钢管压扁矫正残余应力分析

钢管压扁矫正残余应力分析
钢管压扁矫正残余应力分析

 第37卷第10期 2003年10月

上海交通大学学报

JOU RNAL O F SHAN GHA I J I AO TON G UN I V ER S IT Y

V o l .37N o.10 

O ct .2003 

收稿日期:2002211210

基金项目:教育部跨世纪优秀人才培养计划基金资助

作者简介:徐 勇(19772),男,江苏涟水人,硕士,从事计算机辅助工程应用研究.程先华(联系人),男,教授,博士导师.

电话(T el .):021*********;E 2m ail :xhcheng @sjtu .edu .cn

文章编号:100622467(2003)1021526203

钢管压扁矫正残余应力分析

徐 勇, 程先华

(上海交通大学机械与动力工程学院,上海200030)

摘 要:应用有限元分析软件M arc 建立了斜辊钢管矫直机的压扁矫正模型.基于循环应力2应变试验数据,编制了应力2塑性应变关系子程序,分析了钢管材料的塑性变形特性.采用运动硬化法则,描述了金属材料在循环载荷作用下的B au sch inger 效应.通过计算机模拟给出了钢管在压扁矫正过程中的应力应变和矫后残余应力分布状况.关键词:钢管;压扁;弹塑性有限元;残余应力中图分类号:T G 33;TB 115 文献标识码:A

Re s idua l S tre s s Fo r m a tion D uring the C rus hing of Tube

X U Y ong , CH EN G X ian 2hua

(Schoo l of M echan ical Eng .,Shanghai J iao tong U n iv .,Shanghai 200030,Ch ina )

A bs tra c t :N um erical si m u lati on fo r the cru sh ing p rocess of a tube w as carried ou t ,u sing M arc as fin ite ele 2

m en t codes .T he sub rou tine of the relati on sh i p betw een the stress and p lastic strain w as w o rked ou t based on the cyclic stress 2strain test ,w h ich can be u sed to analyze the p lastic behavi o r of the tube steel .K ine 2m atic harden ing ru le w as u sed to accoun t fo r the B au sch inger effect of m etal under cyclic loading .T he strain and stress h isto ries du ring the cru sh ing w ere investrigated and num erically si m u lated .T he residual stress distribu ti on after cru sh ing w as evaluated .

Ke y w o rds :tube ;cru sh ing ;elasto 2p lastic FE M ;residual stress

钢管在轧制、焊接和热处理后,存在纵向弯曲和横截面圆度误差,这些缺陷必须通过矫直工序予以消除.作为钢管生产的最后环节,矫直决定了钢管的形状精度,也影响到钢管的力学性能.轧制、定减径和淬火过程产生的残余应力可通过回火加以消除.回火之后进行的矫直,成为钢管产生残余应力的主要原因.

钢管残余应力的测量方法有:X 2射线衍射法和环切法,前者仅能得到钢管外表面深度在10Λm 范围内的残余应力;后者只能得到钢管环向的平均残余应力.对于冷矫直情况下的残余应力分布,一般的

看法是:内表面为压应力,外表面为拉应力,壁厚中间部位在应力为零的中性区.本文采用计算机数值模拟的方法对钢管矫直过程进行了分析,给出了钢管截面残余应力的分布情况,分析了压扁矫正过程中钢管的应力应变.利用M arc 有限元分析软件[1,2],建立了钢管矫直模型.

1 数学模型的建立

采用U pdated L agrange 方法研究钢管压扁矫正过程.基于P randl 2R eu ss 塑性流动理论、结合von M ises 屈服准则建立的弹塑性有限元本构方程为

d Ρij =2G

?ik ?j l )+

Τ

1-2Τ?ij ?k l d Εk l -d Κ5f

5Ρij

(1)式中:Ρij 为应力张量;G 为剪切弹性模量;?ij 为K ro 2neckerf 符号;Εij 为应变张量;下标i 、j 、k 、l 为应力应

变的不同方向;Τ为泊松比;d Κ和f 与材料的硬化法则有关.钢管在压扁过程中要受到循环载荷的作用,

为了描述金属材料的B au sch inger 效应,以运动硬化为钢管材料的硬化法则.

5f 5Ρij =Ρ′i j Α′i j (2)式中:Ρ′i j 为应力偏量;Α′i j 为加载曲面的中心在应力空间的移动张量;Α′i j 为其偏量

.d Κ=9G (Ρ′i j -Α′i j )d Εij

2Ρλ2

(H ′+3G )

(3)式中:Ρλ为等效应力;H ′为简单拉伸应力塑性应变曲线的斜率.

以材质为20g 钢的锅炉管为研究对象.文献[3]用单试样步增量法测定了20g 钢在应变控制循环载荷下的循环应力2应变曲线,给出了试验数据,并利用线性回归方程得:

Ρ=K Εp n

(4)式中:Ρ为真实应力幅;K 为循环强度系数,K =

684M Pa ;Εp 为塑性应变幅;n

为循环应变硬化指数,n =0.1353.由式(4)得到的曲线和试验数据的对比如图1所示.从图中可以看出,理论曲线与实验数据较吻合.在M arc 中编写基于Ρ—Εp 关系式的子程序以描述钢管材料的塑性行为.

图1 试验数据与理论Ρ—Εp 曲线的对比

F ig .1 Comparison betw een the m easured and

theo retic calculated Ρ—Εp curves

2 钢管压扁的数值模型

钢管压扁矫正主要起到消除圆度误差的作用.在建立压扁模型时,假设钢管是平直的,仅存在圆度偏差.

以外径为60mm ,壁厚为8mm 的20g 钢锅炉管为研究对象,将压扁矫正过程作为平面应变问题来分析,模型如图2所示.图2中的两条曲线为辊形

曲线在钢管横截面上的投影,设辊子为刚性体,忽略钢管与辊子之间摩擦,矫直温度为常温,即冷矫直.

图2 钢管横截面的单元划分及边界条件

F ig .2 M esh of model in the tube cro ss secti on and bound 2

ary conditi ons

定义不圆度为

Χ=2(D m ax -D m in )D m ax +D m in ×100%

(5)

式中:D m ax 为钢管的最大外径;D m in 为钢管的最小外

径.

矫直前钢管在图2中x 方向的D m in =5.95m ,

y 方向D m ax =60.5mm ,不圆度为1.7%,平均外径

为60mm .钢管材料的杨氏模量E =209GPa ,屈服极限Ρs =275M Pa ,泊松比Τ=0.3.

钢管沿壁厚方向划分8等分,沿环向划分80等分.在钢管内壁施加一无摩擦弹性支撑,刚度为1N mm .当内边界某处位移为1mm 时,该处将产

生1GPa 的压力.因为刚体的运动较容易控制,可以刚体的转动代替实际压扁过程中钢管的转动.在钢管y 方向最大外径处两点施加了x 方向的约束边界条件,限制钢管的转动.模拟分析时,辊子相对运动将钢管压扁,随后绕钢管轴心旋转3周,最后辊子与钢管分离.载荷加载时间共1.2s ,分440步运算.

参照文献[4]给出的压扁量计算公式:

b =2×0.2325

(D -h )2Ρs

E h

(6)式中:D 为钢管外径(mm );h 为钢管壁厚(mm );计

算得到的压扁量为0.21mm .压扁矫正后的残余不圆度为0.3%,平均外径为59.99mm .

3 应力应变分析

压扁矫正中,钢管环向受到循环拉伸和压缩作用,环向残余应力远大于径向及轴向残余应力.环向残余应力近似呈对称分布,故取钢管截面的1 4,残余应力分布状况如图3所示.

钢管外表面残余应力为拉应力,内表面残余应力以压应力为主.钢管原始外径偏大和偏小处的应

7

251 第10期

徐 勇,等:钢管压扁矫正残余应力分析

图3 钢管环向残余应力分布

F ig .3 D istributi on of the circum ferential residual stress

力状态较复杂,拉压应力交错分布,在两者之间的区

域应力由内到外从压应力过渡到拉应力.

图3中0°、45°及90°不同壁厚处环向残余应力分布如图4所示.图中T 为钢管径向壁厚.0°处的钢管原始外径偏差最小,90°处的钢管原始外径偏差最大,45°则介于两者之间.经过矫直以后T =0mm 钢管内表面为压应力,T =8mm 钢管外表面为拉应力,壁厚中间部位在应力为零的中性区,残余应力数值在-170~220M Pa .0°内壁处残余应力较特殊,也为拉应力状态,其值为50M Pa 左右

.

图4 钢管截面0°、45°、90°处径向残余应力分析

F ig .4 R esidual stress along the tube th ickness in

directi on 0°,45°and 90°

respectively

图5 环向弹性及塑性应变轨迹

F ig .5 C ircum ferential elastic and p lastic strains h isto ry

钢管外壁45°处结点的应变和塑性应变如图5所示.钢管外壁塑性应变为负值,塑性应变的趋势是使钢管的外径减小.当等效应力值小于屈服极限时,塑性应变保持不变,在图中呈平台状.

4 结 语

文中建立了钢管压扁有限元模型,塑性变形特性由循环应力2应变关系描述,基于运动硬化法则处理B au sch inger 效应,能够准确地描述钢管材料在压扁矫正过程中的非线性特性.通过模拟计算,得到了外径为60mm ,壁厚为8mm 的20g 钢锅炉管在压扁矫正后的残余应力状况.模拟结果表明,经过冷矫直的钢管存在很大的残余应力,要降低套管的残余应力,必须采用温矫直工艺.参考文献:

[1] 左 旭,卫原平,陈 军,等.十字轴多工位模锻成形

的三维有限元仿真[J ].上海交通大学学报,1999,33

(2):192-195.

Z UO Xu ,W E I Yuan 2p ing ,CH EN Jun ,et al .3D FE M si m ulati on of the cro ss 2shaft m ulti 2stage fo rg 2ing p rocesses [J ].Journal of Shangha i J i aotong Un i 2versity ,1999,33(2):192-195.

[2] 卫原平,夏 欣,冯建华,等.多工步板料成形过程的

计算机仿真[J ].上海交通大学学报,1999,33(2):244

-246.

W E I Yuan 2p ing ,X I A X in ,FEN G J ian 2hua ,et al .Computer si m ulati on fo r m ulti 2stage sheet m etal fo r m ing p rocesses [J ].Journal of Shangha i J i aotong Un iversity ,1999,33(2):244-246.

[3] 张 罡,水 丽,郝延平,等.20g 钢焊接循环应力2应

变特性研究[J ].沈阳工业学院学报,1999,18(3):26

-30.

ZHAN G Gang ,SHU I L i ,H ao Yan 2p ing ,et al .Study on the cyclic stress 2strain behavi o rs fo r w eld m etal of 20g steel [J ].Journal of Shenyang I n sti -tute of Technology ,1999,18(3):26-30.

[4] 宋 华,于晓光,王德斌,等.斜轧钢管矫正机压扁量

的确定[J ].钢管,1999,28(3):10-14.

SON G H ua ,YU X iao 2guang ,WAN G D e 2bin ,et al .D eter m inati on of flattening rate of cro ss 2ro ll p i pe straigh tener [J ].Steel P ipe ,1999,28(3):10-14.

8

251 上 海 交 通 大 学 学 报

第37卷 

铣刀片的应力场分析

铣刀片的应力场分析 作者:董丽华袁哲俊李振加严复钢 1.引言 铣削属断续切削,切削过程中刀片受力非常复杂,力的大小和方向随时变化,刀片的失效形式主要为冲击破损。因此,采用有限元法对铣刀片应力场进行分析,以寻求减少刀片破损的刀具最佳几何角度,对于铣刀片槽型的开发具有指导意义。 2.面铣切削加工坐标系统的建立 面铣切削加工坐标系统由刀体坐标系和刀片坐标系组成,如图1所示。 图1面铣切削加工坐标系统 在刀体坐标系中,Y轴为铣刀轴线,X轴在基面内过刀尖与Y轴相交。在刀片坐标系中,y1轴通过主切削刃,x1轴通过副切削刃,刀片前刀面在x1o1y1平面内。铣刀半径为R=OO1,铣刀前角为γ0,刃倾角为λs,主偏角为K,法向前角为γn。 面铣刀无论具有何种几何角度,都可看作是由刀体坐标系经过一次平移和三次旋转而成,可用矩阵表示为 其中A11=cosγn sinηr+sinγn sinλs cosηr

A12=cosγn cosηr-sinγn sinλs sinηr A13=sinγn cosλs A21=-cosλs cosηr A22=cosλs sinηr A23=sinλs A31=-sinγn sinηr+cosγn sinλs cosηr A32=-sinγn cosηr-cosγn sinλs sinηr A33=cosγn cosλs tgγn=tgγ0cosλs 3.切入冲击力方向的确定 铣削与车削的不同之处在于铣削为断续切削,存在着切入、切出过程,铣刀的破损主要是由机械冲击力引起的。因此,首先要确定铣刀切入瞬间冲击力的作用方向。铣削时,铣刀高速旋转,工件缓慢进给,若忽略进给运动(因进给运动速度仅为铣刀运动速度的约1/4),铣刀切入冲击力的方向应该在刀具相对工件运动的切线方向上。如图2所示。 图2 切入冲击力的方向 由图1可知,切入冲击力方向为Z轴方向,力F分解到刀片坐标系中为 式中A13、A23、A33取值见式(1),代入具体参数得

X射线衍射在残余应力分析中应用

X射线衍射在材料分析中的应用 一、X射线衍射原理 X射线照射晶体,电子受迫振动产生相干散射,同一原子内各电子散射波相互干涉形成原子散射波。由于晶体内各原子呈周期排列,因而各原子散射波间也存在固定的位相关系而产生干涉作用,在某些方向上发生相长干涉,即形成了衍射波。由此可知,衍射的本质是晶体中原子相干散射波叠加(合成)的结果。 二、X射线衍射在材料分析中的应用 X射线衍射分析方法在材料分析与研究工作中具有广泛的用途: 1)物相分析:物相分析是指确定材料由哪些相组成和确定各组成相的含量。物相是决定或影响材料性能的重要因素,因而物相分析在材料、冶金、机械等行业中得到广泛应用。物相分析有定性分析和定量分析2 种: ①相定性分析的目的是检测固体样品中的相组成,采用未知样品衍射图谱与标 准图谱比较的办法. 如果衍射图谱相同即可确定为该物相。但如果样品为多相混合试样时,衍射线条谱多,谱线可能发生重叠,就需要根据强度分解组合衍射图谱来确定。 ②物相定量分析就是确定物质样品中各组成相的相含量. 根据衍射强度理论,物质中某相的衍射强度Ii与其质量百分数Xi 成如下关系 .Ii = KiXi/ Um 其中, Ki 为由实验条件和待测相而共同决定的常数;Xi 为质量百分数;Um 为待测样品的平均质量吸收系数,与Xi 有关。根据Um 的校正提出一系列物相定量分析方法,如内标法、K 值法、直接对比法,一般相定量分析误差可控制在5%以下; 2)结晶度:X 射线衍射图谱中,在一些情况下,结晶物质的图谱和非晶物质图谱重叠. 结晶度定义为结晶部分质量与总的试样质量之比的百分数. 目前非晶态合金用处很多,如软磁材料等. 而结晶度直接影响其材料的性能、损耗等. 测定结晶度方法主要是根据结晶相的衍射图谱面积与非晶相图谱面积的比,也可根据衍射线位置来确定结晶度; 3)残余应力分析:将产生应力的各种外部因素去除后,物体内部依然存在的应力称为残余应力. 在固体样品中,固体处于弹性极限内,该物质将随所受外力的大小而发生形变,从微观的角度来讲其晶面间距d 将发生改变,因此, 可根据d 值变化来测量残余应力σ.由于残余应力测试的特殊性,所以必须在X 射线衍射仪基础上加应力附件测试; 4) 微晶大小:X射线衍射图中峰宽β表现了构成物质的晶粒大小,峰宽化的原因除了晶粒的大小还有晶粒内部的非均匀应变. 使用Scherrer 公式和Hall 公式可计算微晶大小和非均匀应变; 5)晶体取向的测定:又称为单晶定向,是指测定晶体样品中晶体取向与样品外观坐标系的位向关系通过建立合适的外坐标系之后,对样品进行所要求的晶面或晶向的方位测定材料的性质与它的物相组成、结晶度和结晶粒子的大小、材料内部微观应变都有密切关系。

表面残余应力分析

表面残余应力 胡宏宇 (浙江工业大学机械工程学院,浙江杭州 310032) 摘要:残余应力主要是由构件内部不均匀的塑性变形引起的。各种工程材料和构件在毛坯的制备、零件的加工、热处理和装配的过程中都会产生不同程度的残余应力。残余应力因其直观性差和不易检测等因素往往被人们忽视。残余应力严重影响构件的加工精度和尺寸稳定性、静强度、疲劳强度和腐蚀开裂。特别是在承力件和转动件上,残余应力的存在易导致突发性破坏且后果往往十分严重。因此,研究残余应力的产生机理、检测手段、消除方法以及残余应力对构件的影响[1]。 关键词:残余应力;切削变形;磁测法;喷丸强化; Surface residual stress (S chool of mechanical engineering,Zhejiang University of Technology,Hangzhou 310032,China) Abstract:Residual stress is mainly caused by the uneven plastic deformation of component. All kinds of engineering materials in the preparation of blank, parts and components processing, heat treatment and assembly process will produce different degree of residual stress. Residual stress because of its intuitive factors such as poor and difficult to detect is often neglected. Seriously affect the residual stress of component machining precision and dimension stability, static strength, fatigue strength and corrosion cracking. Especially on the bearing and rotating parts, the existence of the residual stress can lead to sudden destruction and the consequences are often very serious. Therefore, to study the mechanism of residual stress, detection means, elimination method and the influence of residual stress of components。 Key words:Residual stress;machining deflection;magnetic method;Shot peening strengthening; 前言 随着现代制造技术的发展,大飞机、高铁、核设施等大型设备相继出现;这些设备具有高速、重载和长时间运行的特点,其零部件工作环境恶劣、复杂,且往往对安全性有着极其苛刻的要求,因而对这些设备的关键部件,如轴承、曲轴、传动轴的疲劳寿命和可靠性也有很高的要求,对它们的疲劳寿命预测 和分析成为研究的重点. 金属切削加工是一个伴随着高温、高压、高应率的塑性大变形过程, 在已加工表面上存在着相当大 的残余应力; 同时又由于切削过程切削力和切削热作用及刀具与工件的摩擦等综合因素的影响, 使得零件内部初始的残余应力重新分布并与表面层残余应力耦合作用形成新的残余应力分布规律。残余应力以平衡状态存在于物体内部, 是固有应力域中局部内应力的一种。残余应力是一种不稳定的应力状态, 当物体受到外力作用时, 作用应力与残余应力相互作用, 使其某些局部呈现塑性变形, 截面内应力重新分配; 当外力作用去除后, 整个物体由于内部残余应力的作用将发生形变。 根据理论分析和实验研究的结果,工件的疲劳寿命和加工表面的残余应力状态有重要的关系:残余压应力能抑制工件的疲劳破坏,延长疲劳寿命;残余拉应力则相反,会加速疲劳破坏的出现[2].因此,了解

钢管许用应力

钢管许用应力 钢管壁厚表示方法有管子表号、钢管壁厚尺寸和管子重量三种方法 Sch10s、Sch40s、Sch80s四个等级; 2)以钢管壁厚尺寸表示? 中国、ISO、日本部分钢管标准采用 3)是以管子重量表示管壁厚度,它将管子壁厚分为三种: A.标准重量管,以STD表示 B.加厚管,以XS表示 C.特厚管,以XXS表示。 对于DN≤250mn的管子,Sch40相当于STD,DN<200mm的管子,Sch80相当于XS。补充: 1、以管子表号(Sch.)表示壁厚系列 这是1938年美国国家怔准协会ANSIB36.10(焊接和无缝钢管)标准所规定的。 管子表号(Sch.)是设计压力与设计温度下材料的许用应力的比值乘以1000,并经圆 整后的数值。即 ????? Sch .=P/[ó]t×1000??? (1-2-1) 式中? P—设计压力,MPa;?? ????????? [ó]t—设计温度下材料的许用应力,MPa。 无缝钢管与焊接钢管的管子表号可查资料确定。 ANSI B36.10和JIS标准中的管子表号为;Sch10、20、30、40、60、80、100、120、140、160。 ANSI B36.19中的不锈钢管管子表号为:5S、10S、40S、80S。 ??? 管表号(Sch.)并不是壁厚,是壁厚系列。实际的壁厚,同一管径,在不同的管子表

号中其厚度各异。不同管子表号的管壁厚度,在美国和日本是应用计算承受内压薄壁管厚度 的Barlow公式计算并考虑了腐蚀裕量和螺纹深度及壁厚负偏差-12.5%之后确定的,如公式 (1-2-2)和(1-2-3)所示。??? tB=D0P/2[ó]t??????? (1-2-2)??????????????? t=[D0/2(1-0.125)×P/[ó]t]+2.54??? (1-2-3) 式中? tB 、t——分别表示理论和计算壁厚,mm D0————管外径,mm P——设计压力,MPa [ó]t——在设计温度下材料的许用压力,MPa 计算壁厚径圆整后才是实际的壁厚。 如果已知钢管的管子表号,可根据式(1-2-1)计算出该钢管所能适应的设计压力,即 ????? P=Sch..× [ó]t/1000??????????????? (1-2-4) 例如,Sch40,碳素钢20无缝钢管,当设计温度为350oC时给钢管所能适应 设计压力为: P=40×92/1000①=3.68 MPa 中国石化总公司标准SHJ405规定了无缝钢管的壁厚系列并Sch.5S②,? Sch.10, Sch.10s,Sch.20,Sch.20s,Sch.30,Sch.40,Sch。40s,Sch.60,Sch.80,Sch.100, Sch.120,Sch.140,Sch。160,如表1-2-9所示。 2、以管子重量表示管壁厚度的壁厚系列 美国MSS和ANSI规定的以管子重量表示壁厚方法,将管子壁厚分为;种: ??? (1)标准重量管以STD表示;

Q235_A钢管弯曲回弹角建模与分析

Q235)A 钢管弯曲回弹角建模与分析 t 刘金武 倪小丹 高为国 摘要 分析Q235)A 钢管弯曲回弹过程,利用残余应力分布规律、静力矩平衡条件、变形协调条件等回弹理论推出回弹曲率和回弹角的计算公式,计算其回弹角并与实测值比较。比较结果表明,弯曲角度和弯曲半径与管子直径比值改变时,误差不同。在一定条件下,误差在5%以内。关键词:钢管 回弹角度 建模 中图分类号:TG162.44 文献标识码:A 文章编号:1671)3133(2003)05)0051)02 Modeling and analyzing the bending re 2spring angle of pipe Q 235)A t Liu Jinwu,Ni Xiaodan,Gao Weiguo Abstr act Analyzes the changing process of the stress and strain of pure plastic bending r e 2spring for pipe 1According to the function on stress of r e 2spring,the condition of the balance of moment and co ordination of defor m,calculating formulas of the re 2spring angle and the re 2spr ing curve of pipe are inferred.The experiamental result shows t hat formulas are so precise that it can be applied in engineering. Key words:P ipe Angle of re 2spring Modeling 数控弯管机的控制技术要求利用回弹模型对加工进行补偿。目前常用的补偿模型是近似计算法、弹性模量计算法和简化系数法。这三种方法存在适用范围 窄、误差大、补偿困难的缺点,难于满足生产的高效要求。为此,本文分析回弹的应力应变过程,考虑弯曲时材料的屈服强度、弹性模量、壁厚、管径、弯曲角、弯曲半径、加工硬化、管子精度、塑性区形状和大小、应力状态等多因素的影响,建立了回弹角的数学模型,并与试验结果进行了对比分析。 一、Q235)A 钢管的弯曲回弹过程 图1 内应力分布弯曲回弹现象是钢管在弯曲卸载后,内应力恢复的外在特征。回 弹后,内应力由有载荷时的内、外平衡转变成为无载荷时的内部平衡。内、外平衡时,内、外静力和静力矩大小相等,方向相反。内部平衡时, 内应力按另一规律分布,维持自身的静力、静力矩平衡和变形协调。回弹过程实质是卸载后,内应力重新分布的过程,内应力分布如图1所示。其弯曲残余应力R r 分布规律如下: R r = R s -Ey $k h e 0-R s -Ey $k h e <|y |[R,y <0R s (y /h e )-Ey $k 0[|y |[h e ,(1)式中,R s 为屈服强度;E 为弹性模量;h e 为弹性核高度;$k 为回弹曲率;y 为弯曲梁截面高度坐标;R 为钢管外半径。 二、钢管弯曲回弹曲率建模 从式(1)可知道回弹曲率与弯曲残余应力的关系, 而残余应力的大小和分布规律可按静力平衡条件和静力矩平衡条件求得。对于弯曲回弹问题,有截面上静 力矩之和为零的等式(见图2): Q R -R R r xy d y -Q R 1-R 1R r xy d y =0或:Q R o R r xy d y -Q R 1o R r xy d y =0(2) ,,,,,,, 将表达式(1)和x = R 2-y 2代入式(2),有: Q R o R r R 2-y 2y d y -Q R 1o R r R 2-y 2y d y =0,(3) 式中,R 1为管子孔半径;R 为管子的外半径。将式(1)代入式(3)并采用分段积分。式(3)中第二项在分段积分时,先比较h e 与R 1的大小。当h e >R 1时,在积分区间0[y [R 1,弯曲残余应力函数表达式取R r =R s (y/h e )-Ey $k;当h e [R 1时,积分区间分为二个。在0[y [h e 区间,弯曲残余应力函数取R r =R s (y/h e )-Ey $k;在h e

管道应力分析和计算

管道应力分析和计算

目次 1 概述 1.1 管道应力计算的主要工作 1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法 1.4 管道荷载 1.5 变形与应力 1.6 强度指标与塑性指标 1.7 强度理论 1.8 蠕变与应力松弛 1.9 应力分类 1.10 应力分析 2管道的柔性分析与计算 2.1管道的柔性 2.2管道的热膨胀补偿 2.3管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算 2.6 冷紧 2.7 柔性系数与应力增加系数 2.8 作用力和力矩计算的基本方法2.9 管道对设备的推力和力矩的计算

3 管道的应力验算 3.1管道的设计参数 3.2钢材的许用应力 3.3管道在内压下的应力验算 3.4 管道在持续荷载下的应力验算 3.5管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算 3.7力矩和截面抗弯矩的计算 3.8 应力增加系数 3.9 应力分析和计算软件

1 概述 1.1 管道应力计算的主要工作 火力发电厂管道(以下简称管道)应力计算的主要工作是验算管道在内压、自重和其他外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力;判断计算管道的安全性、经济性、合理性,以及管道对设备产生的推力和力矩应在设备所能安全承受的范围内。 管道的热胀应力应按冷、热态的应力范围验算。管道对设备的推力和力矩应按冷状态下和工作状态下可能出现的最大值分别进行验算。 1.2 管道应力计算常用的规范、标准 (1)DL/T 5366-2006火力发电厂汽水管道应力计算技术规程(2)ASME B 31.1-2004动力管道 在一般情况下,对国内工程采用DL/T 5366进行管道应力验算。对涉外工程或顾客有要求时,采用B 31.1进行管道应力验算。 1.3 管道应力分析方法 管道应力分析方法分为静力分析和动力分析。 对于静荷载,例如:管道内压、自重和其他外载以及热胀、冷缩和其他位移荷载作用的应力计算,采用静力分析法。DL/T 5366和B31.1规定的应力验算属于静力分析法。同时,它们也用简化方法计及了地震作用的影响,适用于火力发电厂管道和一般动力管道。 对于动载荷,例如:往复脉冲载荷、强迫振动载荷、流动瞬态冲击载荷和地震载荷作用的应力计算采用动力分析法。核电站管道和地震烈度在9度及以上地区的火力发电厂管道应力计算采用动力分析法。 1.4 管道荷载

地质构造应力场分析方法与原则

地质构造应力场分析方法与原则 发表时间:2019-01-04T10:34:05.383Z 来源:《基层建设》2018年第34期作者:郭建锐[导读] 摘要:构造应力场是地球动力学重要组成部分,是地壳动力学的主体部分,其研究对于构造分析研究、地震分析预报、工程抗震等领域都有着十分重要的理论和实践意义。 赤峰市利拓矿业有限公司内蒙古赤峰市 024000摘要:构造应力场是地球动力学重要组成部分,是地壳动力学的主体部分,其研究对于构造分析研究、地震分析预报、工程抗震等领域都有着十分重要的理论和实践意义。本次研究针对地质构造应力场的测量方法水力压裂法、井壁崩落法、磁组构法进行分析,并对地质构造应场力分析原则进行阐述,继而进一步丰富构造应力场的理论。 关键词:地质构造;构造应场力;应场力引言:构造应力场就是在一个空间范围内构造应力的分布。构造应力场是作用在地壳某一地区内部的和由于这一地区某种变形的构造单元的发育而出现的应力总和。应力场是一种物理场,它和其他物理场,如重力场、电滋场、位势场等一样,也是物质存在的一种形式。场不是空间,而是在空间范围内某个物理量的按势分布。随着时间的变化,场内各点的强度和方向也将发生变化。构造应力场是地球动力学重要组成部分,是地壳动力学的主体部分,其研究对于构造分析研究、地震分析预报、工程抗震等领域都有着十分重要的理论和实践意义。 1.地质构造应力场概述 构造应力场概念是由我国地质学家李四光率先提出的。1947年李四光提出用构造形迹反推构造应力场,并研究各种不同力学性质的构造形迹与应力方向、应力作用方式之间的相互关系。1940年格佐夫斯基也提出研究构造应力场,并把用赤平投影求主应力轴方向的方法引进构造应力场的研究。1950年一1996年国内外地质工作者结合地震地质的研究工作开展了构造应力测量,经多年努力,通过野外与室内实测证实了构造应力的存在,并探索、研究了行之有效的构造应力测量技术方法,完善了构造应力测量的理论基础,建立了可靠的测量技术方法和数据处理系统。万天丰(1999)、武红岭(1999,2003)等将矿场构造应力场研究的方法延伸到盆地构造研究领域,取得了人量的研究认识和资料,极大地丰富了构造应力场研究理论,也为盆地构造应力场研究积累了丰富的地质认识和方法。1970年构造应力场的研究有长足进展,逐渐深入到地质学的多个领域。1980年以后,构造应力场问题越来越受到国内外地质学界的重视,研究内容多涉及板块、大陆,大洋地区的构造应力场。1990年以来,全球大陆与海洋科学钻探计划开始研究现今构造应力和古应力状态和岩石圈动力学问题。 2.地质构造应力场分析方法 构造应力场研究的主要内容是在确定各地的点应力状态(应力方向和应力大小)的基础上,研究在一定区域范围内各个构造活动时期的构造应力分布特征。古应力测量可通过构造形迹分析法、古地磁法、节理测量法来确定古构造应力作用方向,利用声发射法。晶格位错法等可确定古地应力值的大小(导致地层变形时的最大水平古应力)。现今应力测量可利用震源机制解法、水力压裂法、井壁崩落法等来确定现今构造应力最大主应力方向,利用声发射法、经验公式法可确定现今地应力大小。 2.1.1水力压裂法 水力压裂测量地应力的方法首先在美国发展起来,1977年B.Haimson在井深5.1Km处进行了水力压裂地应力测量。我国学者葛洪魁(1998)、康红普(2014)均在研究中采用水力压裂测量法进行验证。水力压裂(Hydraulic fracturing)地应力测量是通过在井眼周围地层中诱发人工裂缝来获取地应力的一种方法,测试精度受多种因素的影响,如测试层位筛选、施工仪器设备、施工方案的选择以及测试数据的分析等。 2.1.2井壁崩落法 井壁崩落椭圆法的理论依据为崩落椭圆是由地壳内的构造应力场形成的,所以二者之间存在确定的关系。它的基本原理是,由于地壳内存在水平差应力,致使钻井壁形成应力集中,在垂直于最大水平主应力(压应力为正)方向的井壁端切向应力最大,当该处切向应力达到或超过岩石的破裂极限强度时,即发生破裂,从而形成井壁崩落椭圆。1970年加拿大Bell在研究阿尔伯达油田四臂井径测量的地层倾角测井资料后,发现井眼扩大方向与区域内的最小水平主应力方向平行,Gough等也发现了这种现象。1985年,Zoboek使用井下电视观测证实了Boll的发现,并与B.Haimson等人对井眼崩落机制进行研究,说明了井壁崩落法是测量水平主应力方向的可行方法。shulnberger测井公司研究应用测井资料解释地层压力问题,并用于解释石油工程中的地层破裂压力、地层坍塌压力及油层出砂等问题。这种用测井资料解释地应力剖面的方法,己经能够解决石油工程中的许多问题。 2.1.3磁组构测量法 磁组构是指磁性颗粒或晶格的定向排列或组合,其实质是岩石磁化率各向异性。岩石磁化率各向异性是指岩石的磁化强度随方向的变化性质,包括感应磁化率各向异性与剩余磁化率各向异性。GrahamJ.w(1954)提出,儿乎所有岩石都可以观测到磁各向异性。研究表明,岩石的磁化率一般表现为磁化率数量椭球的形状和方向。椭球可以反映岩石内部铁磁性颗粒长轴的主要分布方向,与沉积搬运和充填方式、岩浆岩流动构造、变质岩类型和变质程度、页理、线理、褶皱轴方向等存在一定对应关系,是地史时期定向应力和温度作用的结果,是岩组分析和有限应变测量的重要手段之一。 3.地质构造应力场分析原则 3.1时间局限性原则 一般认为根据不同构造形变的切错和叠加等关系可以确定构造应力场的分期,即相对活动次序。可以根据组成构造形变的最新地层时代和角度不整合面之上的最老上覆地层的时代,来确定构造应力场作用的大致时间。如果有地层或侵入体同位素年代的资料时,构造应力作用的时间可以确定得更准确些。即使如此,构造应力作用的时间还是不可能确定得十分精确。 如果已知组成某一构造形变的最新地层年代和侵蚀了构造形变的不整合面之上的最老上覆地层的年代,构造形变肯定是在不整合形成期间发生的;但两个沉积地层的年代之间,发生了许多变化:老地层沉积之后要下沉、硬结成岩;受构造应力作用后造成构造形变;隆起遭受剥蚀;地壳重新下降,接受新的沉积。可以看出在整个不整合的形成过程中造成构造形变的构造应力作用只局限在一个较短的时间内。如果再考虑到同位素年代的不精确性(由于采样、测试方法等原因),要准确测定构造应力作用的时间实际上目前还难以实现。 3.2空间动态性原则

无缝钢管热处理残余应力研究进展

无缝钢管热处理残余应力研究进展 指导老师: (内蒙古科技大学材料与冶金学院) 摘要:为消除无缝钢管的轧制和热处理所产生的尺寸和椭圆度误差等缺陷,一般要采用定径工艺。而作为无缝钢管制造最后生产环节的定径工艺决定了管体的尺寸和几何形状, 同时也影响其力学性能。为此,文章研究了满足无缝钢管的尺寸和椭圆度要求下的定径的压下量和温度与残余应力分布的关系,进行无缝钢管定径时的金属流动规律分析,以便减小定径工艺产生的残余应力,获得最佳的定径效果,提高无缝钢管的机械性能,为定径工艺的制定提供理论依据。利用有限元分析软件MSC1M arc模拟无缝钢管淬火过程, 分析了淬火残余应力的分布情况况得到了残余应力按照温度梯度沿半径方向分层分布的规律。 关键词:无缝钢管; 热处理; 残余应力; Abstract: The sizing process must be taken in order to eliminate the size tolerance and roundness one after the seamless pipe rolled and heat treated. As the last procedure of producing the seamless pipe, the sizing pr ocess plays a key role in not only controlling the pipe size and geometr y shape, but also affecting its mechanical performance. There fore, to meet the tolerance requirements, sy stematic investig atio n has been car ried out t o find the dependence relationship of distribution of residual st ress o n the sizingmeasure and temperature. A detailed analy sis thus is performed to understand metal flow on the sizing defo rmation pro cess. This analysis w ill aid to reduce t he residual stress o f sizing pr ocess, achieve an o ptimized sizing technology and enhance the mechanical performance. The analysis results obtained may provide a theoretical foundation for establishing the sizing process. This paper simulates the quenching process o f the hot- rolled seam less pipe using the so ftwa re of M SC1M a rc by FEM. Key words:seamless pipe; heat treatment;residual stress; 1前言 1.1压下量和温度对残余应力分布的影响 在定径轧制中, 无缝钢管直径被压缩的同时,其壁厚也将发生变化, 管体的直径和椭圆度的变化主要取决于定径的压下量, 如果适当调整定径的压下量和温度, 就既能消除无缝钢管的椭圆度, 又能达到规定的直径尺寸, 从而也可使无缝钢管的力学性能有所提高。但是, 在进行无缝钢管定径的同时,也会使管体产生残余应力, 降低其机械强度。因此,为保证管体的几何

管道应力分析报告概述

管道应力分析概述 CAESARII软件介绍 CAESARII管道应力分析软件是由美国COADE公司研发的压力管道应力分析专业软件。它既可以分析计算静态分析,也可进行动态分析。CAESARII向用户提供完备的国际上的通用管道设计规范,使用方便快捷。交互式数据输入图形输出,使用户可直观查看模型(单线、线框,实体图)强大的3D计算结果图形分析功能,丰富的约束类型,对边界条件提供最广泛的支撑类型选择、膨胀节库和法兰库,并且允许用户扩展自己的库。钢结构建模,并提供多种钢结构数据库.结构模型可以同管道模型合并,统一分析膨胀节可通过标准库选取自动建模、冷紧单元/弯头,三通应力强度因子(SIF)的计算、交互式的列表编辑输入格式用户控制和选择的程序运行方式,用户可定义各种工况。 一、管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 二、管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据; 5)管道上法兰的受力计算——防止法兰汇漏。 动力分析包括:

l)管道自振频率分析——防止管道系统共振; 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 三、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载:如回转设备的振动。 四、管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管口荷载在制造商或国际规范(如 NEMA SM-23、API-610、API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载;

温度应力场分析

/prep7 et,1,55 !设置耐火材料属性 !导热系数 mptemp,1,20,100,200,300,400,500 mptemp,7,600,800,1000,1200,1400,1600 mptemp,13,1800 mpdata,kxx,1,1,1.28,1.3207,1.3614,1.4021,1.442,1.4835 mpdata,kxx,1,7,1.5242,1.6056,1.687,1.7684,1.8498,1.9312 mpdata,kxx,1,13,2.0126 mptemp,1,20,100,200,300,400,500 mptemp,7,600,800,1000,1200,1400,1600 mptemp,13,1800 !比热容 mpdata,c,1,1,842,866,895,924,954,983 mpdata,c,1,7,1012,1071,1130,1188,1247,1305 mpdata,c,1,13,1364 !密度,弹性模量,泊松比,膨胀系数 MPTEMP,1,20 MPDATA,DENS,1,,3300 MPDATA,ALPX,1,,0.0000106 MPDATA,EX,1,,200000000000 MPDATA,PRXY,1,,0.3 !钢材材料属性 MP,KXX,2,60.5 MP,c,2,470 MP,DENS,2,7850 MP,ALPX,2,0.000012 MP,EX,2,200000000000 MP,PRXY,2,0.3 RECTNG,0,1,0,1, RECTNG,1,2,0,2, RECTNG,2,3,0,2, AADD,1,2 aglue,all

钢管应力计算

第一章总则 第1.0.1条管道应力计算的任务是:验算管道在内压、自重和其它外载作用下所产生的一次应力和在热胀、冷缩及位移受约束时所产生的二次应力,以判明所计算的管道是否安全、经济、合理以及管道对设备的推力和力矩是否在设备所能安全承受的范围内。 第1.0.2条本规定适用于以低碳钢、低合金钢和高铬钢为管材的火力发电厂汽水管道的应力计算。 油、空气介质的管道应力计算,可参照本规定执行。 核电站常规岛部分管道应力计算,可参照本规定执行。 第1.0.3条管道的热胀应力按冷热态的应力范围验算。管道对设备的推力和力矩按在冷状态下和在工作状态下可能出现的最大值分别进行验算。 第1.0.4条恰当的冷紧可减少管道运行初期的热态应力和管道对端点的热态推力,并可减少管系的局部过应变。冷紧与验算的应力范围无关。 第1.0.5条进行管系的挠性分析时,可假定整个管系为弹性体。 第1.0.6条使用本规定进行计算的管道,其设计还应遵守《火力发电厂汽水管道设计技术规定》。管道零件和部件的结构、尺寸、加工等,应符合《火力发电厂汽水管道零件及部件典型设计》的要求。

第二章 钢材的许用应力 第2.0.1条 钢材的许用应力,应根据钢材的有关强度特性取下列三项中的最小值: σ b 20/3,σs t /1.5或σs t (0.2%)/1.5,σD t /1.5 其中 σb 20——钢材在20℃时的抗拉强度最小值(MPa ); σs t ——钢材在设计温度下的屈服极限最小值(MPa ); σ s t (0.2%)——钢材在设计温度下残余变形为0.2%时的屈服极限最小值(MPa ); σD t ——钢材在设计温度下105h 持久强度平均值。 常用钢材的许用应力数据列于附录A 。 国产常用钢材和附表中所列的德国钢材的许用应力按本规定的安全系数确定。 美国钢材的许用应力摘自美国标准ASME B31.1。 对于未列入附录A 的钢材,如符合有关技术条件可作为汽水管道的管材时,它的许用应力仍按本规定计算。

涂层残余应力预测分析模型

涂层残余应力预测解析模型:平面几何模型 热喷涂涂层:熔化的金属颗粒高速碰撞基板然后快速冷却(淬火),在几毫秒时间内冷却。形成大的拉应力。蠕变和屈服是主要的应力释放的机理。 一个典型的预测热喷涂涂层残余应力分布的数学模型。 1 模型公式 建立在平面几何的基础之上。 1.1 沉积应力 1.1.1 第一层 应变(1)σq——内(淬火)应力;E d——杨氏模量 假设每一个部位产生的应变是不相等的,并产生反作用力F(图1),于是有 (2) 可以写为(3) 在涂层形成一个很大的拉应力,同时,在基板上上产生一个对等的平衡的反作用力——压应力。 形成弯矩(banding moment)(4) 中性层δ1 (5) Composite beam stiffness

(6) 平衡弯矩M1,产生曲率变化,κ1-κ0 (7) 通常,κ0可以处理为零。如果涂层在凹面,则曲率是可以明确的。图1的情况。 假设双向应力相等(σx =σz),厚度方向应力可以忽略(σy =0)。 由泊松效应(Poisson effect),σz将在x方向导致一个应变。X方向的net应变可以写为 (8) 于是,x方向的应力应变关系可以表示为: (9) Effective young’s modulus value. 由于仅考虑弹性状态,因此,基板内沿着厚度方向的应力变化应该是线性的,只需要计算基板的底部和顶部的应力即可。从材料力学可以计算: (10) (11) 于是,可以得出涂层第一层中部的应力: (12) 1.1.2 第二层 考虑在基板(镀层)上冲击形成第二层,如图2所示。

不等应变的大小与前面相同。平衡应变改为: (13) 该式中,F2是作用在前面的镀层与基板构成的复合板上的,其中性层δ1如图1所示。这一层与基板具有相同的应变,E2e是等效杨氏模量: (14) 代入上式,可以得到F2的表达式: (15) F2分摊在镀层第一层和基板中。 作用在基板上的力为: (16) 同样,作用第一层镀层上的力为: (17) 显然地,F2s和F2w都是压应力。在镀层的第二层上存在与F2大小相等的拉应力。 大小相等方向相反的力对形成力矩M2: (18) 平衡弯矩M2,产生曲率变化,κ2-κ1 (19) 组合板的硬度(强度)可以写为: (20) 而且可以确定δ2为: (21)

XRD在残余应力分析中的应用

XRD 在残余应力分析中的应用 摘要 X 射线衍射测量残余应力的原理是以测量衍射线位移作为原始数据,所测量的结果实际上是残余应变,而残余应力是通过虎克定律由残余应变计算得到的。 关键词 X 射线衍射 残余应力 XRD 0.引言 X 射线衍射在残余应力分析中具有重要的作用。X 射线应用在残余应力的分析中,是科技的一项重大突破。其中在:定量分析轴承和内燃机喷射器部件中的残余奥氏体;检测输片惰性轮中的残余应力;检测汽车发动机部件的残余应力(凸轮轴、连杆、发动机轴、均衡器);检测由于全回火引起的残余应力(家用电器、结构部件);检测气体传导时所存在的工作压力;检测大幅度拉伸结构件中的工作应力;通过检测应力来测量工件喷丸和轧制的效率;检测铸件的残余应力(机械工具铸铁件和汽车铸铝部件);检测焊接引起的应力(激光和电焊);研究铝合金汽车轮廓中的残余应力和应力阻抗的关系;优化切削去除的工作参数以提高机械部件的应力阻抗;检测螺旋式和叶式弹簧的残余应力;研究加上工作载荷后的临界区域(武器和航空)等很多领域都有贡献。 1.X 衍射射线分析 1.1 原理简介 X 射线衍射分析是利用晶体形成的X 射线衍射,对物质进行内部原子在空间分布状况的结构分析方法。将具有一定波长的X 射线照射到结晶性物质上时,X 射线因在结晶内遇到规则排列的原子或离子而发生散射,散射的X 射线在某些方向上相位得到加强,从而显示与结晶结构相对应的特有的衍射现象,图1为X 射线衍射的产生。衍射X 射线满足布拉格(W.L.Bragg )方程:λθn d =sin 2 式中:λ是X 射线的波长;θ是衍射角;d 是结晶面间隔;n 是整数。波长λ可用已知的X 射线衍射角测定,进而求得面间隔,即结晶内原子或离子的规则排列状态。将求出的衍射X 射线强度和面间隔与已知的表对照,即可确定试样结晶的物质结构,此即定性分析。从衍射X 射线强度的比较,可进行定量分析。本法的特点在于可以获得元素存在的化合物状态、原子间相互结合的方式,从而可进行价态分析,可用于对环境固体污染物的物相鉴定,如大气颗粒物中的风砂和土壤成分、工业排放的金属及其化合物(粉尘)、汽车排气中卤化铅的组成、水体沉积物或悬浮物中金属存在的状态等等。]1[ 图1 X 射线衍射的产生 1.2 应用——物相分析

管道应力分析设计规定——寰球标准

2003年 月 日发布 2003年 月 日实施 质 量 管 理 体 系 文 件 HQB-B06-05.306PP-2003 设计规定 管道应力分析设计规定 版 号:0 受控号:

管道应力分析设计规定HQB-B06-05.306PP- 2003版号编制校核审核批准批准日期 主编部室:管道室参编部室: 参编人员: 参校人员: 会签部室 签署 会签部室 签署 会签部室 签署 说明: 1.文件版号为A、B、C......。 2.每版号中局部修改版次为1/A、2/A……,1/B、2/B……,1/C、2/C……。

本规定(HQB-B06-05.306PP-2003)自2003年月实施。 目录 1. 总则 (1) 2. 应力分析管线的分类及应力分析方法 (2) 3. 管道应力分析设计输入和设计输出 (6) 4. 管道应力分析条件的确定 (9) 5. 管道应力分析评定准则 (11) 附件1 管线应力分析分类表 (14) 附件2 设备管口承载能力表 (15) 附件3 柔性系数k和应力增强系数i (16) 附件4 API 610《一般炼厂用离心泵》(摘录) (17) 附件5 NEMA SM23 (摘录) (22) 附件6 API 661 《一般厂用空冷器》(摘录) (23)

1. 总则 1.1 适用范围 1.1.1 本规定适用于石油化工生产装置及辅助设施中的碳钢、合金钢及不锈钢管道的应力分析设计工作。 本规定所列内容为管道应力分析设计工作的最低要求。 1.1.2 管道应力分析设计应保证管道在设计和工作条件下,具有足够的强度和合适的刚度,防止管道因热胀冷缩、支承或端点的附加位移及其它的荷载(如压力、自重、风、地震、雪等)造成下列问题: 1)管道的应力过大或金属疲劳引起管道或支架破坏。 2)管道连接处泄漏。 3)管道作用在与其相联的设备上的载荷过大,或在设备上产生大的变形或应 力,而影响了设备的正常运行。 4)管架因强度或刚度不够而造成管架破坏。 5)管道的位移量过大而引起的管道自身或其它管道的非正常运行或破坏。 6)机械振动、声频振动、流体锤、压力脉动、安全阀泄放等动荷载造成的管 道振动及破坏。 1.2 应力分析设计工作相关的标准、规范: 1) GB150-1999 《钢制压力容器》 2) GB50316-2000 《工业金属管道设计规范》 3) HG/T20645-1998 《化工装置管道机械设计规定》 4) JB/T8130.2-95 《可变弹簧支吊架》 5) JB/T8130.1-95 《恒力弹簧支吊架》

相关文档
最新文档