加速度计简易标定方法

加速度计简易标定方法
加速度计简易标定方法

Home Search Collections Journals About Contact us My IOPscience

An accurate calibration method for accelerometer nonlinear scale factor on a low-cost three-axis turntable

This content has been downloaded from IOPscience. Please scroll down to see the full text.

2014 Meas. Sci. Technol. 25 025102

(https://www.360docs.net/doc/301088772.html,/0957-0233/25/2/025102)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 202.112.128.136

This content was downloaded on 06/01/2015 at 15:54

Please note that terms and conditions apply.

Meas.Sci.T echnol.25(2014)025102(7pp)doi:10.1088/0957-0233/25/2/025102 An accurate calibration method for accelerometer nonlinear scale factor on a low-cost three-axis turntable

Jianye Pan,Chunxi Zhang and Qingzhong Cai

School of Instrumentation Science and Optoelectronics Engineering,Beijing University of Aeronautics

and Astronautics,Beijing100191,People’s Republic of China

E-mail:panjianye1987@https://www.360docs.net/doc/301088772.html,

Received18September2013,revised2November2013

Accepted for publication21November2013

Published9January2014

Abstract

Strapdown inertial navigation system(SINS)requirements are very demanding on gyroscopes

and accelerometers as well as on calibration.To improve the accuracy of SINS,high-accuracy

calibration is needed.Adding the accelerometer nonlinear scale factor into the model and

reducing estimation errors is essential for improving calibration methods.In this paper,the

inertial navigation error model is simpli?ed,including only velocity and tilt errors.Based on

the simpli?ed error model,the relationship between the navigation errors(the rates of change

of velocity errors)and the inertial measurement unit(IMU)calibration parameters is

presented.A tracking model is designed to estimate the rates of change of velocity errors.With

a special calibration procedure consisting of six rotation sequences,the accelerometer

nonlinear scale factor errors can be computed by the estimates of the rates of change of

velocity errors.Simulation and laboratory test results show that the accelerometer nonlinear

scale factor can be calibrated with satisfactory accuracy on a low-cost three-axis turntable in

several minutes.The comparison with the traditional calibration method highlights the

superior performance of the proposed calibration method without precise orientation control.

In addition,the proposed calibration method saves a lot of time in comparison with the

multi-position calibration method.

Keywords:inertial measurement unit,accelerometer nonlinear scale factor,error model,

calibration

(Some?gures may appear in colour only in the online journal)

1.Introduction

Inertial navigation is entirely self-contained and can provide information including position,velocity and attitude at a high rate.It is now widely used as the main navigation means in missiles,aircraft,robots and other autonomous vehicles[1].An inertial measurement unit(IMU)consists of three orthogonal accelerometers and three orthogonal gyroscopes.Their measurements,speci?c forces and angular rates are used to compute attitude,velocity and position.IMU calibration is a process of determining the coef?cients that transform the raw outputs of inertial sensors to meaningful quantities of interest.Traditional calibration methods are usually performed by comparing the IMU outputs with known reference information obtained by precise orientation control, which requires specialized high-accuracy equipment[2].

The IMU calibration methods that can provide accuracy on a low-cost two-axis or three-axis turntable have been widely discussed for many years.Some of them are based on the Kalman?lter.Three sets of rotation sequences were designed to estimate the IMU calibration parameters by tracking the rates of change of velocity errors[3].In addition,Lee presented several rotation sequences to estimate the IMU calibration parameters by tracking the rates of change of velocity errors [4].Mark designed two paths to calibrate gyroscope errors and accelerometer errors,respectively.First of all,gyroscope errors

Table1.Frame de?nition.

Frames Description

i frame The inertial frame

e frame The Earth frame

b frame The body frame

t frame The true geographic frame

c frame The compute

d geographic frame

p frame The platform frame

were estimated independently of the accelerometer errors by a special path,then accelerometer errors were estimated by another special path following gyroscope error compensation [5].Two sets of rotation sequences were designed by Savage. Comparing the speci?c force before rotation with the speci?c force after rotation,the gyroscope and accelerometer errors can be obtained[6].Camberlein described a calibration method developed by the SAGEM company,and it provided an overview of the Kalman?lter,along with a typical calibration procedure to estimate the IMU calibration parameters[7].Like the methods based on the Kalman?lter,the multi-position calibration methods also do not require a high-precision turntable,and these have been widely discussed in recent years[1].

In some applications,such as marine navigation and gravity measurement,the nonlinear scale factor should be introduced into the accelerometer error model[8],but so far it has been largely neglected or treated less seriously.In traditional calibration methods,although the accelerometer nonlinear scale factor can be estimated using the least squares algorithm,the accuracy is limited by the accuracy of the turntable.An improved multi-position calibration method using the particle swarm optimization algorithm was proposed to estimate the accelerometer nonlinear scale factor,and this could achieve the needed accuracy on a low-cost three-axis turntable[2].However,the multi-position calibration method needs24rotation sequences for calibration and it takes a long time for tens of minutes.

In this current work,an accurate calibration method for the accelerometer nonlinear scale factor on a low-cost three-axis turntable is presented.A special calibration procedure is designed,forcing individual sensor errors to contribute to different components of velocity error and its rate of change. After accelerometer bias is estimated by the rate of change of the north velocity error,the accelerometer nonlinear scale factor can be computed by the rate of change of the upward velocity error.The calibration procedure,consisting of six rotation sequences,takes only a few minutes.

The paper is organized as follows.In section2,the inertial navigation error model is simpli?ed,including only velocity and tilt errors.In section3,based on the simpli?ed error model,the relationship between the navigation errors(the rates of change of velocity errors)and the IMU calibration parameters is presented.A tracking model is designed to estimate the rates of velocity error components.Data collection rotation sequences are designed,forcing the accelerometer nonlinear scale factor to contribute to the rates of velocity error components.Observation equations for each rotation are built to compute the accelerometer nonlinear scale factor.In section4,the proposed calibration method is compared with

the traditional calibration method by simulation and laboratory testing.The results prove that the accelerometer nonlinear scale factor can be accurately calibrated by the proposed calibration method on a low-cost three-axis turntable.In section5,the conclusion is discussed.

2.Simpli?ed error model

The frames used in this paper are de?ned in table1.

The classical inertial navigation algorithm can be described as[9]

˙C t

b

=C t b

ωb ib?C b t

ωt ie+ωt et

×

˙v t=C t b f b?(2ωt ie+ωt et)×v t+g t

˙L=v t

N

(R+h)

˙λ=v t

E

sec L

(R+h)

˙h=v t

U

(1) where the IMU positions L,λand h are the latitude,longitude and height,respectively.Ground velocity in the geographic frame v t=

v t E v t N v t U

T

,where the subscripts stand for east, north and upward velocity components,respectively.C b t is the body attitude matrix with respect to the geographic frame

(rotating from the geographic frame to the body frame).ωb

ib is the body angular rate measured by gyroscopes.ωt

ie

= [0ωie cos Lωie sin L]T is the Earth rotation rate vector in the geographic frame.ωt et=[?v t N v t E v t E tan L]T

(R+h) is the angular rate of the geographic frame with respect to the Earth frame,expressed in the geographic frame.

f b=[f b x f b y f b z]T is the speci?c force measured by accelerometers.

g t=[00?g]T is the gravity vector in the geographic frame and R is the radius of sphere of the Earth. The3×3matrix(·×)is de?ned so that the cross product satis?es a×b=(a×)b for two arbitrary vectors.

In the classical inertial navigation algorithm,the relationship of the attitudes,velocities and positions are complex.When the IMU is static,the classical inertial navigation algorithm can be simpli?ed by the known zero velocity and the known position[9]

˙C t

b

=C t b

ωb ib?C b tωt ie

×

˙v t=C t b f b+g t.(2) Assuming the azimuth and attitude errors are small angles, the classical inertial navigation error model corresponding to the classical inertial navigation algorithm is expressed as[9]˙φ=φ×ωt

it

+δωt it+εt

δ˙v t=?φ×f t+δv t×

2ωt ie+ωt et

+v t×

2δωt ie+δωt et

+δf t

δ˙L=δv t N

(R+h)?δh·v t N

(R+h)2

δ˙λ=δL·v t E sec L tan L

(R+h)+sec L·δv t E

(R+h)?δh·v t E sec L

(R+h)2

δ˙h=δv t U(3)

whereωt

it

is the angular rate of the geographic frame with respect to the inertial frame,expressed in the geographic frame,εt=[εEεNεU]T is the gyroscope error in the geographic

frame and δf t =[δf E δf N δf U ]T is the accelerometer error in the geographic frame.

Similar to the classical inertial navigation algorithm,the classical inertial navigation error model can also be simpli?ed when the IMU is static.The derivations are described as follows.

The small rotation angle vector of the computed geographic frame around the platform frame is de?ned as ψ.

The small rotation angle vector of the true geographic frame around the computed geographic frame is de?ned as θ.

The small rotation angle vector of the true geographic frame around the platform frame is de?ned as φ.

The relationship of the vectors ψ,θand φis described as [10]

φ=ψ+θ.

(4)

The relationship of the vector ψand the gyroscope error can be expressed in the computed geographic frame as [10]

d ψd t

c

+ωc ic ×ψ=εc .(5)When the position is known to be a constant and the velocity is known to be zero,the computed geographic frame is coincident with the true geographic frame.In other words,the vector θcan be seen as a zero vector.So equation (5)can be written as d φd t

t

+ωt it ×φ=εt .(6)When the velocity is known to be zero,the vector ωt et is a zero vector.Considering the equation ωt it =ωt ie +ωt et ,the vector ωt it is equal to the vector ωt ie .Equation (6)can be expressed as

˙φ+ωt ie ×φ=εt .(7)The differential equation of velocity in the computed

geographic frame is [10]

˙v

c =(I ?φ×)C t b (f b +δf b )+g t .(8)

With the high order item neglected,equation (8)can be

derived as

˙v

c =f t ×φ+f t +g t +δf t .(9)

When the IMU is static,f t is equal to ?g t ,and equation (9)

can be written as

˙v

c =?g t ×φ+δf t .(10)

The differential equation of velocity in the true geographic

frame is

˙v

t =0.(11)

Associating equation (10)with equation (11),we can get

the velocity error equation in the true geographic frame

δ˙v

t =?g t ×φ+δf t .(12)

Equations (7)and (12)are the simpli?ed error model and

can be used for alignment and calibration when the IMU is static.

Based on equations (7)and (12),the attitude error mechanization and the velocity error mechanization are shown in ?gures 1and 2,respectively.From these ?gures,it can be seen that the velocity error will not affect the attitude error when the velocity is known to be

zero.

Figure 1.Attitude error

mechanization.

Figure 2.Velocity error mechanization.

3.Calibration method on a low-cost three-axis turntable

The process of the proposed calibration can be described as follows.First,the IMU is aligned using its own gyrocom-pass alignment.After alignment,the IMU is switched to navigate and a Kalman ?lter is started to estimate the rate of change of the velocity error using a tracking model.Finally,the accelerometer nonlinear scale factor can be computed by the rates of change of the velocity error components,rotating from an initial orientation at t =0to a ?nal orientation at t =T .

3.1.Relationship between the navigation errors and the IMU calibration parameters

To improve the accelerometer accuracy by compensation,the nonlinear scale factor should be introduced into the sensor model because some accelerometer calibration coef?cients change as a function of the products of speci?c force components [11].An accelerometer error model can be expressed as

???δf b x δf b y δf b z ???=???aB x aB y aB z ???+???aSF x aMA xy aMA xz aMA yx aSF y aMA yz aMA zx aMA zy aSF z ??????f b x f b y f b

z ???

+

k 2x k 2y k 2z ???f b x f b x f b y f b y f b z f b

z ???

(13)

Figure3.Calibration procedure.

whereδf b=[δf b xδf b yδf b z]T is the accelerometer error in the body frame,and aSF,aMA and aB are accelerometer scale factor errors,misalignments and bias,respectively.k2= [k2x k2y k2z]T is the accelerometer nonlinear scale factor.

A gyroscope error model is generally expressed as

???εb x

εb y

εb z

?

??=

?

?

gB x

gB y

gB z

?

?+

?

?

gSF x00

gMA yx gSF y0

gMA zx gMA zy gSF z

?

?

?

??

ωb x

ωb y

ωb z

?

??(14)

whereεb=[εb xεb yεb z]is the gyroscope error in the body frame,and gSF,gMA and gB are gyroscope scale factor errors, misalignments and drifts,respectively.

The gyroscope and accelerometer errors in the geographic frame can be expressed by equations(15)and(16)[10]

εt=C t bεb(15)

δf t=C t bδf b.(16) Associating equations(13)–(16)with equations(7)and (12),the relationship between the navigation errors and the IMU calibration parameters is obtained.Furthermore,at the beginning and end of the rotation sequences,the rates of change in velocity error are used to estimate the calibration parameters in equations(13)and(14).

The difference between the rates of change of the two horizontal velocity error components,rotating from an initial orientation at t=0to a?nal orientation at t=T,are given as δ˙v E(T)?δ˙v E(0)= δf E?g φN(17)

δ˙v N(T)?δ˙v N(0)= δf N+g φE.(18)

The sum of the upward velocity error component’s rate of change,rotating from an initial orientation at t=0to a?nal orientation at t=T,is given as

δ˙v U(T)+δ˙v U(0)= δf U(T)+ δf U(0).(19) The difference between the upward velocity error component’s rates of change,rotating from an initial orientation at t=0to a?nal orientation at t=T,is given as

δ˙v U(T)?δ˙v U(0)= δf U(T)? δf U(0).(20)

3.2.Rates estimate for velocity error components

The calibration process assumes the availability of the rate of change of velocity error.This availability is satis?ed by using a tracking model,implemented in a Kalman?lter algorithm,to produce estimates of the rate of change of velocity error.The tracking?lter dynamics model for the east velocity component is[3]

?

??

δv n E(T)

δ˙v n E(T)

δ¨v n E(T)

?

??=

?

?

1 t0

01 t

001

?

?

?

??

δv n E(T? t)

δ˙v n E(T? t)

δ¨v n E(T? t)

?

??+Q

E

(21)

where Q E is the process noise vector.

The measurement equation for the east velocity component is[3]

Z E=

100

δv n E(T)δ˙v n E(T)δ¨v n E(T)

T

+R E(22) where R E is the measurement error.

The tracking?lter dynamics models and the measurement equations for the north and upward velocity components are similar to those for the east velocity component,and so will not be rewritten here.

3.3.Data collection rotation sequences and observation equations

Rotation sequences force individual sensor errors to contribute to different components of velocity error and its rate of change. In this paper,six rotation sequences are designed and the calibration procedure is shown in?gure3.For each of these rotations,the initial orientation of the sensor case is along a cardinal axis;that is,east.Data observed at the beginning and end of theπrotations are used to extract component errors. As little as10s at each observation point is suf?cient.

Associating with rotation1,equations(20)and(18)can be respectively expressed as

δ˙v U(T)?δ˙v U(0)=?2aB z?2g2·k2z(23)

δ˙v N(T)?δ˙v N(0)=?2aB y?g·π·gSF x.(24) Continuing with rotation2,similar to the equation(24) with rotation1,equation(18)with rotation2can be written as δ˙v N(T)?δ˙v N(0)=2aB y?g·π·gSF x.(25) Similarly,the following equations are obtained with rotations3–6

δ˙v U(T)?δ˙v U(0)=?2aB x?2g2·k2x(26)

Recorded error

Recorded error Calibration parameters

Simulated error (traditional method)(proposed method)Accelerometer nonlinear scale factors 20/100/50021.5/97.4/503.120.4/201.1/501.0for X ,Y and Z axes,respectively (μg g ?2)20/100/50017.6/98.3/501.919.6/200.7/501.220/100/50018.7/102.6/497.620.8/199.2/498.7Average estimate errors (μg g ?2)

1.7/

2.3/2.5

0.5/0.9/1.2

Time (s)

T h e r a t e o f c h a n g e o f v e l o c i t y e r r o r (m /s

2)Figure 4.The rate of change of velocity error estimates for rotations

1–2.

δ˙v N (T )?δ˙v N (0)=?2aB z ?g ·π·gSF y (27)δ˙v N (T )?δ˙v

N (0)=2aB z ?g ·π·gSF y (28)δ˙v U (T )?δ˙v

U (0)=?2aB y ?2g 2·k 2y (29)δ˙v N (T )?δ˙v N (0)=?2aB x ?g ·π·gSF z (30)δ˙v N (T )?δ˙v

N (0)=2aB x ?g ·π·gSF z .(31)

From equations (23),(26)and (29),both accelerometer

bias and the nonlinear scale factor contribute to the rate of change of the upward velocity error.Associating equation (24)with equation (25),aB x can be estimated by the difference between the rate of change of the north velocity error,rotating from an initial orientation at t =0to a ?nal orientation at t =T .Similarly,aB y and aB z can be estimated by equations (27),(28),(30)and (31).After the accelerometer bias is estimated,the accelerometer nonlinear scale factors k 2x ,k 2y ,k 2z can be computed by equations (23),(26)and (29).

The traditional methods compare raw sensor data measured on the rate table with projections of reference rate and gravity for calibration,so results depend on the accuracy of the turntables.The proposed calibration method uses the velocity and attitude indications of IMU to estimate calibration coef?cients,including the accelerometer nonlinear scale factors.This method is relatively robust with regard to instrumentation errors because it has the advantage of using a navigation algorithm that can determine the initial attitude and the amount of change in the angular position.The turntable is used only to rotate the IMU orthogonally from one ?xed position to another,without precise orientation control.

4.Simulation and laboratory testing

In traditional calibration methods,the accelerometer nonlinear scale factor can be estimated based on the least squares algorithm,comparing the IMU outputs with the known references provided by the turntable.The traditional calibration methods are compared with the proposed method by simulation and laboratory testing in this section.

4.1.Simulation

To compare the proposed calibration method with the traditional calibration method,six simulation tests are performed using MATLAB.The simulation conditions are assumed as follows.The accelerometer nonlinear scale factor is set as 20,100and 500μg g ?2,respectively.The rotation angle error of the turntable is set as 3 (1σ)and 3 (1σ),respectively.

In the proposed calibration process,the rate of change of the velocity error is estimated using a tracking model.For example,the rate of change of velocity error estimates for rotations 1–2are shown in ?gure 4.From the ?gure,it can be seen that the accelerometer nonlinear scale factor only affects the rate of change of the upward velocity error,consistent with the equations (23)–(31)in section 3.In other words,the accelerometer nonlinear scale factor can be estimated by the rate of change of upward velocity error.The calibration results with two different rotation angle errors of the turntable are shown in tables 2and 3,respectively.When the rotation angle error of the turntable is 3 (1σ),the average estimate errors are 2.2μg g ?2for the traditional method and 0.9μg g ?2for the proposed method,respectively.When the rotation angle error of the turntable is 3 (1σ),the average estimate errors are 25.8μg g ?2for the traditional method and 1.0μg g ?2for the proposed method,respectively.With the improvement in the accuracy of the turntable from 3 (1σ)to 3 (1σ),the calibration accuracy of the traditional method will be improved at 23.6μg g ?2.In order to meet the calibration accuracy requirement for a high-accuracy accelerometer,a high-accuracy turntable is needed for the traditional method.However,the average estimate errors of the proposed method performed on the two different turntables are close,with a difference of only 0.1μg g ?2.That is,the accuracy of the proposed method does not depend on the accuracy of the turntable.

https://www.360docs.net/doc/301088772.html,boratory testing

In the laboratory test,an IMU is calibrated using the proposed calibration method as well as the traditional method for

Recorded error

Recorded error Calibration parameters

Simulated error (traditional method)(proposed method)Accelerometer nonlinear scale factors 20/100/500 5.4/136.9/536.220.8/201.3/500.8for X ,Y and Z axes,respectively (μg g ?2)20/100/50040.9/72.3/488.320.7/200.5/501.520/100/50056.5/88.5/475.719.3/198.9/498.4Average estimate errors (μg g ?2)

24.0/25.4/27.9

0.7/1.0/1.3

Table 4.Calibration results of the accelerometer nonlinear scale factor.

Traditional calibration Proposed calibration Calibration parameters

method

method

Accelerometer nonlinear scale factors ?112.5(for X -axis)?88.9(for X -axis)for X ,Y and Z axes,respectively (μg g ?2)

?38.1(for Y -axis)?68.2(for Y -axis)96.8(for Z -axis)

129.4(for Z -axis)

-5

Position n u m b er

N o r m e r r o r s o f s p e c i f i c f o r c e (g )

Figure 5.Norm errors of speci?c force measurement for static IMU.

comparison.The IMU consists of three gyroscopes with a bias stability of 0.01?h ?1and three accelerometers with a bias stability of 10μg.A high-accuracy three-axis turntable with an accuracy of 5 (1σ)is used in this experiment.First of all,the gyroscopes and accelerometers are compensated with temperature errors.This compensation prevents the gyroscope drifts and accelerometer bias from being affected by temperature errors.Then the IMU is compensated with gyroscope scale factor errors,misalignments and drifts,and accelerometer scale factor errors,misalignments and bias.After compensation,the IMU is mounted on the center of the turntable and the accelerometer nonlinear scale factor is calibrated using the traditional method and the proposed method,respectively.In the calibration process,in order to simulate the low-cost turntable,the accuracy of the high-accuracy turntable is reduced to 3 (1σ)to control the orientation by human intervention.The calibration results of the accelerometer nonlinear scale factor are shown in table 4.The calibration results of the accelerometer nonlinear scale

Table https://www.360docs.net/doc/301088772.html,pensation modes.

Compensation number Compensation description Compensation 1Not compensated

Compensation 2Compensated by the traditional calibration results

Compensation 3

Compensated by the proposed calibration results

factor using the traditional method and the proposed method are inconsistent,with a difference of about 28.7μg g ?2for each axis.The accuracy of the traditional method depends on the accuracy of the turntable,so the calibration result of one axis may be much larger than the true value,while the other axes may be much smaller.The results of which methods are closer to the true values of the accelerometer nonlinear scale factors are validated in the following test.In addition,the proposed method takes not more than 5min for calibration,while the traditional method takes about 40min.

To compare the accuracy of the calibration results,a high-accuracy turntable is required.The high-accuracy three-axis turntable with an accuracy of 5 (1σ)described above can meet the requirements.A set of accelerometer data is collected at 14static positions.The accelerometers are compensated with the traditional calibration results and the proposed calibration results for comparison.The modulus of the speci?c force measured by accelerometers is compared with the gravity theoretically.Norm errors of the speci?c force measurements with different compensation modes (in table 5)are shown in ?gure 5,with standard deviations of 20.7,10.3and 4.6μg for compensations 1–3,respectively.

From the laboratory test results shown above,it can be seen that the traditional calibration method,limited by the accuracy of the turntable,cannot meet the accelerometer nonlinear scale factor calibration requirements,while the calibration method described in this paper can achieve the accuracy on a low-cost three-axis turntable.Furthermore,the proposed calibration method using only six rotation sequences takes just a few minutes,saving a lot of time compared with the multi-position calibration

methods[2]using24rotation sequences,which takes tens of minutes.

5.Conclusion

In this paper,an accurate calibration method for the accelerometer nonlinear scale factor is proposed.First of all, a simpli?ed error model is built,including only velocity and tilt errors.Based on the error model,the relationship between the navigation errors(the rates of change of velocity errors) and the IMU calibration parameters is presented.The rate of change of velocity error is estimated using a tracking model.A special calibration procedure is designed,forcing individual sensor errors to contribute to different components of velocity error and its rate of change.In this calibration procedure,both accelerometer bias and nonlinear scale factor contribute to the rate of change of the upward velocity error. After accelerometer bias is estimated by the rate of change of the north velocity error,the accelerometer nonlinear scale factor can be obtained.The accurate calibration method for the accelerometer nonlinear scale factor,described in this paper, features several de?nite advantages.These are:

?high accuracy,

?use of a low-cost three-axis turntable,

?fast,taking only several minutes.References

[1]Zhang H et al2010Improved multi-position calibration for

inertial measurement units Meas.Sci.Technol.

21015107

[2]Cai Q et al2013Accelerometer calibration with nonlinear

scale factor based on multi-position observation Meas.Sci.

Technol.24105002

[3]Rogers R M2007Applied Mathematics in Integrated

Navigation Systems3rd edn(Reston,V A:American

Institute of Aeronautics and Astronautics)pp238–50 [4]Lee T-G and Sung C-K2004Estimation technique of?xed

sensor errors for SDINS calibration Int.J.Control Autom.

Syst.2536–41

[5]Mark J,Tazartes D and Hilby T1986Fast orthogonal

calibration of a ring laser strapdown system Symp.Gyro

Technology(Stuttgart,West Germany)pp13.0–13.21 [6]Savage P G2007Strapdown Analysis(Maple Plain MN:

Strapdown Associates)pp3.66–3.96

[7]Camberlein L and Mazzanti F1985Calibration technique for

laser gyro strapdown inertial navigation system Symp.Gyro

Technology(Stuttgart,West Germany)pp5.0–5.13

[8]Ang W-T and Riviere C N2007Nonlinear regression model of

a low-g MEMS accelerometer IEEE Sensors J.781–8

[9]Yan G2006Research of vehicle autonomous position and

azimuth determining system(in Chinese)

[10]Yi G1987Inertial Navigation Theory(Beijing:China

Astronautic)pp106–9

[11]Chat?eld A1997Fundamentals of High Accuracy Inertial

Navigation(Reston,V A:AIAA)

温度计校准方法

温度计校准方法 1、目的:确保温度计精度 2、范围:适用数显温度计、玻璃温度计、双金属温度计精度校准。 3、校准方法 3.1校准周期:数显和玻璃温度计6个月、双金属温度计1年 3.2校准条件:20±5℃ 3.3校准用标准器:恒温炉、F200数显温度计 3.4外观检查: 3.4.1开机时显示屏幕应清晰,电池电量应充足。 3.4.2探头应无损伤、凹痕、氧化锈蚀及其它附着物。 3.4.3玻璃温度计的玻璃棒及毛细管粗细应均匀笔直,感温泡和玻璃棒无裂痕,液柱无断节和气泡。 3.5精度检查: 3.5.1可根据现场适用范围选择50℃、100℃、150℃、200℃等测量点(至少3个点)。 3.5.2让恒温炉开机半小时以上,达到设定温度直至温度变化小于0.1℃/min 3.5.3将被检探头及F200数显温度计探头分别插入相匹配的恒温炉孔内,要使探头全部插入孔内,待显示稳定分别读取温度计和F200数显温度计的显示值。 3.5.4玻璃温度计浸没深度不小于75mm,双金属温度计感温泡应全浸。 3.5.5校准时观察玻璃温度计液柱不得中断、倒流,上升时不得有显

见停滞或跳跃现象,下降时不得在壁管上有液滴或挂色,双金属温度计升温时指针平稳,无跳动、卡住等现象。3.5.6待温度稳定后分别读取标准值与被测值,读数视线应与刻度线垂直。 3.5.7若示值超差,应对显示器和探头单独校准。 3.6允许误差: 3.6.1热电偶热电阻允许误差:±(设定值×0.5%+0.5)℃,必要时可根据说明书或实际要求。下表是热电偶及热电阻允许误差,必要时可作依据。(t为设定值) 3.6.2玻璃温度计允许误差:

3.6.3双金属温度计允许误差=精度等级%×F.S,必要时参照其说明书上之要求。 3.7注意事项: 3.7.1感温头要防止冲、撞。 3.7.2保管时应注意通风干燥和无腐蚀环境中。 3.7.3不用时,尽量取出电池,以防电池漏液腐蚀仪表。 3.7.4温度高时应防止烫伤,表头勿近水。 4、表单记录 4.1校正记录表

压电式传感器测量加速度

压 电 式 加 速 度 测 试 系 统 姓名:张书峰 学号:201003140125 学院:机电学院 班级:机自101 指导教师:王玮

一设计概论 压电传感器是一种可逆性传感器,既可以将机械能转换为电能,又可以将机械能转换为电能。它是利用某些物质(如石英、钛酸钡或压电陶瓷、高分子材料等)的压电效应来工作的。在外力作用下,在电介质表面产生电荷,从而实现非电量测量的目的。因此是一种典型的自发电式传感器。压电传感器是力敏感元件,它可以测量最终能变换为力的那些非电物理量,例如,动态力、动态压力、振动加速度等 现有测试系统的各个组成部分常常以信息流的过程来划分。一般可以分为:信息的获得,信息的转换,信息的显示、信息的处理。作为一个完整的非电量电测系统,也包括了信息的获得、转换、显示和处理等几个部分。因为它首先要获得被测量的信息,把它变换成电量,然后通过信息的转换,把获得的信息变换、放大,再用指示仪或记录仪将信息显示出来,有的还需要把信息加以处理。因此非电量电测系统,具体来说,一般包括传感器(信息的获得)、测量电路(信息的转换)、放大器、指示器、记录仪(信息的显示)等几部分有时还有数据处理仪器(信息的处理)。它们间的 关系可 用右框 图来表 示。 其中传感器是一个把被测的非电物理变换成电量的装置,因此是一种获得信息的手段,它在非电量电测系统中占有重要的位 置。它获得信息 的正确与否,直 接影响到整个 测量系统的测 量效果。测量电 路的作用是把 传感器的输出

变量变成易于处理的电压或电流信号,使信号能在指示仪上显示或在记录仪中记录。测量电路的种类由传感器的类型而定。压电加速度传感器常用的测量电路是电荷放大器。常用的压电加速度传感器的动态测量系统如图1.2 二整体设计方案 1、测量的示意图 2、设计的原理 压电式加速度传感器属于惯性式传感器,工作原理是以某些物质的压电效应为基础,在加速度计受振时,加在压电元件上的力也随之变化。当被测振动频率远低于加速度计的固有频率时,则力的变化与被测加速度成正比,可以把被测的非电物理量加速度转化为电量。由于压电式传感器的输出电信号是微弱的电荷,而且传感器本身有很大内阻,故输出能量甚微,这给后接电路带来一定困难。为此,通常器信号选用电荷放大器作为电信号的测量电路。 3、方框图

加速度计标定方案

加速度计标定过程 一、为避免多次安装引入误差,对加速度计只进行一次安装,将惯性组件的坐标系XYZ对 应安装到转台零位上,使惯性组件X轴与分度头x轴平行,Y与y平行,Z与z轴平行。 利用十二位置法对加速度进行标定,每个位置采样时间1分钟。 二、数据处理 1、采用以下误差项模型 其中,Ax,Ay,Az为参考加速度值,Na=[Nax.Nay,Naz]’为三敏感轴输出加速度值。Da=[Dax,Day,Daz]’为敏感轴的零位误差,Kax,Kay,Kaz为刻度因数。Eaxy,Eaxz,Eayx,Eayz,Eazx,Eazy为误差耦合因数。 2、在12个不同位置测量,各个位置比力表如下(单位:g)。根据比力表可得到12组参 考加速度值Ax,Ay,Az。

3、 每个位置上采样1分钟,并对每个位置所得数据取平均值,获得一组Nax.Nay,Naz , 共有12组数。根据以上误差项模型,利用最小二乘法得最后有效系数 Kax,Kay,Kaz,Eaxy,Eaxz,Eayx,Eayz,Eazx,Eazy,Dax,Day,Daz 。 三、实验结果 利用MATLAB 编写最小二乘法程序,最后得到误差项模型数据如下。 a 1.00040.01200.00660.0016=0.0135 1.00100.00210.00250.00310.0008 1.01210.0534Kxx Exy Exz D x Eyx Kyy Eyz Day Ezx Ezy Kzz Daz -????????????????---???? 根据以下误差模型,利用实际测量的值Nax,Nay,Naz,便可得到实际值Aax,Aay,Aaz 。 -1a ax 0.99950.0120-0.0065a 0.0*-=-0.01350.9988-0.0020-0.00310.00080.9880Aax Kxx Exy Exz N x D N x Aay Eyx Kyy Eyz Nay Day Nay Aaz Ezx Ezy Kzz Naz Daz Naz ?????????????? ?????????????= ????????????? ???????????????????????????0200.0025-0.0528??????????

加速度计校准数据处理系统设计

龙源期刊网 https://www.360docs.net/doc/301088772.html, 加速度计校准数据处理系统设计 作者:刘莹解启瞻魏玫 来源:《科技创新导报》2017年第33期 摘要:为满足大批量加速度计校准数据处理的高可靠性、高准确度和高效率的需求,基 于虚拟仪器技术和计算机技术,依据加速度计检定规程,设计了一种加速度计校准数据处理系统。测试结果表明:系统人机交互界面友好,能够快速处理大批量加速度计校准数据,大大节省了加速度计校准数据处理、证书出具和原始记录出具的人力和时间资源,实用性强。 关键词:加速度计校准数据处理虚拟仪器 中图分类号:TP2 文献标识码:A 文章编号:1674-098X(2017)11(c)-0007-03 Abstract:To meet the high reliability, high accuracy and high efficiency need of calibration data processing for mass accelerometer, based on VI and computer technology, according to the V.R of accelerometer calibration, a kind of calibration data processing system for mass accelerometer has been developed. Testing results show that, the system has a friendly man-machine surface, and can quickly process large quantities of accelerometer calibration data. The system has very strong practicability. Key Words:Accelerometer; Calibration; Data processing; VI 加速度计通常与适调仪配用,用于振动与冲击加速度的测量[1]。在直升机领域内,加速 度计常被用做监控发动机故障和结构损伤等的感知设备,在航空航天、汽车电子、地质勘探等领域内,加速度计的应用也越来越广泛。通常,为保证加速度计能够获得准确的加速度测试数据,需周期性对其进行校准,维持加速度计的准确度,避免检测时误判[2]。但随着加速度计 的应用越来越广泛,加速度计的校准工作量也越来越大,对于计量工作者而言,经常一次就需要校准几十甚至是上百枚加速度计,校准完成后将会得到大量的校准数据,还需要进一步对这些校准数据进行数据处理和分析,根据数据分析结果判定所校加速度计是否合格,并出具原始记录和校准证书。而如果用传统的数据处理方法对每一个加速度计的校准数据进行分析处理,并手动调整数据格式使其满足原始记录和校准证书的要求是非常困难的,且单个加速度计的数据处理时间长,数据处理效率低,无法满足大批量加速度计的校准需求。 为此,本文根据加速度计的校准数据处理原理,针对加速度计的多参数、大批量校准的特点,以及对高可靠、高性能、高效率提出的要求,基于虚拟仪器技术和计算机技术,依据加速度计检定规程,构建一种高自动化的加速度计校准数据处理系统。 1 加速度计校准数据处理基本原理

温度计校准程序

温度计校准程序 1 目的:保证温度计的精确性。 2 适用范围:适用于本实验室所使用的温度计。 3 职责:本SOP 由室负责人落实。 4 程序 4.1 由设备科人员送质检局对温度计进行校准。 4.2 每年进行1 次。 4.3 经校准过的温度计可作为微量恒温器温度校温的参照。 1、温度计肯定有偏差的,看你使用的范围,如果低温使用的话,最好使用充分的冰水混合物校准,这个不一般比较稳定,不需要标准温度计的。 2、测高温的(50摄氏度以上)最好使用一支经过验证的比较精密的水银温度计来校准,楼主图片所示的那种,作为标准温度计有点粗放,有很精密的那种,买一支应该没问题。3、校准的频率很不错了,CCP用的每天校,其它的最好每周吧?每年一次官方校;然后最好就是规定特殊情况的处理,如跌落了,损伤探针…… 4、校准以后肯定有一个结果了?偏差肯定是有的,多少是可接受的?如何处理(写在温度计上,检测的结果根据偏差校正?),多少是不可接受的,如何处理? 5、责任人要明确。 以上个人看法。 加样器校准标准操作程序 1 目的:保证加样器加样的准确性。 2 加样器范围:各种品牌、型号的固定、可调和多通道加样器。 3 职责:本SOP 由室负责人执行落实。

4 校准程序 4.1 校准环境和用具要求: 4.1.1 室温:20~25℃,测定中波动范围不大于±0.5℃。 4.1.2 电子天平:放置于无尘和震动影响的台面上,房间尽可能有空调。称量时为保证天平内的湿度(相对湿度60~90%),天平内应放置一装有10ml 蒸馏水的小烧杯。 4.1.3 小烧杯:5~10ml 体积。 4.1.4 测定液体:温度为20~25℃的去气双蒸水。 4.1.5 选择校准体积:⑴拟校准体积;⑵加样器标定体积的中间体积;⑶最小可调体积(不小于拟校准体积的1%)。(4)如为固定体积加样器,则只有一种校准体积。 4.2 校准步骤: 4.2.1 将加样器调至拟校准体积,选择合适的吸头; 4.2.2 调节好天平; 4.2.3 来回吸吹蒸馏水3 次,以使吸头湿润,用纱布拭干吸头; 4.2.4 垂直握住加样器,将吸头浸入液面2~3mm 处,缓慢(1~3 秒)一致的吸取蒸馏水; 4.2.5 将吸头离开液面,靠在管壁,去掉吸头外部的液体; 4.2.6 将加样器以30℃角放入称量烧杯中,缓慢一致地将加样器压至第一档,等待1~3 秒,再压至第二档,使吸头里的液体完全排出;

速度、加速度的测定和牛顿运动定律的验证

中国石油大学(华东)现代远程教育 实验报告 课程名称:大学物理() 实验名 称: 速度、加速度的测定和牛顿运动定律的验证 实验形式:在线模拟+现场实践 提交形式:提交书面实验报告 学生姓学号: 年级专业层次:高起专 学习中心:________ 提交时间:2016 年6 月15 日

、实验目的 1.了解气垫导轨的构造和性能,熟悉气垫导轨的调节和使用方法。 2?了解光电计时系统的基本工作原理,学会用光电计时系统测量短暂时间的方法。 3.掌握在气垫导轨上测定速度、加速度的原理和方法。 4?从实验上验证F=ma的关系式,加深对牛顿第二定律的理解。 5?掌握验证物理规律的基本实验方法。 二、实验原理 1速度的测量 一个作直线运动的物体,如果在t~t+ △时间内通过的位移为\x x~x+ Ax ,则该物体在 1F =—— At时间内的平均速度为亠,△越小,平均速度就越接近于t时刻的实际速度。当 A t T 时,平均速度的极限值就是t时刻(或x位置)的瞬时速度 ir = lim ------------------——— (1) 实际测量中,计时装置不可能记下 A t T0勺时间来,因而直接用式(1)测量某点的速 度就难以实现。但在一定误差范围内,只要取很小的位移Ax测量对应时间间隔At就可 以用平均速度订近似代替t时刻到达x点的瞬时速度r。本实验中取Ax为定值(约10mm ), 用光电计时系统测出通过Ax所需的极短时间A,较好地解决了瞬时速度的测量问题。 2.加速度的测量 在气垫导轨上相距一定距离S的两个位置处各放置一个光电门,分别测出滑块经过这两 个位置时的速度v1和v2。对于匀加速直线运动问题,通过加速度、速度、位移及运动时间之间的关系,就可以实现加速度a的测量。 (1)由■- "-+■-测量加速度 在气垫导轨上滑块运动经过相隔一定距离的两个光电门时的速度分别为v1和v2,经过 两个光电门之间的时间为t21,则加速度a为 (2) (2)根据式(2)即可计算出滑块的加速度。 (3)由厂测量加速度 设v1和v2为滑块经过两个光电门的速度,S是两个光电门之间距离,则加速度a为 根据式(3)也可以计算出作匀加速直线运动滑块的加速度。

加速度计24位置标定

加速度计标定实验 1加速度计的数学模型 0)/cos(,)cos(,)cos(,)(j j x y z j j x j y j z K K A A A N -=++ 其中: j=x/y/z ; j N 为加速度计的输出; 0j K 为加速度计的零偏; //x y z A 为加速度计在理想坐标系下敏感的加速度; )//,cos(z y x j 为加速度计为i 轴与其他两轴加速度计的交叉耦合角的方向余弦。 2加速度计标定方法-“六位置24点标定” 六位置指x/y/z 轴加速度计的输入轴分别指向上和下,共为六个位置,在每个位置绕铅垂线转一圈,间隔90o转动4个点,共为24点。在每个点采集n 数据,求取平均值作为这个点的采集数值: n i z y x N j z y x M n i /)),//(((),//(1∑==,j=1…24。 对每个位置四个点的值求平均,为该位置的加速度计的输出值。如x 轴加速度计在六个位置采集地数据为: ∑==41 ) ,()1,(i i x M x F ; ∑==85 ),()2,(i i y M x F ; ∑==12 9 ),()3,(i i z M x F ; ∑==16 13 ),()4,(i i x M x F ; ∑==20 17 ),()5,(i i x M x F ;

∑==24 21),()6,(i i x M x F 。 y 轴和z 轴的数据处理方法和x 轴的相同。 加速度计的零偏: 0((,1)(,2)(,3)(,4)(,5)(,6))/6j F j F j F j F j F j F j K =+++++ (j=x/y/z ) j 轴加速度计标度因数的分当量为: ((1,)(2,))/2*xj F j F j g K =- ((3,)(4,))/2*yj F j F j g K =- ((5,)(6,))/2*zj F j F j g K =- j=x/y/z ,j 轴加速度计的标度因数为j K =交叉耦合角的方向余弦为: cos(,)/xj j j x K K = cos(,)/yj j j y K K = cos(,)/zj j j x K K = 3误差的补偿 加速度计的输出补偿: 在t 时刻采集到三只加速度计的输出值为:123,,N N N ,有以下三个方程: 1011()/cos(1,)cos(1,)cos(1,) x y z N K K A x A y A z -=++ 2022()/cos(2,)cos(2,)cos(2,)x y z N K K A x A y A z -=++ 3033()/cos(3,)cos(3,)cos(3,)x y z N K K A x A y A z -=++ 其中Ax, Ay, Az 为理想坐标系中的三轴加速度计敏感的加速度,是要求的未知量。上面的方程组可以简化为 j N CA = []101120223033()/()/()/j N N K K N K K N K K =---

温度计内部校准规程

温度计内部校准规程 编号:HT-PB-ZY-2012-32 1.目的 对温度计进行内部校准,确保其准确性和适用性保持完好。 2.范围 适用于测量产品温度所使用的水银温度计。 3.校准用基准设备 外校合格的水银温度表(精度0.1℃). 4.环境条件 校准必须在室内进行;温度:室温;室温波动不得超过±3℃/h;湿度不大于75%;5.校准步骤 5.1 检查玻璃体是否破裂及刻度是否清晰,否则更换。 5.2 用一透明容器盛装适量自然溶解的冰水混合物。 5.3 把温度计有水银液体的一端放进冰水混合物中,然后观察水银柱的变化情况。 5.4 待水银柱变化稳定,再对照温度计刻度是否在0℃的位置,记录读数。 5.5 第一次测量完成后,取出温度计,待水银柱回到自然的位置后,重新第二次测量,这样连续测量三次,取得结果再取其平均值,记录在《内校记录表》内,允许误差±1.0℃。

5.6以上步骤完成后,把温度计放在50℃以下的温水中(30℃为宜),用基准水银温度 表进行校对(把探头放在水银柱旁边的温水中),对比并记录温度计的和基准温度表的温度读数。 5.7第一次测量完成取出温度计,待水银柱回到自然的位置后,再进行第二、第三次测 量,测量结果取其平均值,记录在《内校记录表》内,允许误差±1.0℃。 5.8 把温度计放在50℃以上的热水中(80℃为宜),重复5.6、5.7相关步骤。 5.9三次测量值与标准值之差,均在允许误差范围内,该温度计判校准合格。? 6.温度计校验周期: 每6个月1次 7.相关记录 7.1内校记录表。 内部校验记录表 编号:HT-JL-048-2012-01 序号:

加速度计误差标定流程

误差系数标定算法: 1.单个加速度计测量模型: 10i o p o p a E k k a k a k a ==+++ (1) a —加速度计输出指示值:g 。i a p a o a —沿加速度计输入轴,摆轴,输出轴向 作用的加速度分量: g 。E —加速度计的输出:一般为V 或者mA 。0k —加速度计偏值:g 。1k —刻度因素:V g 或者m A g 。o k ,p k —输出轴,摆轴灵敏度系数:无量纲。 2.非质心处的加速度计输出模型: [()]i T i a A r r ωωω θ=+??+?? (2) [()]o T o a A r r ωωω θ=+??+?? (3) [()]p T p a A r r ωωω θ=+??+?? (4) 其中,[()]A r r ωωω +??+? 代表位置r 处的加速度值,i θ,o θ,p θ分别为加速度计的敏感轴,输出轴和摆轴的方向向量。 将(2)(3)(4)带入(1)式并令[()]T A r r f ωωω +??+?= ,可得: ()10i o p o p a E k k f k k θθθ ==+?+?+? (5) 当存在安装方位误差时,即: i i i l θθθ=+?,o o o l θθθ=+?,p p p l θ θθ=+? (6) 其中,i l θ为加速度计敏感轴的理论设计安装方向向量;i θ?为加速度计敏感方向误差,其 余两轴类似。 将(6)带入(5),整理可得: ()10i i o p o p l o l p l o p a E k k f k k k k θθθθθθ ==+?+?+?+?+??+?? 令 i i o p o p l o l p l o p d k k k k θθ θθθθ=?+?+? +?? + ??,上式可变为: ()10i i l l a E k k f d θθ==+?+ (7) (7)式两边乘以刻度因子1k ,得:( )110i i l l E k k f k d θθ??=?+??+? ? ,令100K k k =?, 单位:V 或者mA ,代表等效零偏;( )1i i s l l k d θθθ=?+,单位:V g 或者m A g , 代表等效敏感方向向量。则上式可以变为:

温度计校正简易方法

温度计校正简易方法: 水银温度计是实验室中最常用的液体温度计,水银具有热导率大,比热容小,膨胀系数均匀,在相当大的温度范围内,体积随着温度的变化呈直线关系,同时不润湿玻璃、不透明而便于读数等优点,因而水银温度计是一种结构简单、使用方便、测量较准确并且测量范围大的温度计。 然而,当温度计受热后,水银球体积会有暂时的改变而需要较长时间才能恢复原来体积。由于玻璃毛细管很细,因而水银球体积的微小改变都会引起读数的较大误差。对于长期使用的温度计,玻璃毛细管也会发生变形而导致刻度不准。另外温度计有全浸式和半浸式两种,全浸式温度计的刻度是在温度计的水银柱全部均匀受热的情况下刻出来的,但在测量时,往往是仅有部分水银柱受热,因而露出的水银柱温度就较全部受热时低。这些在准确测量中都应予以校正。 (1)温度计读数的校正 将一支辅助温度计靠在测量温度计的露出部分,其水银球位于露出水银柱的中间,测量露出部分的平均温度,校正值Δt按式下式计算,即: Δt = 0.00016 h (t体- t环) 式中:0.00016一水银对玻璃的相对膨胀系数; h—露出水银柱的高度(以温度差值表示); t体一体系的温度(由测量温度计测出); t环一环境温度,即水银柱露出部分的平均温度(由辅助温度计测出)。 校正后的真实温度为:t真= t体+ Δt 例如测得某液体的t体=183℃,其液面在温度计的29℃上,则h = 183 -29 =154, 而t环= 64℃,则 Δt =0.00016×154×(183℃-64℃)=2.9℃ 故该液体的真实温度为:t(真) = 183℃+ 2.9℃= 185.9℃ 由此可见,体系的温度越高,校正值越大。在300℃时,其校正值可达10℃左右。 半浸式温度计,在水银球上端不远处有一标志线,测量时只要将线下部分放入待测体系中,便无需进行露出部分的校正。 (2)温度计刻度的校正 温度计刻度的校正通常用两种方法: A.以纯的有机化合物的熔点为标准来校正。其步骤为:选用数种已知熔点的纯有机物,用该温度计测定它们的熔点,以实测熔点温度作纵坐标,实测熔点与已知熔点的差值为横坐标,画出校正曲线,这样凡是用这只温度计测得的温度均可在曲线找到校正数值。 B.与标准温度比较来校正。其步骤为:将标准温度计与待校正的温度计平行放在热溶液中,缓慢均匀加热,每隔5℃分别记录两只温度计读数,求出偏差值Δt。 Δt = 待校正的温度计的温度- 标准温度计的温度 以待校正的温度计的温度作纵坐标,Δt为横坐标,画出校正曲线,这样凡是用这只温度计测得的温度均可由曲线找到校正数值。

加速度测试系统设计

机械工程测试技术基础

目录 1.简介 2.测试方案设计 3.测试系统组成 3.1压电加速度传感器 3.1.1组成 3.1.2工作原理 3.1.3灵敏度 3.2电荷放大器 3.2.1测试电路图 3.2.2数据计算处理 3.3动态信号分析仪 4.实验测试流程 5.说明总结 6.参考文献

压电加速度测试系统 1.简介 现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。它以动态信号为特征,研究了测试系统的动态特性问题,而动态测试中振动和冲击的精确测量尤其重要。振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。 压电式传感器是基于某些介质材料的压电效应,当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。压电式传感器具有体积小,质量轻,工作频带宽,结构简单,成本低,性能稳定等特点,因此在各种动态力、机械冲击与振动的测量以及声学、医学、力学、宇航等方面都得到了非常广泛的应用。 所以在此设计了一种压电式加速度测试系统,能够满足测试0—3G的低频率加速度测试。 2.测试方案设计 系统组成:压电加速度传感器、电荷放大器、动态信号分析仪 被测对象的振动加速度信号经传感器拾振,由传感器电缆将加速度信号送入该系统电荷放大器,电荷放大器将信号转换成电压信号并放大,通过数据采集测试仪采样,便实现对信号的采集。

最后在PC 端对实验数据进行处理并显示。 如下图所示 3.测试系统组成 3.1压电加速度传感器 3.1.1组成 由质量块、压电元件、支座以及引线组成 如下图所示 3.1.2工作原理 压电加速度传感器采用具有压电效应的压电材料作基本元件,是以压电材料受力后在其表面产生电荷的压电效应为转换原理的传感器。这些压电材料,当沿着一定方向对其施力而使它变形时,内部就产生极化现象 ,同时在它的两个相对的表面上便 产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状质压电 元件支座输出引线

温度计校正简易方法

温度计校正简易方法 水银温度计是实验室中最常用的液体温度计,水银具有热导率大,比热容小,膨胀系数均匀,在相当大的温度范围内,体积随着温度的变化呈直线关系,同时不润湿玻璃、不透明而便于读数等优点,因而水银温度计是一种结构简单、使用方便、测量较准确并且测量范围大的温度计。 然而,当温度计受热后,水银球体积会有暂时的改变而需要较长时间才能恢复原来体积。由于玻璃毛细管很细,因而水银球体积的微小改变都会引起读数的较大误差。对于长期使用的温度计,玻璃毛细管也会发生变形而导致刻度不准。另外温度计有全浸式和半浸式两种,全浸式温度计的刻度是在温度计的水银柱全部均匀受热的情况下刻出来的,但在测量时,往往是仅有部分水银柱受热,因而露出的水银柱温度就较全部受热时低。这些在准确测量中都应予以校正。 (1)温度计读数的校正 将一支辅助温度计靠在测量温度计的露出部分,其水银球位于露出水银柱的中间,测量露出部分的平均温度,校正值△按式下式计算,即: △t = 0.00016 h (体-t 环) 式中:0.00016一水银对玻璃的相对膨胀系数; h—露出水银柱的高度(以温度差值表示); t 体一体系的温度(由测量温度计测出); t 环一环境温度,即水银柱露出部分的平均温度(由辅助温度计测出)。 校正后的真实温度为:t真二t体+ △t 例如测得某液体的t体=183C,其液面在温度计的29C上,则h = 183 -29 = 154,而t环二64C,贝卩 △t =0.00016 X 154 E (18?)=29C

故该液体的真实温度为:t(真)二183C + 29C = 1859C 由此可见,体系的温度越高,校正值越大。在300 C时,其校正值可达10C 左右。 半浸式温度计,在水银球上端不远处有一标志线,测量时只要将线下部分放入待测体系中,便无需进行露出部分的校正。 (2)温度计刻度的校正 温度计刻度的校正通常用两种方法: A. 以纯的有机化合物的熔点为标准来校正。其步骤为:选用数种已知熔点的纯有机物,用该温度计测定它们的熔点,以实测熔点温度作纵坐标,实测熔点与已知熔点的差值为横坐标,画出校正曲线,这样凡是用这只温度计测得的温度均可在曲线找到校正数值。 B. 与标准温度比较来校正。其步骤为:将标准温度计与待校正的温度计平行放在热溶液中,缓慢均匀加热,每隔5C分别记录两只温度计读数,求出偏差值从 △ t待校正的温度计的温度-标准温度计的温度 以待校正的温度计的温度作纵坐标,△为横坐标,画出校正曲线,这样凡 是用这只温度计测得的温度均可由曲线找到校正数值。

加速度测量仪的设计

<<综合课程设计>> 课程设计报告 题目:加速度测量仪的设计专业:电子信息工程 年级:2010级 学号: 学生姓名: 联系电话: 指导老师: 完成日期:2013年 12月10日

摘要 利用ADXL345模块、STC89C52RC、LCD1602、12MHZ晶振等元件,制作加速度测量仪,实现能够测量静态下的重力加速度值和物体的倾角。经测试,系统达到课程设计的基本要求,具有易于操作,制作成本低的优点。 关键词:ADXL345模块;STC89C52RC;LCD1602;加速度测量仪;重力加速度;倾角

ABSTRACT Using the ADXL345 module, STC89C52RC, LCD1602, 12MHZ crystal element, making acceleration measurement instrument, and can dip angle acceleration of gravity measuring static values and objects. After testing, the system to meet the basic requirements of curriculum design, has the advantages of easy operation, advantages of low production cost. Key Words:the ADXL345 module; STC89C52RC; LCD1602; accelerometer; gravity acceleration; angle

数字温度计校准规程

1 目的 规范数字温度计校准的操作,确保数字温度计的校准结果真实、可靠。 2 范围 本规程适用于温度测量范围为(‐80~+300)℃、温度传感器外置且具有100mm以上信号传输线缆(测量杆)的以数字形式显示被测温度值的数字温度计(以下简称温度计)的校准和使用中检验。 3 职责 工程设备部:负责按本规程执行数字温度计的校准及校准记录的管理。 4 定义 4.1 温度计由温度传感器和指示仪表所组成,用于温度测量。 4.2 温度传感器主要有热电偶、热电阻、半导体温度传感器、集成温度传感器等。 4.3 温度计的基本工作原理如下:传感器感受被测温度的变化输出一个电信号值,经信号处理后由数字显示器指示出被测温度值。 5 内容 5.1 计量性能要求 5.1.1 示值误差:Δt=±a%F.S.; 式中:Δt—温度计示值的最大允许误差(℃); a—准确度等级,它常选用的选取值为0.1、0.2、0.5、1.0,也可按照制造厂的规定; F.S.—仪表的量程,即测量范围上、下之差(℃)。 5.1.2 回差:温度计的回差应不大于最大允许误差的绝对值。 5.2 外观 5.2.1 温度计外形结构完好,产品的名称、型号规格、准确度等级或允许基本误差、测量范围、制造厂名或商标、出厂编号、制造年月、计量器具制造许可证及编号等应有明确的标记。 5.2.2 温度计的数字显示器应显示清晰、无缺笔划、闪烁等影响读数的缺陷,数字显示不应出现间隔跳动的现象,小数点、极性和过载的状态显示应正确。 5.3 校准条件 5.3.1 标准器 5.3.1.1 从提高校准能力出发,标准仪器及配套设备引入的扩展不确定度与被校温度计最大允许误差绝对值相比应尽可能小。 5.3.1.2 选用标准器如下:二等标准水银温度计(‐30~+300)℃,过程校准仪。 5.3.1.3 配套设备如下:恒温槽。 5.3.2 环境条件 5.3.2.1 环境温度:(20±5)℃; 5.3.2.2 环境湿度:45%~75%; 5.3.2.3 除地磁场外无其他外界电磁干扰; 5.3.2.4 无腐蚀性气体。 5.4 校准项目和校准方法 5.4.1 外观 5.4.1.1 检查温度计的外观,标志应符合5.2.1的要求。

红外温度计的校正方法研究

红外温度计的校正方法研究 1 引言 自2003年抗击非典以来,我们不断经历着各种流感疫情的袭击,09年的甲型H1N1流感,以及今年的H7N9禽流感等等,都严重危害着人的生命健康,造成了大量的经济损失。流感疫情的防治工作十分繁重,快速发现流动人员中的患者是防止流感疫情蔓延的重要措施之一。 各种流感疫情患者的特征之一是发高烧,体温一般高于38℃。因此,快速鉴别流动人群中可能存在的疑似高温病人是防止流感疫情蔓延的重要措施之一。 现如今,我国各机场、车站、码头、高速公路等纷纷配备了非接触式红外辐射温度计(包括红外耳温计、红外快速筛检仪、红外热像仪等)用于对人群进行快速体温测试,多达数十万台,它们正发挥着巨大的作用。随着红外体温计的大量使用,其测量方法、仪器准确度和量值溯源的问题也突出暴露出来,这就对我们计量检测机构提出新的要求。 2红外体温计的测温原理 人体的红外辐射特性与它的表面温度有着十分密切的关系,人体主要辐射波长在9—10脚的红外线,通过对人体自身辐射红外能量的测量,便能准确地测定人体表面温度。由于该波长范围内的光线不被空气所吸收,因而可利用人体辐射的红外能量精确地测量人体表面温度。红外温度测量技术的最大优点是测试速度快,1秒钟以 内可测试完毕。由于它只接收人体对外发射的红外辐射,没有任何其他物理和化学因素作用于人体,所以对人体无任何害处。且能够有效避免国内传统的体温计,快速,准确,没有交叉感染地测出人体温度,使用方便,因而拥有广阔的发展前景。 3校正方法 依据JJFl 107—2003测量人体温度的红外温度计校正规范,校正红外体温计的黑体辐射源由具有一定开口、壁面温度已知、内表层发射率高的等温空腔构成。黑体空腔的辐射特性取决于空腔的封闭性、腔壁温度的均匀性和内表层材料的辐射特性。本院设计了一款采用置于温度均匀的恒温水槽内的薄壁空腔装置来校正红外体温计。该装置配备了6只紧固力可调温度计支架,方便温场测试;4种光阑口径可供选择;具有非金属耐高温光阑及防腐涂层,满足黑体要求的柱体锥底比,其标称发射率大于O.998。 以红外耳温计的校正为例,将被检仪器在测试条件下至少稳定30min。将恒温水槽 先后设定在35.5。C,37.O℃,41.O℃.在每个恒温水槽设定温度下分别对黑体进行不少于4次的测量读数,记录下被校红外耳温计的示值ti,黑体温度‘抗用标准铂电阻温度计测量恒温水槽内的温度得出。则被校红外耳温计的示值修正值A tf_‘6i—ti。校正时应注意:若该红外耳温计有估算模式,应将估算模式下的温度读数转换为校正模式下的温度读数;若校正时红外耳温计的探头保护罩比腔体开口小,应想办法使其与腔体开口紧密接触。

压电加速度测量系统的设计

收稿日期:2007 10 17 作者简介:邢丽娟(1973 ),女,内蒙古包头市人,讲师,硕士,主要从事智能仪器及计算机过程控制的研究与应用。 文章编号:1004 2474(2009)02 0215 03压电加速度测量系统的设计 邢丽娟,杨世忠 (青岛理工大学自动化工程学院,山东青岛266520) 摘 要:现代工业和自动化生产过程中,动态测试中振动和冲击的精确测量很重要。常用压电加速度传感器 来获取冲击和振动信号。在研究压电加速度传感器的基础上,分析了测量的工作原理,提出加速度测量的设计方法;加入温敏元件,进行温度补偿,使其应用温度范围扩大。给出适合该类传感器的信号检测电路和加速度测量系统组成。此设计方法具有较高的准确性和应用推广价值,并具有结构简单,成本低,性能稳定等优点。 关键词:压电加速度传感器;测量;设计中图分类号:T P212 文献标识码:A Design for Piezoelectric Accelerometer Measurement System XING Li juan,YANG Shi zhong (College of Automation En gineering,Qingdao T echnological University,Qingdao 266520,Chin a) Abstract:In modern industry and automatic pro ductio n,the accurate measurement of the v ibration and str ike in test ing dynamically seems especially import ant.Fo r the acquisit ion of signal,the mo st co mmon used sensor is piezoe lect ric accelero meter.On the basis o f researching piezo electric acceler ometer senso r,this paper analyzed the w o rk pr inciple o f measurement,pro po sed a kind o f acceler ometer measur ement desig n method.A dding temperature sensor to com pensat e t emperat ur e,the applied temperature rang could be w ider.Detectio n cir cuit suiting this kind of sensor and the sy stem co mpo sitio n o f acceler ometer measurement was also g iv en in the paper.T his desig n metho d w as ac curate w ith hig h v alue for application and ext ensio n.A lso the st ruct ur e w as simple,the pr ice was lo wer and the per fo rmance w as stable. Key words:piezoelect ric accelero meter senso r;measurement;design 现代工业和自动化生产过程中,非电物理量的测量和控制技术会涉及大量的动态测试问题。所谓动态测试是指量的瞬时值以及它随时间而变化的值的确定,即被测量为变量的连续测量过程。它以动态信号为特征,研究了测试系统的动态特性问题,而动态测试中振动和冲击的精确测量尤其重要。振动与冲击测量的核心是传感器,常用压电加速度传感器来获取冲击和振动信号。压电式传感器是基于某些介质材料的压电效应[1],当材料受力作用而变形时,其表面会有电荷产生,从而实现非电量测量。压电式传感器具有体积小,质量轻,工作频带宽等特点,因此在各种动态力、机械冲击与振动的测量以及声学、医学、力学、宇航等方面都得到了非常广泛的应用。 1 测量原理 压电加速度传感器采用具有压电效应的压电材料作基本元件,是以压电材料受力后在其表面产生电荷的压电效应为转换原理的传感器。这些压电材料,当沿着一定方向对其施力而使它变形时,内部就 产生极化现象,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状态;当作用力的方向改变时,电荷的极性也随 着改变。 压电加速度传感器的原理如图1所示。实际测量时,将图中的支座与待测物刚性地固定在一起。当待测物运动时,支座与待测物以同一加速度运动,压电元件受到质量块与加速度相反方向的惯性力的作用,在晶体的两个表面上产生交变电荷(电压)。当振动频率远低于传感器的固有频率时,传感器的 图1 压电加速度传感器原理图 第31卷第2期压 电 与 声 光 Vo l.31No.22009年4月 PI EZO EL ECT ECT RI CS &ACO U ST OO PT ICS Apr.2009

温度计校准规程

温度计校准标准 1 范围 适用于新购置和使用中的,测量范围为-30℃(不含)~300℃的工作用温度计的校准。 2 温度计的分类 根据分度值和测量范围不同,分为精密温度计和普通温度计,见表1。 表1 温度计的分类℃ 3 环境要求 环境温度25±10℃。 4 标准器及配套设备见下页表2 5 校准方法 5.1 将标准温度计与被检温度计垂直插入槽中,插入前应注意预热(零上温度计)。恒温槽恒定温度偏离检定点控制在±2℃以内(以标准温度计为准),再缓慢调整至检定温度。 5.2 温度计在恒定的恒温槽中要稳定10分钟(水银温度计)或者15分钟(有机液体温度计)方可读数。读数过程中标准温度计的温度波动不得超过0.2℃。读数要迅速,时间间隔要均匀,视线应与刻度垂直,读取液柱弯月面的最高点(水银温度计)或最低点(有机液体温度计),读数要估读到分度值的1/10。 5.3 温度计采用比较法在三点以上进行校准:用一支标准水银温度计与被检温度计处于同一恒定温度下,读数比对。校准顺序:以零点为界分别向上限或下 限方向逐点进行。校准点间隔如表3。 5.4 精密温度计读取四次,普通温度计读数两次,其顺序为标准、被测1、被测2、被测n,然后再相反顺序读回到标准,最后取算术平均值,分别得到标准温度计及被检温度计的示值。

表2 标准器及配套设备℃ 表3 温度计校准点间隔

5.5 修正值的计算: 二等标准水银温度计实际温度 = 二等标准标准水银温度计示值 + 该点的修正值 被校温度修正值 = 标准温度计的实际温度 - 被检温度计示值 6 校准周期 检定周期应根据使用情况确定,一般不超过1年。 内挍周期为六个月,出现异常时也应进行内挍。 7.注意事项 水银温度计应尽可能浸没在恒温槽中,校准时环境不符合规定时,其露出的液柱按下式进行修正(一般可忽略不计):

微加速度测量系统设计论文

微加速度测量系统设计论文 本系统选用石英挠性加速度计作为加速度测量传感器。国内常用的惯 性级石英挠性加速度计不能直接满足要求,为实现高精度加速度测量,需要对加速度计实行误差分析与补偿。石英挠性加速度计的测量误差 主要来自2个方面:一方面是加速度计自身结构的不完善,比如:质 量不平衡、结构的弹性变形、不等弹性等;另一方面,一些物理因素的 影响,如变化的温度场、仪表内部的杂散磁场或外部干扰磁场等。对 于前者,只能通过改进制造工艺来提升加速度计的测量精度;而对于后者,能够通过改善加速度计工作环境,为加速度计建立严格电磁屏蔽 和精密温控的环境,提升石英挠性加速度计的稳定性,从而提升测量 精度[7,8]。因为系统工作环境复杂,外界温度变化范围大,为有 效地实现加速度计高精度温度控制,设计了二级温控结构。 为有效抑制外界低频磁场干扰,设计了二级磁屏蔽结构,理论上屏蔽 的总效果在50dB以上,完全能满足石英挠性加速度计对磁场屏蔽结构 的要求。图2为本系统加速度计磁屏蔽和两级温控结构示意图。第一 级温控结构采用数字温度传感器作为温度测量传感器,半导体制冷器(TEC)作为温度控制件,改变控制电流大小和流向能够实现不同功率的 制冷或制热,将温度控制在30℃,精度控制为±0.5℃。第二级温控 结构采用Pt电阻器作为温度测量传感器,采用薄膜加热片作为温度控 制件,改变控制电流的大小实现不同功率的加热,将温度控制在50℃,与第一级温控环境保持一定温差,实现±0.1℃的控制精度。温度控 制芯片采用TIC2000系列DSP,控制算法采用积分分离的PI控制。当 系统刚开机工作时,因为偏差较大,容易产生积分饱和,所以,取消 积分作用,只采用比例控制,以加快系统的响应时间;当系统温度接近 设定值时,加入积分作用,以消除稳态误差,提升精度。虽然各误差 系数与诸物理参数有确定的函数关系,但误差系数并不是通过这些函 数关系计算出来的,而是通过实验室条件下的测试确定出来的。所以,安装好加速度计后需要通过实验室转台测试出各误差系数,对加速度 计输出数学模型实行误差补偿。

相关文档
最新文档