矩阵分析课后习题解答(整理版)

矩阵分析课后习题解答(整理版)
矩阵分析课后习题解答(整理版)

第一章线性空间与线性变换

(以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传)

(此处注意线性变换的核空间与矩阵核空间的区别)

1.9.利用子空间定义,)

R对m C满足加

(A

R是m C的非空子集,即验证)

(A

法和数乘的封闭性。

1.10.证明同1.9。

1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数)

1.13.提示:设),)(-

?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0( ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令

T ij X X )0,0,10,0,1,0,0( ==(其中1位于ij X 的第i 行和第j 行)

,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a ,

0=+ji ij a a ,

再令T ij i X X ),0,1,0,0,,0,0( ='=(其中i 位于ij X 的第i 行,1

位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A

1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)(

1.15.存在性:令2

,2H

H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==,

唯一性:假设11C B A +=,1111,C C B B H

H

-==,且C C B B ≠≠11,,

1111C B C B A H H

H -=+=,得C A

A C

B A A B H

H =-==+=2,211(矛盾)

第二章酉空间和酉变换

(注意实空间与复空间部分性质的区别)

2.8 法二:设~

2121),,()0,0,1,0,0)(,,(X e e e e e e e n T n i ==(1在第i 行);~

2121),,()0,0,1,0,0)(,,(Y e e e e e e e n T n j ==(1在第j 行) 根据此题内积定义???≠===j i j i X Y e e H j i 01),~

~( 故n e e e ,,21是V 的一个标准正交基。

,

()

)

Y

Y

X H

2.15 先求得C 使Λ=AC C H ,假设CB P =,使I AP P H =,则有Λ=-1)(H BB ,依次式求得B ,进而求得P 。(此方法不一定正确)

2.16 将),,(321ααα进行列变换化为阶梯型知可取21αα,为其中两个

基,另两个基可取T T )1,0,0,0(,0,1,0,043==

αα)(,化标准正交基略。 2.17 略

第二章矩阵的分解

矩阵分析第3章习题答案

第三章 1、 已知()ij A a =是n 阶正定Hermite 矩阵,在n 维线性空间n C 中向量 1212(,,,),(,, ,)n n x x x y y y αβ==定义内积为(,)H A αβαβ= (1) 证明在上述定义下,n C 是酉空间; (2) 写出n C 中的Canchy-Schwarz 不等式。 2、 已知2111311101A --?? =? ? -?? ,求()N A 的标准正交基。 提示:即求方程0AX =的基础解系再正交化单位化。 3、 已知 308126(1)316,(2)103205114A A --?? ?? ????=-=-?? ?? ????----?? ?? 试求酉矩阵U ,使得H U AU 是上三角矩阵。 提示:参见教材上的例子 4、 试证:在n C 上的任何一个正交投影矩阵P 是半正定的Hermite 矩阵。 5、 验证下列矩阵是正规矩阵,并求酉矩阵U ,使H U AU 为对角矩阵,已知 1 31(1)612A ????? =????????? ? 01(2)10000i A i -????=??????,434621(3)44326962260i i i A i i i i i +--????=----? ???+--?? 11(4)11A -?? =?? ?? 6、 试求正交矩阵Q ,使T Q AQ 为对角矩阵,已知

220(1)212020A -????=--????-?? ,11011110(2)01111011A -?? ??-? ?=?? -??-?? 7、 试求矩阵P ,使H P AP E =(或T P AP E =),已知 11(1)01112i i A i i +????=-????-??,222(2)254245A -?? ??=-?? ??--?? 8、 设n 阶酉矩阵U 的特征根不等于1-,试证:矩阵E U +满秩,且1 ()() H i E U E U -=-+是Hermite 矩阵。反之,若H 是Hermite 矩阵,则E iH +满秩,且1 ()()U E iH E iH -=+-是酉矩阵。 证明:若||0+=E U ,观察0-=E U λ知1-为U 的特征值,矛盾,所以矩阵E U +满 秩。()()1 1()()()--=-+=-+-H H H H H i E U E U i E U E U ,要H H H =,只要 ()()1 1()()()()()()---+-=-+?--+=+-?-=-H H H H H H i E U E U i E U E U E U E U E U E U U U U U 故H H H = 由()0+=--=E iH i iE H 知i 为H 的特征值。由Hermite 矩阵只能有实数特征值可得 0+≠E iH ,即E iH +满秩。 111111()()()()()()()()()()()()------=+-+-=+-+-=++--=H H H U U E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E iH E 9、 若,S T 分别是实对称和实反对称矩阵,且det()0E T iS --≠,试证: 1()()E T iS E T iS -++--是酉矩阵。 证明: 1111 [()()]()()()()()()----++--++--=++--++--H E T iS E T iS E T iS E T iS E T iS E T iS E T iS E T iS 11()()()()--=++++----=E T iS E T iS E T iS E T iS E

2016矩阵论复习题

矩阵论复习题 1. 设+=R V 是正实数集,对于任意的V y x ∈,,定义x 与y 的和为 y x y x ?=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 k x x k =? 问:对于上述定义加法和数乘运算的集合V ,是否构成线性空间,并说明理由. 2.对任意的2,R y x ∈,),(21x x x =,),(21y y y =定义x 与y 的和为 ),(112211y x y x y x y x +++=⊕ 对于任意的数R k ∈,定义k 与x 的数乘为 )2 )1(,(2121x k k kx kx x k -+=? 问:对于上述定义加法和数乘运算的集合2R ,是否构成线性空间,并说明理由. 3.设},022|),,{(321321R x x x x x x x S i ∈=++=,试证明S 是3R 的子空间,并求S 的一组基和S dim . 4.设)(R P n 表示次数不超过n 的全体多项式构成的线性空间, )}()(,0)0(|)({R P x f f x f S n ∈='= 证明S 是)(R P n 的子空间,并写出S 的一组基和计算S dim . 5. 设33:R R T →是线性变换, ()()321323213212,,2,,x x x x x x x x x x x T -++-+= 求T 的零空间)(T N 和像空间)(T R 的基和维数. 6. 设T 是3R 上的线性变换,对于基},,{k j i 有 k j k j i T -=++)( i k j T =+)( k j i k T 532)(++= 1)确定T 在基},,{k j i 下的矩阵; 2)求T 的像空间的基与维数.

上海交大研究生矩阵理论答案

习题 一 1.(1)因 cos sin sin cos nx nx nx nx ?? ? ? -?? cos sin sin cos x x x x ????-??= cos(1) sin(1)sin(1) cos(1)n x n x n x n x ++?? ??-++?? ,故由归纳法知 cos sin sin cos n nx nx A nx nx ?? =??-?? 。 (2)直接计算得4A E =-,故设4(0,1,2,3)n k r r =+=,则4(1)n k r k r A A A A ==-,即只需算出2 3 ,A A 即可。 (3)记J=0 1 0 1 1 0 ?????? ?????????? ,则 , 1122111 11 () n n n n n n n n n n n n n n i i n i n n i n n n a C a C a C a C a C a A aE J C a J a C a a -----=-?????? ??=+==?? ???????? n ∑。 2.设112 2 (1,0),0 a A P P a A E λλ-??===???? 则由得 2 1112111 1 1 210 0 0 a λλλλλλλ?? ????==?????????????? 1时,不可能。 而由2 112 222 0 0 000 0 0 a λλλλλλ??????==?????????????? 1时,知1i λ=±所以所求矩阵为1 i PB P -, 其中P 为任意满秩矩阵,而 1231 0 1 0 1 0,,0 10 1 0 1B B B -?????? ===?????? --?????? 。 注:2A E =-无实解,n A E =的讨论雷同。 3.设A 为已给矩阵,由条件对任意n 阶方阵X 有AX=XA ,即把X 看作2 n 个未知数时线 性方程AX -XA=0有2 n 个线性无关的解,由线性方程组的理论知其系数矩阵为零矩

研究生矩阵论课后习题答案(全)习题二

习题二 1.化下列矩阵为Smith 标准型: (1)222211λλλλ λλλλλ?? -?? -????+-?? ; (2)2222 00 000 00(1)00000λλλλλλ ?? ?? -? ? ??-?? -?? ; (3)2222 232321234353234421λλλλλλλλλλλλλλ?? +--+-??+--+-????+---?? ; (4)23014360220620101003312200λλλλλλλλλλλλλλ????++??????--????---?? . 解:(1)对矩阵作初等变换 23221311(1)100 10 000000(1)00(1)c c c c c c r λλλλλλλλλ+--?-???????????→-???→? ??? ????-++???? , 则该矩阵为Smith 标准型为 ???? ? ?????+)1(1λλλ; (2)矩阵的各阶行列式因子为 44224321()(1),()(1),()(1),()1D D D D λλλλλλλλλλ=-=-=-=, 从而不变因子为 22 2341234123()()() ()1,()(1),()(1),()(1)()()() D D D d d d d D D D λλλλλλλλλλλλλλλλ== =-==-==-故该矩阵的Smith 标准型为

2210000(1)0000(1)00 00(1)λλλλλλ?? ??-????-?? -??; (3)对矩阵作初等变换 故该矩阵的Smith 标准型为 ?? ?? ??????+--)1()1(112 λλλ; (4)对矩阵作初等变换 在最后的形式中,可求得行列式因子 3254321()(1),()(1),()()()1D D D D D λλλλλλλλλ=-=-===, 于是不变因子为 2541234534()() ()()()1,()(1),()(1)()() D D d d d d d D D λλλλλλλλλλλλλ==== =-==-故该矩阵的Smith 标准形为 2 1 0000 010 0000100000(1)00 00 0(1)λλλλ?????????? -?? ??-?? . 2.求下列λ-矩阵的不变因子: (1) 21 0021002λλλ--????--????-??; (2)100 1000 λαββλα λαββ λα+????-+? ???+??-+?? ;

矩阵分析homework01答案

Homework1 1,show that U={(a,b,0)|a,b∈R}is a subspace of R3by proving it’s the span by vectors in R3.Find at least2sets of span-ning sets. Proof: Let V=span{(1,0,0),(0,1,0)}is a subspace.We want to prove U=V. Since(a,b,0)=a(1,0,0)+b(0,1,0)∈V,?U?V. And?x,y∈R,x(1,0,0)+y(0,1,0)=(x,y,0)∈U,?V?U. In all,U=V. {(1,1,0),(1,0,0)}is also a possible spanning set. 2,show that S={(a,b,1)|a,b∈R}cannot be a subspace. Proof: Take two vectors v1=(a1,b1,1),v2=(a2,b2,1),they are both in the set S. The addition of the two vectors:v1+v2=(a1+a2,b1+b2,2)∈S,?The set S is not closed under linear combination,so it’s not a subspace. 3,What is the dimension of Q={ax+ax2+bx3|a,b∈R}. Solution: The dimension of Q equals the size of a basis of Q(obviously Q is a vector space).Q can be written as span{x+x2,x3}.So the dim(Q) is2. 4,De?ne for p∈P n(a,b),the function N(p)=max a≤x≤b|p′(x)|, show that this is not a norm on P n(a,b). We just need to present an example of p. Let p(x)=1,then N(p)=max a≤x≤b|0|=0.If N(p)is a norm, p(x)=0,contradiction to the?rst property of norm. 5,show that x ∞is a norm. proof: 1.Let x=(x1,...,x n),Obviously, x ∞=max i|x i|≥0 if x ∞=0,|x i|≤0?x i=0,for i=1,...,n.So if x ∞=0,then x=0. 2.Letα∈C, 1

矩阵分析模拟试题及答案

矩阵分析模拟试题及答案 一.填空题(每空3分,共15分) 1. 设A 为3阶方阵, 数2-=λ, 3=A , 则A λ= -24. 2. 设向量组T )4,3,2,1(1=α,T )5,4,3,2(2=α,T )6,5,4,3(3=α,T )7,6,5,4(4=α,则 ),,,(4321ααααR =2. 3. 已知??? ?? ??---=11332 223a A ,B 是3阶非零矩阵,且0=AB ,则=a 1/3. 4.设矩阵????? ??------=12422 421x A 与??? ? ? ??-=Λ40000005y 相似,则y x -=-1. 5. 若二次型()32212 3222132122, ,x ax x x x x x x x x f ++++=是正定二次型,则a 的取值 范围是22< <-a . 二.单项选择题(每小题3分,共15分) 1. 设A 是3阶矩阵,将的第二列加到第一列得矩阵,再交换的第二行与第三行得单位矩阵, 记????? ??=1000110011P ,??? ?? ??=010*******P ,在则=A ( D ) 21)(P P A 211)(P P B - 12)(P P C 112)(-P P D 2. 设A 是4阶矩阵,且A 的行列式0=A ,则A 中( C ) )(A 必有一列元素全为0 )(B 必有两列元素成比例 )(C 必有一列向量是其余列向量的线性组合 )(D 任意列向量是其余列向量的线性组合 3. 设A 与B 均为3阶方阵, 且A 与B 相似, A 的特征值为1, 2, 3, 则1 )2(-B 的特 征值为(B ) )(A 2, 1, 32 )(B 12, 14, 16 )(C 1, 2, 3 )(D 2, 1, 2 3

研究生矩阵论课后习题答案全习题三

习题三 1.证明下列问题: (1)若矩阵序列{}m A 收敛于A ,则{}T m A 收敛于T A ,{} m A 收敛于A ; (2)若方阵级数∑∞ =0m m m A c 收敛,则∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 证明:(1)设矩阵 ,,2,1,)() ( ==?m a A n n m ij m 则 ,)()(n n m ji T m a A ?=,)()(n n m ij m a A ?=,,2,1 =m 设 ,)(n n ij a A ?= 则 n n ji T a A ?=)(,,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim , 则 ji m ji m a a =∞ →)(lim ,ij m ij m a a =∞ →)(lim ,n j i ,,2,1, =, 故{} T m A 收敛于T A ,{} m A 收敛于A . (2)设方阵级数 ∑∞ =0 m m m A c 的部分和序列为 ,,,,21m S S S , 其中m m m A c A c c S +++= 10.

若 ∑∞ =0 m m m A c 收敛,设其和为S ,即 S A c m m m =∑∞ =0 ,或S S m m =∞ →lim , 则 T T m m S S =∞ →lim . 而级数∑∞ =0 )(m m T m A c 的部分和即为T m S ,故级数∑∞ =0 )(m m T m A c 收敛,且其和为T S , 即 ∑∑∞ =∞==?? ? ??00)(m m T m T m m m A c A c . 2.已知方阵序列{}m A 收敛于A ,且{} 1-m A ,1 -A 都存在,证明: (1)A A m m =∞ →lim ;(2){}1 1 lim --∞ →=A A m m . 证明:设矩阵 ,,2,1,)() ( ==?m a A n n m ij m ,)(n n ij a A ?= 若矩阵序列{}m A 收敛于A ,即对任意的n j i ,,2,1, =,有 ij m ij m a a =∞ →) (lim . (1) 由于对任意的n j j j ,,,21 ,有 ,lim ) (k k kj m kj m a a =∞ → n k ,,2,1 =, 故 ∑-∞ →n n n j j j m nj m j m j j j j m a a a 2121)()(2)(1) ()1(lim τ = ∑-n n n j j j nj j j j j j a a a 21212121) ()1(τ , 而 ∑-= n n n j j j m nj m j m j j j j m a a a A 2121) ()(2)(1)()1(τ,

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后知识题目解析

第1章 线性空间和线性变换(详解) 1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0的矩阵.用 ij E (,1,2, ,1)i j i n <=-表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素 为1外,其余元素全为0的矩阵. 显然,ii E ,ij E 都是对称矩阵,ii E 有(1) 2 n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1) 2 n n +个矩阵线性表示,此即对称矩阵组成 (1) 2 n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1) 2 n n -. 评注:欲证一个集合在加法与数乘两种运算下是一个(1) 2 n n +维线性空间,只需找出 (1)2n n +个向量线性无关,并且集合中任何一个向量都可以用这(1) 2 n n +个向量线性表示即可. 1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可. 1-3 解:方法一 设11223344x x x x =+++A E E E E 即 123412111111100311100000x x x x ??????????=+++???????????????????? 故 1234 1231211203x x x x x x x x x x +++++?? ??=??? ?+???? 于是 12341231,2x x x x x x x +++=++=

1210,3x x x +== 解之得 12343,3,2,1x x x x ==-==- 即A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --. 方法二 应用同构的概念,22R ?是一个四维空间,并且可将矩阵A 看做(1,2,0,3)T , 1234,,,E E E E 可看做(1,1,1,1),(1,1,1,0),(1,1,0,0),(1,0,0,0)T T T T .于是有 111111 000 31110201003110000 01021000300011???? ????-??? ?→???? ??? ? -???? 因此A 在1234,,,E E E E 下的坐标为(3,3,2,1)T --. 1-4 解:证:设112233440k k k k αααα+++= 即 12341234123134 12411111110110110110 k k k k k k k k k k k k k k k k k ????????+++???????????????? +++++??==??++++?? 于是 12341230,0k k k k k k k +++=++= 1341240,0k k k k k k ++=++= 解之得 12340k k k k ==== 故1234,,,αααα线性无关. 设

【免费下载】控制中的矩阵理论习题

练习一: 1.设A 、是Hermite 矩阵,证明:AB 是Hermite 矩阵的充分必要条件是n n C B ?∈AB=BA 。2.设,若,则A 为反Hermite 矩阵。试证明:任意一个都n n C A ?∈A A H -=n n C B ?∈可以唯一地表示为一个Hermitet 矩阵与一个反Hermite 矩阵的和。3.证明反Hermite 矩阵的主对角线上的元素或为零,或为纯虚数。4.设是Hermite 矩阵,rank(A)=1,证明:矩阵A 的主对角线上凡不是零的元素n n C A ?∈都是具有同符号的实数;又设是反Hermite 矩阵,rank(B)=1,证明:矩阵B n n C B ?∈的主对角线上凡不是零的元素都是具有同符号的虚部之纯虚数。5.试求一酉矩阵P ,使为对角矩阵,这里AP P AP P H =-1(1)A=; (2)A=。??????????----10001i i i i ??????????-0010010i i 6. 设是Hermite 矩阵。证明A 是Hernite 正定矩阵的充分必要条件是,存在n n C A ?∈Hermite 正定矩阵B ,使得。2 B A =7.设是Hermite 矩阵,则下列条件等价:n n C A ?∈ (1)A 是Hernite 半正定矩阵; (2)A 的特征值全为非负实数; (3)存在矩阵,使得。n n C P ?∈P P A H =练习二:1.用初等变换化下列多项式矩阵为Smith 标准形:(1) ; (2);()???? ??+-=λλλλλλλ352223A ()??????????-+--=222211λλλλλλλλλλB (3) ;(4)()()220000 001C λλλλλ??+??=????+????。()()??????????????---=00000100000002222λλλλλλλD 2.求下多项式矩阵的不变因子:

矩阵论华中科技大学课后习题答案

习题一 1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11 {()| 0}n ij n n ii i V A a a ?====∑,对矩阵加法和数乘运算; (2)2{|,}n n T V A A R A A ?=∈=-,对矩阵加法和数乘运算; (3)33V R =;对3R 中向量加法和如下定义的数乘向量:3 ,,0R k R k αα?∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。 解: (1)、(2)为R 上线性空间 (3)不是,由线性空间定义,对0α?≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。 2.求线性空间{|}n n T V A R A A ?=∈=的维数和一组基。 解:一组基 100 010 10 101010000000100............ ......0010010?? ???? ?????? ???? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ??? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ? ? ? ? ? ?? ?? ? ? ?? ?? ? ? ? ?????? dim W =n ( n +1)/2 3.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ?,证明:U 1=U 2。 证明:因为dim U 1=dim U 2,故设 {}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基 2U γ?∈,有 ()12 r X γγβββ= 而 ()()12 12r r C αααβββ=,C 为过渡矩阵,且可逆 于是 ()()()112 12121r r r X C X Y U γγγγβββαααααα-===∈ 由此,得 21 U U ?

矩阵分析课后习题解答版

第一章 线性空间与线性变换 (以下题目序号与课后习题序号不一定对应,但题目顺序是一致的,答案为个人整理,不一定正确,仅供参考,另外,此答案未经允许不得擅自上传) (此处注意线性变换的核空间与矩阵核空间的区别) 1.9.利用子空间定义,)(A R 是m C 的非空子集,即验证)(A R 对m C 满足加法和数乘的封闭性。 1.10.证明同1.9。 1.11.rankA n A N rankA A R -==)(dim ,)(dim (解空间的维数) 1.13.提示:设),)(- ?==n j i a A n n ij (,分别令T i X X ),0,0,1,0,0(K K ==(其中1位于i X 的第i 行),代入0=AX X T ,得0=ii a ;令T ij X X )0,0,10,0,1,0,0(K K K ==(其中1位于ij X 的第i 行和第j 行) ,代入0=AX X T ,得0=+++jj ji ij ii a a a a ,由于0==jj ii a a ,则0=+ji ij a a ,故 A A T -=,即A 为反对称阵。若X 是n 维复列向量,同样有0=ii a , 0=+ji ij a a , 再令T ij i X X ),0,1,0,0,,0,0(K K K ='=(其中i 位于ij X 的第i 行,1位于ij X 的第j 行),代入0=AX X H ,得0)(=-++ij ji jj ii a a i a a ,由于 0==jj ii a a ,ij ji a a -=,则0==ji ij a a ,故0=A 1.14.AB 是Hermite 矩阵,则AB BA A B AB H H H ===)( 1.15.存在性:令2 ,2H H A A C A A B -=+=,C B A +=,其中A 为任意复矩阵,可验证C C B B H H -==, 唯一性:假设11C B A +=,1111,C C B B H H -==,且C C B B ≠≠11,,由

数值分析习题集及答案

数值分析习题集 (适合课程《数值方法A》和《数值方法B》) 长沙理工大学 第一章绪论 1.设x>0,x的相对误差为δ,求的误差. 2.设x的相对误差为2%,求的相对误差. 3.下列各数都是经过四舍五入得到的近似数,即误差限不超过最后一位的半个单位,试指 出它们是几位有效数字: 4.利用公式求下列各近似值的误差限: 其中均为第3题所给的数. 5.计算球体积要使相对误差限为1%,问度量半径R时允许的相对误差限是多少? 6.设按递推公式 ( n=1,2,…) 计算到.若取≈(五位有效数字),试问计算将有多大误差? 7.求方程的两个根,使它至少具有四位有效数字(≈. 8.当N充分大时,怎样求? 9.正方形的边长大约为100㎝,应怎样测量才能使其面积误差不超过1㎝? 10.设假定g是准确的,而对t的测量有±秒的误差,证明当t增加时S的绝对误差增加,而 相对误差却减小. 11.序列满足递推关系(n=1,2,…),若(三位有效数字),计算到时误差有多大?这个计算过程 稳定吗? 12.计算,取,利用下列等式计算,哪一个得到的结果最好? 13.,求f(30)的值.若开平方用六位函数表,问求对数时误差有多大?若改用另一等价公式 计算,求对数时误差有多大? 14.试用消元法解方程组假定只用三位数计算,问结果是否可靠? 15.已知三角形面积其中c为弧度,,且测量a ,b ,c的误差分别为证明面积的误差满足 第二章插值法 1.根据定义的范德蒙行列式,令 证明是n次多项式,它的根是,且 .

2.当x= 1 , -1 , 2 时, f(x)= 0 , -3 , 4 ,求f(x)的二次插值多项式. 3. 4.给出cos x,0°≤x ≤90°的函数表,步长h =1′=(1/60)°,若函数表具有5位有效数 字,研究用线性插值求cos x 近似值时的总误差界. 5.设,k=0,1,2,3,求. 6.设为互异节点(j=0,1,…,n),求证: i) ii) 7.设且,求证 8.在上给出的等距节点函数表,若用二次插值求的近似值,要使截断误差不超过,问使用函 数表的步长应取多少? 9.若,求及. 10.如果是次多项式,记,证明的阶差分是次多项式,并且为正整数). 11.证明. 12.证明 13.证明 14.若有个不同实根,证明 15.证明阶均差有下列性质: i)若,则; ii)若,则. 16.,求及. 17.证明两点三次埃尔米特插值余项是 并由此求出分段三次埃尔米特插值的误差限. 18.求一个次数不高于4次的多项式,使它满足并由此求出分段三次埃尔米特插值的误差限. 19.试求出一个最高次数不高于4次的函数多项式,以便使它能够满足以下边界条件,,. 20.设,把分为等分,试构造一个台阶形的零次分段插值函数并证明当时,在上一致收敛到. 21.设,在上取,按等距节点求分段线性插值函数,计算各节点间中点处的与的值,并估计误 差. 22.求在上的分段线性插值函数,并估计误差. 23.求在上的分段埃尔米特插值,并估计误差. i) ii) 25.若,是三次样条函数,证明 i); ii)若,式中为插值节点,且,则. 26.编出计算三次样条函数系数及其在插值节点中点的值的程序框图(可用式的表达式). 第三章函数逼近与计算 1.(a)利用区间变换推出区间为的伯恩斯坦多项式. (b)对在上求1次和三次伯恩斯坦多项式并画出图形,并与相应的马克劳林级数部分和误

矩阵分析 2018年期末试题

一、填空题 1、4[]R x 表示实数域R 上所有次数小于或等于3的多项式构成的向量空间,则微分算子 D 在4[]R x 的基 321234(),(),(),()1p x x p x x p x x p x ====下的矩阵表示______________。 2、λ-矩阵 322(1)()(1)A λλλλλλ??- ?=- ? ??? 的初等因子组为______________________ _______________, Smith 标准形是___________________________ 3、已知矩阵210024120A -??? ?=??????,则 1____,A =____,A ∞= _____F A = 其中1,∞??分别是由向量的1-范数和∞-范数诱导出来的矩阵范数(也称算子范数), F ?是矩阵的Frobenius 范数。 4. 已知函数矩阵222()2x A x x ??= ???,则22()d A x dx =___________, 5、已知n 阶单位矩阵I , 则 sin _______,2I π= 2______,i I e π=cos _______.I π= 6、设()m J a 表示主对角元均为 a 的m 阶Jordan 块。则 ()k m J a 的Jordan 标准形为________ _______, ()k m J a 的最小多项式为___________,这里0,a ≠ ,m k 是整数且 1,1m k >≥. 二、 已知 220260114A -????=?????? , (1)求矩阵的Jordan 标准形和最小多项式; (2)求矩阵函数 sin ,.t A A e 30(())_______.t A x dx '=?

2014矩阵分析试卷

2014矩阵分析试卷 一、判断题(不要求证明)(20分) 1.设n 是大于1的整数,{()|()}V f x f x n F =是次数小于的域上的多项式,V 关于多项式的加法与数乘是一个域F 上的线性空间。 ( √ ) 2.设a r 为XOY 面上的非零向量,V 为XOY 面内所有不平行于a r 的向量构成的集合,V 关于向量的加法与数乘是一个域R 上的线性空间。 ( × ) 3.设V 是域F 上的线性空间, V α∈不是零向量,映射:,()V V ξξα→=+A A 是V 上的线性变 换。 ( × ) 4. 设A 是数域R 上的对称阵,映射:,()n n R R A αα→=A A 是n R 上的对称变换。 ( √ ) 二、计算题 1. (1,1,1,1)T 2. 已知1 12212W ={,},W ={,}Span a a Span b b ,而 1212(0,1,1,1),(1,0,2,0);(0,3,3,1),(1,2,0,0)a a b b =-==-=。 12W W ?的基为(1,1,3,1)T --与维数1; 12122212W +W ={,,}={,,}span span ααβαββ的基122,,ααβ或212,,αββ与维数3 3. 23:,()R R A ββ→=A A ,基 123(1,0,0),(0,1,0);(0,0,1) ααα===及基 12(1,0),(0,1)ββ==下的矩阵为110=211T B ?? ? ?? 。 4. (10分)设线性变换22:R R →A ,在基12(1,0),(0,1)ββ==的矩阵为12=24A ?? ??? ,求A 的核为{k(-2,1)| k}T ?、值域的基1 2+2β β,维数1。 6.(8分)求矩阵11010=0111123131A ?? ? ? ??? 的满秩分解 7.(24分)设矩阵308=3-16-20-5A ?? ? ? ??? ,求可逆矩阵P ,使得1 P AP -为约当阵。 A E -λ = ??? ? ? ??+-+---502613803 λλλ→ ????? ??++2)1(0001 0001λλ,

多元统计分析期末试题及答案

22121212121 ~(,),(,),(,),, 1X N X x x x x x x ρμμμμσρ ?? ∑==∑= ??? +-1、设其中则Cov(,)=____. 10 31 2~(,),1,,10,()()_________i i i i X N i W X X μμμ=' ∑=--∑L 、设则=服从。 ()1 2 34 433,4 92,32 16___________________ X x x x R -?? ?'==-- ? ?-? ? =∑、设随机向量且协方差矩阵则它的相关矩阵 4、 __________, __________, ________________。 215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。 12332313116421(,,)~(,),(1,0,2),441, 2142X x x x N x x x x x μμ-?? ?'=∑=-∑=-- ? ?-?? -?? + ??? 、设其中试判断与是否独立? (), 12 3设X=x x x 的相关系数矩阵通过因子分析分解为 211X h = 的共性方差1 11 X σ=的方差 21X g = 1公因子f 对的贡献121330.93400.1280.9340.4170.83511 00.4170.8940.02700.8940.44730.8350.4470.1032013R ? ? - ????? ? -?? ? ? ?=-=-+ ? ? ? ??? ? ? ????? ? ?? ?

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案讲课讲稿

《矩阵分析》(第3版)史荣昌,魏丰.第一章课后习题答案

第1章 线性空间和线性变换(详解) 1-1 证:用ii E 表示n 阶矩阵中除第i 行,第i 列的元素为1外,其余元素全为0 的矩阵.用ij E (,1,2,,1)i j i n <=-L 表示n 阶矩阵中除第i 行,第j 列元素与第j 行第i 列元素为1外,其余元素全为0的矩阵. 显然,ii E ,ij E 都是对称矩阵,ii E 有(1) 2 n n -个.不难证明ii E ,ij E 是线性无关的,且任何一个对称矩阵都可用这n+(1)2n n -=(1) 2 n n +个矩阵线性表示,此 即对称矩阵组成(1) 2 n n +维线性空间. 同样可证所有n 阶反对称矩阵组成的线性空间的维数为(1) 2 n n -. 评注:欲证一个集合在加法与数乘两种运算下是一个(1) 2 n n +维线性空间, 只需找出(1) 2 n n +个向量线性无关,并且集合中任何一个向量都可以用这 (1) 2n n +个向量线性表示即可. 1-2解: 11223344x x x x ααααα=+++令 解出1234,,,x x x x 即可. 1-3 解:方法一 设11223344x x x x =+++A E E E E 即 123412111111100311100000x x x x ??????????=+++???????????????????? 故 12341231211203x x x x x x x x x x +++++?? ??=????+???? 于是 12341231,2x x x x x x x +++=++= 1210,3x x x +==

矩阵分析复习题(带有90%答案位置)

矩阵分析复习题 1.设r V 是n 维线性空间n V 的一个r 维子空间,r ααα,,,21 是r V 的一组基,证明这组向量必可扩充为整个空间的基。即,在n V 中必可找到r n -个向量n r r ααα,,,21 ++,使得n r r αααα,,,,,11 +是n V 的一组基。 2.证明:如果21,V V 是线性空间V 的子空间,那么它们的和21V V +也是V 的子空间. 答案:13页, 定理3. 3.设12,V V 是线性空间V 的子空间,证明: )dim()dim()dim()dim(212121V V V V V V -+=+. 答案:16页,定理7. 4.设)0,1,2,1(1=α,)1,1,1,1(2-=α,)1,0,1,2(1-=β,)7,3,1,1(2-=β. {}211,αα=Span V ,{}212,ββ=Span V .求(1)21V V +的基与维数;(2)21V V 的基与维数. 答案:14页,例6. 5.设12,V V 是线性空间V 的两个子空间,证明以下论断等价: (1)12V V +是直和; (2)零向量分解式唯一(即,若1211220,,,V V α+α=α∈α∈则120α=α=.); (3){}120V V = ; (4)dim (12V V +)=dim (1V )+ dim (2V ). 答案:18页,定义2 & 定理8 6.在线性空间][x C n 中,取两组基 n x x x ,,,,12 (Ⅰ) n x n x x ! 1,,!21,,12 (Ⅱ) D 为微分算子。(1)求由(Ⅰ)到(Ⅱ)的过渡矩阵;(2)求线性变换D 在两组基下的矩阵。 答案:35页 例6.

矩阵论简明教程课后复习题与答案解析

习 题 一 13. 设A ∈ C n n ?是Hermite 矩阵。证明A 是Hermite 正定矩阵的充分必要条件是,存在Hermite 正定矩阵B ,使得A=B 2。 解:若A 是Hermit 正定矩阵,则由定理1.24可知存在n 阶酉矩阵U , 使得 U H AU =???? ?? ? ? ?n λλλO 2 1, i λ﹥0, I =1, 2, ,Λn . 于是 A =U ?? ??? ?? ??n λλλO 21U H = U ??????? ??n λλλO 2 1U H U ?????? ? ? ?n λλλO 2 1U H 令 B =U ?????? ? ? ?n λλλO 2 1 U H 则 A =B 2. 反之,当 A =B 2且B 是Hermit 正定矩阵时,则因Hermit 正定矩阵的乘积仍为Hermit 正定矩阵,故A 是Hermit 正定的. 14. 设A ∈ C n n ?是Hermite 矩阵,则下列条件等价:(1)A 是Mermit 半正定矩阵。(2)A 的特征值全为非负实数。(3)存在矩阵P ∈ C n n ?,使得A=P H P 解:(1)?(2). 因A 是Hermit 矩阵,则存在酉矩阵U,使得 U H AU =diag(n λλλ,,,21Λ) 令x =Uy , 其中 y =e k . 则 x ≠0. 于是 x H Ax =y H (U H AU )y =k λ≧0 (k =1, 2, ,Λn ). (2)?(3). A =U diag(n λλλ,,,21Λ)U H =U diag(n λλλ,,,21Λ)diag(n λλλ,,,21Λ)U H 令 P =diag(n λλλ,,,21Λ)U H , 则 A =P H P . (3)?(1). 任取x ≠0, 有 x H Ax =x H P H Px =22 Px ≧0. 习 题 二

矩阵理论试卷(整理版)

山东科技大学2010研究生矩阵理论试卷 1、 在矩阵的四个空间中,行空间、列空间、零空间和左零空间中,维数与矩阵的秩相等的子空间是行空间和列空间. 2、 在矩阵的四个基本子空间中,和列空间构成正交补的是 左零空间。 3、 利用QR 分解可以讲矩阵分解为正交阵和上三角形矩阵乘积。 4、 通过矩阵 svd 分解,可以获得矩阵四个基本子空间的标准正交基。 5、 将3×3矩阵的第一行加到第三行是初等变换,对应的初等矩阵式 ???? ? ? ?10 1010 001 6、 当矩阵的零空间中有非零向量的时候,线性方程组Ax=b 有无穷多解。 7、 所有的2×2实矩阵组成一个向量空间,这个空间的标准基是 ??? ? ?????? ?????? ?????? ??1000 0100 0010 0001 8、 通过施密特正交化可以获得矩阵的QR 分解。 9、 在选定一个基后,任何维数为n 的欧式空间与n R 同构。 10 如果将矩阵视为线性处理系统,矩阵有m 行,n 列,则输入空间的维数是n 。 二、判断题 1、给定一个线性空间,他的基不是唯一的,但是各个基中的基向量个数是相等的。(R ) 2、两个子空间的并集是一个子空间。(F ) 3、在线性方程组Ax=b ,当矩阵A 式列满秩的时候,无论向量b 是什么,方程组都有解。(F ) 4、线性变换在不同的基下的矩阵一般不同,同一线性变换的不同矩阵表示所对应的特征值都相同。(R ) 5、线性变换在不同基下的矩阵一般不同,但是对应同一线性变换的各个矩阵的特征向量都相同。(F ) 6、矩阵特征值的代数重数是该特征值对应的特征子空间的维数。(F ) 7、任何N ×N 的实矩阵都可以对角化。(F ) 8、矩阵的左逆就是矩阵的最小范数广义逆。(F ) 9、任何M ×N 实矩阵都有奇异值分解。(R ) 10、正交投影矩阵都是幂等矩阵。(R ) 三、(矩阵的四个基本子空间和投影矩阵) 设矩阵A 为 A=??? ? ? ?42 42 1、求矩阵A 的四个基本子空间的基和维数 初等变换 ??? ? ? ?00 42 dim R (A )=dim R (T A )=1 dim N (A )=dim N (T A )=1 R(A)的基 ???? ??22 R(T A )的基 ???? ??42 N(A)的基???? ??-12 N(T A )的基 ??? ? ??-11 2、画出矩阵A 的四个基本子空间的示意图。 自己画很好弄 3、写出投影到矩阵A 的列空间的正交投影矩阵,计算向量b=[0 1]T 在列空间上的投影矩阵。

相关文档
最新文档