,熟悉最小二乘算法; 2)掌握最小二乘进行曲线拟合的编程,通过程序解决实际问题。 二、实习内容 1)最小二乘进行多项式拟合的编程实现。 2)用完成的程序解决实际问题。 三、算法 1)输入数据节点数n ,拟合的多项式次数m ,循环输入各节点的数据x j , y j (j=0,1,…,n-1) 2)由x j 求S ;由x j ,y j 求T : S k = ∑-=10n j k j x ( k=0,1,2, … 2*m ) T k = ∑-=1 0n j k j j x y ( k=0,1,2,… m ) 3)由S 形成系数矩阵数组c i,j :c[i][j]=S[i+j] (i=0,1,2,…m, j=0,1,2,…,m);由T 形成系数矩阵增广部分c i,m+1:c[i][m+1]=T[i] (i=0,1,2,…m) 4)对线性方程组CA=T[或A C ],用列主元高斯消去法求解系数矩阵A=(a 0,a 1,…,a m )T 四、实验步骤 1)完成最小二乘法进行曲线拟合的程序设计及录入、编辑; 2)完成程序的编译和链接,并进行修改; 3)用书上P105例2的例子对程序进行验证,并进行修改; 4)用完成的程序求解下面的实际问题。 5)完成实验报告。 五、实验结果 1. 经编译、链接及例子验证结果正确的源程序: #include #include #define Q 100 float CF(int,float); main() { int i,j,n1,n,p,k,q; float x[Q],y[Q],s[Q]={0},t[Q]={0},a[Q][Q]={0},l,sum=0; /*以下是最小二乘的程序*/ printf("input 数据组数n");

最小二乘法--计算方法

生活中的计算方法应用实例——— 最小二乘法,用MATLAB实现1. 数值实例 下面给定的是某市最近1个月早晨7:00左右(新疆时间)的天气预报所得到的温度 天数 1 2 3 4 5 6 7 8 9 10 温度9 10 11 12 13 14 13 12 11 9 天数11 12 13 14 15 16 17 18 19 20 温度10 11 12 13 14 12 11 10 9 8 天数21 22 23 24 25 26 27 28 29 30 温度7 8 9 11 9 7 6 5 3 1 下面用MATLAB编程对上述数据进行最小二乘拟合,按照数据找出任意次曲线拟合方程和它的图像。 2、程序代码 x=[1:1:30]; y=[9,10,11,12,13,14,13,12,11,9,10,11,12,13,14,12,11,10,9,8,7,8,9,11,9,7, 6,5,3,1]; a1=polyfit(x,y,3) %三次多项式拟合% a2= polyfit(x,y,9) %九次多项式拟合% a3= polyfit(x,y,15) %十五次多项式拟合% b1= polyval(a1,x) b2= polyval(a2,x) b3= polyval(a3,x) r1= sum((y-b1).^2) %三次多项式误差平方和% r2= sum((y-b2).^2) %九次次多项式误差平方和% r3= sum((y-b3).^2) %十五次多项式误差平方和% plot(x,y,'*') %用*画出x,y图像% hold on plot(x,b1, 'r') %用红色线画出x,b1图像% hold on plot(x,b2, 'g') %用绿色线画出x,b2图像% hold on plot(x,b3, 'b:o') %用蓝色o线画出x,b3图像% 3、数值结果 不同次数多项式拟合误差平方和为: r1=67.6659

基于最小二乘法的系统辨识的设计与开发(整理版)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 基于最小二乘法的系统辨识的设计与开发(整理版)课程(论文)题目: 基于最小二乘法的系统辨识摘要: 最小二乘法是一种经典的数据处理方法。 最小二乘的一次性完成辨识算法(也称批处理算法),他的特点是直接利用已经获得的所有(一批)观测数据进行运算处理。 在系统辨识领域中, 最小二乘法是一种得到广泛应用的估计方法, 可用于动态系统, 静态系统, 线性系统, 非线性系统。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 关键词: 最小二乘法;系统辨识;参数估计 1 引言最小二乘理论是有高斯( K.F.Gauss)在 1795 年提出: 未知量的最大可能值是这样一个数值,它使各次实际观测值和计算值之间的差值的平方乘以度量其精度的数值以后的和最小。 这就是最小二乘法的最早思想。 最小二乘辨识方法提供一个估算方法,使之能得到一个在最小方差意义上与实验数据最好拟合的数学模型。 递推最小二乘法是在最小二乘法得到的观测数据的基础上,用新引入的数据对上一次估计的结果进行修正递推出下一个参数估计值,直到估计值达到满意的精确度为止。 1 / 10

对工程实践中测得的数据进行理论分析,用恰当的函数去模拟数据原型是一类十分重要的问题,最常用的逼近原则是让实测数据和估计数据之间的距离平方和最小,这即是最小二乘法。 最小二乘法是一种经典的数据处理方法。 在随机的环境下,利用最小二乘法时,并不要求观测数据提供其概率统计方面的信息,而其估计结果,却有相当好的统计特性。 2 最小二乘法的系统辨识设单输入单输出线性定常系统的差分方程为: 1),()()() 1()(01knkubkubnkxakxakxnn ( 1)上式中: )(ku为输入信号;)(kx为理论上的输出值。 )(kx只有通过观测才能得到,在观测过程中往往附加有随机干扰。 )(kx的观测值)(ky可表示为 ( 2)将式( 2)代入式( 1)得 1()()() 1()(101kubkubnkyakyakyn (3) 我们可能不知道)(kn的统计特性,在这种情况下,往往把)(kn看做均值为 0 的白噪声。 设 ( 4)则式( 3)可以写成 (5) 在测量)(ku时也有测量误差,系统内部也可能有噪声,应当

三次样条插值法与最小二值 法的分析及比较

数值计算方法期末论文 ————同等要求下三次样条插值法与最小二值法的分析及比较。

引言 在实际中,常常要处理由实验或测量所得到的一批离散数据.插值与拟合方法就是要通过这些数据去确定某一类已知函数的参数或寻找某个近似函数,使所得到的近似函数与已知数据有较高的拟合程度.如果要求这个近似函数(曲线或曲面)经过已知的所有数据点,则称此类问题为插值问题。 当所给的数据较多时,用插值方法所得到的插值函数会很复杂,所以,通常插值方法用于数据较少的情况.但数据一般都是由观测或试验得到的,往往会带有一定的随机误差,因而,要求近似函数通过所有的数据点也是不必要的.如果不要求近似函数通过所有数据点,而是要求它能较好地反应数据的整体变化趋势,则解决这类问题的方法称为数据拟合. 插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二者的数学方法上是完全不同的。而面对一个实际问题,究竟应该用插值还是拟合,有时容易确定,有时则并不明显。 本文由具体题目为基础,主要论述了在同等要求下三次样条插值法与最小二值法的分析及比较。 关键词:数值计算方法、三次样条插值法、最小二值法

目录 引言--------------------------------------------------- 2 第一章三次样条插值------------------------------------ 4 1.1三次样条插值函数--------------------------------- 4 1.2 分段线性插值------------------------------------ 5 1.3插值理论----------------------------------------- 6 第二章最小二乘法--------------------------------------- 7 2.1 线性最小二乘拟合法------------------------------ 7 2.2 一般线性最小二乘拟合法--------------------------- 8 2.3非线性最小二乘拟合法------------------------------ 9 第三章算法对比与实现------------------------------------ 10 3.1对比实例一---------------------------------------- 10 3.2对比实例二---------------------------------------- 11 3.3结果及分析---------------------------------------- 15 第四章总结---------------------------------------------- 16

偏最小二乘法基本知识

偏最小二乘法(PLS)简介-数理统计 偏最小二乘法partial least square method是一种新型的多元统计数据分析方法,它于1983年由伍德(S.Wold)和阿巴诺(C.Albano)等人首次提出。近几十年来,它在理论、方法和应用方面都得到了迅速的发展。 偏最小二乘法 长期以来,模型式的方法和认识性的方法之间的界限分得十分清楚。而偏最小二乘法则把它们有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。这是多元统计数据分析中的一个飞跃。 偏最小二乘法在统计应用中的重要性体现在以下几个方面: 偏最小二乘法是一种多因变量对多自变量的回归建模方法。偏最小二乘法可以较好的解决许多以往用普通多元回归无法解决的问题。 偏最小二乘法之所以被称为第二代回归方法,还由于它可以实现多种数据分析方法的综合应用。 主成分回归的主要目的是要提取隐藏在矩阵X中的相关信息,然后用于预测变量Y的值。这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分进行挑选,那样又太困难了。 偏最小二乘回归可以解决这个问题。它采用对变量X和Y都进行分解的方法,从变量X和Y 中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了

基本概念 偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模型来描述独立变量Y与预测变量组X之间的关系: Y= b0 + b1X1 + b2X2 + ... + bpXp 在方程中,b0是截距,bi的值是数据点1到p的回归系数。 例如,我们可以认为人的体重是他的身高、性别的函数,并且从各自的样本点中估计出回归系数,之后,我们从测得的身高及性别中可以预测出某人的大致体重。对许多的数据分析方法来说,最大的问题莫过于准确的描述观测数据并且对新的观测数据作出合理的预测。 多元线性回归模型为了处理更复杂的数据分析问题,扩展了一些其他算法,象判别式分析,主成分回归,相关性分析等等,都是以多元线性回归模型为基础的多元统计方法。这些多元统计方法有两点重要特点,即对数据的约束性: 1.变量X和变量Y的因子都必须分别从X'X和Y'Y矩阵中提取,这些因子就无法同时表示变量X和Y的相关性。 2.预测方程的数量永远不能多于变量Y跟变量X的数量。 偏最小二乘回归从多元线性回归扩展而来时却不需要这些对数据的约束。在偏最小二乘回归中,预测方程将由从矩阵Y'XX'Y中提取出来的因子来描述;为了更具有代表性,提取出来的预测方程的数量可能大于变量X与Y的最大数。 简而言之,偏最小二乘回归可能是所有多元校正方法里对变量约束最少的方法,这种灵活性让它适用于传统的多元校正方法所不适用的许多场合,例如一些观测数据少于预测变量数时。并且,偏最小二乘回归可以作为一种探索性的分析工具,在使用传统的线性回归模型之前,先对所需的合适的变量数进行预测并去除噪音干扰。

偏最小二乘法

偏最小二乘法( PLS)是光谱多元定量校正最常用的一种方法, 已被广泛应用于近红外、红外、拉曼、核磁和质谱等波谱定量模型的建立, 几乎成为光谱分析中建立线性定量校正模型的通用方法〔1, 2〕。近年来, 随着PLS方法在光谱分析尤其是分子光谱如近红外、红外和拉曼中应用的深入开展, PLS 方法还被用来解决模式识别、定量校正模型适用性判断以及异常样本检测等定性分析问题。由于PLS方法同时从光谱阵和浓度阵中提取载荷和得分, 克服主成分分析( PCA)方法没有利用浓度阵的缺点, 可有效降维, 并消除光谱间可能存在的复共线关系, 因此取得令人非常满意的定性分析结果〔3 ~5〕。本文主要介绍PLS方法在光 谱定性分析方面的原理及应用实例。 偏最小二乘方法(PLS-Partial Least Squares))是近年来发展起来的一种新的多元统计分析法, 现已成功地应用于分析化学, 如紫外光谱、气相色谱和电分析化学等等。该种方法,在化合物结构-活性/性质相关性研究中是一种非常有用的手段。如美国Tripos公司用于化合物三维构效关系研究的CoMFA (Comparative Molecular Field Analysis)方法, 其中,数据统计处理部分主要是PLS。在PLS方法中用的是替潜变量,其数学基础是主成分分析。替潜变量的个数一般少于原自变量的个数,所以PLS特别适用于自变量的个数多于试样个数的情况。在此种情况下, 亦可运用主成分回归方法,但不能够运用一般的多元回归分析,因为一般多元回归分析要求试样的个数必须多于自变量的个数。 §§ 6.3.1 基本原理 6.3 偏最小二乘(PLS) 为了叙述上的方便,我们首先引进“因子”的概念。一个因子为原来变量的线性组合,所以矩阵的某一主成分即为一因子,而某矩阵的诸主成分是彼此相互正交的,但因子不一定,因为一因子可由某一成分经坐标旋转而得。 在主成分回归中,第一步,在矩阵X的本征矢量或因子数测试中,所处理的仅为X矩阵,而对于矩阵Y 中信息并未考虑。事实上,Y中亦可能包含非有用的信息。所以很自然的一种想法

最小二乘法拟合

4.最小二乘法线性拟合 我们知道,用作图法求出直线的斜率a 和截据b ,可以确定这条直线所对应的经验公式,但用作图法拟合直线时,由于作图连线有较大的随意性,尤其在测量数据比较分散时,对同一组测量数据,不同的人去处理,所得结果有差异,因此是一种粗略的数据处理方法,求出的a 和b 误差较大。用最小二乘法拟合直线处理数据时,任何人去处理同一组数据,只要处理过程没有错误,得到的斜率a 和截据b 是唯一的。 最小二乘法就是将一组符合Y=a+bX 关系的测量数据,用计算的方法求出最佳的a 和b 。显然,关键是如何求出最佳的a 和b 。 (1) 求回归直线 设直线方程的表达式为: bx a y += (2-6-1) 要根据测量数据求出最佳的a 和b 。对满足线性关系的一组等精度测量数据(x i ,y i ),假定自变量x i 的误差可以忽略,则在同一x i 下,测量点y i 和直线上的点a+bx i 的偏差d i 如下: 111bx a y d --= 222bx a y d --= n n n bx a y d --= 显然最好测量点都在直线上(即d 1=d 2=……=d n =0),求出的a 和b 是最理想的,但测量点不可能都在直线上,这样只有考虑d 1、d 2、……、d n 为最小,也就是考虑d 1+d 2+……+d n 为最小,但因d 1、d 2、……、d n 有正有负,加起来可能相互抵消,因此不可取;而|d 1|+ |d 2|+……+ |d n |又不好解方程,因而不可行。现在采取一种等效方法:当d 12+d 22+……+d n 2 对a 和b 为最小时,d 1、d 2、……、d n 也为最小。取(d 12+d 22+……+d n 2 )为最小值,求a 和b 的方法叫最小二乘法。 令 ∑== n i i d D 1 2=21 1 2][i i n i n i i b a y d D --== ∑∑== (2-6-2) D 对a 和b 分别求一阶偏导数为: ][211∑∑==---=??n i i n i i x b na y a D ][21 2 11∑∑∑===---=??n i i n i i n i i i x b x a y x b D

PLS偏最小二乘法

偏最小二乘法(Partial Least Square)通过最小化误差平方来寻找数据与函数间的最佳匹配,是一种参数估计方法,一般估计步骤包括: 首先将解释变量和被解释变量标准化,并提取解释变量和被解释变量的主成分,例如提取解释变量的主成分,要求与被解释变量高度相关,这个过程体现了典型相关和主成分分析的思想。 其次做解释变量和被解释变量在主成分上的回归,可以分别得到残差,这个还是OLS的思想。 最后,按以上的步骤循环下去,直到新的主成分系数不再显着。 其实PLS仍然是OLS的一种扩展,目前在解决多重共线性问题领域的研究很成熟。一般认为比岭回归、主成分分析等方法在解决多重共线性问题上更为有效。 此外,PLS与结构方程(SEM)在应用上相得益彰,我们知道SEM是大样本理论的产物,因此其应用受到诸多限制,尤其在小样本下,该模型几乎无法应用,而PLS恰好可以弥补这方面的缺陷。研究结论认为PLS在非正态分布、小样本、共线性的情况下,仍然很稳定。 偏最小二乘法是一种新型的多元统计数据分析方法,它于1983年由伍德和阿巴诺等人首提示来的,偏最小二乘法有机的结合起来了,在一个算法下,可以同时实现回归建模(多元线性回归)、数据结构简化(主成分分析)以及两组变量之间的相关性分析(典型相关分析)。这是多元统计数据分析中的一个飞跃。 与传统多元线性回归模型相比,偏最小二乘回归的特点是: (1) 能够在自变量存在严重多重相关性的条件下进行回归建模; (2) 允许在样本点个数少于变量个数的条件下进行回归建模; (3) 偏最小二乘回归在最终模型中将包含原有的所有自变量; (4) 偏最小二乘回归模型更易于辨识系统信息与噪声(甚至一些非随机性的噪声); (5) 在偏最小二乘回归模型中,每一个自变量的回归系数将更容易解释。 偏最小二乘法是一种多因变量对多自变量的回归建模方法。 主成分回归的主要目的是要提取隐藏在矩阵X中的相关信息,然后用于预测变量Y的值。这种做法可以保证让我们只使用那些独立变量,噪音将被消除,从而达到改善预测模型质量的目的。但是,主成分回归仍然有一定的缺陷,当一些有用变量的相关性很小时,我们在选取主成分时就很容易把它们漏掉,使得最终的预测模型可靠性下降,如果我们对每一个成分进行挑选,那样又太困难了。偏最小二乘回归可以解决这个问题。它采用对变量X和Y都进行分解的方法,从变量X和Y中同时提取成分(通常称为因子),再将因子按照它们之间的相关性从大到小排列。现在,我们要建立一个模型,我们只要决定选择几个因子参与建模就可以了 基本概念? 偏最小二乘回归是对多元线性回归模型的一种扩展,在其最简单的形式中,只用一个线性模型来描述独立变量Y与预测变量组X之间的关系: Y = b0 + b1X1 + b2X2 + ... + bpXp? 在方程中,b0是截距,bi的值是数据点1到p的回归系数。? 多元线性回归模型为了处理更复杂的数据分析问题,扩展了一些其他算法,象判别式分析,主成分回归,相关性分析等等,都是以多元线性回归模型为基础的多元统计方法。这些多元统计方法有两点重要特点,即对数据的约束性: 变量X和变量Y的因子都必须分别从X'X和Y'Y矩阵中提取,这些因子就无法同时表示变量X和Y的相关性。? 预测方程的数量永远不能多于变量Y跟变量X的数量。? 偏最小二乘回归从多元线性回归扩展而来时却不需要这些对数据的约束。在偏最小二乘回归中,预测方程将由从矩阵Y'XX'Y中提取出来的因子来描述;为了更具有代表性,提取出来的预测方程的数量可能大于变量X与Y的最大数。 简而言之,偏最小二乘回归可能是所有多元校正方法里对变量约束最少的方法,这种灵活性让它适用于传统的多元校正方法所不适用的许多场合,例如一些观测数据少于预测变量数时。并且,偏最小二乘回

普通最小二乘法

普通最小二乘法(OLS) 普通最小二乘法(Ordinary Least Square,简称OLS),是应用最多的参数估计方法,也是从最小二乘原理出发的其他估计方法的基础,是必须熟练掌握的一种方法。 在已经获得样本观测值(i=1,2,…,n)的情况下(见图 2.2.1中的散点),假如模型(2.2.1)的参数估计量已经求得到,为和,并且是最合理 的参数估计量,那么直线方程(见图2.2.1中的直线) i=1,2,…,n (2.2.2) 应该能够最好地拟合样本数据。其中为被解释变量的估计值,它是由参数估计量和解释变量的观测值计算得到的。那么,被解释变量的估计值与观测值应该在总体上最为接近,判断的标准是二者之差的平方和最小。 (2.2.3) 为什么用平方和?因为二者之差可正可负,简单求和可能将很大的误差抵消掉,只有平方和才能反映二者在总体上的接近程度。这就是最小二乘原则。那么,就可以从最小二乘原则和样本观测值出发,求得参数估计量。 由于 是、的二次函数并且非负,所以其极小值总是存在的。根据罗彼塔法则,当Q对、的一阶偏导数为0时,Q达到最小。即

(2.2.4) 容易推得特征方程: 解得: (2.2.5) 所以有: (2.2.6) 于是得到了符合最小二乘原则的参数估计量。 为减少计算工作量,许多教科书介绍了采用样本值的离差形式的参数估计量的计算公式。由于现在计量经济学计算机软件被普遍采用,计算工作量已经不是什么问题。但离差形式的计算公式在其他方面也有应用,故在此写出有关公式,不作详细说明。记 (2.2.6)的参数估计量可以写成

(2.2.7) 至此,完成了模型估计的第一项任务。下面进行模型估计的第二项任务,即求随机 误差项方差的估计量。记为第i个样本观测点的残差,即被解释变量的估计值与观测值之差。则随机误差项方差的估计量为 (2.2.8) 在关于的无偏性的证明中,将给出(2.2.8)的推导过程,有兴趣的读者可以参考有关资料。 在结束普通最小二乘估计的时候,需要交代一个重要的概念,即“估计量”和“估计值”的区别。由(2.2.6)给出的参数估计结果是由一个具体样本资料计算 出来的,它是一个“估计值”,或者“点估计”,是参数估计量和的一个具体数值;但从另一个角度,仅仅把(2.2.6)看成和的一个表达式,那么,则是的函数,而是随机变量,所以和也是随机变量,在这个角度上,称之为“估计量”。在本章后续内容中,有时把和作为随机变量,有时又把和作为确定的数值,道理就在于此。

基于最小二乘算法的RBF

基于正交最小二乘算法的RBF神经网络 一、实验环境 硬件平台Win10 64位操作系统,1.5GHZ,4G内存,软件版本MA TLAB2015b 二、实验数据 训练数据集: T F W M Y Q 1000.00130010000 20.00740.03350.00150.00320.010610000 30.00430.022300.00470.005310000 40.5520.30170.25810.30940.231601000 50.54520.27930.26110.29880.203601000 60.55020.24580.27170.31150.234701000 70.24620.15080.09470.09640.099900100 80.25350.10610.09680.09710.08100100 90.26650.08940.09370.09940.090800100 100.66150.52510.51950.471100010 110.67380.44130.52250.47320.966700010 120.66650.47490.52550.47690.975800010 13110.981210.820600001 140.97970.977710.9960.775900001 150.98460.97270.98470.98570.7600001 测试数据集: T F W M Y Q 10.00310.02350.00050.0030.004510000 20.54930.26260.26590.30880.222101000 30.25720.10060.09580.09810.08900100 40.67040.49720.52350.47410.979100010 50.9920.98990.99790.99370.797900001 三、算法介绍 RBF函数网络从结构上看是一个3层前馈网络,包括一个输入层、一个输出层和一个隐含层。输入层节点的作用是将输入数据传递到隐含层节点。隐含层节点称为RBF节点,其激活函数为辐射状函数的神经元构成,通常采用高斯型函数:Array 图1 RBF结构 RBF网络中所用的非线性函数的形式对网络性能的影响并不是至关重要的,关键因素是基函数中心的选取,中心选取不当构造出来的RBF网络的性能一般不能令人满意。例如,如果某些中心靠的太近,会产生近似线形相关,从而带来数值上的病变条件。基本的RBF 神经网络采用随机抽取固定中心的方法,在输入样本数据的分布具有某种特性的情况下,采用这种方法解决给定问题就显得简单可行了。而针对其缺陷,已经有许多改进的方法,其中 之一就是利用最小二乘法选取中心,训练网络权重。

相关文档
最新文档