函数的最值与奇偶性(学生版)

函数的最值与奇偶性(学生版)
函数的最值与奇偶性(学生版)

2.6函数的最值

例:求函数f(x)= 2

1

x -(x ∈[2,6])的最大值和最小值.

例:求函数(]265(0,4)x x x -+∈的最大值和最小值.

练:画出函数y=-x 2

+2|x|+3的图像,指出函数的单调区间和最大值.

2.7函数的奇偶性

1.定义理解例:若f(x)为奇函数,定义域为(-2,a+4),则a=

例.判断下列函数的奇偶性:(定义法和图像法)

(1)35

()f x x x x =++ (2) 2()1f x x =+

(3)()1f x x =+ (4) []2()(1,2)f x x x =∈-

(5)

x x x x f ++=

1)(2; (6)()22(0)

(0)

x x x f x x x x ?-+>?=?+≤??

2.)(x f 是奇函数且在0=x 处有意义,则

(0)0f =。

例:)(x f 是奇函数,且定义域为(-3,3),则(0)f =

3. 奇偶性与单调性的关系:

例:设函数)(x f 为定义域为R 上奇函数,又当0>x 时2

()23f x x x =--,试求)(x f 的解析式。

练:已知

()

y f x =是奇函数,当0x >时,()221f x x x =-+,求当0x <时,()f x 得

解析式。

课后练习:

1.若奇函数)(x f 在区间]7,3[上是增函数且最小值为5,则)(x f 在区间[7,3]--上是( )

A .增函数且最小值为5-;

B .增函数且最大值为5-;

C .减函数且最小值为5-;

D .减函数且最大值为5-

2..设()f x 是定义在R 上的偶函数,且在(,0)-∞上是增函数,已知120,0,x x ><,

12()()f x f x <那么一定有( )

A .120x x +<;

B .120x x +>;

C .12()()f x f x ->-;

D .12()()0f x f x --<

3.判断下列函数的奇偶性

(1)

2

()[1,2]f x x x =∈- (2)()(1f x x =- ()22f x x =+

4.函数f(x)=-x 2

+2x+3(x ∈[0,3])的最大值为 ,最小值为 .

5.已知函数f(x)=x 2+2ax+2,x ∈[-5,5] .

(1)当a=-1时,求函数f(x)的最大值和最小值;

(2) 求实数a 的取值范围,使y=f(x)在区间[-5,5]上是单调函数.

2.8指数函数

1.根式:

2.分数指数幂:

(1)正数的正分数指数幂的意义是:)1,,,0(*>∈>=n N n m a a a n m n m

(2)正数的负分数指数幂的意义是:)1,,,0(1

1*>∈>=

=-

n N n m a a a

a

n

m

n

m n

m

(3)0的正分数指数幂=0,(即)1,,(00*

>∈=n N n m n

m );

0的负分数指数幂无意义。 3.有理数指数幂的运算性质: (1)),,0(Q n m a a a a n

m n

m

∈>=?+

(2)()

),,0(Q n m a a a mn n

m

∈>=

(3)()),0,0(Q m b a b a ab m m m

∈>>=

例1.求下列各式的值: (1)()33

8- (2)

()210- (3)()44

3∏- (4))()(2

b a b a >-

2.求值:(1)3

2

8 (2)2

125- (3)5

21-??

? ?? (4)4

3

8116-

??

?

?? 3.用分数指数幂的形式表示下列各式:(a>0)

a a ?3 322a a ? 3a a

4.计算033

2

5

.251

833)

064.0(∏--?

?

???

?-

二、指数函数及其性质

1. 函数的定义

例(1)下列函数中,哪些是指数函数?

①x y 4=; ②4x y =; ③x y 4-=; ④x y )4(-= (2)若函数(

)

2

3x

y a a =-是指数函数,求实数a 的取值范围.

2、指数函数的图像:

例:如图是指数函数①x a y =,②x b y =,③x c y =;④x d y =的图象, 则a 、b 、c 、d 的大小关系是( ) A .d c b a <<<<1 B .c d b a <<<<1 C .c d a b <<<<1

D .d c b a <<<<1

例:若1>a ,01<<-b ,则函数b a y x +=的图象一定不经过( ) A .第一象限

B .第二象限

C .第三象限

D .第四象限

例:函数323+=-x y

的图像恒过定点 . 3、指数函数的性质:

例:1函数13)(-=-x x f 的定义域、值域是( ) A .定义域是R ,值域是R

B .定义域是R ,值域是(0,∞+)

C .定义域是R ,值域是(+∞-,1)

D .以上都不对

2求下列函数的定义域: ① 2

3

-=x y ;

②x y 1

)2

1

(=

3利用指数函数的性质,比较下列各题中两个值的大小: ①5.27.1,37.1; ②1.08.0-,2.08.0- ; ③3.07.1,1.39.0;

4当0x >时,函数2()(1)x f x a =-的值总大于1,则实数a 的取值范围是( )

A .1||2a <<

B .||1a <

C .||a >

D .||a <5.若函数x a x f )1()(2-=在),(+∞-∞上是减函数,则a 的取值范围是 .

2.9对数函数

1.指数式与对数式的互化:log b a a N N b =?=

2.重要公式: 01log =a ,log =a a 对数恒等式N a

N

a =log

3.对数的运算法则

如果0,1,0,0a a N M >≠>>

log ()log log a a a MN M N =+,log log log a

a a M M N N =-,log log n m a a m

M M n

= 4.对数换底公式:a

N

N m m a log log log = ( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0)

5.两个常用的推论:

1log log =?a b b a , 1log log log =??a c b c b a b m

n

b a n a m log log =

( a, b > 0且均不为1)

例1、对数:

(1)将指数式化为对数式,将对数式化为指数式 ①62554=

②64

126=

- ③73.5)3

1(=m

④12

log 164=-

⑤201.0lg -= ⑥303.210ln =

(2)求下列各式的值: ①25log 5;②16

1

log 2

;③1000lg ;④001.0lg ;⑤)24(log 672?;⑥5100lg (3)log b a N =(1,0,0≠>>b b a )对应的指数式是( ) A .N a b =

B .N b a =

C .b a N =

D .a b N =

(4)设13

log 82

x =,则底数x 的值为( ) A .2

B .

2

1 C .4 D .

4

1 例:1对数的运算:

② 3log 6log 22-; ②2lg 5lg -; ③3

1

log 3log 55+ ④15log 5log 33-.

② 2log 5log 4log 3log 5432???; ③)2log 2)(log 3log 3(log 9384++.

2.设255lg =x ,则x 的值等于( ) A .10

B .10±

C .100

D .100±

3

43

1627

log log 的值为

6.对数函数

类型一:定义域的求解

例1:求下列函数的定义域:2log a y x =; log (3)a y x =-; 2log (9)a y x =-

2.已知函数()x f 定义域是[-3,2],求()x f y 3log =的定义域

类型二、比较大小 例2:比较大小:

(1)ln3.4,ln8.5; (2)0.70.7log 1.6log 1.8和; (3)0.30.2log 4log 0.7和; (4)23log 3log 2和; (5)2log 0.4和3log 0.4

练习:1. 已知n log 5 >m log 5,试确定m 和n 的大小关系

2. 比较大小:(1)6log 7 7log 6; (2)3log 1.5 2log 0.8 类型三、函数图象

例.画出下列函数的图象

(1)|lg |x y =;(2)3log 2y x =+;(3)()1lg +=x y ;

练习:

1、当1>a 时,在同一坐标系中,函数x a y =与()10log ≠>=a a a y x 且的图象是( )

A .

B .

C .

D .

2、函数1)1(log --=x y a )10(≠>a a 且的图象必经过点( )

A .)1,2(-

B .)1,2(

C .)1,0(-

D .)1,0( 类型四、求值域 求下列函数的值域

1、]2,1[log )(2∈=x x x f

2、2()log 1[1,2]f x x x =-∈

8指数函数与对数函数的关系:

例1已知函数12

()log f x x =(x ≥1),则它的反函数的定义域为( )

A.(,)-∞+∞

B.[0,)+∞

C.(,0]-∞

D.(0,1) 2函数0.2x y -=的反函数是( )

A.5log (0)y x x =>

B.log 5(0,1)x y x x =>≠

C.0.2log (0)y x x =>

D.5log (1)y x x =>

课后巩固: 1.函数()1log 22≥+=x x

y 的值域为( )

A.(2,+∞)

B.(-∞,2)

C.[2,+∞)

D.[3,+∞) 2.不等式2

1

log 4>

x 的解集是( ) A.(2,+∞) B.(0,2) C.(

2

1

,+ ∞) D.(0,+∞) 3.函数(1)log (3)x y x -=- 的定义域是 4.函数1)1(log --=x y a )10(≠>a a 且的图象必经过点( )

A .)1,2(-

B .)1,2(

C .)1,0(-

D .)1,0(

5.若09log 9log <

6. 函数x y a log =在[2,4]上的最大值比最小值大1,求a 的值

7.求函数)65(log 23

1+-=x x y 的值域、单调区间

高中数学解题方法谈:函数奇偶性的判定方法

函数奇偶性的判定方法 函数奇偶性的判定方法较多,下面把常见的判定方法分类加以研究分析. 1.定义域判定法 例1 判定()(1)2f x x x =-- 的奇偶性. 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称, ∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数的奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-和奇偶性. 解: 函数()f x x a x a =++-的定义域为R ,且 ()()()()f a x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数的奇偶性. 3.等价形式判定法 例3 判定2211 ()11x x f x x x ++-=+++的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =, ∴图象过原点. 又0x ≠ 时,22 22 ()(1)(1)1()(1)(1)f x x x f x x x -+-+==-+--, (1)()f f x ∴-=-. 又(0)0f =,∴()f x 为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,()([])f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数,试判定()()()x f x g x ?= 的奇偶性.

函数奇偶性的教案

函数的奇偶性 湘教版普通高中课程标准实验教科书《数学》必修一 新授课 一.教材分析 《函数的奇偶性》是湘教版普通高中必修一第一单元第三节的容。在此之前,学生已经学习过函数的单调性,这为过渡到本节课起到了铺垫的作用。而且,函数的奇偶性是函数的重要性质之一,它的研究为今后幂函数、三角函数的性质等后续容起到了铺垫作用。 奇偶性的教学无论是在知识上还是在能力方面,对学生的教育都起着非常重要的作用,因此本节课充满着数学方法论的渗透教育,同时又是数学美的集中体现。 二.学情分析 学生已经学习过函数的单调性,对于研究函数性质的方法已经有了一定的了解。尽管他们尚不知道函数的奇偶性,但学生在初中已经学习过图形的轴对称与中心对称,对图形的特殊对称性已经有一定的感性认识。在函数单调性方面,学生已经懂得了由形象到具体,然后由具体到一般的科学处理方法,具备一定数学研究方法的感性认识。高年级的学生已经具备一定的观察、分析能力,但观察的深刻性及其稳定性还有待提高,教师在教学过程中要重视启发引导。 三.教学目标 (1)知识与技能: 使学生了解奇偶性的概念,会利用定义判断简单函数的奇偶性。 (2)过程与方法:

在奇偶性概念形成过程中,培养学生的观察归纳能力,同时渗透数形结合和特殊到一般的思想方法。 (3)情感态度与价值观: 在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神。 四.教学重难点 教学重点:函数的奇偶性及其几何意义。 教学难点:判断函数的奇偶性的方法与步骤。 五.教学方法 教法:借助多媒体,以引导发现为主,设疑诱导为辅的教学模式,遵循研究函数性质的三部曲。 学法:根据自主性和差异性原则,以促进学生发展为出发点,着眼于知识的形成与发展,着眼于学生的学习体验。 六.教学用具:电脑多媒体。 七.教学过程: (一)设计问题,创设情境 1. 复习对称概念 初中我们已经学习过轴对称图形和中心对称图形的有关概念: ①轴对称图形——将图形沿一条直线折叠,直线两侧的部分能够 互相重合; ②中心对称图形——将图形绕一个点旋转180°,所得图形与原 图形重合.

函数的奇偶性及其应用举例

函数的奇偶性及其应用举例 (湖北省红安县职教中心 金哲、曾诚) 【摘要】 函数是贯穿于初中、高中、大学数学教学的一条主线,也是高中数学的核心 内容,那么真正掌握函数,其中最主要的就是掌握函数的基本性质。函数的奇偶性是函数重要性质之一。近几年高职统考以及技能高考对于函数的奇偶性一直都是热点问题。本文将通过对函数的奇偶性及其应用进行一个系统研究。 【关键词】 函数的奇偶性,判定,应用 一、奇、偶函数的定义: 若函数)(x f ,在其定义域内,任取x 都有))()()(()(x f x f x f x f =--=-或者, 则称函数)(x f 在区间I 上是奇函数(或者偶函数) 二、函数的奇偶性分类 ???? ? ?? =--=-≠--≠-=--=-)()()()()()()()(:)()(:)()(:x f x f x f x f x f x f x f x f x f x f x f x f 且既奇且偶函数: 且非奇非偶函数偶函数奇函数 三、奇、偶函数的图象: 奇函数?图象关于原点成中心对称的函数 偶函数?图象关于y 轴对称的函数。 四、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称 ②若f(x)是奇函数,且x 在0处有定义,则f(0)=0 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同 偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反 ④任意定义在R 上的函数f(x)都可以唯一地表示成一个奇函数与一个 偶函数的和。 五、 判断函数奇偶性的方法: (1)定义法:欲判断函数)(x f 在给定区间或者定义域内的奇偶性:

第一步:先判断给定区间或者定义域是否关于原点对称,若 不对称,则函数)(x f 一定是非奇非偶函数。 第二步:若对称,再判断)(x f -与)(x f 的关系: ①若)(x f -=-)(x f ,则)(x f 是奇函数 ②若)(x f -=)(x f ,则)(x f 是偶函数 ③若)(x f -=-)(x f 且)(x f -=)(x f ,则)(x f 是既奇且偶函数 ④若)(x f -≠-)(x f 且)(x f -≠)(x f ,则)(x f 是非奇非偶函数 (2)图象法:图象关于原点成中心对称的函数是奇函数; 图象关于y 轴对称的函数是偶函数。, 六、函数奇偶性的应用: (1)函数奇偶性的判断 例1、(2011年高职统考第4题)下列函数为奇函数的为 )0(.5 1<=x x y A )0(.7 1>=x x y B 2 1.x y C = 3 1.x y D = 析:A,B ,C 这三个函数的定义域都不关于原点对称,故均为非奇非偶函数, 只有D 选项,定义域为()+∞∞-,,关于原点对称,并且()3 13 1x x -=-,故D 项所在函数为奇函数。 例2、(2014年文化综合第25题改编)下列函数中为奇函数的是 A .2 ()1f x x =- B .3 ()f x x = C .5()3x f x ?? = ??? D .2 ()log f x x = 析:A 项2()1f x x =-的定义域为()+∞∞-,关于原点对称,但 () 11)(2 2 -=--=-x x x f ,)()(x f x f =-故为偶函数; C 项5()3x f x ?? = ??? 定义域 为()+∞∞-,关于原点对称,但)()()()(,35)(x f x f x f x f x f x -≠-≠-??? ??=--且, 故为非奇非偶函数;D 项2()log f x x =,定义域为()+∞,0,不关于原点对称, 故为非奇非偶函数,只有B 项符合。 例3、判断函数12)(2+-=x x x f 的奇偶性: 析:(法1-定义法)()f x 函数的定义域是()-∞+∞, , ∵ 2()21f x x x =-+,

第招 如何判断函数的奇偶性

第11招 如何判断函数的奇偶性? 判断函数的奇偶性(有的还牵涉三角函数)是高考中常考的知识点,一般以选择题形式出现. 解法指导与经典范例 (一) 判断函数奇偶性的方法 1. 定义法 这是最常用的方法.其解法步骤如下:(1)确定函数的定义域是否是关于原点的对称区间.若不是,可判断该函数是非奇非偶函数.若是,再按下列步骤继续进行.(2)在定义域内任取x ,以-x 代换f(x)中的x 得f(-x).(3)依据定义得出结论. 注意:(1)既是奇函数又是偶函数的函数只能是f(x)=0. (2)若奇函数f(x)在x=0处有定义,则f(0)=0.(如例6证一) 【例1】函数 ()()是x x x x f +-? +=11( ). A.奇函数 B.偶函数 C.既是奇函数又是偶函数 D0非奇非偶函数 解 (]()() 的奇偶性】判断函数【例原点对称的区间由于这定义域不是关于想)的定义域为函数得?????>+-<+=-≤<-≥+-00)(2. .1,19,1101122x x x x x x x f f x x x 解 当x<0时,-x>0,()()() ().)(22x f x x x x x f -=+-=-+--=-∴ 而当x>0时,-x<0,()()()()x f x x x x x f -=-=-+-=-∴22 ()()()()().,,00,为奇函数故都有对任意x f x f x f x =-+∞∞-∈∴ 【例3】2002.北京文三(22)已知f(x)是定义在R 上的不恒为零的函数,且对于任意的a 、b R ∈都满足:()()().a bf b af b a f +=? (1) 求f(0)、f(1)的值;(2)判断f(x)的奇偶性,并证明你的结论. 解(1)()()()()()()=?==?+?=?=111.00000000f f f f f f ()()1111f f ?+? ()f f ∴=,12(1)=0. (2)f(x)是奇函数.证明如下: ()()()[]()()()()().01.01,1211111=-∴=--=----=-?-=f f f f f f f 而 又 ()()()()()().,11是奇函数x f x f xf x f x f x f ∴-=-+-=?-=- 2. 利用定义的等价命题来判断 ()()()()()().00是偶函数是奇函数;x f x f x f x f x f x f ?=--?=-+ 或:当()()()()()() ().110是偶函数是奇函数;时, x f x f x f x f x f x f x f ?=-?-=-≠

函数奇偶性的归纳总结

函数的奇偶性的归纳总结 考纲要求:了解函数的奇偶性的概念,掌握判断一些简单函数的奇偶性的方法。 教学目标:1、理解函数奇偶性的概念; 2、掌握判断函数的奇偶性的类型和方法; 3、掌握函数的奇偶性应用的类型和方法; 4、培养学生观察和归纳的能力,培养学生勇于探索创新的精神。 教学重点:1、理解奇偶函数的定义; 2、掌握判断函数的奇偶性的类型和方法,并探索其中简单的规律。 教学难点:1、对奇偶性定义的理解; 2、较复杂函数奇偶性的判断及函数奇偶性的某些应用。 教学过程: 一、知识要点: 1、函数奇偶性的概念 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 理解: (1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质; (2)定义域关于原点对称是函数具有奇偶性的必要条件。 2、按奇偶性分类,函数可分为四类: 奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象:

奇函数?图象关于原点成中心对称的函数,偶函数?图象关于y 轴对称的函数。 4、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。 ②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间[a,b](0≤a

函数奇偶性的判定方法

函数奇偶性的判定方法 山东 刘海 函数奇偶性的判定方法较多,下面举例介绍常见的判定方法. 1.定义域判定法 例1 判定()(1)f x x =- 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称,∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数具有奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-的奇偶性. 解: 函数()f x x a x a =++-的定义域为R , 且 ()()()()f x x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数奇偶性. 3.等价形式判定法 例3 判定()f x =的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =,∴图象过原点. 又0x ≠ 时,22 22()(1)(1)1()(1)(1) f x x x f x x x -+-+==-+--,()()f x f x ∴-=-. 又(0)0f =,()f x ∴为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,[]()()f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数, 试判定()()()x f x g x ?= 的奇偶性.

函数的奇偶性教案

创作编号: BG7531400019813488897SX 创作者:别如克* 1.3.2(1)函数的奇偶性 【教学目标】 1.理解函数的奇偶性及其几何意义; 2.学会运用函数图象理解和研究函数的性质; 3.学会判断函数的奇偶性; 【教学重难点】 教学重点:函数的奇偶性及其几何意义 教学难点:判断函数的奇偶性的方法与格式 【教学过程】 “对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性? 提出问题 ①如图所示,观察下列函数的图象,总结各函数之间的共性. 结论:这两个函数之间的图象都关于y轴对称. ②那么如何利用函数的解析式描述函数的图象关于y轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征? x -3 -2 -1 0 1 2 3

表1 表2 结论:这两个函数的解析式都满足:f(-3)=f(3); f(-2)=f(2); f(-1)=f(1). 可以发现对于函数定义域内任意的两个相反数,它们对应的函数值相等,也就是说对于函数定义域内任意一个x ,都有f(-x)=f(x). 定义: 1.偶函数 创作编号: BG7531400019813488897SX 创作者: 别如克* 一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数. 观察函数f(x)=x 和f(x)=x 1 的图象,类比偶函数的推导过程,给出奇函数的定义和性质? 2.奇函数 一般地,对于函数()f x 的定义域的任意一个x ,都有()()f x f x -=-,那么()f x 就叫做奇函数. 注意: 1、如果函数()y f x =是奇函数或偶函数,我们就说函数()y f x =具有奇偶性;函数的奇偶性是函数的整体性质; 2、根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、

函数奇偶性在解题中的应用

函数奇偶性在解题中的应用 徐辉 函数的奇偶性是函数的重要性质之一,也是日常考试和高考中数学的重点和热点内容之一。它应用广泛,在高中数学的各个分支中都有着极为重要的应用,在解题过程中如果应用的好,常能使难题变易,繁题变简,起到事半功倍的效果。 1.用于求值 例1:已知奇函数,则 解:因为奇函数, 所以对任意,都有成立. 令,则有,从而可得; 令,则有, 从而 . 故. 注:此解利用了若函数是奇函数,则对定义域内的任意, 都有这一性质,特别地,当0在定义域内时,必有. 2.用于比较大小 例2.已知偶函数在区间上单调递减,试比较 的大小.

解:因为是偶函数,所以,故此题只需比较的大小即可. 又因在区间上单调递减,而且 所以,故. 注:此解利用了若函数是偶函数,则对定义域内的任意x,都有这一性质.当然此题也可利用偶函数图象关于y 轴对称这一性质,首先得到在区间是单调递增的,然后再用单调性进行求解. 3.用于求最值 例3.如果奇函数在区间[3,7]上是增函数且最小值为5,那么在区间[-7,-3]上是() A. 增函数且最小值为-5 B. 增函数且最大值为-5 C. 减函数且最小值为-5 D. 减函数且最大值为-5 解:由在区间[3,7]上是增函数且最小值为5,有, 又是奇函数,而奇函数的图象关于原点对称, 故有在[-7,-3]上也是增函数,且当x=-3时,函数取得最大值, 故选B. 注:此解利用了奇函数图象关于原点对称这一性质. 4.用于求参数的值 例4.已知函数(a、b、c∈Z)是奇函数,又f(1)=2,f(2)<3,求a、b、c的值.

解:由是奇函数,知f(-x)=-f(x), 从而,即-bx+c=-(bx+c),c=-c,∴c=0. 又由f(1)=2,知,得a+1=2b①, 而由f(2)<3,知,得② 由①②可解得-1<a<2. 又a∈Z,∴a=0或a=1. 若a=0,则b=,应舍去; 若a=1,则b=1∈Z. ∴a=1,b=1,c=0. 注:本题从函数的奇偶性入手,利用函数的思想建立方程或不等式,组成混合组,最终使问题得以解决. 当然此题也可采用取特殊值的方法得到c的值,如由f(-1)=-f(1),可得c=0. 5.用于求函数的解析式 例5.已知定义在(-∞,+∞)上的函数f(x)的图像关于原点对称,且当x>0时,f(x)=x2-2x+2,求函数f(x)的解析式。解:当x<0时,-x>0,故f(-x)=(-x)2-2(-x)+2=x2+2x+2 因函数f(x)的图像关于原点对称,故函数f(x)为奇函数, 于是f(-x)=-f(x),从而当x<0时,f(x)=-f(-x)=-(x2+2x+2)=-x2-2x-2,

函数的奇偶性

函数的奇偶性 【学习目标】 1.理解函数的奇偶性定义; 2.会利用图象和定义判断函数的奇偶性; 3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】 要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:() ()()0, 1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:() ()()01(()0)() f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数. 3.用定义判断函数奇偶性的步骤 (1)求函数()f x 的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数()f x 的定义域,化简函数()f x 的解析式; (3)求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性. 若()f x -=-()f x ,则()f x 是奇函数; 若()f x -=()f x ,则()f x 是偶函数; 若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数; 若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数 要点二、判断函数奇偶性的常用方法

函数的奇偶性的经典总结

函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2 )(,(2)x x x f -=3 )( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在(x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。 (6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。 (7)在公共定义域内偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数和、差仍为奇函数;奇(偶)数个奇函数积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(8)对于复合函数()()[]x g f x F =;若()x g 为偶函数, ()f x 为奇(偶)函数,则()x F 都为

函数的单调性和奇偶性教案(学生版)

函数的单调性和奇偶性 一、目标认知 学习目标: 1.理解函数的单调性、奇偶性定义; 2.会判断函数的单调区间、证明函数在给定区间上的单调性; 3.会利用图象和定义判断函数的奇偶性; 4.掌握利用函数性质在解决有关综合问题方面的应用. 重点、难点: 1.对于函数单调性的理解; 2.函数性质的应用. 二、知识要点梳理 1.函数的单调性 (1)增函数、减函数的概念 一般地,设函数f(x)的定义域为A,区间 如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间M上是增函数; 如果对于M内的任意两个自变量的值x1、x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在区间M上是减函数. 如果函数f(x)在区间M上是增函数或减函数,那么就说函数f(x)在区间M上具有单调性,M称为函数f(x)的单调区间. 要点诠释: [1]“任意”和“都”; [2]单调区间与定义域的关系----局部性质; [3]单调性是通过函数值变化与自变量的变化方向是否一致来描述函数性质的; [4]不能随意合并两个单调区间. (2)已知解析式,如何判断一个函数在所给区间上的单调性? 基本方法:观察图形或依据定义. 2.函数的奇偶性 偶函数:若对于定义域内的任意一个x,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: [1]奇偶性是整体性质; [2]x在定义域中,那么-x在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; [3]f(-x)=f(x)的等价形式为:, f(-x)=-f(x)的等价形式为:;

函数的奇偶性公开课优秀教案(比赛课教案)

《函数的奇偶性》教案 一、教材分析 “奇偶性”是人教版必修1中第一章“集合与函数概念”的第3节“函数的基本性质”的第2小节。 函数的奇偶性是函数的一条重要性质,教材从学生熟悉的初中学过的的一些轴对称图形入手,体会到数形结合思想,初步学会用数学的眼光看待事物,感受数学的对称美。尝试画出和的图像,从特殊到一般,从具体到抽象,比较系统地介绍了函数的奇偶性.从知识结构看,奇偶性既是函数概念的拓展和深入,又是为以后学习基本初等函数奠定了基础。因此,本节课起着承上启下的重要作用。 二、学情分析 从学生的认知基础看,学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的储备。同时,上节课学习了函数单调性,积累了研究函数的基本方法与初步经验。 三、教学目标 【知识与技能】 1.理解奇函数、偶函数的概念及其几何意义; 2.能从定义、图像特征、性质等多种角度判断函数的奇偶性,学会函数的应用。 【过程与方法】 通过实例观察、具体函数分析、数与形的结合,定性与定量的转化,让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验。 【情感、态度与价值观】 1.在经历概念形成的过程中,培养学生内容、归纳、抽象、概括的能力; 2.通过自主探索,体会数形结合的思想,感受数学的对称美。 四、教学重点和难点 重点:函数奇偶性的概念和函数图像的特征。

难点:利用函数奇偶性的概念和图像的对称性,证明或判断函数的奇偶性。 五、教学方法 引导发现法为主,直观演示法、类比法为辅。 六、教学手段 PPT课件。 七、教学过程 (一)情境导入、观察图像 出示一组轴对称和中心对称的图片。 设计意图:通过图片引起学生的兴趣,培养学生的审美观,激发学习兴趣。 师:“同学们,这是我们生活中常见的一些具有对称性的物体,你能说出它们有什么特点吗?” 生:“它们的共同点都是关于某一地方是对称的。” 师:“是的,而我们今天要学习的函数图像也有类似的对称图像,首先我们来尝试画一下和的图像,并一起探究几个问题。” (二)探究新知、形成概念 探究1.观察下列两个函数和的图象,它们有什么共同特征吗?

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

函数的奇偶性的典型例题

函数的奇偶性的典型例题 函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①、定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 ⑴、x x x f 2)(3+= ⑵、2 432)(x x x f += ⑶、1 )(2 3--=x x x x f ⑷、2)(x x f = []2,1-∈x ⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-= 解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数 注:教材中的解答过程中对定义域的判断忽略了。 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 .)(),()() ()()()(,0,0) ()()(,0,0) (0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-== 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的几个命题的判定。 命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分

函数的奇偶性的经典总结

x x x f 1)(+ =1 )(2+= x x x f x x f 1)(= 函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴ x x x f +=2 )(,(2) x x x f -=3 )( (3) ()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。 (6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。

函数的奇偶性公开课教案

教案 教者李德双科目数学班级3班课题函数的奇偶性课型启发式教学 时间2019年12 月19 日地点多媒体教室 教学目标1.知识与技能目标:理解奇(偶)函数概念;会利用定义判断简单函数是否为奇(偶)函数;掌握奇(偶)函数图象性质; 2.过程与方法目标:在学习过程掌握从特殊到一般的研究方法;学会用对称的方法来方便问题的解决; 3.情感态度与价值观目标:锻炼学生思维的严谨性;体验探究的乐趣; 教学重点函数的奇偶性定义及其图像性质; 教学难点函数的奇偶性判断; 学情分析学生在初中已经学习了轴对称图形和中心对称图形,并且有了一定数量的简单函数的知识储备,并能进行简单的特殊到一般的推导。 课前准备对称的图片和函数奇偶性的PPT 教学环节教学内容学生活动教学方 法 导入新授 一、创设情景,兴趣导入 出示一组轴对称和中心对称的图片 给出一组函数图像,根据图像对称性认识偶函数和 奇函数 二、动脑思考、探索新知 1.偶函数 探究1.观察函数 2 ) (x x f=的图象 (1).求值并观察 f (-x) 与 f (x)的规律: f (1) = ;f (-1) = ; f (2) = ;f (-2) = ; f (a) = ;f (-a) = ; 关系:) (x f-______) (x f (2).思考图像有何对称的特征? 这类函数就是偶函数,具体定义和性质如下: 一般地,如果函数) (x f的定义域关于原点对称, 并且对定义域内任意一个值x,都有) ( ) (x f x f= -, 观察并回 答 回答 结果 通过图片 引起学生 的兴趣, 培养学生 的审美 观,激发 学习兴 趣。 从熟悉的 函数入 手,符合 学生的认 知规律 从“形”

函数奇偶性的定义与应用

函数2:函数的奇偶性 【教学目的】 使学生了解奇偶性的概念,掌握判断函数奇偶性的方法; 【重点难点】 重点:函数的奇偶性的有关概念; 难点:奇偶性的应用 一、函数的奇偶性 1.偶函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做 偶函数. 2.奇函数:一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)就叫 做奇函数. 3.判断函数奇偶性的方法: (1)图像法:偶函数的图像关于y 轴对称;奇函数的图像关于原点对称. (2)定义法:○1首先确定函数的定义域,并判断其是否关于原点对称; ②确定f(-x)与f(x)的关系; ○ 3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数. 4.奇偶函数的简单性质: (1)奇函数:奇函数的图像关于原点对称,其单调性在对称区间内相同,如在[a,b ]上为 增函数,则在[-b ,-a ]上也为增函数. (2)偶函数:奇函数的图像关于y 轴对称,其单调性在对称区间内相反,如在[a,b ]上为 增函数,则在[-b ,-a ]上为减函数. 二、函数奇偶性的应用 1、利用定义判断函数奇偶性 例1(1)x x x f 2)(3+= ; (2)2 432)(x x x f +=; (3)1)(2 3--=x x x x f ; (4)2)(x x f = []2,1-∈x ; (5)x x x f -+-=22)( ; (6)2211)(x x x f -+-=; (7)2211(0)2()11(0)2 x x g x x x ?+>??=??--x 时,()()x x x f -=1,求()x f 在R 上解析式;

《函数的奇偶性》公开课优秀教案

《函数的奇偶性》教案 授课教师 授课时间:授课班级: 教材:广东省中等职业技术学校文化基础课课程改革实验教材《数学》(广东高等教育出版社出版) 教材主要特点:这本教材注意与初中有关知识紧密衔接,注重基础,增加弹性,使用教材可以根据有关专业的特点,选用相关的章节,教学要求和练习内容分A、B两档,适应分层教学。练习A的题目主要是基础练习,供全体学生学习,也是最低的要求;练习B的题目为拓展延伸的练习,供学有余力并且准备进一步深造的学生学习。 教学要求:教师在授课时主要是探究用奇、偶函数的定义判断函数的奇、偶性,奇、偶函数的性质(课本不要求证明)是作为拓展延伸的内容,以学生自学为主,教师适当给予辅导。教材已经分层编写,有利于实施分层教学时可以不分班教学。 任教班级特点:会计072班共有学生62人,男生6人,女生56人。学生数学平均入学成绩为58.3分,上课纪律良好,学生上课注意力比较集中,使用了这本教材后,绝大多数学生喜欢学数学,学生的学习成绩越来越好。

教学目标 知识与技能目标:使学生了解奇函数、偶函数的概念,掌握判断函数奇偶性的方法,培养学生判断、推理的能力。 过程与方法目标:通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想 情感、态度、价值观目标:通过数学的对称美来陶冶学生的情操.使学生学会认识事物的特殊性与一般性之间的关系。 教 学重点 用定义判断函数的奇偶性. 教 学难点 弄清的关系. 教 学手段 多媒体辅助教学(展示较多的函数图像) 【教学过程】: 一、创设情境,引入新课 [设计意图:从生活中的实例出发,从感性认识入手,为学生认识奇偶函数的图像特征做好准备] 对称性在自然界中的存在是一个普遍的现象.如美丽的蝴蝶是左右对称的(轴对称)。现实生活中有许多以对称形式呈现的事物,如汽车的车前灯、音响中的音箱,汉字中也有诸如“双”、“林”等对称形式的字体,这些都给以对称的感觉。函数里也有这样的现象。 提出问题让学生回答:1、中心对称图形的概念(提醒学生:中心对称——图

函数奇偶性的判断方法

函数奇偶性的判断方法 (周口卫生学校 马爱华 466000) 摘要:本文由两个高考题来验证判断函数奇偶性的三种常见方法:1、利用奇偶函数的定义来判断(这是最基本,最常用的方法);2、用求和(差)法判断;3、用求商法判断。 关键词:奇函数 偶函数 定义域 求和(差)法 求商法 函数的奇偶性是函数的一个重要的性质,其重要性质体现在它与函数的各种性质的联系之中,那么,怎样来判断函数的奇偶性呢? 函数的奇偶性的判断应从两方面来进行,一是看函数的定义域是否关于原点对称(这是判断奇偶性的必要性)二是看)(x f 与)(x f -的关系。判断方法有以下三种: 1、利用奇偶函数的定义来判断(这是最基本,最常用的方法) 定义:如果对于函数y=f (x )的定义域A 内的任意一个值x , 都有f (-x )=-f (x )则这个涵数叫做奇函数 f (-x )=f (x ) 则这个函数叫做偶函数 2、用求和(差)法判断 若0)()(=-+x f x f (()()2())f x f x f x --=则)(x f 为奇函数 若())(2)()(0)()(x f x f x f x f x f =-+=-- 则)(x f 为偶函数 3、用求商法判断 若 ()0)(1)()(≠-=-x f x f x f 则)(x f 为奇函数 若()0)(1) ()(≠=-x f x f x f 则)(x f 为偶函数

例1、判断函数()x x x f ++=21lg )(的奇偶性(对口升学07年高考题) 解法一(定义法) 函数的定义域为R ,关于原点对称 () x x x f -+=-21lg )( =222(1)(1) lg 1x x x x x x +-++++=()1221lg 11lg -++=++x x x x = 2lg(1)x x -++ ()f x =- )(x f ∴为奇函数 解法二(求和(差)法) ()()x x x x x f x f -++++=-+221lg 1lg )()( ()() x x x x -+++=2211lg =01lg = )(x f ∴为奇函数 解法三(求商法) ()()()() ()x x x x x x x x x x x x x f x f ++++-=+++=++-+=-2222221lg 1lg 1lg 11 lg 1lg 1lg )()( )0(1≠-=x )(x f ∴为奇函数 例2判断函数?? ? ??+-=21121)(x x x f 的奇偶性(对口升学08年高考题) 解法一(定义法) 函数的定义域为0≠x 的全体实数,关于原点对称

相关文档
最新文档