第六章、活性炭吸附

第六章、活性炭吸附
第六章、活性炭吸附

第六章、活性炭吸附

活性炭吸附是有效的去除水的臭味、天然和合成溶解有机物、微污染物质等杂质的措施。大部分比较大的有机物分子、芳香族化合物、卤代烃等都能牢固的吸附在活性炭表面上或孔隙中,并对腐殖质、合成有机物和低分子量有机物有明显的去除效果。实践证明,活性炭可降低总有机炭TOC、总有机卤化物TOX和总三卤甲烷TTHM等指标。

一、活性炭性能

1、活性炭的制造

活性炭几乎可以用含有碳的任何物质做原材料来制造,这包括木材、锯末、煤、泥炭、果壳、果核、蔗渣、骨、石油脚、皮革废物、纸厂废物等等。近来有的国家倾向于用天然煤和焦炭制造粒状活性炭。活性炭的制造分成碳化及活化两步。

(1)碳化也称热解,是在隔绝空气条件下对原材料加热,一般温度在600℃以下。有时原材料先经无机盐溶液处理后再碳化。碳化有多种作用,一是使原材料分解放出水气、一氧化碳、二氧化碳及氢等气体,第二个作用是使原材料分解成碎片,并重新集合成稳定的结构。

(2)活化是在有氧化剂的作用下,对碳化后的材料加热,以生产活性炭产品。当氧化过程的温度在800~900℃时,一般用蒸气或CO2为氧化剂,当氧化温度在600℃以下时,一般用空气做氧化剂。对于活化过程所起的作用,目前只有大致的理解。在活化过程中,烧掉了碳化时吸附的碳氢化合物,把原有孔隙边上的碳原子烧掉,起了扩大孔隙的作用,并把孔隙与孔隙之间烧穿。活化使活性炭变成一种良好的多孔结构,碳化及活化后的微晶片结构示意见图6-2。

2、活性炭的性质

活性炭分成粉末状及粒状的两种类型以供不同的用途。每克活性炭的表面积可高达1000 m2,但99.9%以上的面积都在多孔结构颗粒的内部。活性炭的极大吸附能力即在于它具有这样巨大的吸附比表面积。

(1)粒状活性炭以吸附柱的形式来应用,一般在快滤池后建造活性炭滤池,去除水中有机物。当吸附能力饱和后,通过再生以恢复共吸附能力。

(2)粉末活性炭一般与混凝剂一起直接投加于水中,经混合吸附后分离出来,由于再生技术尚未完善的关系,往往作为污泥排掉。常用于季节性水质恶化时的间歇处理以及粉末活性炭投加量不高时。

活性炭对于某一种物质的吸附能力与活性炭的原材料性质、碳化及活化的整个过程、吸附的环境因素以及再生操作过程都有密切的关系。

图6-2 活性炭的微晶片结构示意

二、吸附等温线

为了确定活性炭对水中某种成分的吸附能力,需进行吸附试验以获得吸附等温线。在烧杯中装入体积为V 的原水,其中所含的拟被去除成分的浓度为C i (mg/L ),在投加m (mg )的活性炭进行搅拌后,不断测定水中该种成分的残余浓度,当残余浓度达到某一数值C e 后,即不再下降,即平衡浓度C e 。吸附试验还需改变活性炭的投加量m (见图6-3),以求得在同样的原水初始浓度C i 及试验条件下的相应平衡浓度C e 。由试验结果就可以画出吸附等温线来。

当达到平衡浓度C e 时,可知m (mg )活性炭所吸附的杂质量为V (C i -C e )mg ,因而每毫克活性炭所吸附的杂质量为:

)/()(mg mg m

x m C C V e i =- (6-1) 式中x 代表被吸附的杂质毫克数,x/m 代表活性炭吸附容量。

对同样的原水用不同种类的活性炭进行吸附试验,所得到的平衡浓度C e 是不相同的,因而x/m 值也不相同。但对同一种活性炭来说,试验证明x/m 值是C e 和温度T 的函数,即:

),(T C f m

x e = (6-2) 当试验的温度T 不变时,x/m 仅是C e 的函数,即:

)('e C f m

x = (6-3)

图6-3 活性炭的吸附过程

按上述试验过程在等温条件下得到的吸附容量x/m 对平衡浓度C e 值所画出的曲线称为吸附等温线。对同样的原水用不同型号的活性炭,或者同一种型号的活性炭用于不同样的原水,所得的吸附等温线都可能是不一样的。

常见的吸附等温线有三种类型,每种类型相应于一种吸附公式,如图6-4所示。

图6-4 吸附等温线

Ⅰ型的吸附等温线可用Langmuir 公式处理,Ⅱ型等温线可用Branauer 、 Emmett 及Teller(简称BET)公式处理,Ⅲ型等温线可用Freundlich 公式处理。最常用的吸附等温式是Freundlich 经验公式,该表达式为:

n e f C K m

x 1 (6-4)

式中K f 和n 为常数。

求吸附公式中的常数时,可将式(6-4)变为:

f e K C n

m x lg lg 1lg += (6-5) 在双对数坐标纸上根据试验数据绘图,见图6-5,在图中就可求出常数K f 和n 。

图6-5 求Freundlich 公式的常数

由吸附等温线可以比较不同活性炭对各种溶质的吸附效果,并由此计算所需去除的溶质从初始浓度C i 降低到要求的浓度C e 时,需投加的粉末活性炭数量为:

e

e i q C C a -= (mg/L ) (6-6) 式中q e 为吸附等温线上对应于C e 的吸附容量。

三、活性炭吸附柱试验

活性炭池设计时,水和炭的接触时间以及泄漏时间是两个重要的参数。①接触时间指活性炭床容积除以流量或炭床厚度除以流速所得的时间;②泄漏时间指流量一定时,从活性炭池开始进水到出水开始不符合水质要求时所经历的时间。

当设计流量确定后,由接触时间可计算活性炭床厚度和确定活性炭池的容积;由泄漏时间可计算活性炭床的利用率及再生系统的规模。一般接触时间短,则活性炭床容积小,但泄漏时间提前以致再生周期较短;接触时间长,则活性炭床容积较大,但可延缓泄漏时间,延长再生周期。

通常通过活性炭吸附柱试验来确定炭床容积和再生频率的选择。

活性炭吸附柱有下列三种类型:重力固定床、压力固定床以及流化床,如图6-6所示。无论哪一种类型,进水都是先经过吸附有机物最多的那部分活性炭。

图6-6 活性炭吸附柱的类型

活性炭吸附柱的高度与吸附柱吸附过程的相关关系定义了一个吸附带的高度,并说明可以根据吸附过程曲线来设计吸附柱。如果将出水的有机物浓度与吸附柱的产水量与相应的运行时间间的关系绘成曲线,则得到图6-7的吸附过程曲线。图6-7中表示了出水有机物浓度从零开始逐渐增加的过程。当增加到允许的有机物出水最高浓度C b(运行时间t b)时,吸附柱即停止运行,柱内的活性炭需经再生恢复活性后,才能重新使用。允许的最高出水浓度C b则称为吸附柱的泄漏浓度,所生产的总水量为V b,它相应的运行时间t b称为吸附周期。如果将已达到C b的吸附柱继续通过原水,出水的有机物浓度将迅速上升,以致很快接近进水浓度C i,说明吸附柱的能力已经耗竭。

图6-7 吸附柱的泄漏和耗竭曲线

图中泄漏点所对应的吸附柱所吸附有机物总量为吸附柱的有效容量,耗竭点

所对应的吸附柱所吸附有机物总量为吸附柱所具有的总吸附能力。

图6-7从浓度C b 到C x 出现了一道S 形曲线。由于C b 及C x 分别接近0及C i ,为了说明方便,图6-8中把吸附过程曲线的末端画成从浓度0到C i 。整个吸附过程曲线的形状主要反应吸附过程的特点,但也和水的流速以及吸附柱的高与直径的比有关系。下面按仅与吸附过程的关系来说明它的物理涵义,并由此得出它与吸附柱高度的关系。

图6-8 泄漏耗竭曲线的物理意义

图6-8表明了在吸附柱的运行过程中,有一个δ的吸附厚度从吸附开始逐渐从柱顶向下运动,在泄漏时间t b 达到柱底,并在耗竭时间t x 完全消失掉。这个厚度称为吸附带。

吸附带代表了原水中有机物浓度从C x 被去除到出水允许浓度C b 所必须通过的最小吸附柱厚度。当吸附带还未到达吸附柱底部时,由于它下面的活性炭的吸附作用,有机物的浓度可从C b 进一步降低以至为0,当吸附带到达柱底后,它只能起把水中有机物浓度C x 降低为C b 的作用。

图6-8表示出吸附带从吸附柱顶向下运动的过程和泄漏与耗竭曲线的关系。当吸附带到达柱底时,出水总量及运行时间分别为V b 及t b 。吸附带的厚度δ越大,炭床的利用率越低,吸附带的厚度δ可按下式计算:

)1(x

b t t L -=δ (6-7) 式中,L —— 炭床厚度(m );

t b —— 从开始进水到吸附柱泄漏的时间;

t x——从开始进水到吸附柱耗竭的时间。

吸附带厚度受下列因素影响:

(1)流量越大,吸附带厚度越大,则炭床的利用率下降;

(2)活性炭的粒径减小,吸附带的厚度也减小,则炭床的利用率提高。

一般活性炭的平均粒径以0.8~1.7mm较好,既有良好的水力性能,又能减小吸附带的厚度。

四、活性炭的再生

活性炭再生的目的是恢复活性炭的吸附活性。所谓再生,就是在吸附剂本身结构不发生成极少发生变化的情况下,用某种方法将被吸附的物质,从吸附剂的孔隙中除去,以达到能够重复使用的目的。

活性炭的再生主要有以下几种方法:

1、加热再生法

加热再生法分低温和高温两种方法。前者适用于吸附浓度较高的简单低分子量的碳氢化合物和芳香族有机物的活性炭的再生。由于沸点较低,一船加热到200℃即可脱附。多采用水蒸汽再生,再生可直接在塔内进行。被吸附有机物脱附后可利用。后者适于水处理粒状炭的再生。高温加热再生过程分5步进行:(1)脱水

使活性炭和输送液体进行分离。

(2)干燥

加温到100~150℃,将吸附在活性炭细孔中的水分蒸发出来,同时部分低沸点的有机物也能够挥发出来。

(3)炭化

加热到300~700℃,高沸点的有机物由于热分解,一部分成为低沸点的有机物进行挥发;另—部分被炭化,留在活性炭的细孔中。

(4)活化

将炭化留在活性炭细孔中的残留炭,用活化气体(如水蒸气、二氧化碳及氧)进行气化,达到重新造孔的目的。活化温度一般为700~1000℃。

(5)冷却

活化后的活性炭用水急剧冷却,防止氧化。

活性炭高温加热再生系统由再生炉、活性炭贮罐、活性炭输送及脱水装置等组成。

高温加热再生法的优点:①几乎所有有机物都可采用此法;②再生炭质量均匀,再生性能恢复率高,一般在95%以上;③再生时间短,粉状炭需几秒钟,粒状炭30~60min;④不产生有机再生废液。

缺点有:①再生损失率高,再生一次活性炭损失率达3%一10%;②在高温下进行,再生炉内内衬材料的耗量大;③需严格控制温度和气体条件;④再生设备造价高。

2、药剂再生法

药剂再生法可分为无机药剂再生法和有机溶剂再生法两类。

(1)无机药剂再生法

用无机酸(H2SO4、HCl)或碱(NaOH)等无机药剂使吸附在活性炭上的污染物脱附。如,吸附高浓度酚的饱和炭,用NaOH再生,脱附下来的酚为酚钠盐,可回收利用。

(2)有机溶剂再生法

用苯、丙酮及甲醇等有机溶剂萃取吸附在活性炭上的有机物。例如吸附含二硝基氯苯的染料废水饱和活性炭,用有机溶剂氯苯脱附后,再用热蒸汽吹扫氯苯,脱附率可达93%。

药剂再生可在吸附塔内进行,设备和操作管理简单,但药剂再生,一般随再生次数的增加,吸附性能明显降低,需要补充新炭,废弃一部分饱和炭。

3、化学氧化法

(1)电解氧化法

将碳作阳极,进行水的电解,在活性炭表面产生的氧气把吸附质氧化分解。

(2)臭氧氧化法

利用强氧化剂臭氧,将吸附在活性炭上的有机物加以分解。

第三节、中和

一、概述

1、酸碱废水的来源

(1)酸性工业废水的来源

化工厂、化纤厂、电镀厂、煤加工厂及金属酸洗车间等都排出酸性废水。有的废水含无机酸,有的含有机酸,有的同时含无机酸和有机酸。含酸废水浓度差别很大,从小于1%到10%以上。

(2)碱性工业废水的来源

印染厂、金属加工厂、炼油厂、造纸厂等排出碱性废水,其中有有机碱,也有无机碱,浓度可高达百分之几。

废水中除含酸或碱外,还可能含有酸式盐、碱式盐,以及其他的无机和有机等物质。

2、酸碱废水的危害

酸具有腐蚀性,能够腐蚀钢管、混凝土、纺织品,烧灼皮肤,还能改变环境介质的pH值。碱所造成的危害程度较小。将酸和碱随意排放不仅会造成污染、腐蚀管道、毁坏农作物,危害渔业生产,破坏生物处理系统的正常运行,而且也是极大的浪费。因此,对酸或碱废水首先应当考虑回收和综合利用,当必须排放时,需要进行无害化处理。

当酸或碱废水的浓度很高时,例如在3%~5%以上,应考虑回用和综合利用的可能性,例如用其制造硫酸亚铁、硫酸铁、石膏、化肥,也可以考虑供其他工厂使用等。当浓度不高(例如小于3%),回收或综合利用经济意义不大时,才考虑中和处理。

3、中和处理的应用

用化学法去除废水中的酸或碱,使其pH值达到中性左右的过程称为中和。处理含酸废水以碱为中和剂,处理碱性废水以酸作中和剂,被处理的酸与碱主要是无机酸或无机碱。

在工业废水处理中,中和处理常用于以下几种情况:

(1)废水排入水体之前,因为水生生物对pH值的变化非常敏感,即使pH 值与7略有偏离,也会产生不良影响。

(2)废水排入城市排水管道之前,因为酸或碱会对排水管道产生腐蚀作用,废水的pH值应符合排放标准。

(3)化学处理或生物处理前,因为有的化学处理法(例如混凝)要求废水的pH值升到或降低到某一个最佳值,生物处理要求废水的PH值应在某一范围内。

4、中和方法

酸性废水的中和方法可分为酸性废水与碱性废水互相和、药剂中和及过滤中和3种方法;碱性废水的中和方法可分为碱性废水与酸性废水互相中和、药剂中和等。

选择中和方法时应考虑下列因素:

(1)含酸或含碱废水所含酸类或碱类的性质、浓度、水量从其变化规律。

(2)首先应寻找能就地取材的酸性或碱性废料,并尽可能加以利用。

(3)本地区中和药剂和滤料(如石灰石、白云石等)的供应情况。

(4)接纳废水水体性质、城市下水道能容纳废水的条件,后续处理(如生物处理)对PH值的要求等。

5、中和剂

酸性废水中和处理采用的中和剂有石灰、石灰石、白云石、苏打、苛性钠等。碱性废水中和处理则通常采用盐酸和硫酸。

二、酸碱废水互相中和法

1、酸性或碱性废水需要量

利用酸性废水和碱性废水互相中和时,应进行中和能力的计算。中和时两种废水的酸和碱的当量数应相等,即按当量定律来计算,公式如下:

Q1C1=Q2C1(6-8)式中,Q l——酸性废水流量,L/h;

C l——酸性废水酸的当量浓度,克当量/L;

Q2——碱性废水流量,L/h;

C2——碱性废水碱的当量浓度,克当量/L。

在中和过程中,酸碱双方的当量恰好相等时称为中和反应的等当点。强酸强碱互相中和时,由于生成的强酸强碱盐不发生水解,因此等当点即中性点,溶液的pH值等于7.0。但中和的一方若为弱酸或弱碱时,由于中和过程中所生成的盐的水解,尽管达到等当点,但溶液并非中性,pH值大小取决于所生成盐的水解度。

2、中和设备

中和设备可根据酸碱废水排放规律及水质变化来确定。

(1)当水质水量变化较小或后续处理对pH要求较宽时,可在集水井(或管道、混合槽)内进行连续混合反应。

(2)当水质水量变化不大或后续处理对pH值要求高时,可设连续流中和池。中和时间t视水质水量变化情况确定,一般采用l~2h。有效容积按下式计算:

V=(Q1+Q2)t (6-9)式中,V ——中和池有效容积,m3;

Q l——酸性废水设计流量,m3/h;

Q2——碱性废水设计流量,m3/h;

t ——中和时间,h。

(3)当水质水量变化较大,且水量较小时,连续流无法保证出水pH要求,或出水中还含有其他杂质或重金属离子时,多采用间歇式中和池。池有效容积可

按污水排放周期(如一班或一昼夜)中的废水量计算。中和池至少两座(格)交替使用。在间歇式中和池内完成混合反应、沉淀、排泥等工序。

三、药剂中和法

1、酸性废水的药剂中和处理

(1)中和剂

酸性废水中和剂有石灰、石灰石、大理石、白云石、碳酸钠、苛性钠、氧化镁等。常用者为石灰。当投加石灰乳时,氢氧化钙对废水中杂质有凝聚作用,因此适用于处理杂质多浓度高的酸性废水。在选择中和剂时,还应尽可能使用一些工业废渣,如:①化学软水站排出的废渣(白垩),其主要成分为碳酸钙;②有机化工厂或乙炔发生站排放的电石皮渣,其主要成分为氢氧化钙;③钢厂或电石厂筛下的废石灰;④热电厂的炉灰渣或硼酸厂的硼泥。

(2)中和反应

石灰可以中和不同浓度的酸性废水,在采用石灰乳时,中和反应方程式如下:

废水中含有其他金属盐类,如铁、铅、锌、铜、镍等也消耗石灰乳的用量,反应如下:

最常遇到的是硫酸度水的中和,根据使用的药剂不同,中和反应方程式如下:

中和后生成的硫酸钙在水中的溶解度很小,此盐不仅形成沉淀,而且当硫酸浓度很高时,在药剂表面会产生硫酸钙的覆盖层,影响和阻止中和反应的继续进行。所以当采用石灰石,白垩或白云石做中和剂时,药剂颗粒应在0.5mm以下。

中和反应产生的盐类及药剂中惰性杂质以及原废水中的悬浮物一般用沉淀法去除。

(3)药剂中和处理工艺流程

废水量少时(每小时几吨到十几吨)宜采用间歇处理,两、三池(格)交替工作。废水量大时宜采用连续式处理。为获得稳定可靠的中和处理效果宜采用多级式自动控制系统。目前多采用二级或二级,分为粗调和终调或粗调、中调和终调。投药量由设在池出口的pH值检测仪控制。一般初调可将pH值调至4~5。药剂中

和处理工艺流程如图6-9所示。

图6-9 药剂中和处理工艺流程

2、碱性废水的药剂中和处理

(1)中和剂

碱性废水中和剂有硫酸、盐酸、硝酸等。常用的药剂为工业硫酸,工业废酸更经济。有条件时,也可以采取向碱性废水中通人烟道气(含CO2、SO2等)的办法加以中和。

(2)中和反应

以含氢氧化钠和氢氧化铵碱性废水为例,中和剂用工业硫酸,其化学反应如下:

如果硫酸铵的浓度足够,可考虑回收利用。

以含氢氧化钠碱性废水为例,用烟道气中和,其化学反应如下:

烟道气一般含CO2量可达24%,有的还含有少量的SO2和H2S。烟道气如果用湿法除水膜除尘器,可用碱性废水做为除尘水进行喷淋。废水从接触塔顶淋下,或沿塔内壁流下,烟道气和废水逆流接触,进行中和反应。据某厂的经验,出水的PH值可由10~12降至中性。此法的优点是以废治废、投资省、运行费用低、节水且尚可回收烟灰及煤,把废水处理与消烟除尘结合起来,但出水的硫化物、色度、耗氧量、水温等指标都升高,还需进一步处理。

四、过滤中和法

过滤中和法仅用于酸性废水的中和处理,酸性废水流过碱性滤料时与滤料进行中和反应的方法称为过滤中和法。碱性滤料主要有石灰石、大理石、白云石等。

中和滤池分3类:普通中和滤池、升流式膨胀中和滤池和滚筒中和滤池。现分述如下:

1、普通中和滤池

(1)适用范围

过滤中和法较石灰药剂法具有操作方便,运行费用低及劳动条件好等优点。

但不适于中和浓度高的酸性废水。对硫酸废水,因中和过程中生成的硫酸钙在水中溶解度很小,易在滤料表面形成覆盖层,阻碍滤料和酸的接触反应,因此极限浓度应根据试验决定。

如无试验资料时,用石灰石时为2g/L,白云石为5g/L。对硝酸及盐酸废水,因为浓度过高,滤料消耗快,给处理造成一定的困难,因此极限浓度可采用20g/L;另外,废水中铁盐、泥砂及惰性物质的合量亦不能过高,否则会使滤池堵塞。

中和酸性废水常用的滤料有石灰石、白云石及白垩等。

(2)普通中和滤池的形式

普通中和滤池为固定床。滤池按水流方向分为平流式和竖流式两种,目前多用竖流式。竖流式又可分为升流式和降流式两种,见图6-10。

图6-10 普通中和滤池

普通中和滤池的滤料粒径不宜过大,一般为30~50mm,不得混有粉料杂质。当废水含有可能堵塞滤料的杂质时,应进行顶处理。过滤速度一般为1~1.5m/h,不大于5m/h,接触时间不少于10min,滤床厚度一般为1~1.5m。

2、升流式膨胀中和滤池

升流式膨胀中和滤池,废水从滤池的底部进人,从池顶流出,使滤料处于膨胀状态。升流式膨胀中和滤池又可分为恒滤速和变滤速两种。

恒滤速升流式膨胀中和滤池如图6-11所示。进水装置可采用大阻力或小阻力布水系统。采用大阻力穿孔管布水系统时,滤池底部装有栅状配管,干管上部和支管下部开有孔眼,孔径为9~12mm,孔距和孔数可根据计算确定。卵石承托层厚度一般为0.15~0.2m,粒径为20~40mm。滤料粒径为0.5~3mm,滤层高度应根据酸性废水浓度、滤料粒径、中和反应时间等条件确定。新的或全部更新后的滤料层高度一般为1.0—1.2m。当滤料层高度因情性物质的积累达到2.0m 时应更新全部滤料。运行初期采用1m,最终换料时—般不小于2m。中和滤池的高度—般为3~3.5m。为使滤料处于膨胀状态并互相摩擦,不结垢,垢屑随水流出,避免滤床堵塞,流速一般采用60~80m/h,膨胀率保持在50%左右。上部清水区高度为0.5m。中和滤池至少有—池备用,以供倒床换料。

当废水硫酸浓度小于2200mg/L时,经中和处理后,出水的pH值可达4.2~5。若将出水再经脱气池,除去其中CO2气体后,废水的pH值可提高到6~6.50。

膨胀中和滤池一般每班加料2~4次。当出水的pH<4.2时,须倒床换料。滤料量大时,加料和倒床须考虑机械化,以减轻劳动强度。

图6-11 恒滤速升流式膨胀中和滤池

过滤中和法的优点是操作简单,出水pH值比较稳定,沉渣量少(与石灰法比较)。缺点是废水的硫酸浓度不能太高,需定期倒床,劳动强度较高。

3、过滤中和滚筒

过滤中和滚筒如图6-12所示。

图6-12 过滤中和滚筒

滚筒用铜板制成,内衬防腐层。筒为卧式,直径1rn 以上,长度为直径的6~7倍。滚筒线速度采用0.3~0.5m/s,转速为10~20r/min。筒和旋转轴向出水方向倾斜0.5~1°,滤料粒径可达十几毫米,装料体积占筒体体积的一半。筒内壁焊数条纵向挡板,带动滤料不断翻滚。为避免滤料被水带出,在滚筒出水端设穿孔滤板。出水也需脱CO2。这种装置的优点是进水硫酸浓度可超过极限值数倍,滤料不必破碎到很小粒径,但构造复杂,动力费用高,运行时设备噪音较大。

第四节、化学沉淀

一、概述

向工业废水中投加某种化学物质,使它和其中某些溶解物质产生反应,生成难溶盐沉淀下来,这种方法称为化学沉淀法,它一般用以处理含金属离子的工业废水。

从普通化学得知,水中的难溶盐服从溶度积原则,即在—定温度下,在含有难溶盐M m N n(固体)的饱和溶液中,各种离子浓度的乘积为—常数,称为溶度积常数,记为L MmNn,有:

式中,M n+表示金属阳离子,N m-表示阴离子,[ ]表示摩尔浓度(mol/L)。

若有:

则溶液过饱和,超过饱和那部分将析出沉淀。

根据这种原理,可用它来去除废水中的金属离子M n+。为了去除废水中的M n+离子,向其中投加具有N m-离子的某种化合物,使溶液过饱和,形成M m N n 沉淀,从而降低废水中的M n+离子的浓度。通常称具有这种作用的化学物质为沉淀剂。

从上式可以看出,为了最大限度地使[M n+]m值降低,也就是使M n+离子更完全地被去除,可以考虑增大[N m-]n值,也就是增大沉淀剂的用量,但是沉淀剂的用量也不宜加的过多,否则会导致相反的作用,一般不超过理论用量的20%~50%。

根据使用的沉淀剂的不同,化学沉淀法可分为石灰法、氢氧化物法、硫化物法、钡盐法等。

二、氢氧化物沉淀法

1、原理

工业废水中的许多金属离子可以生成氢氧化物沉淀而得以去除。氢氧化物的沉淀与pH值有很大关系。加以M(OH)n表示金属氢氧化物,则有:

同时发生水的解离:

水的离子积为:

代入其溶度积常数公式得:

将上式两边取对数,则得到:

上式为一直线方程,直线的斜率为-n。由此可知。对于同一价数的金属氢氧化物,它们的斜率相等为平行线。对于不同价数的金属氢氧化物,价数愈高,直线愈陡,它表明M n+离子浓度随pH值的变化差异比价数低的要大。

由于废水的水质比较复杂,实际上氢氧化物在废水中的溶解度与pH值关系和上述理论计算值有出入,因此控制条件必须通过试验来确定。

2、氢氧化物沉淀法在废水处理中的应用

(1)矿山废水处理

(2)铅锌冶炼厂废水处理

三、硫化物沉淀法

许多金属能形成硫化物沉淀。由于大多数金属硫化物的溶解度一般比其氢氧化物的要小很多,采用硫化物可使金属得到更完全地去除。

在金属硫化物沉淀的饱和溶液中,有:

硫化物沉淀法常用的沉淀剂有硫化氢、硫化钠、硫化钾等。

以硫化氢为沉淀剂时,硫化氢在水中分两部离解:

离解常数分别为:

将该式代入其饱和溶度积公式中有:

在0.1MPa压力和25℃条件下,硫化氢在水中的饱和浓度约为0.1mol(pH ≤6),把[H2S]=0.1代入上式得到:

从上式可以看出,金属离子的浓度和pH有关,随着pH值增加而降低。

虽然硫化物法比氢氧化物法能更完全地去除金属离子,但是由于它的处理费用较高,硫化物沉淀困难,常需要投加凝聚剂以加强去除效果。因此,采用的并不广泛,有时作为氢氧化物沉淀法的补充法。

四、钡盐沉淀法

这种方法主要用于处理含六价铬的废水,采用的沉淀剂有碳峻钡、氯化钡、硝酸钡、氢氧化钡等。以碳酸钡为例,它与废水中的铬酸根进行反应,生成难溶盐铬酸钡沉淀:

为了提高除铬效果,应投加过量的碳酸钡,反应时间应保持25~30min。投加过量的碳酸钡会使出水中含有一定数量的残钡。在把这种水回用前,需要去除其中的残钡,残钡可用石膏法去除:

活性炭吸附箱工作原理及参数

活性炭吸附箱工作原理及 参数 This model paper was revised by the Standardization Office on December 10, 2020

活性炭吸附箱工作原理及参数 一、活性炭吸附箱简介 活性炭是一种很细小的炭粒,有很大的表面积,而且炭粒中还有更细小的孔——毛细管.这种毛细管具有很强的吸附能力,由于炭粒的表面积很大,所以能与气体(杂质)充分接触,当这些气体(杂质)碰到毛细管就被吸附,起净化作用。活性炭吸附的实质是利用活性炭吸附的特性把低浓度大风量废气中的有机溶剂吸附到活性炭中。活性炭吸附法主要用于低浓度气态污染物的脱除。 二、活性炭吸附箱原理 当废气由风机提供动力,负压进入吸附箱后进入活性炭吸附层,由于活性炭吸附剂表面上存在着未平衡和未饱和的分子引力或化学键力,因此当活性炭吸附剂的表面与气体接触时,就能吸引气体分子,使其浓聚并保持在活性炭表面,此现象称为吸附。利用活性炭吸附剂表面的吸附能力,使废气与大表面的多孔性活性炭吸附剂相接触,废气中的污染物被吸附在活性炭表面上,使其与气体混合物分离,净化后的气体高空排放。活性炭吸附箱是一种干式废气处理设备,由箱体和填装在箱体内的吸附单元组成。三、活性炭吸附箱的使用范围 活性炭吸附箱主要用于大风量低浓度的有机废气处理;活性炭吸附剂可处理净化多种有机和无机污染物:苯类、酮类、醇类、醚类、烷类及其混合类有机废气、酸性废气、碱性废气;主要用于制药、冶炼、化工、机械、电子、电器、涂装、制鞋、橡胶、塑料、印刷及环保脱硫、除臭和各种工业生产车间产生的有害废气的净化处理。 四、性能特点 1、吸附效率高,能力强; 2、能够同时处理多种混合有机废气;净化效率≥95%; 3、设备构造紧凑,占地面积小,维护管理简单,运转成本低廉; 4、采用自动化控制运转设计,操作简易、安全; 5、全密闭型,室内外皆可使用。 五、设备的选用 吸附塔从性能上分:高效型、标准型和经济型。 吸附塔从材质上分:PVC、FRP/PVC、镀锌钢板和304不锈钢。

活性炭吸附塔技术

活性炭吸附塔是处理有机废气、臭味处理效果最好的净化设备。活性炭吸附是有效的去除水的臭味、天然和合成溶解有机物、微污染物质等的措施。大部分比较大的有机物分子、芳香族化合物、卤代炔等能牢固地吸附在活性炭表面上或空隙中,并对腐殖质、合成有机物和低分子量有机物有明显的去除效果.活性炭吸附作为深度净化工艺,经常用于废水的末级处理,也可用于长产用水、生活用水的纯化处理。当粉尘和颗粒物比较多时,活性炭吸附装置可同时和水帘机和水喷淋塔和UV等离子一起使用,达到废气净化达标排放。 工作原理 活性炭吸附装置主要由活性炭层和承托层组成。活性炭具有发达废气处理粉尘处理噪音处理

的空隙,比表面积大,具有很高的吸附能力。正是由于活性炭的这种特性,它在水的深度处理中被广泛应用,如生活给水,污水后段的(净水)深度处理等。 含尘气体由风机提供动力,正压或负压进入塔体,由于活性炭固体表面上存在着未平衡和未饱和的分子引力或化学健力,因此当此固体表面与气体接触时,就能吸引气体分子,使其浓聚并保持在固体表面,污染物质从而被吸附,废气经过滤器后,进入设备排尘系统,净化气体高空达标排放。 1.吸附效率高,吸附容量大,适用面广 2.维护方便,无技术要求 3.比表面积大,良好的选择性吸附 4.活性炭具有来源广泛价格低廉等特点 5.吸附效率高,能力强 6.操作简易、安全 活性炭使用一段时间后,吸附了大量的吸附质,逐步趋向饱和,丧失了工作能力,严重时将穿透滤层,因此应进行活性炭的再生或更换。 鹤壁市隆盛环保矿山设备有限公司(以下简称“隆盛环保”)于2011年11月成立,企业类型为有限责任公司,注册资金1200万元,公司注册地址:鹤壁市淇滨区金山工业园区创业路路南。隆盛环保是废气处理粉尘处理噪音处理

活性炭吸附实验报告

《环工综合实验(1)》(活性炭吸附实验) 实验报告 专业环境工程(卓越班) 班级 姓名 指导教师 成绩 东华大学环境科学与工程学院实验中心 二0一六年 11月

附剂的比表面积、孔结构、及其表面化学性质等有关。 吸附等温线(Adsorption Isotherm): 指一定温度条件下吸附平衡时单位质量吸附剂的吸附量 q 与吸附质在流体相中的分压 p (气相吸附)或浓度 c (液相吸附)之间的关系曲线。 水中苯酚在树脂上的吸附等温线

水中苯酚在活性炭上的吸附等温线 吸附机理和吸附速率 吸附机理: 吸附质被吸附剂吸附的过程一般分为三步:(1)外扩散 (2)内扩散 (3)吸附 ①外扩散:吸附质从流体主体通过扩散传递到吸附剂颗粒的外表面。因为流体与固体接触时,在紧贴固体表面处有一层滞流膜,所以这一步的速率主要取决于吸附质以分子扩散通过这一滞流膜的传递速率。 ②内扩散:吸附质从吸附剂颗粒的外表面通过颗粒上微孔扩散进入颗粒内部,到达颗粒的内部表面。 ③吸附:吸附质被吸附剂吸附在内表面上。 对于物理吸附,第三步通常是瞬间完成的,所以吸附过程的速率由前二步决定。

?活性炭具有良好的吸附性能和化学稳定性,是目前国内外应用较广泛的一种非极性的吸附剂。 ?由于活性炭为非极性分子,因而溶解度小的非极性物质容易被吸附,而不能使其自由能降低的污染物既溶解度大的极性物质不易被吸附。活性炭的吸附能力以吸附容量q e表示: ?qe=X/M=V(Co-C)/M ?在一定的温度条件下,当存在于溶液中的被吸附物质的浓度与固体表面的被吸附物质的浓度处于动态平衡时,吸附就达到平衡。 1、吸附剂的比表面积越大,其吸附容量和吸附效果就越好吗?为什么? 答:比表面积越大,不一定吸附容量就越好。吸附剂的比表面积越大,只能说明其吸附能力较大,并不代表吸附容量就越大。吸附容量的大小还与脱吸速度有关,如果脱吸速度很快,就算吸附能力再大,吸附容量也还是没多大提升。吸附容量是一个动态平衡的过程。? 吸附剂的良好吸附性能是由于它具有密集的细孔构造,与吸附有关的物理性能有:a.孔容(VP):吸附剂中微孔的容积称为孔容,通常以单位重量吸附剂中吸附剂微孔的容积来表示(cm3/g);b.比表面积:即单位重量吸附剂所具有的表面积,常用单位是m2/g;c.孔径

实验6活性炭吸附实验.

实验6 活性炭吸附实验 1.实验目的 了解活性炭吸附工艺,掌握测定吸附等温线的操作过程。 2.实验原理 活性炭吸附是利用活性炭固体表面对水中一种或几种物质的吸附作用,达到净化水质的目的。 活性炭对水中所含杂质的吸附既有物理吸附也有化学吸附。 当活性炭对水中所含物质吸附时,水中的溶解性物质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中,即同时发生解吸现象。当吸附和解吸处于动态平衡状态时,称为吸附平衡。而此时被吸附物质在溶液中的浓度称为平衡浓度C。活性炭的吸附能力以吸附量表示,用m克活性炭吸附溶液中的溶质,被吸附的溶质 为毫克,则吸附量可按下式计算: (1 式中,q e为平衡吸附量(mg/g;C0与C e分别为吸附质的初始浓度与平衡浓度(mg/L;V 为溶液的体积(L;m为所用的活性炭的质量(g。 的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH值有关。一般说来,当被吸附的物质不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,值就比较大。 由吸附量和平衡浓度C的关系所绘出的曲线称为吸附等温线,表示吸附等温线的公式称为吸附等温式,比较常用的吸附等温式有有Langmuir、BET和Fruendlich吸附等温式。 在水和废水处理中通常用Fruendlich吸附等温式来比较不同温度和不同溶液浓度时的活性炭的 吸附容量,即 (2

式中:——吸附容量(mg/g; K——与吸附比表面积、温度有关的系数; n——与温度有关的常数,n>1; C——吸附平衡时的溶液浓度(mg/L。 这是一个经验公式,通常用图解方法求出K,n的值.为了方便易解,往往将式(2变换成线性 对数关系式 (3 式中:C0——水中被吸附物质原始浓度(mg/L; C——被吸附物质的平衡浓度(mg/L; m——活性炭投加量(g/L。 3.实验设备与试剂 (1)间歇式活性炭吸附装置,间歇式吸附采用三角烧瓶,在烧瓶内放入活性炭和水样进行振荡。 (2)振荡箱 (3)天平 (4)烘箱 (5)分光光度计 (6)注射器、塑料滤头、滤膜等 (7)活性炭 4.实验方法 (1)标准曲线的绘制

活性炭吸附塔_计算书

科文环境科技有限公司 计算书 工程名称: 活性炭吸附塔 2016 年 5 月13 日

活性炭吸附塔 1、设计风量:Q=20000m3/h=5.56m3/s 。 2、参数设计要求: ①管道风速:V1=10~20m/s, ②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:V2=0.8~1.2m/s , ③过滤风速:V3=0.2~0.6m/s , ④过滤停留时间:T1=0.2~2s , ⑤碳层厚度:h=0.2~0.5m , ⑥碳层间距:0.3~0.5m 。活性炭颗粒性质: 平均直径d p =0.003m,表观密度ρs =670kg/ m3,堆积密度ρ B =470 kg/ m3 孔隙率0.5~0.75 ,取0.75 3、(1)管道直径d取0.8m,则管道截面积A1=0.50m2 则管道流速 V1=5.56÷0.50=11.12m/s ,满足设计要求。 (2)取炭体宽度B=2.2m,塔体高度H=2.5m, 则空塔风速V2=5.56÷2.2 ÷2.5=1.01m/s ,满足设计要求。 (3)炭层长度L1取4.3 m,2 层炭体, 则过滤风速V3=5.56÷2.2÷4.3÷2÷0.75=0.392m/s ,满足设计要求4)取炭层厚度为0.35m,炭层间距取0.5m, 则过滤停留时间T1=0.35 ÷0.392=0.89s ,满足设计要求 5)塔体进出口与炭层距离取0.1m,则塔体主体长度L'=4.3+0.2=4.5m 则塔体长度L=4.5+0.73 ×2=5.96m 4 、考虑安装的实际情况:塔体尺寸L×B×H=6m×2.2m×2.5m =0.73m 两端缩口长0.8 2

水喷淋+活性炭吸附处理工业废气方案说明

专业技术资料 东莞市奇格斯电子科技有限公司 环保治理工程 方案编号:20111209 设 计 方 案 设计单位:创美环保 设计日期:二O一一年十二月

方案摘要一、喷漆废气治理工程 处理工艺:水喷淋+活性炭吸附塔工艺 处理规模:处理量3000m3/h,共1套; 工程造价:¥3.51万元二、移印废气治理工程 处理工艺:活性炭吸附塔工艺 处理规模:处理量10000m3/h,共1套; 工程造价:¥2.82万元三、发电机尾气及噪声治理工程 处理规模:125KW发电机1台 工程造价:¥6.95万元四、火烟治理工程 处理工艺:旋流板塔工艺 工程造价:¥3.34万元五、油烟治理工程 处理工艺:静电除尘工艺 工程造价:¥2.00万元六、监测费 项目造价: ¥0.50万元七、验收审批费 项目造价: ¥0.80万元

以上合计:¥19.92 万元 目录 第一章喷漆废气处理设计 (4) 一、工程概况 (4) 二、设计依据及标准 (4) 三、设计范围 (4) 四、设计条件 (4) 五、工艺设计 (5) 六、主要设备技术性能 (7) 第二章移印废气处理工程 (9) 一、工程概况 (9) 二、设计依据及标准 (9) 三、设计范围 (9) 四、设计条件 (9) 五、工艺设计 (10) 六、主要设备技术性能 (12) 第三章发电机尾气处理工艺设计 (13) 一、设计依据及标准 (13) 二、设计条件 (13) 三、工艺设计 (13) 第四章柴油发电机房噪声治理 (16) 第五章厨房油烟治理 (18) 第六章炉灶火烟治理工艺 (21) 第七章工程概算 (24) 一、喷漆废气处理工程概算 (24) 二、移印废气处理工程概算 (25) 三、发电机尾气治理工程概算 (26) 四、发电机噪音治理工程概算 (27) 五、厨房油烟废气治理工程概算 (28) 六、厨房火烟废气治理工程概算 (29) 第八章售后服务与支付方式 (30) 一、售后服务 (30) 二、付款方式 (30)

活性炭吸附塔-计算书

精心整理 活性炭吸附塔计算书 活性炭吸附塔 1、设计风量:Q=20000m3/h=5.56m3/s。 2、参数设计要求: ①管道风速:V1=10~20m/s, ②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:V2=0.8~1.2m/s, 3、(1 (2 (3 (4 (5 ? ? ?? 则塔体长度L=4.5+0.73×2=5.96m 4、考虑安装的实际情况:塔体尺寸L×B×H=6m×2.2m×2.5m 活性炭吸附塔 1、设计风量:Q=20000m3/h=5.56m3/s。 2、参数设计要求: ①管道风速:V1=10~20m/s,

②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:V 2=0.8~1.2m/s , ③过滤风速:V 3=0.2~0.6m/s , ④过滤停留时间:T 1=0.2~2s , ⑤碳层厚度:h =0.2~0.5m , ⑥碳层间距:0.3~0.5m 。 活性炭颗粒性质: 平均直径d p =0.003m ,表观密度ρs =670kg/3m ,堆积密度ρB =470kg/3m 3、(12 (2(3 X=aSLρb a S L V=Wd CQt 式中:C―Q―t―W―V=sp v =1000 =20m 污染物每小时的排放量:(取污染物100mg/m 3) ρ0=100×20000×106-=2.0kg/h 假设吸附塔吸附效率为90%,则达标排放时需要吸附总的污染物的量为: 2.0×90%=1.8kg/h t =CQ VWd ×109-=910200001008.0%1020????=800h 则在吸附作用时间内的吸附量:

X=1.8×800=1440㎏ 根据X=aSL b ρ得: L = b aS X ρ 根据活性炭的吸附能力,设静活度为16kg 甲苯/100kg 活性炭 所以,L =470 5.51 6.01440??=3.48m 吸附剂的用量M : M=LSρb V V '1、2、L (1ρd 为风管直径,m 。 (2)摩擦阻力系数λ,按下式计算: 式中:K 为风管内壁的绝对粗糙度,m ,取0.15×10-3m 。 Re 为雷诺数,νVd Re =,ν为运动黏度,m 2/s ,取ν=15.06×10-6m 2/s 。 (下列近似公式适用于内壁绝对粗糙度K=0.15×10-3m 的钢板风管: λ=0.0175d -0.21V -0.075 m p ?=1.05×10-2d -1.21V 1.925)

活性炭吸附塔-计算书

科文环境科技有限公司计算书 工程名称: 活性炭吸附塔 : 工程代号 艺业: 工专 : 算计 : 对校 : 审核

2016年5月13日 活性炭吸附塔33 /s5.56m1、设计风量:Q=20000m。/h=2、参数设计要求:V =10~20m/s,①管道风速:1,=0.8~1.2m/sV②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:2,=0.2~0.6m/s③过滤风速:V3,=0.2~2s④过滤停留时间:T1,=0.2~0.5m⑤碳层厚度:h 。⑥碳层间距:0.3~0.5m 活性炭颗粒性质:33mm,堆积密度ρ=470 kg/ 平均直径d=0.003m,表观密度ρ=670kg/ B s p 0.75 0.5~0.75,取孔隙率2 0.8m)管道直径d取,则管道截面积A=0.50m3、(11,满足设计要求。则管道流速V=5.56÷0.50=11.12m/s 1,2)取炭体宽度 B=2.2m,塔体高度H=2.5m (V=5.56÷2.2÷2.5=1.01m/s,满足设计要求。 则空塔风速2 m,2层炭体,3 ()炭层长度L取4.31,满足设计要求。2÷0.75=0.392m/s则过滤风速V=5.56÷2.2÷4.3÷3 0.5m,,炭层间距取(4)取炭层厚度为0.35m 0.392=0.89s,满足设计要求。则过滤停留时间T=0.35÷1 L'=4.3+0.2=4.5m (5)塔体进出口与炭层距离取0.1m,则塔体主体长度????22223d3H2.25?2.B0.8?????= 两端缩口长L”= =0.73m -- ????323222????则塔体长度L=4.5+0.73×2=5.96m 4、考虑安装的实际情况:塔体尺寸L×B×H=6m×2.2m×2.5m 活性炭吸附塔 33/s。5.56m20000m /h=1、设计风量:Q=2、参数设计要求: ①管道风速:V=10~20m/s,1②空塔气速为气体通过吸附器整个横截面的速度。空塔风速:V=0.8~1.2m/s,2③过滤风速:V=0.2~0.6m/s,3④过滤停留时间:T=0.2~2s,1⑤碳层厚度:h=0.2~0.5m, ⑥碳层间距:0.3~0.5m。 活性炭颗粒性质: 33mm,堆积密度d=0.003m,表观密度ρ=670kg/ρ=470 kg/平均直径p B s 2 =0.50m0.8m,则管道截面积A、(1)管道直径d取31则管道流速V=5.56

活性炭吸附塔操作说明

活性炭吸附塔 操 作 资 料 宁夏宇成蓝天环保输送设备有限公司 地址:宁夏银川市望远工业园区望银路 电话:0951-*******手机:187******** 目录

一、产品概述 (1) 1、设备工作原理 (1) 2、产品特点 (1) 3、技术参数 (2) 二、安装选型及要求 (3) 1、设备选型 (3) 2、安装要求 (3) 3、技术要求 (4) 三、设备的技术参数 (4) 四、设备操作说明 (5) 1系统开启 (5) 2系统关闭 (5) 五、故障原因与排除 (6) 六、设备保养事项 (7) 1、活性碳塔的压损增大的原因分析: (7) 2、活性碳及过滤网的更换 (7) 3、活性碳塔内的清理 (8) 六、安全注意事项 (8)

一、产品概述 活性炭过滤器又称之为活性炭除臭装置、活性炭吸附过滤器;活性炭过滤器是我公司生产的一种废气过滤吸附异味的环保设备装置,活性炭具有吸附效率高、适用面广、维护方便、能同时处理多种混合废气等优点,活性炭过滤器用于电子原件生产、电池(电瓶)生产、酸洗作业、实验室排风、冶金、化工、医药、涂装、食品、酿造等废气处理净化,其中在喷漆废气处理中应用最为广泛。 1、设备工作原理 有机废气气体由风机提供动力,正压或负压进入活性炭过滤器塔体,由于活性炭固体表面存在着未平衡和未饱和的分子引力或化学健力,因此当此固体表面与气体接触时,就能吸引气体分子,使其浓聚并保持在固体表面,污染物质从而被吸附,废气经过滤器后,进入设备排尘系统,净化气体高空达标排放。 2、产品特点 活性炭是一种黑色粉状、粒状或丸状的无定形具有多孔的炭。主要成分为炭,还含有少量氧、氢、硫、氮、氯。也具有石墨那样的精细结构,只是晶粒较小,层层不规则堆积。具有较大的表面积(500~1000m^3/克)。有很强的吸附能力,能在它的表面上吸附气体,液体或胶态固体。对于气、液的吸附可接近于活性炭本身的质量。 活性炭其吸附作用是具有选择性,非极性物质比极性物质更易于吸附。在同一系列物质中,沸点高的物质越容易被吸附,压越大、温度越低、浓度越高、吸附量越大;反之,减压、升温有利气体的解吸。

活性炭吸附器操作规程

活性炭吸附器 运 行 操 作 规 程 一、设备概况: 1、有机废气活性炭吸附设备

有机废气经收集后,在风机负压作用下进入活性炭吸附塔。活性炭吸附是利用活性炭的多孔性,存在吸引力的原理而开发的。由于固体表面上存在着未平衡饱和的分子力或化学键力,因此当此固体表面与气体接触时,就能吸引气体分子,使其浓集并保持在固体表面,这种现象就是吸附现象。本工艺所采用的活性炭吸附法就是利用固体表面的这种性质,当废气与大表面积的多孔性活性炭相接触,废气中的污染物被吸附在活性炭固体表面,从而与气体混合物分离,达到净化的目的。 二、操作准备工作: 1、检查风机是否卡滞,转动轴油是否正常; 2、合上电源,观察压力数显表、温度数显表、电压表显示是否正 常; 3、确认自动和手动开关方程置什么位置; 三、操作程序: 1、把方程开关转换成自动操作程序 2、检查有机废气进风/出风阀门是否开启。 3、按离心风机启动按钮,风机正常运行。

四、活性炭吸附设备工作原理: 吸附现象是发生在两个不同相界面的现象,吸附过程就是在界面上的扩散过程,是发生在固体表面的吸附,这是由于固体表面存在着剩余的吸引力而引起的。吸附可分为物理吸附和化学吸附;物理吸附亦称范德华吸附,是由于吸附剂与吸附质分子之间的静电力或范德华引力导致物理吸附引起的,当固体和气体之间的分子引力大于气体分子之间的引力时,即使气体的压力低于与操作温度相对应的饱和蒸气压,气体分子也会冷凝在固体表面上,物理吸附是一种放热过程。化学吸附亦称活性吸附,是由于吸附剂表面与吸附质分子间的化学反应力导致化学吸附,它涉及分子中化学键的破坏和重新结合,因此,化学吸附过程的吸附热较物理吸附过程大。在吸附过程中,物理吸附和化学吸附之间没有严格的界限,同一物质在较低温度下可能发生物理吸附,而在较高温度下往往是化学吸附。活性炭纤维吸附以物理吸附为主,但由于表面活性剂的存在,也有一定的化学吸附作用。 活性炭对废气吸附的特点: (1)、对于芳香族化合物的吸附优于对非芳香族化合物的吸附。 (2)、对带有支键的烃类物理的吸附优于对直链烃类物质的吸附。 (3)、对有机物中含有无机基团物质的吸附总是低于不含无机基团物质的吸附。 (4)、对分子量大和沸点高的化合的的吸附总是高于分子量小和沸

活性炭吸附箱设备技术原理及应用

活性炭吸附塔设备技术原理及应用实例 一、活性炭吸附塔概述 DR系列|活性炭吸附过滤塔是杭州绿然环保设备有限公司设计、生产的一种废气净化、吸附异味的环保设备产品,活性炭吸附塔具有吸附效率高、适用面广、维护方便、能同时处理多种混合废气等优点,活性炭具有去除甲醛、苯、TVOC等有害气体和消毒除臭等作用,活性炭吸附塔现广泛用于电子原件生产、电池(电瓶)生产、酸洗作业、实验室排风、冶金、化工、医药、涂装、食品、酿造等废气处理,其中最适用于喷漆废气处理的净化。 二、工作原理 尾气由风机提供动力,正压或负压进入活性炭吸附塔体,由于活性炭固体表面上存在着未平衡和未饱和的分子引力或化学健力,因此当此固体表面与气体接触时,就能吸引气体分子,使其浓聚并保持在固体表面,污染物质从而被吸附,废气经过滤器后,进入活性炭吸附塔体,净化气体高空达标排放。 三、技术简介 1、活性炭是一种黑色粉状、粒状或丸状的无定形具有多孔的炭。主要成份为炭,还含有少量氧、氢、硫、氮、氯。也具有石墨那样的精细结构,只是晶粒较小,层层不规则堆积。具有较大的表面积(500~1000㎡/克)。有很强的吸附能力,能在它的表面上吸附气体,液体或胶态固体。对于气、液的吸附可接近于活性炭本身的质量的。 其吸附作用是具有选择性,非极性物质比极性物质更易于吸附。在同一系列物质中,沸点越高的物质越容易被吸附,压越大、温度越低,浓度越高,吸附量越大,反之,减压、升温有利气体的解吸。 活性炭常用于气体的吸附、分离和提纯、溶剂的回收、糖液、油脂、甘油、药物的脱色剂,饮用水或冰箱的除臭剂,防毒面具的滤毒剂,还可用作催化剂或金属盐催化剂的截体。 2、活性炭吸附塔产品优点: 1、吸附效率高,效果明显,适用面广; 2、维护方便,无技术要求; 3、能同时处理多种混合废气。 3、活性炭吸附塔产品缺点:运行成本相对较高; 4、活性炭吸附塔分类:可分为方形或圆形。 5、活性炭吸附塔适用范围: 活性炭吸附塔主要应用于:电子原件生产、电池(电瓶)生产、酸洗作业、实验室排风、冶金、化工、医药、涂装、食品、酿造及家具生产等行业的废气净化,其中最适用于喷漆废气的处理净化。 四、DR系列|活性炭吸附塔设备型号及参数

(完整版)活性炭吸附苯酚实验数据处理

标液浓度/ug/ml 吸光度 0.4 0.053 0.8 0.112 1.2 0.163 1.6 0.214 2 0.267 初浓度/ug/ml 平衡浓度/ug/ml ㏒ρ1/ρ吸附量q ㏒q 1/q 20.09 7.4 0.87 0.14 12.69 1.10 0.08 40.18 15.89 1.20 0.06 24.29 1.39 0.04 60.27 20.86 1.32 0.05 39.41 1.60 0.03 80.36 33.62 1.53 0.03 46.74 1.67 0.02 100.45 40.03 1.60 0.02 60.42 1.78 0.02

初浓度/ug/ml 平衡浓度/ug/ml ㏒ρ1/ρ吸附量q ㏒q 1/q 20.09 5.32 0.73 0.19 14.77 1.17 0.07 40.18 13.43 1.13 0.07 26.75 1.43 0.04 60.27 22.87 1.36 0.04 37.4 1.57 0.03 80.36 30.22 1.48 0.03 50.14 1.70 0.02 100.45 40.79 1.61 0.02 59.66 1.78 0.02

实验分析:吸附性能的大小随吸附剂的性质,吸附剂表面的大小,吸附质的性质和浓度的大小,及温度的高低等而定,由于吸附发生在物体的表面上,所以吸附剂的总面积愈大,吸附的能力愈强。活性炭具有巨大的表面积,所以吸附能力很强。一定的吸附剂,在吸附质的浓度和压强一定时,温度越高,吸附能力越弱,所以低温对吸附作用有利,20度的吸附效果比30度的吸附效果更好。 Freundlish 更加适用于中等浓度的溶液,适用于活性炭的吸附,处理和归纳实验数据时更加简单和准确。 Langmiur型适用于单分子层吸附,较好的描述低中浓度范围内的吸附等温线。

实验二 吸附实验

实验二 活性炭吸附实验 一、实验目的 (1)通过实验进一步了解活性碳的吸附工艺及性能。 (2)掌握用间歇法确定活性炭活性炭处理污水的设计参数的方法。 二、 实验原理 活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。在吸附过程中,活性炭比表面积起着主要作用。同时,被吸附物质在溶剂中的溶解度也直接影响吸附的速度。此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。 活性炭对水中所含杂质的吸附既有物理吸附现象,也有化学吸着作用。有一些被吸附物质先在活性炭表面上积聚浓缩,继而进入固体晶格原子或分子之间被吸附,还有一些特殊物质则与活性炭分子结合而被吸着。 当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。当吸附和解吸处于动态平衡状态时,称为吸附平衡。这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。如果在一定压力和温度条件下,用m 克活性炭吸附溶液中的溶质,被吸附的溶质为x 毫克,则单位重量的活性炭吸附溶质的数量q e ,即吸附容量可按下式计算 m x q e = (1) )(C -C V X 0= 式中:qe ——吸附容量(mg/g ) C ——吸附平衡浓度(mg/L ) C 0 ——吸附质初始浓度(mg/L ) V ——水样体积(ml ) q e 的大小除了决定于活性炭的品种之外,还与被吸附物质的性质、浓度、水的温度及pH 值有关。一般说来,当被吸附的物质能够与活性炭发生结合反应、被吸附物质又不容易溶解于水而受到水的排斥作用,且活性炭对被吸附物质的亲和作用力强、被吸附物质的浓度又较大时,q e 值就比较大。

活性炭吸附实验讲义

活性炭吸附实验 一、实验目的 (1)了解活性炭吸附的工作原理和特点。 (2) 观察活性炭对色度较高工业废水(如:印染废水)和生活污水的色度的去除过程。 (3) 掌握活性炭吸附饱和后的再生方法。 二、实验原理 吸附是发生在固-液(气)两相界面上的一种复杂的表面现象,它是一种非均相过程。大多数的吸附过程是可逆的,液相或气相内的分子或原子转移到固相表面,使固相表面的物质浓度增高,这种现象就称为吸附;已被吸附的分子或原子离开固相表面,返回到液相或气相中去,这种现象称为解吸或脱附。在吸附过程中,被吸附到固体表面上的物质称为吸附质,吸附吸附质的固体物质称吸附剂。 活性炭吸附就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。 活性炭吸附的作用产生于两个方面:一方面是由于活性炭内部分子在各个方面都受着同等大小力而在表面的分子则受到不平衡的力,这就使其他分子吸附于其表面上,此过程为物理吸附;另一方面是由于活性炭与被吸附物质之间的化学作用,此过程为化学吸附。活性炭的吸附是上述两种吸附综合作用的结果。当活性炭在溶液中吸附速度和解吸速度相等时,即单位时间内活性炭吸附的数量等于解吸的数量时,被吸附物质在溶液中的浓度和在活性炭表面的浓度均不再变化,而达到了平衡,此时的动态平衡称为活性炭吸附平衡。 三、实验设备与试剂 (1) 活性炭吸附实验装置:1套 (如下图)。 (2) 50mL比色管:6个 (3) 500mL烧杯:2个

(4) 色度较高工业废水(如:印染废水,可自配):5L (5) 生活污水: 5L 四、实验步骤 1、配制实验废水(染料废水) 采用两种染料配置实验用废水。一是生物染料,二是化工染料。分别称取1g质量的染料配置成5L的染料废水进行实验。 另从生活污水管道采集生活污水5L,待用。 2、实验装置运行 (1)连接好活性炭吸附实验装置。 (2)分别用生物染料废水、化工染料废水和生活污水按10L/h左右的进水流量进入活性炭吸附柱进行吸附实验。 (3)吸附完成后对出水水样测其色度。 (4)观察和分析活性炭是否达到饱和,如果饱和,则对其进行再生。 3、水样的测定 对原废水和吸附后废水分别采用“目测比色法”测定其色度。 五、实验数据记录与处理 参考表1记录实验数据。 表1 实验数据记录和处理 六、注意事项 (1) 实验前必须首先计算活性炭容积。 (2) 实验时要注意稳定流量。 七、思考题 (1) 活性炭吸附达到饱和后能否再次利用? (2) 活性炭饱和后如何再生?

活性炭吸附装置工艺流程图

活性炭吸附装置工艺流程图(完整)一.主画面工艺流程图:

二.第一组吸附塔共工艺流程图: 三.第二组吸附塔工艺流程图:

四.第三组吸附塔工艺流程图: 五.反冲洗工艺流程图:

自动反冲洗操作说明: 1.维护检修已完成,所有安全标识牌已全部取下,方能执行运行操作; 2.检查管道、管网工况应正常,各连接部位应紧固、牢靠通畅无破损滴漏现象; 3.仪表、电气部分工况应正常、上电正常能正常投运,现场数据与远传数据应 一致; 4.电机、泵、减速机润滑油应正常,油位应正常在油标尺上无漏油现象; 5.检查确认打开机封冷却循环水系统应正常; 6.关闭要反冲洗塔的进水阀、出水阀; 7.检查确认打开要启动的反冲洗水泵前/泵后手动阀门; 8.选择需要反冲洗的吸附塔、反冲洗水泵以及循环次数; 9.确认各项准备工作已经完成; 10.鼠标点击选择开关为自动状态; 11.鼠标点击启动按钮“启动反冲洗”键,按设定好的程序自动进行反冲洗;

12.在任何情况下,只要按下“停止反冲洗”按钮程序执行----关闭反冲洗水电动 阀EV-110/EV-111/EV112、停止反冲洗水泵P-110/P-111/P-112、关闭反冲洗进水阀、反冲洗出水阀。 六.补碳工艺流程图: 自动补炭操作说明: 1.维护检修已完成,所有安全标识牌已全部取下,方能执行运行操作; 2.检查管道、管网工况应正常,各连接部位应紧固、牢靠通畅无破损滴漏现象; 3.仪表、电气部分工况应正常、上电正常能正常投运,现场数据与远传数据应一致; 4.电机、泵、减速机润滑油应正常,油位应正常在油标尺上无漏油现象; 5.检查确认打开机封冷却循环水系统应正常; 6.关闭要补炭塔的进水阀、出水阀;

活性炭吸附实验报告

实验3 活性炭吸附实验报告 一、研究背景: 1.1、吸附法 吸附法处理废水是利用多孔性固体(吸附剂)的表面吸附废水中一种或多种溶质(吸附质)以去除或回收废水中的有害物质,同时净化了废水。 活性炭是由含碳物质(木炭、木屑、果核、硬果壳、煤等)作为原料,经高温脱水碳化和活化而制成的多孔性疏水性吸附剂。活性炭具有比表面积大、高度发达的孔隙结构、优良的机械物理性能和吸附能力,因此被应用于多种行业。在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。除此之外,活性炭还被用于制造活性炭口罩、家用除味活性炭包、净化汽车或者室内空气等,以上都是基于活性炭优良的吸附性能。将活性炭作为重要的净化剂,越来越受到人们的重视。 1.2、影响吸附效果的主要因素 在吸附过程中,活性炭比表面积起着主要作用。同时,被吸附物质在溶剂中的溶 解度也直接影响吸附的速度。此外,pH 的高低、温度的变化和被吸附物质的分散程度也对吸附速度有一定影响。 1.3、研究意义 在水处理领域,活性炭吸附通常作为饮用水深度净化和废水的三级处理,以除去水中的有机物。活性炭处理工艺是运用吸附的方法来去除异味、某些离子以及难以进行生物降解的有机污染物。 二、实验目的 本实验采用活性炭间歇的方法,确定活性炭对水中所含某些杂质的吸附能力。希望达到下述目的: (1)加深理解吸附的基本原理。 (2)掌握活性炭吸附公式中常数的确定方法。 (3)掌握用间歇式静态吸附法确定活性炭等温吸附式的方法。 (4)利用绘制的吸附等温曲线确定吸附系数:K、1/n。K为直线的截距,1/n为直线的斜率 三、主要仪器与试剂 本实验间歇性吸附采用三角烧瓶内装人活性炭和水样进行振荡方法。 3.1仪器与器皿: 恒温振荡器1台、分析天平1台、分光光度计1台、三角瓶5个、1000ml容量瓶1个、100ml容量瓶5个、移液管 3.2试剂:活性炭、亚甲基蓝 四、实验步骤 (1)、标准曲线的绘制 1、配制100mg/L的亚甲基蓝溶液:称取0.1g亚甲基蓝,用蒸馏水溶解后移入1000ml容量瓶中,并稀释至标线。 2、用移液管分别移取亚甲基蓝标准溶液5、10、20、30、40ml于100ml容量瓶中,用蒸馏水稀释至100ml刻度线处,摇匀,以水为参比,在波长470nm处,用1cm比色皿测定吸光度,绘出标准曲线。

活性炭吸附塔简介及作用

恒尔森活性炭吸附塔 简介 活性炭吸附塔是处理有机废气、臭味处理效果最好的净化设备。活性炭吸附是有效的去除水的臭味、天然和合成溶解有机物、微污染物质等的措施。大部分比较大的有机物分子、芳香族化合物、卤代炔等能牢固地吸附在活性炭表面上或空隙中,并对腐殖质、合成有机物和低分子量有机物有明显的去除效果.活性炭吸附作为深度净化工艺,经常用于废水的末级处理,也可用于长产用水、生活用水的纯化处理。 工作原理 该活性炭吸附装置主要由活性炭层和承托层组成。活性炭具有发达的空隙,比表面积大,具有很高的吸附能力。正是由于活性炭的这种特性,它在水的深度处理中被广泛应用,如生活给水,污水后段的(净水)深度处理等。 活性炭使用一段时间后,吸附了大量的吸附质,逐步趋向饱和,丧失了工作能力,严重时将穿透滤层,因此应进行活性炭的再生或更换。 承托层的主要作用是防止活性炭从设备中流失,在出水及反冲洗时起到一定的均匀布水作用。 设备特点 有机废气活性碳吸附塔广泛用于家具木业、化工涂料、金属表面处理等喷涂、喷漆、烘干等产生有机废气及异味场所,采用优质吸附活性碳作为吸附媒介,有机废气通过多层吸附层进行过滤吸附,从而达到净化废气的目的。 工艺(主要技术)特点: 分为手动式和自动式两种,结构紧凑一体化,易于安装和操作维护; 滤速高,处理量大,运行效果稳定,设备占地少;

滤料截污容量大,孔隙率高,耐摩擦,比重适中 适用范围 该装置运用于大风量低浓度的有机废气处理,可处理苯类、酮类、醇类、、烷类及其混合类有机废气,主要用于化工、机械、电子、电器、涂装、制鞋、橡胶、塑料、印刷及各种工业生产车间产生的有害废气的净化处理。活性碳吸附塔,系利用高性能活性碳吸附剂固体本身的表面作用力,将有机废气分子之吸附质吸引附着再吸附剂表面,能对苯、醇、酮、酯、汽油类等有机溶剂的废气吸附,更适用于大风量低浓度的废气治理,适用于电子、化工、轻工、橡胶、油漆、涂装、印刷、机械、船舶、汽车、石油等行业。

活性炭吸附实验实验报告[活性炭吸附实验]

活性炭吸附实验实验报告[活性炭吸附实验] 活性炭吸附实验 一实验目的 1、通过实验进一步了解活性炭的吸附工艺及性能,并熟悉整个实验过程的操作 2、掌握用“间歇”法、“连续流”法确定活性炭处理污水的设计参数的方法二实验原理 活性炭吸附过程包括物理吸附和化学吸附。其基?原理就是利用活性炭的固体表面对水中一种或多种物质的吸附作用,以达到净化水质的目的。当活性炭对水中所含杂质吸附时,水中的溶解性杂质在活性炭表面积聚而被吸附,同时也有一些被吸附物质由于分子的运动而离开活性炭表面,重新进入水中即同时发生解吸现象。当吸附和解吸处于动态平衡状态时,称为吸附平衡。这时活性炭和水(即固相和液相)之间的溶质浓度,具有一定的分布比值。重量的活性炭吸附溶质的数量qe,即吸附容量可按下式计算: V(C0?C) qe?

m 式中 qe—活性炭吸附量,即单位重量的吸附剂所吸附的物质量,mg/g; V—污水体积,L; C0、C—分别为吸附前原水及吸附平衡时污水中的物质浓度,mg/L;m—活性炭投加量,g;在温度一定的条件下,活性炭的吸附量随被 吸附物质平衡浓度的提高而提高,两者之间的变化曲线称吸附等温线,通常用Fruendlich式加以表达。 qe?K?Cn 式中 K、n—是与溶液的温度、pH值以及吸附剂和被吸附物质的 性质有关的常数; K、n值求法如下:通过间歇式活性炭吸附实验测得qe、C相应之值,将式上式到对数后变换为下式: 1

lgqe?lgK?lgC n 将qe、C相应值点绘在双对数坐标纸上,所得直线的斜率为1/n,截距则为k。 三实验设备及用具 1、振荡器一台; 2、分析天平一台; 3、分光光度计一台; 4、250mL三角烧杯5个; 5、100mL容量瓶6个; 6、活性炭(粉状和粒状); 7、亚甲基兰。 8、活性炭连续流吸附实验装置四实验步骤 1、间歇式活性炭吸附实验 ①配制浓度为50mg/L的亚甲兰溶液于1000mL容量瓶中; ②用十倍稀释法依次配制浓度为5mg/L、1mg/L、0.5mg/L、0.1mg/L、 0.05mg/L、0.01mg/L的亚甲兰溶液于100mL容量瓶中;

活性炭吸附塔操作及结构

恒尔森活性炭吸附塔 一、研发背景 近几十年来,我国大大小小的化工企业如雨后春笋般快速兴起,而大量来自各个行业所排放的化工废气、含氟废气、气态碳氢化合物、恶臭气体等有工业机废气也随之源源不断地排放到了大气中,加之环保投资捉襟见肘,导致了大气环境质量日益下降。 现代工业的进步带动了我国经济的高速发展,但与此同时也严重破坏了我们的生存环境,给我们的生活蒙上一层阴影,甚至严重损害了我们的身体健康。 比如在合成橡胶、油漆、染料、合成纤维、石油、药品和纤维素等化工产品生产及加工过程中排放的气体中含有包括甲苯、二甲苯、乙醇、丁醇、异丙醇、丁醇、丁酯、乙酯等在内的大量有害物质,这些物质大多以化合物形态漂浮在空气中,既污染了车间的工作环境,又可通过呼吸道侵入到人的肝、肺、心血管及血液中,导致许多职业病的出现。如:肺癌、哮喘、湿疹、支气管炎、皮肤过敏、呼吸道感染等等,重者甚至会使中枢神经紊乱,消化系统遭到破坏,由此并发症而衰竭死亡。 可见有机废气的污染危害之大、之重。现如今随着国家和人们对环保的日渐重视,有机废气的治理力度也正在不断加大。 比如为贯彻国家环境保护法和国家大气污染防治法等法律法规,加强挥发性有机化合物(VolatileOrganicCompounds,简称VOCs)污染排放控制,改善区域大气环境质量,促进印刷行业工艺和污染治理技术的进步,广东省于2010年制定并实施了《印刷行业挥发性有机化合物排放标准》。对印刷油墨VOCs含量限值、排气筒VOCs排放限值以及无组织排放监控点VOCs浓度限值等有机废气排放指标均做出了明确规定,如表所示:

由于有机废气一般都存在易燃易爆、有毒有害、不溶于水、溶于有机溶剂、处理难度大的特点。因此在处理时普遍采用活性炭吸附法、催化燃烧法、催化氧化法、酸碱中和法、冷凝法、直接燃烧法、吸收液吸收法等。 目前,多数采用活性炭吸附法,其去除效率高,应用广泛,具有能耗低、工艺成熟、去除率高、净化彻底、易于推广等优点,有很好的环境和经济效益。主要用于低浓度,高通量可挥法性有机物(VOCs)的处理。 与其他废气治理方法对比

活性炭吸附塔

活性炭吸附塔工作原理,【活性炭吸附塔价格因素及设计方案原理】 活性炭吸附塔的特点: 1、吸附效率高,能力强; 2、设备构造紧凑,占地面积小,维护管理简单方便,运转成本低; 3、能够同时处理多种混合有机废气; 4、采用自动化控制运转设计,操作简易、安全; 5、全密闭型,室内外皆可使用。 活性炭吸附塔工作原理:车间含有有机气体或颗粒物经获罩收集,管道输送有机气体进入活性炭塔,有机气体进入塔内时,风速顺间降下,气体内含的较大颗粒杂物便自然沉降入塔底部,而溶入气体内的有机气体部分随气体流向流进活性炭过滤层,有机气体进入炭层时,有机气体被活性炭吸附进炭内,而干尽的空气穿过炭层进入出气仓,气体经过机械自吸后排入大气中.而活性炭层的在吸附过程中,炭会有个饱和的时间段,其活性炭饱和的过程长短与气体本身内部所含气体的浓度和工作的时间长短有直接相关。 活性炭吸附箱是一种干式废气处理设备。由箱体和装填在箱体内的吸附单元组成。根据吸附单元的数量和风量共分为多种规格,活性炭吸附箱选择不同填料可以处理多种不同废气,主要包括叁大类: 1,酸性废气和酸雾 2,碱性废气 3,有机废气和臭味(苯类、酚类、醇类、醚类、酊类) 活性炭吸附箱对于浓度低于1000mg/m3的废气净化后排放满足 GB16297-1996《大气污染物综合排放标准》。 部分活性炭吸附器的参数:

型号GCA-100C GCA-150C GCA-200C GCA-250C GCA-300C 处理风 量m3/h 10000 15000 20000 25000 30000 过滤面 积m2 5.7 8.3 11.1 13.8 1 6.6 过滤风 速v/s 0.5 0.5 0.5 0.5 0.5 接触时 间s 0.6 0.6 0.6 0.6 0.6 活性碳 层厚mm 300 300 300 300 300 活性碳 用量m3 1.7 2.4 3.3 4.1 4.8 压损Pa 700 700 700 700 700 材质t2.5A3板、ф3 冲孔板 t2.5A3板、ф3 冲孔板 t2.5A3板、ф3 冲孔板 t2.5A3板、ф3 冲孔板 t2.5A3板、ф3 冲孔板 入出口 径mm ф500 ф600 ф700 ф750 ф800 活性炭吸附塔,是一种高效率经济实用型有机废气的净化与治理装置;是一种废气过滤吸附异味的环保设备产品。活性炭吸附塔是具有吸附效率高、适用面广、维护方便,能同时处理多种混合废气等优点。该设备是净化较高浓度有机废气和喷漆废气的吸附设备,是利用活性炭本身高强度的吸附力,结合风机作用将有机废气分子吸附住,对苯、醇、酮、酯、汽油类等有机溶剂的废气有很好的吸附作用。在实际安装和应用情况,总结国内外同类产品的生产经验,改进设计制造,推出下料形式方便,表面平整度更好,结构强度更高,吸附能力更强的活性炭吸附塔。本公司生产多种规格的活性碳吸附塔,根据处理气体污染因子的不同而设计吸附时间,再根据处理废气量的大小确定吸附面积,每一个工程都是全新的设计方案。同时针对不同工艺生产中所排放的废气特性,如排放废气温度、是否含有油雾、粉尘等相关参数,在废气设备进口部分内置或增设冷却器、过滤器等预处理装置或功能段。很好的保护了吸附段,确保吸附塔在高效状态下运行。 适用于低浓度大风量或高浓度间歇排放废气的作业环境。主要应用领域包括:电子元件生产、电池(电瓶)生产、酸洗作业车间、实验室排风、冶金、化工厂、医药生产厂、涂装车间、食品及酿造、家具生产等行业废气净化,其中最适用于喷漆废气处理净化。去除率可高达90%以上。

相关文档
最新文档