解三角形专题

解三角形专题
解三角形专题

解三角形专题

一、基础知识: 1、正弦定理:

2sin sin sin a b c

R A B C

===,其中R 为ABC 外接圆的半径 正弦定理的主要作用是方程和分式中的边角互化。其原则为关于边,或是角的正弦值是否具备齐次的特征。如果齐次则可直接进行边化角或是角化边,否则不可行 例如:(1)2

2

2

2

2

2

sin sin sin sin sin A B A B C a b ab c +-=?+-= (2)cos cos sin cos sin cos sin b C c B a B C C B A +=?+=(恒等式) (3)

22sin sin sin bc B C

a A

= 2、余弦定理:2

2

2

2cos a b c bc A =+-

变式:(1)222

cos 2b c a A bc

+-=

① 此公式通过边的大小(角两边与对边)可以判断出A 是钝角还是锐角 当222

b c a +>时,cos 0A >,即A 为锐角;

当222

b c a +=(勾股定理)时,cos 0A =,即A 为直角; 当222

b c a +<时,cos 0A <,即A 为钝角

② 观察到分式为齐二次分式,所以已知,,a b c 的值或者::a b c 均可求出cos A

(2)()()2

2

21cos a b c bc A =+-+ 此公式在已知b c +和bc 时不需要计算出,b c 的值,进

行整体代入即可

3、三角形面积公式:

(1)1

2S a h =

? (a 为三角形的底,h 为对应的高) (2)111

sin sin sin 222S ab C bc A ac B ===

(3)()1

2

S a b c r =++? (r 为三角形内切圆半径,此公式也可用于求内切圆半径)

(4)海伦公式:()1

2

S p a b c ==++

(5)向量方法:S =

(其中,a b

为边,a b 所构成的向量,方向任意)

证明:()2222222111

sin sin 1cos 244

S ab C S a b C a b C =

?==-

S ∴=cos a b ab C ?=

S =

坐标表示:()()1122,,,a x y b x y = ,则12211

2

S x y x y =-

4、三角形内角和A B C π++=(两角可表示另一角)。 ()sin()sin sin A B C C π+=-= ()cos()cos cos A B C C π+=-=-

5、确定三角形要素的条件: (1)唯一确定的三角形: ① 已知三边(SSS ):可利用余弦定理求出剩余的三个角 ② 已知两边及夹角(SAS ):可利用余弦定理求出第三边,进而用余弦定理(或正弦定理)求出剩余两角

③ 两角及一边(AAS 或ASA ):利用两角先求出另一个角,然后利用正弦定理确定其它两条边 (2)不唯一确定的三角形 ① 已知三个角(AAA ):由相似三角形可知,三个角对应相等的三角形有无数多个。由正弦定理可得:已知三个角只能求出三边的比例:::sin :sin :sin a b c A B C = ② 已知两边及一边的对角(SSA ):比如已知,,a b A ,所确定的三角形有可能唯一,也有可能是两个。其原因在于当使用正弦定理求B 时,

sin sin sin sin a b b A

B A B a

=?=,而0,,22B πππ????

∈ ? ?????

时,一个sin B 可能对应两个角(1个锐角,1个钝角)

,所以三角形可能不唯一。(判定是否唯一可利用三角形大角对大边的特点,具体可参考例1) 6、解三角形的常用方法:

(1)直接法:观察题目中所给的三角形要素,使用正余弦定理求解

(2)间接法:可以根据所求变量的个数,利用正余弦定理,面积公式等建立方程,再进行求解

7、三角形的中线定理与角平分线定理

(1)三角形中线定理:如图,设AD 为ABC 的一条中线,

则()

2222

2AB AC AD BD +=+ (知三求一)

证明:在ABD 中

2222cos AB AD BD AD BD ADB =+-? ① 2222cos AC AD DC AD DC ADC =+-? ②

D 为BC 中点 BD CD ∴=

ADB ADC π∠+∠= cos cos ADB ADC ∴=- ∴ ①+②可得:

()22222AB AC AD BD +=+

B

(2)角平分线定理:如图,设AD 为ABC 中BAC ∠的

角平分线,则AB BD

AC CD

= 证明:过D 作DE ∥AC 交AB 于E BD BE DC AE

∴= EDA DAC ∠=∠ AD 为BAC ∠的角平分线

EAD DAC ∴∠=∠ EDA EAD ∴∠=∠ EAD ∴ 为等腰三角形 EA ED ∴= BD BE BE DC AE ED ∴== 而由BED BAC 可得:BE AB ED AC = AB BD AC CD

∴= 二、典型例题:

例1:(1)ABC 的内角,,A B C 所对的边分别为,,a b c

,若60c b B ==

,则

C =_____

(2))ABC 的内角,,A B C 所对的边分别为,,a b c ,

若30

c ===

,则B =_____

思路:(1)由已知,,B b c 求C 可联想到使用正弦定理:sin sin sin sin b c c B

C B C b

=?= 代入可解得:1sin 2

C =。由c b <可得:60C B <= ,所以30C =

答案:30C =

(2)由已知,,C b c 求B 可联想到使用正弦定理:

sin sin sin sin b c b C

B B

C c

=?=

代入可解得:sin B =

60B = 或120B = ,由c b <可得:C B <,所以60B =

和120B = 均满足条件

答案:60B =

或120B =

小炼有话说:对比(1)(2)可发现对于两边及一边的对角,满足条件的三角形可能唯一确定,也有可能两种情况,在判断时可根据“大边对大角”的原则,利用边的大小关系判断出角之间的大小关系,判定出所求角是否可能存在钝角的情况。进而确定是一个解还是两个解。 例2:在ABC 中,2,60BC B ==

,若ABC

,则AC 边长为_________ 思路:通过条件可想到利用面积S 与,BC B ∠求出另一条边AB ,再利用余弦定理求出AC 即可

B

解:11sin 22222

ABC S AB BC B AB =

?????=

1AB ∴=

2221

2cos 142232

AC AB BC AB BC B ∴=+-?=+-??

=

AC ∴=

例3:(2012课标全国)已知,,a b c 分别为ABC 三个内角,,A B C 的对边,且有

cos sin 0a C C b c --=

(1)求A

(2)若2a =,且ABC ,b c

(1)思路:从等式cos sin 0a C C b c +--=入手,观察每一项关于,,a b c 齐次,考虑利用正弦定理边化角:

cos sin 0sin cos sin sin sin 0a C C b c A C A C B C --=?+--=,所涉及式

子与,A C 关联较大,从而考虑换掉()sin sin B A C =+,展开化简后即可求出A

解:cos sin 0a C C b c --=

sin cos sin sin sin 0A C A C B C ?--=

()

sin cos sin sin sin 0A C A C A C C ?-+-=

sin cos sin sin cos sin cos sin 0A C A C A C C A C ?---=

1cos 12sin 1sin 662

A A A A ππ??

?

?-=?-

=?-= ? ??

??? 6

6

A π

π

∴-=

或56

6

A π

π

-

=

(舍) 3

A π

∴=

(2)思路:由(1)可得3

A π

=

,再由ABC S 2a =可想到利用面积与关于A 的余弦

定理可列出,b c 的两个方程,解出,b c 即可

A

解:1

sin 42

ABC S bc A bc =

== 222222cos 4a b c bc A b c bc =+-?=+-

22224844

b c bc b c bc bc ??+-=+=∴???

==?? 可解得2

2b c =??=? 小炼有话说:通过第(1)问可以看出,在遇到关于边角的方程时,可观察边与角正弦中是否具备齐次的特点,以便于进行边角互化。另一方面当角,,A B C 同时出现在方程中时,通常要从所给项中联想到相关两角和差的正余弦公式,然后选择要消去的角

例4:如图,在ABC 中,D 是边AC

上的点,且,2,2AB AD AB BC BD ==,则

sin C 的值为___________

思路:求sin C 的值考虑把C 放入到三角形中,可选的三角形有ABC 和BDC ,在BDC 中,已知条件有两边,BD BC ,但是缺少一个

角(或者边),看能否通过其它三角形求出所需要素,在ABD 中,三边比例已知,进而可求出BDA ∠,再利用补角关系求出BDC ∠,从而BDC 中已知两边一角,可解出C

解:由2AB =可设2BD k =

则AB =

,4AD BC k ∴==

∴ 在ADB

中,

(

)2

2

2

222

2cos 23

k AD BD AB

ADB AD BD

+-+-=

=

=

?

cos cos 3BDC ADB ∴=-=-

sin

3

BDC ∴= 在BDC 中,由正弦定理可得:

sin sin sin sin BD BC BD BDC C C BDC BC ?=?== 小炼有话说:(1)在图形中求边或角,要把边和角放入到三角形当中求解,在选择三角形时尽量选择要素多的,并考虑如何将所缺要素利用其它条件求出。

(2)本题中给出了关于边的比例,通常对于比例式可考虑引入一个字母(例如本题中的k ),这样可以将比例转化为边的具体数值,便于计算

例5:已知ABC 中,,,a b c 分别是角,,A B C 所对边的边长,若ABC 的面积为S ,且

()2

22S a b c =+-,则tan C 等于___________

思路:由已知()2

2

2S a b c =+-可联想到余弦定理关于cos C 的内容,而1

sin 2

S ab C =

,所以可以得到一个关于sin ,cos C C 的式子,进而求出tan C 解:()2

2

2221

22sin 22

S a b c ab C a b c ab =+-??

=+-+ 而222

2cos c a b ab C =+- 2

2

2

2cos a b c ab C ∴+-=代入可得:

sin 22cos sin 22cos ab C ab ab C C C =+?=+

22

4sin sin 22cos 5

3sin cos 1cos 5C C C C C C ?

=?=+??∴???+=??=-

?? 4

tan 3

C ∴=-

答案:4tan 3

C =-

例6:在ABC ? 中,内角,,A B C 所对的边分别为,,a b c ,已知ABC ?

的面积为,

1

2,cos ,4

b c A -==- 则a 的值为 .

思路:已知cos A 求a 可以联想到余弦定理,但要解出,b c 的值,所以寻找解出,b c

的条件,1sin 2ABC S bc A ==

,而sin A ==24bc =,再由2

b c -=可得 ()2

222

2cos 22cos 64a b c bc A b c bc bc A =+-=-+-=,所以8a =

答案:8

例7:设ABC 的内角,,A B C 所对边的长分别为,,a b c

,若sin cos 0b A B =,且

2b ac =,则

a c

b

+的值为( ) A.

B.

C. 2

D. 4

思路:由sin cos 0b A B =

可得:sin sin cos 0B A A B =

,从而tan B =解得3

B π

=

,从2b ac =可联想到余弦定理:22222

2cos b a c ac B a c ac =+-=+-,所以

有()2

220a c ac ac a c +-=?-=,从而a c =再由2

b a

c =可得a b c ==,所以

a c

b

+的值为2 答案:C

小炼有话说:本题的难点在于公式的选择,2

b a

c =以及所求

a c

b

+也会让我们想到正弦定理。但是通过尝试可发现利用角进行计算较为复杂。所以在解三角形的题目中,条件的特征决定选择哪种公式入手;如果所给是关于边,角正弦的其次式,可以考虑正弦定理。如果条件中含有角的余弦,或者是边的平方项,那么可考虑尝试余弦定理。

例8:设ABC 的内角,,A B C 所对边的长分别为,,a b c ,且2

2

,6

b a b

c A π

=+=,则C =( )

A.

6π B. 4π C. 34π D. 4

π或34π

思路:由2

2

a b bc =-的结构可以联想到余弦定理:2

2

2

2cos a b c bc A =+-,可以此为突破口,即2

2

2

2cos b bc b c bc A -=+-

,代入解得:)

1c b ∴=

,进而求出a =

,得到,,a b c 比例代入余弦定理可计算出C 解:由2

2

b a b

c =+可得:2

2

a b bc =-,

2222cos a b c bc A =+-

2222cos b bc b c bc A ∴-=+-

)21c bc =

)

1c b ∴=

代入到22b a bc =+

可得:)

2

2

21a b b =-

1a ∴==

=

::1a b c ∴=

)

)

2

2

222

111

cos 2a b c C ab

+-

+-∴==

=

4

C π

∴=

例9:已知ABC 的三边长为三个连续的自然数,且最大内角是最小内角的2倍,则最小内角的余弦值是( )

A.

34 B. 56 C. 710 D. 23

思路:不妨考虑a b c <<,将三个边设为1,,1a x b x c x =-==+,则2C A =,想到正弦定理sin sin 22cos sin sin c C A

A a A A

=

==,再将cos A 利用余弦定理用边表示,列方程解出x ,从而求

出cos A

解:设a b c <<,则1,,1a x b x c x =-==+

2C A = sin sin 22cos sin sin c C A A a A A

=== 22222222c b c a b c a a bc bc

+-+-∴=?=代入1,,1a x b x c x =-==+可得: ()()()

2

2

2

11111x x x x x x x ++--+=-+ ,解得:5x = 4,5,6a b c ∴===

2223cos 24

b c a A bc +-∴==

答案:A

小炼有话说:本题的特色在于如何利用“最大内角是最小内角2倍”这个条件,可联想到正余弦的二倍角公式。本题采用正弦二倍角公式,在加上余弦定理可之间与题目中边的条件找到联系。如果采用余弦二倍角公式,则有2

cos 2cos 1C A =-,即便使用余弦定理也会导致方程次数过高,不利于求解。

例10:在ABC 中,D 为边BC 上一点,1

,120,22

BD CD ADB AD =∠== ,若ADC 的

面积为3BAC ∠=_________

思路:要求出BAC ∠,可在ABC

中求解,通过观察条件

120(120),2,3ADC ADB ADC AD S ∠=∠=== ,可

从ADC 可解,解出,AD AC ,进而求出BD ,再在ABD 中解出AB ,从而ABC 三边齐备,利用余弦定理可求出BAC ∠

解:1

sin 32

ADC S AD DC ADC =

??=-

(

)

232

12sin

3

DC π

-∴=

=?

1

12

BD DC ∴=

=

)

)

2

2

2

2

2

2cos 22

1222

1cos

3

AC AD DC AD DC ADC π

??∴=+-??=+-???

?

(

64=-

)

1AC ∴=

B

同理222

2cos AB AD DB AD DB ADB ∴=+-??

)

)

2

2

221221cos

3

π

=+

-??

6=

AB ∴=

2

2

222661311

cos 22AB AC BC BAC AB AC ??

+-+-∴===?

60BAC ∴∠=

答案:60BAC ∠=

小炼有话说:(1)本题与例4想法类似,都是把所求要素放入到三角形中,同时要通过条件

观察哪个三角形条件比较齐备,可作为入手点解出其他要素

2)本题还可以利用辅助线简化运算,作AM BC ⊥于M ,进而利用在Rt ADM

60,2ADC AD ∠==

得1AM DM ==,再用3

ADC S = 解出)

2

1CD =-

1

BD =,则在

BC

3BM BD DM CM CD DM =+==-=

所以45,t a n 3CM

BAM MAC

AM

∠===-

可得:

15MAC ∠= ,所以60BAC ∠=

三、近年好题精选

1、设ABC 的内角,,A B C 所对边的长分别为,,a b c ,且1,,24

ABC

a B S π

=== ,则sin A =

( ) A.

10 B.

50

C. D. 110

2、设ABC 的内角,,A B C 所对边的长分别为,,a b c ,且

3,1,2b c A B ===,则a 的值为( ) A.

B.

C.

D. 3、在ABC 中,D

为BC 边上一点,2,45DC BD AD ADC ==∠= ,

若AC =,

则BD =( )

A. 2+

B. 4

C.

2+ D.

3+B

4、(2015,北京)在ABC 中,4,5,6a b c ===,则

sin 2sin A

C

=_______ 5、(2015,广东)设ABC 的内角,,A B C 的对边分别为,,a b c ,

若1,26

a B C π

===,

则b =_______

6、(2015,福建)若锐角ABC

的面积为5,8AB AC ==,则BC 等于_______ 答案:7

7、(2015,天津)在ABC 中,内角,,A B C 的对边分别为,,a b c ,已知ABC

的面积为1

2,cos 4

b c A -==-,则a 的值为_________

8、(2014,天津)在ABC 中,内角,,A B C 的对边分别为,,a b c ,已知1

4

b c a -=

,2sin 3sin B C =,则cos A 的值为_______

9、(2014,山东)在ABC 中,已知tan AB AC A ?= ,当6

A π

=时,ABC 的面积为_____

10、(2014,辽宁)在ABC 中,内角,,A B C 的对边分别为,,a b c ,且a c >,已知

1

2,cos ,33

BA BC B b ?=== ,求:

(1),a c 的值 (2)()cos B C -的值

11、(2015,陕西)设ABC 的内角,,A B C 的对边分别为,,a b c

,向量()

m a =

与()cos ,sin n A B =

平行 (1)求A

(2

)若2a b ==,求ABC 的面积 12、(2015,新课标II )在ABC 中,D 是BC 上的点,AD 平分BAC ∠,ABD 的面积是ADC 面积的2倍

(1)求sin sin B

C

(2

)若1,2

AD DC ==

,求,BD AC 的长 13、(2015,安徽)在ABC

中,3,6,4

A A

B A

C π

===,点D 在BC 边上,AD BD =,求AD 的长

14、(2015,江苏)在ABC 中,已知2,3,3

AB AC A π

===

(1)求BC 的长 (2)求sin 2C 的值

B

习题答案: 1、答案:A

解析:1

sin 22

ABC S ac B c =

=?= 2222cos b a c ac B ∴=+-

代入可得:213221252

b =+-??= 5b ∴=

sin sin sin sin a b a A B A B b ∴

=?=?=

2、答案:D

解析:2A B = s i n

s i n 22s i n c o

A B B B ∴== 2cos a b B ∴= 222

c o s 2a c b B ac +-=

222219

2622a c b a a b a ac a +-+-∴=??=?

()2238a a ∴=-

22243

a a ∴=?=3、答案:C

解析:设BD x =,则2CD x =,由余弦定理可得:

222

2cos135AB AD BD AD BD =+-?

2

2

2

2cos 45AC AD CD AD CD =+-? ,代入可得:

2

2

22

22244AB x x

AC x x

?=++??=+-??

A C A

B = ∴22

1222244x x

x x

++=+-

解得:2x =4、答案:1

解析:

222sin2sin 2536164

2cos 221sin sin 22566

A A b c a a A C C bc c +-+-=?=??=??=?? 5、答案:1 解析:由1sin 2

B =及6

C π=可得:6B π=,从而23A π=,由正弦定理可得:sin sin a b

A B

=,

解得1b = 6、答案:7

C

解析:由

1

sin

2

ABC

S AB AC A

=?

,可得:sin

2

A=

3

A

π

=

,再由余弦定理可计算

7

BC==

7、答案:8

解析:

1

cos sin

44

A A

=-?==

1

sin24

2

ABC

S bc A bc

∴==?=

∴由余弦定理可得:()()

2

2222cos21cos64

a b c bc A b c bc A

=+-=-+-=

8

a

∴=

8、答案:

1

4

-

解析:由2sin3sin

B C

=可得23

b c

=代入到

1

4

b c a

-=即可得到::4:3:2

a b c=,不妨设4,3,2

a k

b k

c k

===,则

222222

94161

cos

22324

b c a k k k

A

bc k k

+-+-

===-

??

9、答案:

1

6

解析:

sin

tan cos

cos

A

AB AC A bc A

A

?=?=

2

sin

cos

A

bc

A

∴=

2

2

2

11s i n11

s i n t a n

22c o s26

ABC

A

S bc A A

A

∴==?==

10、解析:由2

BA BC

?=

可得:cos2

ac B=

6

ac

∴=

由余弦定理可得:()()

2

221cos

b a

c ac B

=+-+即()2

9165

a c a c

=+-?+= 6

5

ac

a c

a c

=

?

?

∴+=

?

?>

?

解得:

3

2

a

c

=

?

?

=

?

(2)由

1

cos

3

B=

可得:sin

3

B==

由正弦定理可知:

sin

sin

sin sin9

b c c B

C

B C b

=?==

c b

<

C

∴为锐角

7

cos

9

C

∴==

()23

cos cos cos sin sin

27

B C B C B C

∴-=+=

11、解析:(1)m n

cos sin sin sin

A a

B A A B

=?=

sin tan

A A A

=?=

3

A

π

∴=

(2)由余弦定理可得:2222cos

a b c bc A

=+-即2

742

c c

=+-22303

c c c

∴--=?=

11

sin23

22

ABC

S bc A

∴==??=

12、解析:(1)

11

sin,sin

22

ABD ADC

S AB AD BAD S AC AD CAD

=?=?

2,

ABD ADC

S S BAD CAD

=∠=∠

2

,

ABD

ADC

S AB

S AC

∴==

sin1

sin2

B AC

C AB

∴==

(2)2

ABD

ADC

S BD

S DC

==

2

BD DC

∴==

在,

ABD ADC

中,由余弦定理可得:

222

222

2cos

2cos

AB AD BD AD BD ADB

AC AD CD AD CD ADC

?=+-?

?

?

=+-?

??

22222

2326

AB AC AD BD DC

∴+=++=

再由2

AB AC

=可解得:1

AC=

13、解析:2222cos

BC AB AC AB AC A

=+-??

36182690

2

?

=+-??-=

??

BC

∴=

由正弦定理可得:

sin sin sin sin 10

AC BC AC A B B A BC =?==

cos 10

B ∴=

由AD BD =可知ABD 为等腰三角形 2ADB B π∴∠=-∠ 由正弦定理可得:

()

sin sin sin 2AD AB AB

B BDA B π==

-

sin sin sin 22sin cos 2cos AB AB AB

AD B B B B B B

∴=

?=?==

14、解析:(1)由余弦定理可得:2

2

2

2cos BC AB AC AB AC A =+-?? 49223cos

73

π

=+-???=

BC ∴=

(2)由余弦定理可得:222cos

27AC BC AB C AC BC +-===

?

sin C ∴==

sin22sin cos 2777

C C C ∴==?

?=

解答题专题复习---解三角形

解答题专题复习---解三角形 一、考情分析 解三角形是每年高考的热点,大题主要考查以一个三角形或四边形为背景的利用正弦、余弦定理及三角形面积公式求解三角形的边长、角以及面积问题,或考查将两个定理与三角恒等变换相结合的解三角形问题。试题难度多为中等。 二、题型归类 类型一:三角形基本量的求解问题 【典例分析】(2017北京理数)在△ABC 中,A =60°,c = 3 7 a . (1)求sin C 的值;(2)若a =7,求△ABC 的面积.

【归类巩固】(2018北京理数)在△ABC中,a=7,b=8, 1 cos 7 B=-. (1)求∠A;(2)求AC边上的高. 类型二:已知一边一对角求范围问题 【典例分析】(2018·广州模拟)△ABC的内角A,B,C的对边分别为a,b,c,且满足a=2, a cos B=(2c-b)cos A. (1)求角A的大小;(2)求△ABC的周长的最大值. 【归类巩固】△ABC的内角,, A B C的对边分别为,, a b c,已知cos sin a b C c B =+. (1)求B;(2)若2 b=,求△ABC面积的最大值.

类型三:以平面几何为载体的解三角形问题 此类问题的本质还是考查利用正、余弦定理求解三角形的边长或角度问题. 【典例分析】如图,在△ABC 中,3 B π ∠=,8AB =,点D 在BC 边上,且2CD =,1 cos 7 ADC ∠= . (1)求sin BAD ∠; (2)求BD ,AC 的长.. 【归类巩固】如图,在平面四边形ABCD 中,1AD =,2CD =,AC =(1)求cos CAD ∠的值; (2)若cos sin BAD CBA ∠=∠=,求BC 的值. 三、专题总结

(完整版)解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高中数学解题思维提升专题05三角函数与解三角形大题部分训练手册

专题05 三角函数与解三角形大题部分 【训练目标】 1、掌握三角函数的定义,角的推广及三角函数的符号判断; 2、熟记同角三角函数的基本关系,诱导公式,两角和差公式,二倍角公式,降幂公式,辅助角公式,并能熟练的进行恒等变形; 3、掌握正弦函数和余弦函数的图像与性质,并能正确的迁移到正弦型函数和余弦型函数; 4、掌握三角函数的图像变换的规律,并能根据图像求函数解析式; 5、熟记正弦定理,余弦定理及三角形的面积公式; 6、能熟练,灵活的使用正弦定理与余弦定理来解三角形。 【温馨小提示】 此类问题在高考中属于必考题,难度中等,要想拿下,只能有一条路,多做多总结,熟能生巧。 【名校试题荟萃】 1、(浙江省诸暨中学2019届高三期中考试题文) 已知函数. (1).求 )(x f 的最小正周期和单调递增区间; (2).当 时,求函数)(x f 的最小值和最大值 【答案】(1)π, (2) 【解析】 (1) ,π=T , 单调递增区间为; (2) ∴当 时, ,∴ . 当时, ,∴ . 2、(河北省衡水中学2019届高三上学期三调考试数学文)试卷)已知 中,角 所对的边分别是 ,

且,其中是的面积,. (1)求的值; (2)若,求的值. 【答案】 (1);(2). (2),所以,得①, 由(1)得,所以. 在中,由正弦定理,得,即②, 联立①②,解得,,则,所以. 3、(湖北省武汉市部分市级示范高中2019届高三十月联考文科数学试题)已知函数f(x)=sin(ωx+)- b(ω>0,0<<π的图象的两相邻对称轴之间的距离,若将f(x)的图象先向右平移个单位,再向上平移个单位,所得图象对应的函数为奇函数. (1)求f(x)的解析式并写出单增区间; (2)当x∈,f(x)+m-2<0恒成立,求m取值范围. 【答案】 (1),单调递增区间为; (2).

解三角形专题复习-师

解 三 角 形 ◆知识点梳理 (一)正弦定理: R C c B b A a 2sin sin sin ===(其中R 表示三角形的外接圆半径) 适用情况:(1)已知两角和一边,求其他边或其他角; (2)已知两边和对角,求其他边或其他角。 变形:① 2sin a R A =,2sin b R B =,2sin c R C = ②sin 2a A R = ,sin 2b B R =,sin 2c C R = ③ sin sin sin a b c A B C ++++=2R ④::sin :sin :sin a b c A B C = (二)余弦定理:2 b =B a c c a cos 22 2 -+(求边),cosB=ac b c a 22 22-+(求角) 适用情况:(1)已知三边,求角;(2)已知两边和一角,求其他边或其他角。 (三)三角形的面积:①Λ=?= a h a S 21;②Λ==A bc S sin 2 1 ; ③C B A R S sin sin sin 22 =; ④R abc S 4=; ⑤))()((c p b p a p p S ---=;⑥pr S =(其中2 a b c p ++=,r 为内切圆半径) (四)三角形内切圆的半径:2S r a b c ? =++,特别地,2a b c r +-=斜直 (五)△ABC 射影定理:A c C a b cos cos ?+?=,… (六)三角边角关系: (1)在ABC ?中,A B C ++=π;sin()A B +=sin C ;cos()A B +=cos C - cos 2A B +=sin 2C ; 2 cos 2sin C B A =+ (2)边关系:a + b > c ,b + c > a ,c + a > b ,a -b < c ,b -c < a ,c -a > b ; (3)大边对大角:B A b a >?> ◆考点剖析 (一)考查正弦定理与余弦定理的混合使用 例1、在△ABC 中,已知A>B>C,且A=2C, 8,4=+=c a b ,求c a 、的长. 例1、解:由正弦定理,得 C c A a sin sin = ∵A=2C ∴C c C a sin 2sin = ∴C c a cos 2= 又8=+c a ∴ c c cocC 28-= ①

高考解三角形专题(一)及答案

解三角形专题 1.在ABC ?中,角,,A B C 的对边分别是,,a b c ,若1,3 a b B π ===,则A = ( ) A. 12π B. 6π C. 3π D. 2 π 2.在ABC ?中,角,,A B C 所对的边分别为,,a b c ,S 表示ABC ?的面积,若 () 2 2214 S b c a = +-,则A ∠=( ) A. 90? B. 60? C. 45? D. 30? 3.在ABC ?中,若sin 2sin cos A B C =,且 ()()3b c a b c a bc +-++=,则该三角形的形状是( ) A. 直角三角形 B. 钝角三角形 C. 等腰直角三角形 D. 等边三角形 4. 在 中,内角为钝角, , , ,则 ( ) A. B. C. D. 5.在中,若,,则的周长为( )C A . B . C. D . 6. 在锐角中,角、、所对的边分别为,且、、成等差数列, 则面积的取值范围是 7.已知锐角的内角 的对边分别为 ,且 ,则 的最大值为 __________. 8.在中,角,,所对的边分别为,,,且,,则的最小值为 . 9.在 中,内角,,所对的边分别为,,,已知 . (1)求角的大小; (2)若的面积,为边的中点,,求. ABC △23 C π = 3AB =ABC △6sin 33A π?? + + ?? ?6sin 36A π??++ ???33A π??++ ???36A π? ?++ ?? ?ABC ?A B C ,,a b c A B C b =ABC ?ABC ?A B C a b c 2sin cos 2sin sin C B A B =+3c ab =ab

三角函数与解三角形专题训练

三角求值与解三角形专项训练 1三角公式运用 【通俗原理】 1?三角函数的定义:设 P(x,y),记 xOP R , r |0P| ~y", 则sin y ,cos r x , ,ta n r 弘0) 2 .基本公式: 2 2 sin c os 1,tan sin cos 3 ?诱导公式: 其中 由tan -及点(a,b)所在象限确定 a ② asin bcos a cos b sin . a 2 b 2 cos( 4 ?两角和差公 式: si n( ) sin cos cos sin , cos( ) cos cos msin sin , tan( ) tan tan 1 mtan gtan 5.二倍角公式: si n2 2si n cos , cos2 cos 2 sin 2 2cos 2 1 1 2sin 2 1 tan 2 6 .辅助角公式:① asin bcos 、、a 2 b 2 sin(

其中由tan b及点(a , b)所在象限确定 a 【典型例题】 1.已知R,证明:sin(-) cos

4 ?求cos15o tan 15o的值. 、 3 5 ?证明:cos3 4cos 3cos 【跟踪练习】 1 ?已知sin( ) 3 ,求cos( )的值. 2 ?若(0,—), tan 2,求sin cos 的值. 2 3 ?已知sin()1 , sin() 2,求芽的值.

3 5 6

1 2?若sin2 2,求tan 的值. 三角求值与解三角形专项训练 2.解三角形 A, B, C 的对边分别为a,b,c ,①A B C ② cos2A cos2B A B . 7.解三角形的三种题型:①知三个条件 (知三个角除外),求其他(角、边、面积、周长等 ② 知两个条件,求某个特定元素或范围; ③ 知一边及其对角,求角、边、周长、面积的范围或最值 . 【典型例题】 1 .在△ ABC 中,若acosA bcosB ,试判断△ ABC 的形状. 2 a b 2 2 c 2bccosA 2 2 2 b 2 2 2 2accosB .变形: b c a a c cosA ,其他同理可得 2bc 2 c 2 a b 2 2abcosC 3 .余弦定理: 1 ?三角形边角关系:在 △ ABC 中, ②若a b c ,则a b c ;③等边对等角,大边对大角 2 .正弦定理: a b c sin A sinB sinC 变形:a 2RsinA , b 2Rsin B,c 2R ( R 是厶ABC 外接圆的半径). 2Rsi nC 1 4 .三角形面积公式: S A ABC absi nC 2 5.与三角形有关的三角方程:① si n2A bcsin A 2 acs in B . 2 sin2B A B 或 2A 2B ; 6 .与三角形有关的不等式:① a b si nA sin B cosA cosB .

中考专题复习解三角形

1.(10分) 我市某乡镇学校教学楼后面靠近一座山坡,坡面上是一块平地,如图所示,BC ∥AD ,斜坡AB=40米,坡角∠BAD=600 ,为防夏季因瀑雨引发山体滑坡,保障安全,学校决 定对山坡进行改造,经地质人员勘测,当坡角不超过450 时,可确保山体不滑坡,改造时保持坡脚A 不动,从坡顶B 沿BC 削进到E 处,问BE 至少是多少米(结果保留根号)? 2. 如图,山顶建有一座铁塔,塔高CD =20m ,某人在点A 处,测得塔底C 的仰角为45o ,塔顶D 的仰角为60o ,求山高BC (精确到1m ,参考数据:2 1.41,3 1.73≈≈) 3.(10分)如图,水坝的横断面是梯形,背水坡AB 的坡角∠BAD= 60,坡长AB=m 320,为加强水 坝强度,将坝底从A 处向后水平延伸到F 处,使新的背水坡的坡角∠F= 45,求AF 的长度(结果精确到1米,参考数据: 414.12≈,732.13≈). D A B C E F G (22题图)

4.(8分)某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m , ∠ABC=45o ,后考虑到安全因素,将楼梯脚B 移到CB 延长线上点D 处,使0 30=∠ADC (如图所示). (1)求调整后楼梯AD 的长; (2)求BD 的长. (结果保留根号) 5.(8分)为促进我市经济快速发展,加快道路建设,某高速公路建设工程中,需修建隧道AB. 如图,在山外一点C 测得BC 距离为20m ,∠,540=CAB ∠,300=CBA 求隧道AB 的长.(参考 数据: ,73.13,38.154tan ,59.054cos ,81.054sin 000≈≈≈≈精确到个位) 6.(8分)(2013?恩施州)“一炷香”是闻名中外的恩施大峡谷著名的景点.某校综合实践活动小组先在峡谷对面的广场上的A 处测得“香顶”N 的仰角为45°,此时,他们刚好与“香底”D 在同一水平线上.然后沿着坡度为30°的斜坡正对着“一炷香”前行110米,到达B 处,测得“香顶”N 的仰角为60°.根据以上条件求出“一炷香”的高度.(测角器的高度忽略不计,结果精确到1米,参考数据:, ).

解三角形专题题型归纳

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 一、知识点归纳(★☆注重细节,熟记考点☆★) 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-=+-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??=?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22 A B C += 7.实际问题中的常用角 (1)仰角和俯角

高二解三角形综合练习题

解三角形 一、选择题 1.在△ABC中,角A,B,C的对边分别为a,b,c.若A=60°,c=2,b=1,则a=( ) A.1 B.3 C.2 D.3 2.设a,b,c分别是△ABC中角A,B,C所对的边,则直线l1:sin A·x+ay+c=0与l2:bx-sin B·y+sin C=0的位置关系是( ) A.平行B.重合 C.垂直D.相交但不垂直 3.在△ABC中,若2cos B sin A=sin C,则△ABC的形状一定是( ) A.等腰直角三角形B.直角三角形 C.等腰三角形D.等边三角形 4.在△ABC中,已知A∶B=1∶2,∠ACB的平分线CD把三角形分成面积为3∶2的两部分,则cos A等于( ) A.1 3 B. 1 2 C.3 4D.0 5.在△ABC中,AC=7,BC=2,B=60°,则BC边上的高等于( ) A. 3 2 B. 33 2 C.3+6 2 D. 3+39 4 6.已知锐角三角形三边长分别为3,4,a,则a的取值范围为( ) A.1

C.7

三角函数与解三角形-专题复习

专题一 三角函数与解三角形 一、任意角、弧度制及任意角的三角函数 1、弧度制的定义与公式: 定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角. 弧度记作rad. 公式 角的弧度数公式 r =α 角度与弧度的换算 ①rad 180 1π=? ② 弧长公式 扇形面积公式 2、任意角三角函数(正弦、余弦、正切)的定义 第一定义:设是任意角,它的终边与单位圆交于点P(x,y),则 第二定义:设 是任意角,它的终边上的任意一点 P(x,y),则 . 考点1 三角函数定义的应用 例1 .已知角α的终边在直线043=+y x 上,则=++αααtan 4cos 5sin 5 . 变式:(1)已知角α的终边过点)30sin 6,8(? --m P ,且5 4 cos - =α,则m 的值为 . (2)在直角坐标系中,O 是原点,A (3,1),将点A 绕O 逆时针旋转90°到B 点,则B 点坐标为__________. (3)4tan 3cos 2sin 的值( ) A .小于0 B .大于0 C .等于0 D .不存在 考点2 扇形弧长、面积公式的应用 例 2.已知扇形的半径为10cm,圆心角为? 120,则扇形的弧长为 面积为 . 变式:已知在半径为10的圆O 中,弦AB 的长为10,则弦AB 所对的圆心角α的大小 为 ,α所在的扇形弧长 为 ,弧所在的弓形的面积S 为 .

二、同角三角函数的基本关系及诱导公式 1、1cos sin 2 2=+αα α αcos tan = 2、三角函数的诱导公式 例1.已知α是三角形的内角,且.5 cos sin =+αα (1)求αtan 的值; (2)把α α22sin cos 1 +用αtan 表示出来,并求其值. 变式:1、已知α是三角函数的内角,且3 1 tan -=α,求ααcos sin +的值. 2、已知.34tan -=α(1)求α αααcos 2sin 5cos 4sin +-的值;(2)求αααcos sin 2sin 2 +的值. 3.若cos α+2sin α=-5,则tan α=________.

解三角形专题题型归纳

《解三角形》知识点、题型与方法归纳 1.正弦定理及其变形 2(sin sin sin a b c R R A B C ===为三角形外接圆半径) 变式:12sin ,2sin ,2sin a R A b R B c R C ===()(边化角公式) 2sin ,sin ,sin 222a b c A B C R R R ===()(角化边公式) 3::sin :sin :sin a b c A B C =() sin sin sin (4),,sin sin sin a A a A b B b B c C c C === 2.正弦定理适用情况: (1)已知两角及任一边; (2)已知两边和一边的对角(需要判断三角形解的情况). 3.余弦定理及其推论 2222222222cos 2cos 2cos a b c bc A b a c ac B c a b ab C =+-=+-=+- 222 222 222 cos 2cos 2cos 2b c a A bc a c b B ac a b c C ab +-= +-=+-= 4.余弦定理适用情况: (1)已知两边及夹角; (2)已知三边. 注.解三角形或判定三角形形状时,可利用正余弦定理实现边角转化(这也是正余弦定理的作用),统一成边的形式或角的形式. 5.常用的三角形面积公式 (1)高底??= ?2 1ABC S ; (2)()111=sin sin sin 2224abc S ab C ac B bc A R ABC R ===?为外接圆半径 (两边夹一角); 6.三角形中常用结论 (1),,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边) (2)sin sin (ABC A B a b A B ?>?>?>在中,即大边对大角,大角对大边) (3)在ABC ?中,A B C π++=,所以 ①()sin sin A B C +=;②()cos cos A B C +=-; ③()tan tan A B C +=-;④sin cos ,22A B C +=⑤cos sin 22A B C += 解三角形有用的结论

高中数学复习提升-解三角形复习专题(教师)

平远中学高一数学自主探究学案 第一章 解三角形 第 6 课时 内容: 正、余弦定理的复习 班级 姓名 小组 【学习目标】 1.复习和巩固正、余弦定理求任意三角形的边、角、判断三角形的形状的方法 2.通过正、余定理变形技巧实现三角形中的边角转换,解题过程中做到正余弦定理的优化选择. 【自主学习】 1.正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径. 由正弦定理可以变形为: (1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin A ,b =2R sin B ,c =2R sin C ; (3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题. 2.余弦定理:a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C . 余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 2 2ab . 3.三角形面积公式:S △ABC =12ab sin C =12bc sin A =12ac sin B 4.(1)关于ABC ?:设ABC ?中角,,A B C 的对边分别为,,a b c . ①A B C π++=; ②a b A B . 5.根据所给条件确定三角形的形状,主要有两种途径: (1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换. 【合作探究】 探究一:求边

北京高三理科解三角形大题专题带答案

实用文档 解三角形大题专题 20141513 分)(.(本小题满分石景山一模)B,Ca,b,cA,ABCca?b?Asin2b3a?中, 角.,的对边分别为,且在△B的大小;(Ⅰ)求角c ABC2a?7?b的面积.,求边的长和△(Ⅱ)若, 13201415分)(.(本小题满分西城一模)222 aBACbcABC bca?b?c?.在△中,角,,所对的边分别为.已知,,A的大小;(Ⅰ)求6b?2?Bcos ABC 的面积.,(Ⅱ)如果,求△3 标准文案. 实用文档 (2014海淀二模)15.(本小题满分13分)

A7sina?2ABC?b?21. 且在锐角中,B的大小;(Ⅰ)求c c3a?的值(Ⅱ)若. ,求 20151513 分)西城二模)(.(本小题满分 b 3 a C ABC AB ab c 7,,=,所对的边分别为=在锐角△中,角,,,,已知 .A 的大小;(Ⅰ)求角ABC 的面积.(Ⅱ)求△ 标准文案. 实用文档 (2013丰台二模)15.(13分) 2(B?C)?32sinsin2A.的三个内角分别为已知A,B,C,且ABC?(Ⅰ)求A的度数; BC?7,AC?5,求(Ⅱ)若的面积S. ABC?

20141513 分)(.(本小题满分延庆一模)?3c,a,b,AB,C?C?Bcos2ABCa?.在三角形中,角,且所对的边分别为,,45Asin的值;(Ⅰ)求ABC?的面积.(Ⅱ)求 标准文案. 实用文档 (2015顺义一模)15.(本小题满分13分) ?6ABC??32,sinBb?B?A?c,a,bA,B,C. 在已知,中角,所对的边分别为, 32a; (I)求的值Ccos. 的值(II)求

解三角形专项练习(含解答题)

解三角形专练 1.在ABC △中,已知4,6a b ==,60B =,则sin A 的值为 2.在ABC ?中,若0 120,2==A b ,三角形的面积3= S ,则三角形外接圆的半径为( )A . B .2 C ..4 3.边长为8,7,5的三角形的最大角与最小角的和是( ) A . 120 B . 135 C . 90 D . 150 4.在△ABC 中,已知a =4,b =6,C =120°,则边C 的值是( ) A .8 B . C . D . 5.在三角形ABC 中,若1tan tan tan tan ++=B A B A ,则C cos 的值是 B. 22 C. 21 D. 21- 6.在△ABC 中,若22 tan tan b a B A =,则△ABC 的形状是( ) A .直角三角形 B .等腰或直角三角形 C .不能确定 D .等腰三角形 7.在△ABC 中,角,,A B C 所对的边分别为,,a b c .若 2226 5b c a bc +-=,则 sin()B C +=( )A .-45 B.45 C .-35 D.3 5 8.设△ABC 的三内角A 、B 、C 成等差数列,sinA 、sinB 、 sinC 成等比数列,则这个三角形的形状是( ) A.直角三角形 B.钝角三角形 C.等腰直角三角形 D.等边三角形 9.在ABC ?中,内角C B A ,,的对边分别为c b a ,,,若18=a ,24=b ,?=45A ,则这样的三角形有( )A.0个 B. 两个 C. 一个 D. 至多一个 10.已知锐角A 是ABC ?的一个内角,,,a b c 是三角形中各角的对应边,若221 sin cos 2A A -= ,则下列各式正确的是 ( ) A. 2b c a += B. 2b c a +< C. 2b c a +≤ D. 2b c a +≥ 11.在ABC ?中,已知 30,4,34=∠==B AC AB ,则ABC ?的面积是 A .34 B .38 C .34或38 D .3 12.在ABC ?中,角角,,A B C 的对边分别为,,a b c ,若22 a b -=且sin C B =,则A 等于A .6π B .4 π C .3π D .2 3π 13.若?ABC 的三角A:B:C=1:2:3 ,则A 、B 、C 分别所对边a :b :c=( ) A.1:2:3 B.2 D. 1:2: 14.△ABC 的三个内角A,B,C 的对边分别a ,b ,c ,且a cosC,b cosB,c cosA 成等差数列,则角B 等于( )A 30 B .60 C 90 D.120 15.在?ABC 中,三边a ,b,c 与面积S 的关系式为 2221 () 4S a b c =+-,则角C 为 ( ) A .30 B 45 C .60 D .90 16.△ABC 中,a b sin B = 2 ,则符合条件的三角形有( ) A .1个 B .2个 C .3个 D .0个 17.设?ABC 的内角A,B ,C 所对边的长分别为a,b,c ,若b+c= 2a,.3sinA=5sinB ,则角C=

解三角形(复习课)教学设计

解三角形(专题课)教学设计 一、教材分析 本节课是高中数学课本必修5第一章《解三角形》,而在本章中,学生应该在已有的知识基础上,通过对任意三角形的边角关系的探究,发现并掌握三角形中的边长与角度之间的关系数量关系,并认识到运用它们可以解决一些与测量和几何计算有关的实际问题。本章知识是初中解直角三角形的继续,通过本章内容的学习,学生能够系统地掌握解任意三角形的完整实施。可以从数量的角度认识三角形,使三角形成为研究几何问题的重要工具。是中学许多数学知识的交汇点,如向量、平面几何、三角函数、解析几何、立体几何等。 二、学情分析 学生已经学习并掌握了任意角及任意角的三角函数,诱导公式、三角恒等变换、正余弦定理等相关的知识。学习本节内容是对以上知识内容的综合应用,尤其是对正弦定理与余弦定理的熟练运用。通过解三角形的方法解决有关的实际问题,可以培养学生的数学应用意识,提高学生运用数学知识解决实际问题的能力,使学生逐渐形成数学的思维方式去解决问题、认识世界的意识。 三、教学目标 知识与技能:引导学生准确理解正弦定理、余弦定理、三角形面积公式,会对正余弦定理会进行简单的变形;引导学生通过观察,推导,比较等出一些结论,如射影定理,三角形边角之间的关系;会运用所学知识解三角形以及与三角形有关的实际问题。 过程与方法:引导学生通过观察,推导,比较,由特殊到一半归纳出正余弦定理以及三角形面积公式等结论。培养学生的创新意识,观察能力,总结归纳的逻辑思维能力。让学生通过学习能体会用向量作为数形结合的工具,将几何问题转化为代数问题的数学思想方法。 情感态度与价值观:面向全体学生,创造平等的教学氛围,进行高效课堂教学,激情教育,通过学生之间,师生之间的交流与讨论、合作与评价,调动学生的主动性和积极性,让学生体验学习数学的的乐趣,感受成功的喜悦,增强学生学好数学的信心,激发学生学习的兴趣。 四、教学重难点 重点:正弦定理、余弦定理的内容及基本应用。 难点:正弦定理、余弦定理的内容及基本应用;正余弦定理的变形应用;用所学知识解决解三角形问题的题型归纳总结。 五、课堂结构设计 根据教材的内容和编排的特点,为更好有效地突出重点,攻破难点,以学生的发展为本,遵照学生的认知规律,本节主要以教师为主导,学生为主体,交流讨论,互助学习为主线的指导思想,采用“6+1”高效课堂教学模式,在教师的启发引导下,学生通过独立自主思考探究、同学之间相互交流讨论合作学习为前提,以“熟练运用正余弦定理解三角形”为基本

解三角形大题专项训练

标准文档 1.在△ABC中,内角A,B,C的对边分别为a,b,c,已知. (Ⅰ)求cosA的值; (Ⅱ)的值. 2.在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求的值; (2)若cosB=,△ABC的周长为5,求b的长. 3.△ABC的三个内角A、B、C所对的边分别为a、b、c,asinAsinB+bcos2A=a.(Ⅰ)求; (Ⅱ)若C2=b2+a2,求B.

4.在△ABC中,角A,B,C的对边是a,b,c,已知3acosA=ccosB+bcosC (1)求cosA的值 (2)若a=1,,求边c的值. 5.在△ABC中,角A、B、C的对边分别为a,b,c (1)若,求A的值; (2)若,求sinC的值. 6.△ABC的内角A、B、C所对的边分别为a、b、c,已知a=1,b=2,cosC= (I)求△ABC的周长; (II)求cos(A﹣C)的值.

7.在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=. (I)求sinC的值; (Ⅱ)当a=2,2sinA=sinC时,求b及c的长. 8.设△ABC的内角A、B、C的对边长分别为a、b、c,且3b2+3c2﹣3a2=4bc. (Ⅰ)求sinA的值; (Ⅱ)求的值. 9.在△ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(Ⅰ)求A的大小; (Ⅱ)求sinB+sinC的最大值.

10.在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且.(1)确定角C的大小; (2)若,且△ABC的面积为,求a+b的值. 11.在△ABC中,角A,B,C的对边分别为,. (Ⅰ)求sinC的值; (Ⅱ)求△ABC的面积. 12.设△ABC的内角A,B,C的对边分别为a,b,c,且A=60°,c=3b.求:(Ⅰ)的值; (Ⅱ)cotB+cot C的值.

解三角形专题练习【附答案】

解三角形专题(高考题)练习【附答案】 1、在ABC ?中,已知内角3 A π = ,边BC =设内角B x =,面积为y . (1)求函数()y f x =的解析式和定义域; (2)求y 的最大值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 13,4==c a ,求△ABC 的面积。 2、已知ABC ?中,1||=AC ,0120=∠ABC , θ=∠BAC , 记→ → ?=BC AB f )(θ, (1)求)(θf 关于θ的表达式; (2)(2)求)(θf 的值域; 3、在△ABC 中,角A 、B 、C 所对的边分别是a ,b ,c ,且.2 1 222ac b c a =-+ (1)求B C A 2cos 2 sin 2 ++的值; (2)若b =2,求△ABC 面积的最大值. 4、在ABC ?中,已知内角A 、B 、C 所对的边分别为a 、b 、c ,向量(2sin ,m B =, 2cos 2,2cos 12B n B ? ?=- ?? ?,且//m n 。 (I )求锐角B 的大小; (II )如果2b =,求ABC ?的面积ABC S ?的最大值。 5、在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且.cos cos 3cos B c B a C b -= (I )求cos B 的值; (II )若2=?,且22=b ,求c a 和b 的值. 6、在ABC ?中,cos 5A = ,cos 10 B =. (Ⅰ)求角 C ; (Ⅱ)设AB =,求ABC ?的面积. 7、在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量(1,2sin )m A =u r ,(sin ,1cos ),//,.n A A m n b c =++=r u r r 满足 (I )求A 的大小;(II )求)sin(6π+B 的值. 8、△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且有sin2C+3cos (A+B )=0,.当 A B C 120° θ

专题 三角函数及解三角形(解析版)

专题 三角函数及解三角形 1.【2019年高考全国Ⅰ卷理数】函数f (x )= 在[,]-ππ的图像大致为 A . B . C . D . 2.【2019年高考全国Ⅰ卷理数】关于函数()sin |||sin |f x x x =+有下述四个结论: ①f (x )是偶函数 ②f (x )在区间( 2 π,π)单调递增 ③f (x )在[,]-ππ有4个零点 ④f (x )的最大值为2 其中所有正确结论的编号是 A .①②④ B .②④ C .①④ D .①③ 3.【2019年高考全国Ⅱ卷理数】下列函数中,以2 π为周期且在区间( 4 π, 2 π)单调递增的是 A .f (x )=|cos2x | B .f (x )=|sin2x | C .f (x )=cos|x | D .f (x )=sin|x | 4.【2019年高考全国Ⅱ卷理数】已知α∈(0, 2 π),2sin2α=cos2α+1,则sin α= A . 15 B . 5 C 3 D 5 5.【2019年高考全国Ⅲ卷理数】设函数()f x =sin (5 x ωπ + )(ω>0),已知()f x 在[]0,2π有且仅有5个零点,下述四个结论: ①()f x 在(0,2π)有且仅有3个极大值点 ②()f x 在(0,2π)有且仅有2个极小值点 2 sin cos ++x x x x

③()f x 在(0, 10 π )单调递增 ④ω的取值范围是[1229 510 ,) 其中所有正确结论的编号是 A .①④ B .②③ C .①②③ D .①③④ 6.【2019年高考天津卷理数】已知函数()sin()(0,0,||)f x A x A ω?ω?=+>><π是奇函数,将()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),所得图象对应的函数为()g x .若()g x 的最小正周期为2π ,且4g π?? = ???38f π??= ??? A .2- B . C D .2 7.【2019年高考北京卷理数】函数f (x )=sin 22x 的最小正周期是__________. 8.【2019年高考全国Ⅱ卷理数】ABC △的内角,,A B C 的对边分别为,,a b c .若π 6,2,3 b a c B === ,则ABC △的面积为_________. 9.【2019年高考江苏卷】已知 tan 2π3tan 4αα=-??+ ?? ?,则πsin 24α? ?+ ???的值是 ▲ . 10.【2019年高考浙江卷】在ABC △中,90ABC ∠=?,4AB =,3BC =,点D 在线段AC 上,若 45BDC ∠=?,则BD =___________,cos ABD ∠=___________. 11.【2019年高考全国Ⅰ卷理数】ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,设 22(sin sin )sin sin sin B C A B C -=-. (1)求A ; (2 2b c +=,求sin C . 12.【2019年高考全国Ⅲ卷理数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 2 A C a b A +=. (1)求B ;

高考数学三角函数与解三角形练习题

三角函数与解三角形 一、选择题 (2016·7)若将函数y =2sin 2x 的图像向左平移 12 π个单位长度,则平移后图象的对称轴为( ) A .()26k x k Z ππ =-∈ B .()26k x k Z ππ =+∈ C .()212 k x k Z ππ =-∈ D .()212 k x k Z ππ =+∈ (2016·9)若3 cos( )45 π α-=,则sin 2α =( ) A . 725 B .15 C .1 5 - D .7 25 - (2014·4)钝角三角形ABC 的面积是12 ,AB =1,BC ,则AC =( ) A .5 B C .2 D .1 (2012·9)已知0>ω,函数)4sin()(π ω+ =x x f 在),2(ππ 单调递减,则ω的取值范围是() A. 15 [,]24 B. 13[,]24 C. 1(0,]2 D. (0,2] (2011·5)已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ =( ) A .45 - B .35 - C .35 D .45 (2011·11)设函数()sin()cos()(0,||)2 f x x x π ω?ω?ω?=+++>< 的最小正周期为π,且()()f x f x -=, 则( ) A .()f x 在(0,)2π 单调递减 B .()f x 在3(,)44 ππ 单调递减 C .()f x 在(0,)2π 单调递增 D .()f x 在3(,)44 ππ 单调递增 二、填空题 (2017·14)函数()23sin 4f x x x =- (0,2x π?? ∈???? )的最大值是 . (2016·13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos 4 5 A = ,1cos 53C =,a = 1,则b = . (2014·14)函数()sin(2)2sin cos()f x x x ???=+-+的最大值为_________. (2013·15)设θ为第二象限角,若1 tan()42 πθ+=,则sin cos θθ+=_________. (2011·16)在△ABC 中,60,B AC ==o 2AB BC +的最大值为 . 三、解答题

相关文档
最新文档