专题一 函数与方程思想

专题一  函数与方程思想
专题一  函数与方程思想

专题一函数与方程思想

一、考点回顾

函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。

2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系;

3.函数方程思想的几种重要形式

(1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。

(2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;

(3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;

(4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;

(5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;

(6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。

二、经典例题剖析

(根据近几年高考命题知识点及热点做相应的试题剖析,要求例题不得少于8个)

1. (湖北卷)关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题:

①存在实数k,使得方程恰有2个不同的实根;

②存在实数k,使得方程恰有4个不同的实根;

③存在实数k,使得方程恰有5个不同的实根;

④存在实数k,使得方程恰有8个不同的实根.

其中假命题的个数是( ).

A. 0

B. 1

C. 2

D. 4

解析:本题是关于函数、方程解的选择题,考查换元法及方程根的讨论,属一题多选型试题,要求考生具有较强的分析问题和解决问题的能力. 思路分析:

1. 根据题意可令|x 2-1|=t(t≥0),则方程化为t 2-t +k =0,(*)

作出函数t =|x 2-1|的图象,结合函数的图象可知①当t =0或t >1时,原方程有两上不等的根,②当0<t <1时,原方程有4个根,③当t =1时,原方程有3个根.

(1)当k =-2时,方程(*)有一个正根t =2,相应的原方程的解有2个; (2)当k =14时,方程(*)有两个相等正根t =1

2,相应的原方程的解有4个;

(3)当k =0时,此时方程(*)有两个不等根t =0或t =1,故此时原方程有5个根;

(4)当0<k <1

4时,方程(*)有两个不等正根,且此时方程(*)有两正根且均小于1,故相应的满足方程|x 2-1|=t 的解有8个,故选A.

2. 由函数f(x)=(x 2-1)2-|x 2-1|的图象(如下图)及动直线g(x)=k 可得出答案为A.

3. 设t =|x 2-1|(t≥0),t 2-t +k =0,方程的判别式为Δ=1-4k ,由k 的取值依据Δ>0、△=0、△<0从而得出解的个数.

4. 设函数f(x)=,利用数轴标根法得

出函数与x 轴的交点个数为5个,以及函数的单调性大体上画出函数的图象,从而得出答案A. 答案:A

点评:思路1、思路2、思路4都是利用函数图象求解,但研究的目标函数有别,思路2利用函数的奇偶性以及交轨法直观求解,很好地体现了数形结合的数学思想,是数形结合法中值得肯定的一种方法;思路3利用方程的根的个数问题去求解,但讨论较为复杂,又是我们的弱点,有利于培养我们思维的科学性、严谨性、抽象性、逻辑推理能力等基本素质.

2. (广东卷)已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ). A. 5 B. 4 C. 3 D. 2

解析:设等差数列的首项为a 1,公差为d 据题意得:

答案:C

点评:运用等差、等比数列的基本量(a 1,d ,q)列方程,方程组是求解数列基本问题的通法. 3. (安徽卷)已知

<α<π,tanα+cotα=-

.

(1)求tanα的值;

(2)求的值.

解析:(1)由tanα+cotα=-103得3tan2α+10tanα+3=0,即tanα=-3或tanα=-1

3,

又3π4<α<π,所以tanα=-1

3

=为所求.

答案:

点评:第(1)问是对方程思想方法灵活考查,能否把条件tanα+cotα=-10

3变形为关于tanα的一元二次方程,取决于解题的目标意识和是否对方程思想方法的深刻把握和理解. 4. (江西卷)若不等式x 2+ax +1≥0对于一切x ∈(0,12]成立,则a 的最小值是( ). A. 0 B. -2 C. -5

2 D. -3

解析:与x 2+ax +1≥0在R上恒成立相比,本题的难度有所增加. 思路分析:

1. 分离变量,有a≥-(x +1x ),x ∈(0,12]恒成立.右端的最大值为-5

2,故选C.

2. 看成关于a 的不等式,由f(0)≥0,且f(1

2)≥0可求得a 的范围.

3. 设f(x)=x 2+ax +1,结合二次函数图象,分对称轴在区间的内外三种情况进行讨论.

4. f(x)=x 2+1,g(x)=-ax ,则结合图形(象)知原问题等价于f(12)≥g(12),即a≥-5

2.

5. 利用选项,代入检验,D不成立,而C成立.故选C. 答案:C

点评:思路1~4具有函数观点,可谓高屋建瓴.思路5又充分利用了题型特点. 5. (全国卷Ⅱ)已知抛物线x 2=4y 的焦点为F,A、B是抛物线上的两动点,且(λ>0).过A 、B

两点分别作抛物线的切线,设其交点为M. (1)证明

为定值;

(2)设△ABM 的面积为S ,写出S =f(λ)的表达式,并求S 的最小值.

解:(1)证明:由已知条件,得F(0,1),λ>0.设A(x 1,y 1),B(x 2,y 2).由,得(-x 1,1-

y 1)=λ(x 2,y 2-1), 即

将①式两边平方并把

代入得

解②、③式得y 1=λ,y 2=1λ,且有x 1x 2=-λx 22=-4λy 2=-4,抛物线方程为y =1

4x 2,求导得y′=12x.所以过抛物线上A 、B 两点的切线方程分别是y =12x 1(x -x 1)+y 1,y =1

2x 2(x -x 2)+y 2, 即

.

解出两条切线的交点M 的坐标为

所以=

.

所以

为定值,其值为0.

(2)由(1)知在△ABM 中,FM ⊥AB ,因而S =1

2|AB| |FM|.

|FM|==

==

.

因为|AF|、|BF|分别等于A 、B 到抛物线准线y =-1的距离,所以|AB|=|AF|+|BF|=y 1+y 2+2=λ+1

λ

+2=(

)2.

于是S =12|AB| |FM|=1

2()3由

≥2知S≥4,且当λ=1时,S 取得最小

值4.

点评:在解析几何中考查三角形面积最值问题是高考的重点和热点,求解的关键是建立面积的目标函数,再求函数最值,至于如何求最值应视函数式的特点而定,本题是用均值定理求最值的.

6. 设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x <0时,f′(x)·g(x)+f(x)·g′(x)>0,且g(-3)=0,则不等式f(x)g(x)<0的解集是( ).

A. (-3,0)∪(3,+∞) B. (-3,0)∪(0,3) C. (-∞,-3)∪(3,+∞) D. (-∞,-3)∪(0,3)

解析:以函数为中心,考查通性通法,设F(x)=f(x)g(x),由f(x),g(x)分别是定义在R 上的奇函数和偶函数,所以

F(-x)=f(-x)g(-x)=-f(x)g(x)=-F(x),

即F(x)为奇函数.又当x <0时, F′(x)=f ′(x)g(x)+f(x)g′(x)>0, 所以x <0时,F(x)为增函数.

因为奇函数在对称区间上的单调性相同,所以x >0时,F(x)也为增函数.

因为F(-3)=f(-3)g(-3)=0=-F(3).

如上图,是一个符合题意的图象,观察知不等式F(x)<0的解集是(-∞,-3)∪(0,3),所以选D. 答案:D

点评:善于根据题意构造、抽象出函数关系式是用函数思想解题的关键.题中就是构建函数F(x)=f(x)g(x),再根据题意明确该函数的性质,然后由不等式解集与函数图象间的关系使问题获得解决的. 7. 函数f(x)是定义在[0,1]上的增函数,满足f(x)=2f(x

2)且f(1)=1,在每一个区间(

(i =1,2……)上,y =f(x)的图象都是斜率为同一常数k 的直线的一部分.

(1) 求f(0)及f(12),f(1

4

)的值,并归纳出f(

)(i =1,2,……)的表达式;

(2)设直线x =,x =

,x 轴及y =f(x)的图象围成的梯形的面积为a i (i =1,2,……),记

S(k)=lim n→∞

(a 1+a 2+…a n ),求S(k)的表达式,并写出其定义域和最小值.

解析:以函数为细节,注重命题结构网络化,(1)由f(0)=2f(0),得f(0)=0.

由f(1)=2f(1

2)及f(1)=1,得

f(12)=12f(1)=12. 同理,f(14)=12f(12)=1

4. 归纳得f(

)=

(i =1,2,……).

(2)当<x≤=时,

所以{a n }是首项为12(1-k 4),公比为1

4

的等比数列,所以

.

S(k)的定义域为{k|0<k≤1},当k =1时取得最小值1

2.

点评:高考命题寻求知识网络化已是大势所趋,而函数是把各章知识组合在一起的最好的“粘合剂”.高考试题注重知识的联系,新而不偏,活而不怪.这样的导向,就要求在学习中必须以数学思想指导知识、方法的运用,注意培养我们用联系的观点去思考问题的习惯.

8. 对任意实数k,直线:y=kx+b与椭圆:(0≤θ<2π)恒有公共点,则b取值范围是 .

解析:方法1,椭圆方程为,将直线方程y=kx+b代入椭圆方程并整理得 .

由直线与椭圆恒有公共点得

化简得

由题意知对任意实数k,该式恒成立,

则Δ′=12(b-1)2-4[16-(b-1)2]≤0,

即-1≤b≤3

方法2,已知椭圆与y轴交于两点(0,-1),(0,3).

对任意实数k,直线:y=kx+b与椭圆恒有公共点,则(0,b)在椭圆内(包括椭圆圆周)即有

≤1,得-1≤b≤3.

点评:方法1是运用方程的思想解题,这是解析几何变几何问题为代数问题的方法.方法2运用数形结合的思想解题,是相应的变代数问题为几何问题的方法.高考试题中设置一题多解的试题就是为了考查学生思维的深度和灵活运用数学思想方法分析问题和解决问题的能力.评判出能力与素养上的差异.

三、方法总结与2008年高考预测

(一)方法总结

1.函数描述了自然界中量的依存关系,反映了一个事物随着另一个事物变化而变化的关系和规律。函数思想的实质是剔除问题的非数学特征,用联系和变化的观点提出数学对象,抽象其数学特征,建立函数关系;

2.在解决某些数字问题时,先设定一些未知数,然后把它们当作已知数,根据题设本身各量间的制约,列出等式,所设未知数沟通了变量之间的关系,这就是方程的思想;

3.函数与方程是两个不同的概念,但它们之间有着密切的联系,一个函数若有解析表达式,那么这个表达式就可看成是一个方程.一个二元方程,两个变量存在着对应关系,如果这个对应关系是函数,那么这个方程可以看成是一个函数,一个一元方程,它的两端可以分别看成函数,方程的解即为两个函数图

象交点的横坐标,因此,许多有关方程的问题可以用函数的方法解决;反之,许多有关函数的问题则可以用方程的方法解决.

总之,在复习中要注意领悟蕴含在知识和解题过程中函数和方程的思想,用它来指导解题。在解题中,同时要注意从不同的角度去观察探索,寻求多种方法,从而得到最佳解题方案。

(二)2008年高考预测

1. 纵观近几年的高考试题,函数的主干知识、知识的综合应用以及函数与方程思想等数学思想方法的考查,一直是高考的重点内容之一。在高考试卷上,与函数相关的试题所占比例始终在20%左右,且试题中既有灵活多变的客观性试题,又有一定能力要求的主观性试题。函数与方程思想是最重要的一种数学思想,高考中所占比重比较大,综合知识多、题型多、应用技巧多。在高中新课标数学中,还安排了函数与方程这一节内容,可见其重要所在。

2. 在近几年的高考中,函数思想主要用于求变量的取值范围、解不等式等,方程观点的应用可分为逐步提高的四个层次:(1)解方程;(2)含参数方程讨论;(3)转化为对方程的研究,如直线与圆、圆锥曲线的位置关系,函数的性质,集合关系;(4)构造方程求解。

3. 预测2008年高考对本讲考查趋势:函数的零点问题、二次函数、二次方程、二次不等式间的关系;特别注意客观形题目,大题一般难度略大。 四、

强化训练

(一) 选择题

1. 已知函数f(x)=log a [x -(2a)x ]对任意x ∈[1

2,+∞]都有意义,则实数a 的取值范围是( ). A. (0,14] B. (0,14) C. [14,1) D. (14,1

2)

2. 函数f(x)定义域为R,且x≠1,已知f(x +1)为奇函数,当x <1时,f(x)=2x 2-x +1,那么当x >1时,f (x)的递减区间为( ). A. [,+∞) B. (1,] C. [

,+∞) D. (1,

3. 已知f(x)=asinx +b

+4(a ,b ∈R),且f(lglog 310)=5,则f(lglg3)的值是( ).

A. -5 B. -3 C. 3 D. 5

4. 设P(x ,y)是椭圆x 2+4y 2=4上的一个动点,定点M(1,0),则|PM|2的最大值是( ). A. 2

3 B. 1 C. 3 D. 9 5. 已知x 、y ∈R ,且2x +3y >2-

y +3-

x ,那么( ).

A. x +y <0 B. x +y >0 C. xy <0 D. xy >0 6. 已知

=1(a ,b ,c ∈R),则有( ).

A. b 2>4ac B. b 2≥4ac C. b 2<4ac D. b 2≤4ac

7. 对任意非负实数x ,不等式(

≤a 恒成立,则实数a 的最小值是( ).

A. 12 B. 2 C. 23 D. 3

4

8. 三棱锥S-ABC中,对棱SA与BC互相垂直,二面角S-BC-A的平面角为60°,SA=

,△SBC的面积为2+3,△ABC的面积为1,则三棱锥S-ABC的体积为( ).

A. 6 B. 4 C. 16 D. 13

9. (重庆卷)与向量a =(72,12),b =(12,-7

2)的夹角相等,且模为1的向量是( ).

A.

B.

C. D.

10. (安徽卷)设a >0,对于函数f(x)=

(0<x <π),下列结论正确的是( ).

A. 有最大值而无最小值 B. 有最小值而无最大值 C. 有最大值且有最小值 D. 既无最大值又无最小值 11. 方程lgx +x =3的解所在的区间为_____。

A. (0,1)

B. (1,2)

C. (2,3)

D. (3,+∞)

12. f(x) 定义在R 上的函数,f(x +1)=-

,当x ∈[-2,-1]时,f(x)=x,则f(-3.5)为

A.-0.5

B.-1.5

C.1.5

D.-3.5

(二) 填空题

13. 如果y =1-sin 2x -mcosx 的最小值为-4,则m 的值为 .

14. 关于x 的不等式2·32

x -3x +a 2-a -3>0,当0≤x≤1时恒成立,则实数a 的取值范围为 .

15. 设f(x)是偶函数,g(x)是奇函数,且f(x)+g(x)=ex +1,则f(x)= .

16. 已知矩形ABCD的边AB=a,BC=2,PA ⊥平面ABCD,PA=2,现有以下五个数据: (1)a =1

2; (2)a =1; (3)a =3; (4)a =2; (5)a =4当在BC边上存在点Q,使PQ⊥QD

时,则a 可以取 .(填上一个正确的数据序号即可)

(三) 解答题

17. 设集合A ={x|4x -2x +2+a =0,x ∈R }.

(1)若A中仅有一个元素,求实数a 的取值集合B;

(2)若对于任意a ∈B ,不等式x 2-6x <a(x -2)恒成立,求x 的取值范围.

18. 已知二次函数f(x)=ax 2+bx(a ,b 为常数,且a≠0)满足条件:f(x -1)=f(3-x)且方程f(x)=2x 有等根.

(1)求f(x)的解析式;

(2)是否存在实数m ,n(m <n),使f(x)定义域和值域分别为[m ,n ]和[4m ,4n ],如果存在,求出m 、n 的值;如果不存在,说明理由.

19. 已知函数f(x)=6x -6x 2,设函数g 1(x)=f(x),g 2(x)=f [g 1(x)],g 3(x)=f [g 2(x)],…,g n (x)=f [g n -1(x)],……

(1)求证:如果存在一个实数x 0,满足g 1(x 0)=x 0,那么对一切n ∈N ,g n (x 0)=x 0都成立; (2)若实数x 0满足g n (x 0)=x 0,则称x 0为稳定不动点,试求出所有稳定不动点;

(3)设区间A=(-∞,0),对于x ∈A,有g 1(x)=f(x)=a <0,g 2(x)=f [g 1(x)]=f(0)<0,且n≥2时,g n (x)<0.试问是否存在区间B(A∩B≠Φ),对于区间内任意实数 x ,只要n≥2,n ∈N ,都有g n (x)<0. 20. 已知函数f(x)=1a -1

x (a >0,x >0). (1)求证:f(x)在(0,+∞)上是增函数;

(2)若f(x)≤2x 在(0,+∞)上恒成立,求a 的取值范围;

(3)若f(x)在[m ,n ]上的值域是[m ,n ](m≠n),求a 的取值范围.

21. 已知数列{a n }各项都是正数,且满足a 0=1,a n +1=1

2a n (4-a n ),n ∈N.证明:a n <a n +1<2,n ∈N.

22. 给定抛物线C∶y 2=4x ,F是C的焦点,过点F的直线l 与C相交于A,B两点. (1)设l 的斜率为1,求

的夹角的大小;

(2)设=,若λ∈[4,9],求l在y轴上的截距的变化范围.

(四)创新试题

23. 若(1-2x)2004=a0+a1x+a2x2+…+a2004x2004(x∈R),则(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2004)=(用数字作答).

24. 设函数f(x)=-(x∈R),区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有().

A. 0个B. 1个C. 2个D. 无数多个

解析答案:

1. 解:考查函数y1=和y2=(2a)x的图象,显然有0<2a<1.由题意得a=,再结合指数函数图象性质可得答案.答案:B.

2. 解:由题意可得f(-x+1)=-f(x+1).令t=-x+1,则x=1-t,故f(t)=-f(2-t)=-f(2-x).

当x>1,2-x<1,于是有f(x)=-f(2-x)=-2(x-)2 -,其递减区间为[,+∞).答案:C

3. 解:因为f(x)-4是奇函数,故f(-x)-4=-[f(x)-4],即f(-x)=-f(x)+8,而lglg3=-lglg310,∴f(lglg3)=f(-lglg310)=-(lglg310)+8=-5+8=3.

故选C.

4. 解:= .

注意到-2≤x≤2.

∴当x=-2时,|PM|2max=9.故选D.

5. 解:已知不等式的两边都含有x、y两个变量,而我们目前只学习一元函数,为此先把它化归成等价形式2x-3-x>2-y-3y,使它的两边都只含一个变量,于是可以构造辅助函数f(x)=2x-3-x.因函数

g(x)=2x是R上的增函数,h(x)=3-x=()x是R上的减函数,所以,=-3-x是R上的增函数,因此,f(x)=2x-3-x是R上的增函数.

又由2x-3-x>2-y-3 -(-y),即f(x)>f(-y).

∴x>-y,即x+y>0.故选B.

6. 解法1:依题设有a·5-b·5+c=0.

∴ 5是实系数一元二次方程ax 2-bx +c =0的一个实根. ∴ Δ=b 2-4ac≥0.∴ b 2≥4ac.故选B. 解法2:其实本题也可用消元的思想求解. 依题设得,b =

.

∴ b 2-4ac =()2-4ac

=5a 2+1

5c 2-2ac≥2ac -2ac =0.故选B.

7. 解:问题a≥对x≥0恒成立.

记f(x)=(x≥0).则问题a≥f(x)max.

当x =0时,f(x)=0;

当x >0时,f(x)=

,显然f(x)在(0,+∞)上是增函数. ∴ 0<f(x)<1

2.

.

故a≥12.即a 的最小值为1

2,故选A.

8. 解:过S 作SH ⊥底面ABC ,H 为垂足,连接AH 并延长交BC 于D ,再连接SD(如图).

∵ SH ⊥底面ABC ,HD 是斜线SA 在底面ABC 内的射影, 又SA ⊥BC ,∴ AD ⊥BC ,

∴ SD ⊥BC ,因此∠SDA 就是二面角S -BC -A 的平面角,即∠SDA =60°. 设SD =x ,则S △SBC =BC·x =2+, ①

又S △ABC =

BC·AD =1. ②

由②÷①,即可解得AD =(2-)x.

在△SAD 中,SA =,∠SDA =60°,由余弦定理得关于x 的方程. (

)2=x 2+[(2-

)x ]2-2x·(2-

)x·12,解得x =3

3

. 于是,在Rt △SHD 中,SH =SD·sin60°=1

2,

∴ V S -ABC =13S △ABC ·SH=1

6.故选C.

9. 解析:本题涉及单位向量、共线向量、向量的夹角等知识,解题的入口较宽,可从方程、解析几何、复数及向量运算的几何意义等角度入手,对训练我们思维的广阔性有帮助. 思路分析:

1. 设所求向量为(x ,y),则由向量模的定义与夹角公式可得解得该方程

组可知答案为B. 2. 设

=a ,

=b ,则可借助直线的夹角公式求得∠AOB 的平分线所在直线方程为y =-

x ,再由=1可知答案为B.

3. 在复平面上,向量a ,b 分别对应于复数z 1=72+12i ,z 2=12-7

2i ,因为z 1=z 2·i ,故所求向量对应的复数为z 2·或

,化简后可知答案选

B.

4. 容易知道符合题意的向量有两个,所以先排除选项A和选项C,由于a ,b 的模相等,故所求向量应与a +b =(4,-3)共线,从而答案选B. 答案:B

点评:思路1运用了方程思想;思路2用的是解析几何知识;思路3借助了复数运算;思路4最为巧妙,采用了特征分析法并灵活运用了向量运算的几何意义.

10. 解析:令t =sinx ,t ∈(0,1],则函数f(x)=

(0<x <π)的值域为函数y =1+,t ∈(0,

1]是一个减函数,

答案:B

点评:本题将三角函数的值域问题转化为一般函数的值域问题,既考查了等价转化的思想方法,又考查了用函数思想解决问题的能力.

11. 图像法解方程,也可代入各区间的一个数(特值法或代入法),选C

12. B

13. 解:原式化为 .

当,

当-1≤≤1时,y min==-4m=±4 不符,

当>1,y min=1-m=-4m=5.答案:±5.

14. 解:设t=3x,则t∈[1,3],原不等式可化为a2-a-3>-2t2+t,t∈[1,3].等价于a2-a-3大于f(t)=-2t2+t在[1,3]上的最大值.

答案:(-∞,-1)∪(2,+∞).

15. 答案:f(x)=,

提示:构造f(x)与g(x)的方程组.

16. (1)或(2).

17. (1)令2x=t(t>0),设f(t)=t2-4t+a.

由f(t)=0,在(0,+∞)有且仅有一根或两相等实根,则有

①f(t)=0有两等根时,Δ=016-4a=0a=4;

验证:t2-4t+4=0t=2∈(0,+∞),这时x=1;

②f(t)=0有一正根和一负根时,f(0)<0a<0;

③若f(0)=0,则a=0,此时4x-4·2x=02x=0(舍去),或2x=4,∴x=2,即A中只有一个元素2;

综上所述,a≤0或a=4,即B={a|a≤0或a=4}.

(2)要使原不等式对任意a∈(-∞,0]∪{4}恒成立.即g(a)=(x-2)a-(x2-6x)>0恒成立.只须

x -2≤0g 5-<x≤2.

18. 解:(1)∵ 方程ax 2+bx =2x 有等根, ∴ Δ=(b -2)2=0,得b =2.

由f(x -1)=f(3-x)知此函数图象的对称轴方程为x =-=1得a =-1,故f(x)=-x 2+2x.

(2)f(x)=-(x -1)2+1≤1,∴ 4n≤1,即n≤1

4.

而抛物线y =-x 2+2x 的对称轴为x =1. ∴ n≤1

4

时,f(x)在[m ,n ]上为增函数.

若满足题设条件的m ,n 存在,则

又m <n≤1

4,∴ m =-2,n =0.

19.(1)证明:当n =1时,g 1(x 0)=x 0显然成立; 假设n =k 时,有g k (x 0)=x 0(k ∈N)成立, 则g k +1(x 0)=f [g k (x 0)]=f(x 0)=g 1(x 0)=x 0, 即n =k +1时,命题成立.

∴ 对一切n ∈N ,若g 1(x 0)=x 0,则g n (x 0)=x 0. (2)解:由(1)知,稳定不动点x 0只需满足 f(x 0)=x 0.由f(x 0)=x 0,得6x 0-=x 0,

∴ x 0=0或x 0=5

6.

∴ 稳定不动点为0和5

6.

(3)解:∵ f(x)<0,得6x -6x 2<0x <0或x >1.

∴ g n (x)<0

f [

g n -1(x)]<0

g n -1(x)<0或g n -1(x)>1.

要使一切n ∈N ,n≥2,都有g n (x)<0,必须有g 1(x)<0或g 1(x)>1.

由g 1(x)>0

6x -6x 2>1

<x <

.故对于区间(

)和(1,

+∞)内的任意实数x ,只要n≥2,n ∈N ,都有g n (x)<0.

20. (1)证明:任取x 1>x 2>0,

f(x 1)-f(x 2)=

故f(x)在(0,+∞)上是增函数.

(2)解:∵ ≤2x 在(0,+∞)上恒成立,且a >0,∴ a≥在(0,+∞)上恒成立,令g(x)

(当且仅当2x =1x 即x =2

2时取等号),要使a≥

(0,+∞)上恒

成立,则a≥24,故a 的取值范围是[2

4,+∞). (3)解:由(1)f(x)在定义域上是增函数.

∴ m =f(m),n =f(n),即m 2-m +1=0,n 2-n +1=0.故方程x 2-

x +1=0有两个不相等

的正根m ,n ,注意到m·n =1,则只需要Δ=(

)2-4>0,由于a >0,则0<a <1

2.

21. 这是一个以递推公式为背景的数列不等式,但是把递推公式看作一个函数,就可以获得一种很简单的解法.

解:方法1:把a n +1=12a n (4-a n ),n ∈N.看作一个函数f(x)=12x(4-x),由此启发得a k +1=1

2a k (4-a k )=12[4-(a k -2)2]=-1

2(a k -2)2+2<2. 于是a k <2,又因为a k +1-a k =-1

2

+2a k -a k =-1

2a k (a k -2)>0,所以a k +1>ak ,所以有a n <a n

+1

<2,n ∈N ;

方法2:用数学归纳法证明:

1°当n =1时,a 0=1,a 1=12a 0(4-a 0)=3

2,

∴ 0<a 0<a 1<2;

2°假设n =k 时有a k -1<a k <2成立,

令f(x)=1

2x(4-x),f(x)在[0,2]上单调递增, 所以由假设有:f(a k -1)<f(a k )<f(2),

即12a k -1(4-a k -1)<12a k (4-a k )<1

2×2×(4-2), 即当n =k +1时a k <a k +1<2成立, 所以对一切n ∈N ,有a k <a k +1<2.

22. 解:(1)C的焦点为F(1,0),直线l 的斜率为1,所以l 的方程为y =x -1. 将y =x -1代入方程y 2=4x , 整理得x 2-6x +1=0.

设A(x 1,y 1),B(x 2,y 2),则有x 1+x 2=6,x 1x 2=1.

. 所以

的夹角的大小为π-arccos

.

(2)由题设

得(x 2-1,y 2)=λ(1-x 1,-y 1),

由②得

, ③

联立①、③解得x 2=λ,依题意有λ>0. ∴ B (λ,),或B(λ,-),又F(1,0),得直线l 方程为(λ-1)y =

(x -1)或(λ-

1)y =-

(x -1),

当λ∈[4,9]时,l 在方程y 轴上的截距为或-,把看作函数,设g(λ)=,

λ∈[4,9],,可知g(λ)=在[4,9]上是递减的(或用

导数g′(λ)=-

<0,证明g(λ)是减函数).

∴,

即直线l在y轴上截距的变化范围为

.

23. 解析:以函数为发散点,各种数学思想和方法综合运用,令x=0,得a0=1,令x=1得a0+a1

+a2+…+a2004=1,

所以a1+a2+…+a2004=0.

(a0+a1)+(a0+a2)+(a0+a3)+…+(a0+a2004)=2004a0+(a1+a2+…+a2004)=2004.

点评:此题推陈出新考查二项式定理,可应用二项展开式定理展开求出a1,a2,…然后求和去做,但运算量大,十分麻烦,且易出错.如果用函数思想和整体性思想看问题,视(1-2x)2004为以x为自变量的一元多项式函数f(x),把离散的问题转化为连续的问题,利用赋特殊值法,可以使问题的解法变得十分巧妙.

24. 解析:以函数为载体,考查综合推理和创新能力函数

f(x)=-

图象如下图所示,

y=f(x)在R上是连续单调递减函数.

N={y|y=f(x),x∈M}表示函数定义域为M=[a,b]时其值域为N.由M=N得

解得a=b=0,这与a<b矛盾,所以选A.

答案:A

点评:本题考查了函数的解析式、单调性和函数的定义域、值域与集合等知识.解题过程是由定义域与值域相等的特性建立方程,考查方程的思想和创新能力.

五、复习建议

1. 以《课程标准》为依据,提高复习效率, 切实重视基础知识、基本技能和基本方法的复习.

2. 加强“通性通法”训练,综合提高解题能力,逐渐形成自觉应用数学思想方法解题的意识。

3. 以思维能力为核心,培养学生综合运用知识的能力.

4. 重视反思,尽量减少失误.

5. 注意学生个性品质的培养。通过综合检测与模拟考试,让学生形成审慎思维的习惯,培养学生的应变能力和良好的心理品质,距离高考越来越近,学生的思想压力和心理压力更大,要让他们以实事求是的科学态度,克服过分的紧张情绪,树立战胜困难的信心,使学生在任何情况下都能正确地面对困难、迎接挑战。

2014届高三数学一轮必备“高频题型全掌握”21.数学方法:函数与方程思想

- 1 - 【精选三年经典试题(数学)】2014届高三全程必备《高频题型全掌 握系列》21.数学方法:函数与方程思想 1.(2013.厦门联考)二次函数f (x )=ax 2+bx +c ,a 为正整数,c ≥1,a +b +c ≥1,方程ax 2+bx +c =0有两个小于1的不等正根,则a 的最小值是 ( ). A .3 B .4 C .5 D .6 解析 由题意得f (0)=c ≥1,f (1)=a +b +c ≥1.当a 越大,y =f (x )的开口越小,当a 越小,y =f (x )的开口越大,而y =f (x )的开口最大时,y =f (x )过(0,1),(1,1),则c =1,a +b +c =1.a +b = 0,a =-b ,-b 2a =12 ,又b 2-4ac >0,a (a -4)>0,a >4,由于a 为正整数,即a 的最小值为5. 答案 C 2.(2013·烟台月考)已知点P 是直线2x -y +3=0上的一个动点,定点M (-1,2),Q 是线段PM 延长线上的一点,且|PM |=|MQ |,则Q 点的轨迹方程是( ). A .2x +y +1=0 B .2x -y -5=0 C .2x -y -1=0 D .2x -y +5=0 解析 由题意知,M 为PQ 中点,设Q (x ,y ),则P 为(-2-x ,4-y ),代入2x -y +3=0,得2x -y +5=0. 答案 D 3.(2013·沈阳二模)在平行四边形ABCD 中,∠BAD =60°,AD =2AB ,若P 是平面ABCD 内一 点,且满足:xAB →+yAD →+PA →=0(x ,y ∈R ).则当点P 在以A 为圆心,33 |BD →|为半径的圆上时,实数x ,y 应满足关系式为 ( ). A .4x 2+y 2+2xy =1 B .4x 2+y 2-2xy =1 C .x 2+4y 2-2xy =1 D .x 2+4y 2 +2xy =1 解析 如图,以A 为原点建立平面直角坐标系,设AD =2.据题意,得 AB =1,∠ABD =90°,BD = 3.∴B 、D 的坐标分别为(1,0)、(1,3), ∴AB →=(1,0),AD →=(1,3).设点P 的坐标为(m ,n ),即AP →=(m , n ),则由xAB →+yAD →+PA →=0,得:AP →=xAB →+yAD →,∴??? m =x +y ,n =3y . 据题意,m 2+n 2=1,∴x 2+4y 2+2xy =1. 答案 D

高考数学函数与方程的思想方法

高考数学函数与方程的 思想方法 Last revised by LE LE in 2021

第4讲 函数与方程的思想方法 一、知识整合 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究。 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系. 3.(1) 函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点。 (2) 函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。 (3) 数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。 (4) 函数f(x)=n b ax )( (n ∈N *)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。 (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元

函数与方程思想在高中的应用

函数与方程思想在高考中的应用 组长:潘云鹏 12033034 组员:夏炎 12304177 杨岑 12304154 张瑶 12304184 孙雪 12304013 高清华 12304196 谭博闻 12304159 郭志岩 12304143 刘春旭 12304009 函数与方程思想在高考中的应用

摘要本文阐述了函数思想与方程思想的概念、二者之间的相互转换及在转换时需要注意的一些问题.用典型的例题阐明用函数与方程思想方法能够轻易解决数学学科中不等式、数列、二项式定理、三角函数、平面向量、解析几何、立体几何、概率与统计、导数、实际问题等难以突破的部分,并且它也应用在其他学科领域中.并结合中学数学教学,提出教师应该在教学中有意培养学生的函数与方程思想,并且给出了具体可行性的建议. 一.函数与方程思想的概念 1.函数思想 函数思想是一种通过构造函数从而应用函数图象、性质解题的思想方法,即用运动变化的思想观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究其内在的联系,使问题获解.应用函数思想解题的基础是:常见函数的单调性、奇偶性、周期性、最值和图象变换等;熟练掌握一次函数、二次函数、指对数函数等具体特征;应用函数思想解题的关键是:善于观察题目的结构特征,揭示内在联系,挖掘隐含条件,从而恰当地构造函数和利用函数性质去解题.. 2.方程思想 方程思想是若干变量关系是通过解析式表示的,则可以把解析式看成一个等式,然后通过方程的讨论从而使问题获解.许多问题中含有常量、变量和参量,可以通过适当方式,运用方程的观点去观察、

深入分析问题的结构特点,抓住某一个关键变量,构造出这种等式来处理.两种思想方法是相辅相成的,有关方程、不等式、最值等问题,利用函数、方程观点加以分析,常可以使问题“明朗化”,从而易于找到适当解题途径. 3.函数与方程思想的相互转化 很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的. 方程与函数是中学数学的重点内容,占了相当多的份量,其中某些内容既是重点又是难点.例如,列方程(组)解应用题,函数的定义和性质,反函数的概念,平面解几里曲线的方程,方程的曲线的概念等等.方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的方法论意义.在中学数学里,对各类代数方程和初等超越方程都作了较为系统的研究.对一个较为复杂的问题,常常先通过分析等量关系,列出一个或几个方程或函数关系式,再解方程(组)或研究这函数的性质,就能很好地解决问题.函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维. 二.函数思想在解题中的应用分析 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的

函数与方程思想的典型例题

函数与方程思想的典型例题 [例1]设函数)(x f 的定义域为R ,对任意实数βα,有 ,且21)3(=πf ,0)2(=πf . (1)求证:)()()(x f x f x f --==-π; (2)若20π <≤x 时,0)(>x f ,求证:)(x f 在],0[π上单调递减; (3)求)(x f 的最小周期并*证明. [解析](1)),0()3(2)3()3(f f f f πππ=+ 且2 1)3(=πf ,1)0(=∴f . 又)()0(2)()(x f f x f x f =-+,)()(x f x f -=∴. )2()2(2)()(πππ-=-+x f f x f x f ,且0)2(=π f ,)()()(x f x f x f --=-=∴π. (2))()(x f x f =- 且20π<≤x 时,0)(>x f ,∴当2 2ππ<<-x 时,0)(>x f . 设π≤<≤210x x , 则)()()()(2121x f x f x f x f -+=-π)2()2( 22121ππ-+-+=x x f x x f . 222,2202121πππππ<-+<-<+-≤x x x x ,0)2 (,0)2(2121>-+>-+∴ππx x f x x f . )()(21x f x f >∴,即)(x f 在],0[π上单调递减. (3)由(1))()(x f x f --=-π得)()(x f x f +-=π,)2()(x f x f +-=+ππ, )()2(x f x f =+∴π,说明π2是原函数的一个周期. 假设0T 也是原函数的一个周期,且)2,0(0π∈T ,则由)()(0x f x T f =+得)()0(0T f f =. 但若],0(0π∈T 时,因原函数是单调递减函数,所以)()0(0T f f >,两者矛盾; 若)2,(0ππ∈T 时,),0(20ππ∈-T ,从而)()()2()0(000T f T f T f f =-=->π,两

高考数学重点难点3函数与方程思想大全

重点难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. ●重点难点磁场 1.(★★★★★)关于x的不等式2?32x–3x+a2–a–3>0,当0≤x≤1时恒成立,则实数a的取值范围为. 2.(★★★★★)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知函数f(x)=ax2+(b+1)x+(b–1)(a≠0) (1)若a=1,b=–2时,求f(x)的不动点; (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的取值范围; (3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B关于直线y=kx+ 对称,求b的最小值. ●案例探究 [例1]已知函数f(x)=logm (1)若f(x)的定义域为[α,β],(β>α>0),判断f(x)在定义域上的增减性,并加以说明; (2)当0<m<1时,使f(x)的值域为[logm[m(β–1)],logm[m(α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由. 命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目. 知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根. 技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题. 解:(1)x<–3或x>3. ∵f(x)定义域为[α,β],∴α>3 设β≥x1>x2≥α,有 当0<m<1时,f(x)为减函数,当m>1时,f(x)为增函数. (2)若f(x)在[α,β]上的值域为[logmm(β–1),logmm(α–1)] ∵0<m<1, f(x)为减函数. ∴ 即 即α,β为方程mx2+(2m–1)x–3(m–1)=0的大于3的两个根 ∴∴0<m< 故当0<m<时,满足题意条件的m存在. [例2]已知函数f(x)=x2–(m+1)x+m(m∈R) (1)若tanA,tanB是方程f(x)+4=0的两个实根,A、B是锐角三角形ABC的两个内角.求证:m≥5; (2)对任意实数α,恒有f(2+cosα)≤0,证明m≥3; (3)在(2)的条件下,若函数f(sinα)的最大值是8,求m. 命题意图:本题考查函数、方程与三角函数的相互应用;不等式法求参数的范围.属

函数与方程思想简单应用

数学思想方法的简单应用(1) 一、函数与方程思想 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:y=f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 1.证明:若 则为整数. 解析:若x+y+z+t=0,则由题设条件可得 ,于是此时(1)式的值等于-4. 若x+y+z+t≠0,则 由此可得x=y=z=t.于是(1)式的值等于4. 2.已知:函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=. (1)求a、b的值及函数f(x)的解析式; (2)若不等式f(2x)﹣k?2x≥0在x∈[﹣1,1]时恒成立,求实数k的取值范围;

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

高考数学二轮专题复习-函数与方程思想

第1讲函数与方程思想 1.函数与方程思想的含义 (1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系. 2.和函数与方程思想密切关联的知识点 (1)函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式. (2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要. (3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解. (4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论. (5)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.

热点一 函数与方程思想在不等式中的应用 例1 (1)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________. (2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是__________. 答案 (1)4 (2)(-∞,-3)∪(0,3) 解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为 a ≥3x 2-1x 3. 设g (x )=3x 2-1 x 3,则g ′(x )=3(1-2x )x 4 ,所以g (x )在区间????0,12上单调递增,在区间????12,1上单调递减, 因此g (x )max =g ???? 12=4,从而a ≥4; 当x <0即x ∈[-1,0)时, f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3, 设g (x )=3x 2-1 x 3,且g (x )在区间[-1,0)上单调递增, 因此g (x )min =g (-1)=4,从而a ≤4,综上a =4. (2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数. 又当x <0时,F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, 所以x <0时,F (x )为增函数. 因为奇函数在对称区间上的单调性相同, 所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3). 所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3). 思维升华 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解. 已知函数f (x )=1 2 x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范

函数与方程思想总结(很好很全面)

函数与方程思想 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系; 3.函数方程思想的几种重要形式 (1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。 (2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式; (3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要; (4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题; (5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论; (6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。 【例1】. 关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题: ①存在实数k,使得方程恰有2个不同的实根; ②存在实数k,使得方程恰有4个不同的实根; ③存在实数k,使得方程恰有5个不同的实根; ④存在实数k,使得方程恰有8个不同的实根. 其中真命题是_____________ 解答:根据题意可令|x2-1|=t(t≥0),则方程化为t2-t+k=0,(*) 作出函数t=|x2-1|的图象,结合函数的图象可知①当t=0或t>1时,原方程有两上不

专题7:函数与方程思想(理)

专题七:函数与方程思想 【思想方法诠释】 函数与方程都是中学数学中最为重要的内容.而函数与方程思想更是中学数学的一种基本思想,几乎渗透到中学数学的各个领域,在解题中有着广泛的应用,是历年来高考考查的重点. 1.函数的思想 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等. 2.方程的思想 方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系. 3.函数思想与方程思想的联系 函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f (x)=0,就是求函数y= f (x)的零点,解不等式f (x)>0(或f (x)<0),就是求函数y= f (x)的正负区间,再如方程f (x)=g(x)的交点问题,也可以转化为函数y= f (x)-g(x)与x轴交点问题,方程f (x)= a有解,当且仅当a属于函数f (x)的值域,函数与方程的这种相互转化关系十分重要. 4.函数与方程思想解决的相关问题 (1)函数思想在解题中的应用主要表现在两个方面: ①借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; ②在问题研究中通过建立函数关系式或构造中间函数;把研究的问题化为讨论函数的有关性质,达到化难为易,化繁为简的目的. (2)方程思想在解题中的应用主要表现在四个方面: ①解方程或解不等式; ②带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识应用; ③需要转化为方程的讨论,如曲线的位置关系; ④构造方程或不等式求解问题.

2021新高考数学二轮总复习专题突破练2函数与方程思想数形结合思想含解析

专题突破练2 函数与方程思想、数形结合思想 一、单项选择题 1. (2020河南开封三模,理3)如图,在平行四边形OABC 中,顶点O ,A ,C 在复平面内分别表示复数0,3+2i,-2+4i,则点B 在复平面内对应的复数为( ) A.1+6i B.5-2i C.1+5i D.-5+6i 2.(2020山东聊城二模,2)在复数范围内,实系数一元二次方程一定有根,已知方程x 2+ax+b=0(a ∈R ,b ∈R )的一个根为1+i(i 为虚数单位),则a 1+i =( ) A.1-i B.-1+i C.2i D.2+i 3.(2020河北武邑中学三模,5)已知f (x )是定义在区间[2b ,1-b ]上的偶函数,且在区间[2b ,0]上为增函数,f (x-1)≤f (2x )的解集为( ) A.[-1,2 3] B.[-1,1 3] C.[-1,1] D.[1 3,1] 4.(2020广东江门4月模拟,理6)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为8 5.5尺,则小满日影长为( ) A.1.5尺 B.2.5尺 C.3.5尺 D.4.5尺 5.(2020安徽合肥二模,文5)在平行四边形ABCD 中,若DE ????? =EC ????? ,AE 交BD 于点F ,则AF ????? =( ) A.23AB ????? +13AD ????? B.23 AB ????? ?13AD ????? C.1 3 AB ????? ?2 3 AD ????? D.13 AB ????? +2 3 AD ????? 6.(2020安徽合肥二模,文7)若函数F (x )=f (x )-2x 4 是奇函数,G (x )=f (x )+(12) x 为偶函数,则 f (-1)= ( ) A.-5 2 B.-5 4 C.5 4 D.5 2 7.(2020河北衡水中学月考,文12)已知关于x 的方程[f (x )]2-kf (x )+1=0恰有四个不同的实数根,则当函数f (x )=x 2e x 时,实数k 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(4 e 2+ e 24 ,+∞) C.(8 e 2,2) D.(2,4 e 2+e 2 4)

高中数学必修一 函数与方程的思想方法

函数与方程的思想方法 函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 函数的思想,是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,再利用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想的精髓就是构造函数。 方程的思想,是分析数学问题中变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。 方程的思想与函数的思想密切相关,函数与方程的思想方法,几乎渗透到中学数学的各个 领域,在解题中有着广泛的运用。对于函数 ) (x f y=,当0 = y时,就转化为方程0 ) (= x f, 也可以把函数式 ) (x f y=看做二元方程0 ) (= -x f y,函数与方程这种相互转化的关系十 分重要。 函数与表达式也可以相互转化,对于函数 ) (x f y=,当0 > y时,就转化为不等式 ) (> x f,借助与函数的图像与性质可以解决不等式的有关问题,而研究函数的性质,也离不开解不等式。 数列的通项或前n项和时自变量为自然数的函数,用函数观点去处理数列问题也是十分重要。 函数 ) ( ) ( ) (* N n bx a x f n∈ + =与二项式定理密切相关,利用这个函数,用赋值法和比 较系数法可以解决很多有关二项式定理的问题。 解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论。 立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决。建立空间向量后,立体几何与函数的关系就更加密切。 函数思想在解题中的应用主要表现在两个方面:一是借助初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关问题,达到化难为易、化繁为简的目的。 高考中的方程和不等式问题包括方程、不等式的求解及方程、不等式观点的应用,可以分成逐渐提高的四个层次。 第一层次:解方程或不等式,主要是指解代数(一次、二次等)方程或不等式,指数、对数方程或不等式,三角方程或不等式,复数方程等; 第二层次:对带参数的方程或不等式的讨论,常涉及二次方程的判别式、韦达定理、区间根、区间上恒成立的不等式等问题; 第三层次:转化为方程的讨论,如曲线的位置关系(包括点与曲线及直线与曲线的位置关系)、函数的性质、集合的关系等; 第四层次:构造方程或不等式求解问题。 其中第三、四层次(特别是第四层次)已经进入到方程、不等式观点应用的境界,即把方程、不等式作为基本数学工具去解决各个学科中的问题。 纵观中学数学,可谓是以函数为中心,以函数为纲,“纲举目张”,抓住了函数这个“纲”

专题01 函数与方程思想(解析版)

专题01 函数与方程思想 思想方法诠释 1.函数的思想:是通过建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题得到解决的思想. 2.方程的思想:是建立方程或方程组或者构造方程或方程组,通过解方程或方程组或者运用方程的性质去分析问题、转化问题,从而使问题获得解决的思想. 【典例讲解】 要点一 函数与方程思想在函数、方程、不等式中的应用 [解析] (1)当y =a 时,2(x +1)=a ,所以x =a 2 -1. 设方程x +ln x =a 的根为t ,则t +ln t =a ,则|AB |=????t -a 2+1=????t -t +ln t 2+1=????t 2-ln t 2 +1.设g (t )=t 2-ln t 2+1(t >0),则g ′(t )=12-12t =t -12t ,令g ′(t )=0,得t =1,当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为3 2,故选D. (2)因为函数f (x )=log 3(9x +t 2)是定义域R 上的增函数,且为“优美函数”,则f (x )=x 至少有两个不等 实根,由log 3(9x +t 2)=x ,得9x +t 2=3x ,所以(3x )2-3x +t 2=0有两个不等实根.令λ=3x (λ>0),则λ2-λ+t 2 =0有两个不等正实根,所以????? Δ=1-4t 2>0,t 2>0, 解得-12

高三数学教案 函数与方程思想

第十一专题 函数与方程思想 考情动态分析: 本专题的内容主要是函数思想、方程思想及其应用.函数的思想方法是用联系变化的观点,将给定的数学问题转化为函数关系,通过研究函数的性质,得出所需的结论.高考中有关函数思想的试题主要涉及四个方面:(1)具体的原始意义上的函数问题;(2)方程、不等式与函数的综合问题;(3)数列这一特殊的函数;④利用辅助函数解题. 方程的思想方法,就是设出未知数.根据题中各量间的关系,列出等式,沟通未知与已知的关系,从而使问题得以解决.高考中有关方程的试题单独命题较少,主要有以下几个方面:(1)方程、函数、不等式的综合题;(2)求曲线的方程;(3)数列中方程思想的应用. 对函数与方程思想的考查,集中体现在应用题、探索性问题,主要考查学生的阅读能力、应用能力、理解能力、表达能力及信息加工处理能力,命题集中体现在在知识交汇点处命制综合性问题. 第一课时 函数思想与方程思想 一、考点核心整合 函数思想就是要用运动变化的观点,分析和研究具体问题中的数量关系,通过函数的形式把这数量关系表示出来,并加以研究,从而使问题获得解决.函数思想的实质是剔除问题的非数学特征,用联系的观点提出数学抽象,抽象其数学特征,建立函数关系. 方程的思想就是如果变量间的关系是通过解析式表示出来的,则可以把解析式看作一个方程,通过对方程的讨论使问题得到解决. 函数思想、方程思想体现了一种解决数学问题的理念——建“模”意识.所谓“模”就是一个问题的载体,是联系已知、未知的桥梁,建“模”后的第二个步骤是解析“模”,从而真正将实际问题化为数学问题,数学因此也成为探索大自然奥秘的工具. 二、典例精讲: 例1 已知函数)(x f 的定义域为}3,2,1{=A ,值域为}2,1{--=B ,则这样的函数共有 ________个. 例2 设平面内两向量与互相垂直,且1||,2||==,又k 与t 是两个不同时为0的实数. (Ⅰ)若t )3(2 -+=与b t a k y +-=垂直,求k 关于t 的函数关系式)(t f k =; (Ⅱ)试确定)(t f k =的单调区间. 例3 已知函数)(log )1(log 1 1 log )(222 x p x x x x f -+-+-+=. (Ⅰ)求)(x f 的定义域; (Ⅱ)求)(x f 的值域. 例4 二次函数r qx px x f ++=2 )(中实数、r 、q p 满足 012=++++m r m q m p ,其中0>m ,求证:(Ⅰ)0)1 ( <+m m pf ; (Ⅱ)方程0)(=x f 在)1,0(内恒有解. 三、提高训练: (一)选择题:

函数方程思想

难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,数学中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. ●难点磁场 1.(★★★★★)关于x 的不等式2·32x –3x +a 2–a –3>0,当0≤x ≤1时恒成立,则实数a 的取值范围为 . 2.(★★★★★)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知函数f (x )=ax 2+(b +1)x +(b –1)(a ≠0) (1)若a =1,b =–2时,求f (x )的不动点; (2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围; (3)在(2)的条件下,若y =f (x )图象上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 关于直线y =kx + 1 212 +a 对称,求b 的最小值. ●案例探究 [例1]已知函数f (x )=log m 3 3 +-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明; (2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由. 命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目. 知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根. 技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题. 解:(1) ?>+-03 3 x x x <–3或x >3. ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有 0) 3)(3() (6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数. (2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数. ∴??? ???? -=+-=-=+-=) 1(log 33log )()1(log 33log )(ααααββββm f m f m m m m

函数和方程的思想方法

函数与方程的思想方法 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。 笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f 1(x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;

第1讲 函数与方程思想

高考命题中,以知识为载体,以能力立意、思想方法为灵魂,以核心素养为统领,兼顾试题的基础性、综合性、应用性和创新性,展现数学的科学价值和人文价值.高考试题一是着眼于知识点新颖巧妙的组合,二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学的内容,可用文字和符号来记录和描述,那么数学思想方法则是数学的意识,重在领会、运用,属于思维的范畴,用于对数学问题的认识、处理和解决.高考中常用到的数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想等. 第1讲 函数与方程思想 思想概述 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决. 方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析问题、转化问题,使问题得以解决. 方法一 运用函数相关概念的本质解题 在理解函数的定义域、值域、性质等本质的基础上,主动、准确地运用它们解答问题.常见问题有:求函数的定义域、解析式、最值,研究函数的性质. 例1 若函数f (x )=????? -x +3a ,x <0,a x ,x ≥0(a >0且a ≠1)是R 上的减函数,则实数a 的取值范围为( ) A .(0,1) B.????13,1 C.????13,1 D.??? ?0,13 思路分析 先求出f (x )=a x 是减函数时a 的范围→满足-0+3a ≥a 0时a 的范围→取交集 答案 B

解析 ∵函数f (x )是R 上的减函数, ∴? ???? 02b B .a <2b C .a >b 2 D .a

相关文档
最新文档