电解整流器水冷系统的设计

电解整流器水冷系统的设计
电解整流器水冷系统的设计

整流器的原理

整流器的原理: 在以大功率二极管或晶闸管为基础的两种基本类型的整流器中,电网的高压交流功率通过变压器变换为直流功率。提到未来(不久的或遥远的)的其它类型整流器:以不可控二极管前沿产品为基础的斩波器、斩波直流/直流变换器或电流源逆变型有源整流器。显然,这种最新型的整流器在技术上包含较多要开发的内容,但是它能显示出优点,例如它以非常小的谐波干扰和1的功率因数加载于电网。 二极管整流器 所有整流器类别中最简单的是二极管整流器。在最简单的型式中,二极管整流器不提供任何一种控制输出电流和电压数值的手段。为了适用于工业过程,输出值必须在一定范围内可以控制。通过应用机械的所谓有载抽头变换器可以完成这种控制。作为典型情况,有载抽头变换器在整流变压器的原边控制输入的交流电压,因此也就能够在一定范围内控制输出的直流值。通常有载抽头变换器与串联在整流器输出电路中的饱和电抗器结合使用。通过在电抗器中引入直流电流,使线路中产生一个可变的阻抗。因此,通过控制电抗器两端的电压降,输出值可以在比较窄的范围内控制。 晶闸管整流器 在设计上非常接近二极管整流器的是晶闸管整流器。因为晶闸管整流器的电参数是可控的,所以不需要有载抽头变换器和饱和电抗器。 因为晶闸管整流器不包含运动部件,所以晶闸管整流器系统的维修减少了。注意到的一个优点是晶闸管整流器的调节速度较二极管整流器快。在过程特性的阶跃期间,晶闸管整流器常常调节很快,以致能够避免过电流。其结果是晶闸管系统的过载能力能够设计得比二极管系统小。 整流器的现状: 目前,业界推出的节能灯和电子镇流器专用三极管都十分注重对贮存时间的控制。因为贮存时间ts过长,电路的振荡频率将下降,整机的工作电流增大易导致三极管的损坏。虽然可以调整扼流圈电感及其他元器件参数来控制整机功率,但ts的离散性,将使产品的一致性差,可靠性下降。例如,在石英灯电子变压器线路中,贮存时间太大的晶体管可能引起电路在低于输出变压器工作极限的频率振荡,从而

汽车水散热器的概述及理论设计计算

汽车水散热器的概述 及理论设计计算 一、散热器概述 1汽车散热器的定义: 汽车散热器是水冷式发动机冷却系统的关键部件。通过强制水循环对发动机进行冷却,是保证发动机在正常的温度范围内连续工作的换热装置。 1、散热器在汽车中的重要地位 1汽车总成 产值比重按不同的车型能够占汽车总成的1~2.5% 2发动机总成 产值比重按不同的车型能够占发动机的15%左右 3、散热器结构的发展 1管片式开窗结构 2铜质管带式平片结构 3铜质管带式开窗结构 4铝质汽车散热器 5铜塑水箱或铝塑水箱 4、散热器的结构 1基本结构 2带补偿水壶结构 3带膨胀水箱结构 三、汽车的整体结构 温度过高及过低的坏处

温度过高 3温度过高时大多数零件都受热膨胀,温度越高,膨胀越大 4零件在高温下会降低强度,不能很好地工作 5温度过高时,其润滑油粘度降低,会加剧零件的磨损 6气缸内的温度过高时,进入气缸内的新鲜空气很快膨胀,就减少了进气量,降低功率。 7在汽油机中,气缸内温度过高时,容易产生爆炸现象 温度过低 2燃料不能完全燃烧,使燃料消耗增加 3使润滑油粘度增高,零件的摩擦阻力加大,消耗较多的功率,因而减少了输出功率 4废气中的水蒸气与硫化物生成一种叫亚硫酸的液滴腐蚀零件 5传走的热能增加,转变为机械功的热能减少,造成过多的散热损失. 汽车分类最新标准 以前的分类是我国1988年6月发布的有关标准GB/T3730.1-1988。 2目前新标准已将汽车的分类作了修改: 3一是废除了“轿车”的提法 4二是不再将”越野车”单独分类 5三是将汽车分为乘用车和商用车两大类 乘用车(不超过9座): 1分为普通乘用车、活顶乘用车、高级乘用车、小型乘用车、敞篷车、仓背乘用车、旅行车、多用途乘用车、短头乘用车、越野乘用车、专用乘用车。 商用车: 2分为客车、货车和半挂牵引车 3客车细分为小型客车、城市客车、长途客车、铰接客车、无轨客车、越野客车、专用客车。 4货车细分为普通货车、多用途货车、全挂牵引车、越野货车、专

三相PWM整流器控制器设计(精)

三相PWM 整流器控制器设计 PWM 整流器能够实现整流器电网侧的电流为正弦,从而大大降低整流器对电网的谐波污染。PWM 整流器同时能够实现电网侧电流相位的控制,常见的有使得电网侧电流与电源电压同相位,从而实现单位功率因数控制,也可以根据需要使得电网侧电流相位超前或滞后对应的电源相电压,从而实现对电网的功率因数补偿。 三相PWM 整流器主电路和控制系统原理图如图1所示,其中A VR 为直流侧电压外环PI 调节器、ACR_d、ACR_q分别为具有解耦和电源电压补偿功能的dq 轴电流内环PI 调节器,PLL 为电源电压锁相环,SVPWM 为电压空间矢量运算器,Iabc to Idiq、Vabc to ValfaVbeta和Vdq to ValfaVbeta分别为三相静止坐标-两相旋转直角坐标变换、三相静止坐标-两相静止直角坐标变换和两相旋转直角坐标-两相静止直角坐标变换。 图1 基于空间矢量的三相PWM 整流器原理图

根据开关周期平均值概念、三相电压型PWM 整流器开关函数表等,可得到三相电压型PWM 整流器在dq 坐标下微分方程形式和等效电路形式的开关周期平均模型。经过dq 轴电流解耦和电源电压补偿的控制系统结构图如图2所示,其中小写的变量表示该变量的开关周期平均值,大写的变量表示该变量在工作点的值。 v dc d dc q 图2 基于dq 轴电流解耦和电源电压补偿的控制系统结构图 对解耦和电源电压补偿之后的dq 轴等效电路进行工作点附近的小信号分析,即可得到小信号下的传递函数如式(1、(2)和(3)所示,其中L 、R 分别为交流侧的滤波电感及其等效电阻,C 为直流侧滤波电容,Dd 为d 轴在工作点的占空比。 ~ i d (s αd (s ~ i q (s αq (s ~ v dc (s i d (s V dc (1

水冷散热系统的设计

水冷散热系统的设计 水冷又称为液冷。水冷散热的原理非常简单:在一个密闭的液体循环装置,通过泵产生的动力,推动密闭系统中的液体循环,将热沉吸收的芯片产生的热量,通过液体的循环,带到面积更大的散热装置,进行散热。冷却后的液体在次回流到吸热设备,如此循环往复。 由于水冷散热效率高,热传导率为传统风冷方式的20倍以上,可以解决几百至数千瓦的散热问题,在激光、军工、医疗、电力电子、工业设备等行业有着广泛的应用。 水冷散热系统的分类: 根据二次换热器换热方式的不同,一般情况下可以将水冷散热系统分为以下三种类型:空气冷却系统、液体冷却系统、冷水机组冷却系统。 空气冷却系统一般主要由:水冷板、水泵、水箱、热交换器和风机组成。该系统结构简单,是最经济的水冷系统。 冷水机组冷却系统:由压缩机、水冷板、冷却塔等部分组成。这种方式水温可以精确的控制在环境温度以下,制冷量大。 水冷式冷水机组工作原理图: 液体冷却系统:它不含压缩机,主要由液体交换器、水泵、水箱等组成。低噪音、体积比冷水机组小一半以上。 水冷板的选择和计算 冷板作为水冷系统的重要组成部分,主要是将发热元器件产生的热量与冷却液充分交换。为了确保器件的发热表面在被液体冷却时能把所耗散的热量尽量全部带走,器件与冷板的接触和冷板的热阻就显得尤为重要!

设计适当的冷板,需要确定如下参数:冷却液体流速,冷却液体进口温度,安装在冷板上发热器件的热耗散功率,冷板表面允许的最高温度Tmax。已知这些参数,您就可以确定冷板的最大的允许热阻并且通过热仿真分析验证。

Tout:冷却液体出口温度 Tin:冷却液体进口温度 Q:冷板上发热器件的总热耗散功率 ρ:液体的密度 V:冷却液体流速 CP:冷却液体的比热容 计算冷却液体出口最高温度Tout。这个是非常重要的,如果Tout大于Tmax,那么,冷板将不能解决发热问题。 假设Tout小于Tmax,下一步需要确定冷板的标准化热阻,使用如下方程: :热阻 Tmax:冷板表面允许的最高温度 Tout:冷却液体出口温度 A:被冷却区域的面积 Q:冷板上发热器件的总热耗散功率 系统其他部分设计: 管道系统和阀门是水冷系统硬件重要组成部分,主要包括快速接头、管道、各种功能阀门(流量控制阀)、过滤器、其它管接头及密封件等。 管道的尺寸(如直径、长度等),应根据冷却液的流速来确定: 其中,Qv为水流量(m3/h);U为水流速(m/s)。可计算管道的直径。系统的管道材料,考虑到冷却介质特殊要求,全部采用无缝不锈钢管,局部用聚胺脂管。 冷却液:必须对冷却液的热传递能力、冰点和黏度、沸点和分解温度、绝缘性能、腐蚀性、可燃性、毒性、费用等加以考虑。常用冷却液有水、乙二醇溶液、硅油等。

水冷散热系统

水冷散热系统 一、原理 水冷又称为液冷。水冷散热的原理非常简单:在一个密闭的液体循环装置,通过泵产生的动力,推动密闭系统中的液体循环,将热沉吸收的芯片产生的热量,通过液体的循环,带到面积更大的散热装置,进行散热。冷却后的液体在次回流到吸热设备,如此循环往复。二、分类 根据二次换热器换热方式的不同,一般情况下可以将水冷散热系统分为以下三种类型:空气冷却系统、液体冷却系统、冷水机组冷却系统。 1、空气冷却系统一般主要由:水冷板、水泵、水箱、热交换器和风机组成。 该系统结构简单,是最经济的水冷系统。 2、冷水机组冷却系统:由压缩机、水冷板、冷却塔等部分组成。这种方式水 温可以精确的控制在环境温度以下,制冷量大。 3、液体冷却系统:它不含压缩机,主要由液体交换器、水泵、水箱等组成。 低噪音、体积比冷水机组小一半以上。 三、水冷板的选择与计算 设计适当的冷板,需要确定如下参数:冷却液体流速,冷却液体进口温度,安装在冷板上发热器件的热耗散功率,冷板表面允许的最高温度Tmax。已知这些参数,您就可以确定冷板的最大的允许热阻并且通过热仿真分析验证。 计算冷却液体出口最高温度Tout。这个是非常重要的,如果Tout大于Tmax,那么,冷板将不能解决发热问题。 假设Tout小于Tmax,下一步需要确定冷板的标准化热阻

,使用如下方程: 四、其他系统的设计 管道系统和阀门是水冷系统硬件重要组成部分,主要包括快速接头、管道、各种功能阀门(流量控制阀)、过滤器、其它管接头及密封件等。 管道的尺寸(如直径、长度等),应根据冷却液的流速来确定: 其中,Qv为水流量(m3/h);U为水流速(m/s)。可计算管道的直径。系统的管道材料,考虑到冷却介质特殊要求,全部采用无缝不锈钢管,局部用聚胺脂管。 五、冷却液与泵 必须对冷却液的热传递能力、冰点和黏度、沸点和分解温度、绝缘性能、腐蚀性、可燃性、毒性、费用等加以考虑。常用冷却液有水、乙二醇溶液、硅油等。 泵是冷却系统中的主要部分,其目的是为了使冷却剂以能够克服冷却回路中总流体摩擦热所需的流量进行循环。冷却系统中的常用的泵有离心泵,旋涡泵和齿轮泵。选择泵主要依据冷却系统所需的流量Qv及压头H来确定。为了便于调节,通常水泵的总扬程应比冷却系统所计算的压力约大15%~20%,流量应比计算值约大15%~20%。

单相PWM整流电路设计(电力电子课程设计)..

重庆大学电气工程学院 电力电子技术课程设计 设计题目:单相桥式可控整流电路设计 年级专业:****级电气工程与自动化学生姓名:***** 学号: **** 成绩评定: 完成日期:2013年6月 23 日

指导教师签名:年月日

重庆大学本科学生电力电子课程设计任务书

单相桥式可控整流电路设计 摘要:本文主要研究单相桥式PWM整流电路的原理,并运用IGBT去实现电路的设计。概括地讲述了单相电压型PWM整流电路的工作原理,用双极性调制方式去控制IGBT的通断。在元器件选型上,较为详细地介绍了IGBT的选型,分析了交流侧电感和直流侧电容的作用,以及它们的选型。最后根据实际充电机的需求,选择元器件具体的参数,并用simulink进行仿真,以验证所设计的单相电压型PWM整流器的性能。实现了单相电压型PWM整流器的高功率因数,低纹波输出等功能。 关键词:PWM整流simulink 双极性调制IGBT

目录 1.引言 ......................................................... - 5 - 1.1 PWM整流器产生的背景.................................... - 5 - 1.2 PWM整流器的发展状况.................................... - 5 - 1.3 本文所研究的主要内容.................................... - 6 - 2.单相电压型PWM整流电路的工作原理 ............................. - 7 - 2.1电路工作状态分析......................................... - 7 - 2.2 PWM控制信号分析......................................... - 8 - 2.3 交流测电压电流的矢量关系............................... - 9 - 3.单相电压型PWM整流电路的设计 ................................ - 10 - 3.1 主电路系统设计......................................... - 10 - 3.2 IGBT和二极管的选型设计................................. - 11 - 3.3 交流侧电感的选型设计................................... - 11 - 3.4 直流侧电容的选型设计................................... - 12 - 3.5 直流侧LC滤波电路的设计................................ - 13 - 4.单相PWM整流电路的仿真及分析 ................................ - 13 - 4.1 整流电路的simulink仿真............................... - 13 - 4.2 对simulink仿真结果的分析............................. - 16 - 5.工作展望 ................................................... - 16 - 参考文献 ...................................................... - 17 -

水冷散热器的安装与使用

水冷散热器的安装与使用 一、散热器与元件的安装 元件的冷却方式有加装散热器自然冷却,风冷和水冷等方式,为了使元件充分地发挥其额定性能并加强使用中的可靠性,除必须科学地选择散热器外还需正确地安装。只有正确地安装散热器才能保证其与元件芯片间的热阻R j-hs满足数据表中的要求。 在元件与散热器的安装时,应注意以下事项: 1.散热器的台面必须与元件台面尺寸相匹配,防止压扁、压歪损坏器件。 2.散热器台面必须具有较高的平整、光洁度。建议散热器台面粗糙度小于或等于1.6μm,平整度小于或等于30μm。安装时元件台面与散热器台面应保持清洁干净无油污等脏物。 3.安装时要保证元件台面与散热器的台面完全平行、同心。安装过程中,要求通过元件中心线施加压力以使压力均匀分布在整个接触区域。用户手工安装时,建议使用扭矩扳手,对所有紧固螺母交替均匀用力,压力的大小要达到数据表中的要求。 4.在重复使用水冷散热器时,应特别注意检查其台面是否光洁、平整,水腔内是否有水垢和堵塞,尤其注意台面是否出现下陷情况,若出现了上述情况应予以更换。 水冷散热器安装图见下图(图1): 二.用注意事项 1.用户应根据应用线路特点、工作环境、可靠性等要求,正确选择器件参数,并留有合理余量。 2.器件冷却条件 (1)强迫风冷:风速≥6米/秒 (2)水冷:流量≥4升/分钟

进水温度5°C-35°C 水压≥1.5Kg/cm2 水质:循环水ρ≥2.5KWcm。 产品使用时,应保证符合规定的冷却条件,否者应降容使用。散热器使用过程中,应注意放漏水、防堵塞、防凝露,出现问题时应及时处理或更换散热器。 3.严禁使用兆欧表(摇表)检查本器件。如需检查整机装置的耐压能力时,应先将本器件的各电极短路。 4.万用表只能定型判断器件好坏。用万用表“1欧姆”档测门极-阴极电阻,指针为零,说明门极短路;指针不动为开路。万用表不能对器件耐压做定量判断。若要对耐压和触发特性定性测试,请用专用测试仪或到厂商进行测定。 特别建议: 在重复使用水冷散热器时,应特别注意检查其台面是否光洁、平整,水腔内是否有水垢和堵塞,若出现了上述情况应予以更换。

三相pwm整流器的设计_毕业设计(论文)

毕业设计(论文) 题目PWM整流器的设计学院(系):自动化学院

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包括任何其他个人或集体已经发表或撰写的成果作品。本人完全意识到本声明的法律后果由本人承担。 作者签名: 年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保障、使用学位论文的规定,同意学校保留并向有关学位论文管理部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权省级优秀学士论文评选机构将本学位论文的全部或部分内容编入有关数据进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 本学位论文属于1、保密囗,在10年解密后适用本授权书 2、不保密囗。 (请在以上相应方框内打“√”) 作者签名: 年月日 导师签名: 年月日

武汉理工大学本科生毕业设计(论文)任务书 学生姓名覃峰专业班级电气0702 指导教师袁佑新教授胡红明讲师工作单位自动化学院 设计(论文)题目: PWM整流器的设计 设计(论文)主要内容: 熟悉整流的原理,对整流技术进行综述、比较,并设计出整流器硬件电路和软件程序。 要求完成的主要任务: (1)外文资料翻译不少于20000印刷符; (2)查阅相关文献资料(中文15篇,英文3篇); (3)掌握整流的原理; (4)撰写开题报告; (5)熟悉整流技术国内外的研究现状、目的意义; (6)对整流技术进行综述、比较; (7)计出整流器硬件电路和软件程序。; (8)绘制的电气图纸符合国标; (9)撰写的毕业设计(论文)不少于10000汉字。 必读参考书: [1] 王兆安,黄俊.电力电子技术.第4版.北京:机械工业大学出版社,2007 [2] 杨荫福,段善旭,朝泽云.电力电子装置及系统.北京:清华大学出版社,2006 [3] 张崇巍,张兴.PWM整流器及其控制.北京:机械工业大学出版社,2003 指导教师签名系主任签名 院长签名(章)

变频系统空水冷散热方案

变频系统空水冷散热方案 变频器的最大散热功率按照变频额定功率×4%(加余量20%)核算。根据现场的实际情况,综合冷却系统的投资和运营成本,提出下面的空-水冷却方案: 1.空-水冷却系统的工作原理: 空-水冷却系统是一种高效、节能、环保的冷却系统,其应用技术在国内处于领先地位。在高压大功率变频应用中得到了广泛应用。该系统由于其采用完全机械结构设计,较空调等电力、电子设备而言具有明显的安全、可靠性。 其主要原理是:将变频器的热风通过风道作用于空-冷装置进行热交换,由冷却水直接将变频器产生的热量带走;经过降温的冷风进行循环回至室内。空冷装置内进口冷水温度要求低于33℃,可以充分保证热风经过散热片后,将变频器室内的环境温度控制在40℃以下满足变频器运行对环境的要求。空-水冷却系统冷却水与循环风完全分离,水管线在变频室外与高压设备明确分离,并且系统本身设有通风开放转换方式,确保空-水冷却系统出现问题不会对整个变频系统运行造成安全威胁和事故。同时,由于房间密闭,变频器利用室内的循环风进行设备冷却,具有粉尘度低,维护量小的特点;减少了环境对变频器运行稳定性的不利影响。 2.系统安全性能评价: 设备整体安装于高压变频器室墙外,采用风道与变频器的柜顶排气口直接连接,提高了冷却器的设备运行效率,能够对变频器排出的热气直接降温处理,另外冷却器的设计能力可满足最高冷却水温33℃,水侧清洁系数为0.85以及管子堵塞率为5%等情况下的最大热负荷的要求。同时,避免冷却水管线在高压室内布局出现破裂后漏水危机高压设备运行安全的严重事故发生。在空-冷系统的设计当中,为了防止空冷器出口侧凝露使冷风带水排入室内,对空-水冷系统的风压、风速等指标进行设计计算,保证良好的排压情况下,运行安全稳定。另外,为防止空冷器漏水后进入室内,在空冷器的出口侧设置了淋水板,当漏水或有积水时,可以直接排向室外。同时,变频器提供风机、空冷器的故障报警检测点,并通过综合报警信号远传至DCS.完整的冷却系统解决方案,有效降低了辅助系统的故障率以及对主要设备的运行安全影响程度。 3 冷却水系统参数: 3.1 冷却水采用闭式循环水,最高温度为33℃。 3.2.冷却水进口母管取水点压力为0.2~0.5MPa. 3.3冷却水进出水母管DN=?.

小功率荧光灯电子镇流器的设计

百度文库- 让每个人平等地提升自我 目录 摘要....................................................................................................................................................................... ABSTRACT ............................................................................................................................................................I 1引言. 0 2荧光灯电子镇流器系统组成框图及其工作原理 0 2.2荧光灯电子镇流器设计电路原理图 (1) 2.3荧光灯电子镇流器工作过程 (1) 3电子镇流器工作特点 (2) 4 20W荧光灯电子镇流器元件参数 (2) 5电子镇流器的接线图 (3) 6电子镇流器的元器件选择 (3) 6.1整流滤波电路 (3) 6.2启动电路 (4) 6.3半桥式逆变器电路 (4) 6.4输出谐振电路 (7) 7调试 (9) 8 结束语 (10) 参考文献 (11) 致谢 (12)

摘要 荧光灯电子镇流器的工作原理及其组成电路决定了荧光灯电子镇流器比电感镇流器节能。但由于大多数荧光灯电子镇流器的电路设计存在缺陷、生产商偷工减料等原因,其节能作用没有得到广泛认可。随着性能优异的新产品的不断出现及绿色照明工程的不断深入,荧光灯电子镇流器的节能作用会越来越受人们的重视。 本文介绍了一种性能优良的荧光灯电子镇流器的电路结构,工作原理及其设计路线。这种由整流滤波电路、启动电路、半桥式逆变器电路、输出谐振电路组成的半桥逆变式荧光灯电子镇流器电路,具有低压启动、快速启动、效率高、自身耗电小、体积小、重量轻、适应电源电压范围宽等优点。实验结果证明这种电子镇流器具有良好的工作性能。 关键词:荧光灯电子镇流器;高频振荡;串联谐振;节能

基于MATLAB的三相整流器设计

密级:公开 科学技术学院 NANCHANG UNIVERSITY COLLEGE OF SCIENCE AND TECHNOLOGY 学士学位论文 THESIS OF BACHELOR (2012 —2016年) 题目基于MATLAB的三相整流器设计 学科部:信息学科部 专业:电气工程及其自动化 班级:电气122班 学号:7022812067 学生姓名:张升林 指导教师:万旻 起讫日期:2015年12月—2016年5月29日

目录 摘要 ................................................................................................................................................... I Abstract ............................................................................................................................................ II 第一章三相整流器的发展状况.. (1) 1 .1 三相整流器发展背景 (1) 1 .2 三相整流器的进展 (1) 1 .3 本论文主要研究的内容 (2) 第二章Matlab-Simulink电力系统仿真介绍 (3) 2 .1 Matlab介绍 (3) 2 .2 Simulink的介绍 (4) 第三章三相整流器的结构和原理分析 (5) 3.1 三相桥式全控整流器结构和原理分析 (5) 3.2 三相PWM整流器结构和原理分析 (5) 第四章三相整流器电路的仿真 (7) 4.1三相桥式全控整流器的仿真 (7) 4.2 三相PWM整流器的仿真 (8) 第五章三相PWM整流器的设计 (11) 5.1 主电路设计 (11) 5.2 功率器件的选择 (11) 结论 (13) 参考文献(References) (13) 致谢 (14)

电机水冷系统设计与散热计算

螺旋形电机水冷系统设计与散热计算 孙利云 四川建筑职业技术学院四川德阳 618000 摘要:本文从传热基本理论出发,针对表面冷却中小型电机体积小,功率大,能量密度高的特点,给出了电机水冷螺旋型结构的详细计算过程,为电机冷却设计提供参考方案。 关键词:水冷,散热,螺旋型 1.引言 现代工业的发展对电机性能要求越来越高。电机热损耗问题制约着大容量电机设计发展。 根据冷却介质是否通过电机内部,电机冷却方式分为内部冷却和表面冷却[1]。中小型电机由于体积的限制,常采用表面冷却的方式。按冷却介质的不同,可以把电机分为分为空气冷却和液体(水或油)冷却。空气冷却,运行成本低,摩擦损耗大,散热效率低,常用在能量密度低,发热较低的电机结构中。水冷电机,运行成本高,摩擦损耗小,散热效率高,常用在能量密度高,发热量大的电机结构中。 水冷技术应用于电机散热具有很好的冷却效果。电机水冷结构设计的核心任务是电机散热计算,使得电机损耗生热与冷却介质带走的热量达到平衡,从而控制电机温升再允许范围内。此外,冷却介质流速是散热能力重要影响因素之一。冷却介质的流速与压头及流经管道阻力有关。压头由水循环系统的泵产生。流经管道阻力取决于冷却结构的具体形式。螺旋型结构是指水槽在壳体中成螺旋型分布以往的设计过程[2]是首先设计好水槽的机构尺寸,设定入水口温度、水槽温度、水流速度等参数,计算出水口温度,进而校核冷却系统的散热情况。这种方法,把设计的散热方案的散热功率作为计算结果,与实际需求的散热功率对比。设计方案的散热能力高于实际需要的散热能力,则视为方案可行;反之,方案失败。修改预先设计的水槽尺寸并重新计算直到满足散热条件。散热能力在设计之初是未知的,计算之后才能知道其散热能力。本文采用另一种方法,对散热结构进行设计。 2.水冷计算 2.1结构设计 电机的基本结构尺寸如图1所示,水套外径200mm,水套截面尺寸为宽24mm,高4mm , 图1 1.转子 2.定子 3.外壳 4.水套 电机的功率为7.5KW。经过电磁计算,电机总的损耗为 KW P137 .1 = 损 (1)设所有损耗都转化为热能,在电机稳定运行过程中,热能被水带走。因此实际需要的散热功率为 KW P P137 .1 = = 损 散 (2)冷却水相关参数见表1, 表1 水的相关物理参数 名称单位符号数值 流量 min L Q10

镇流器的一般工作原理

镇流器的一般工作原理和功能、性能及使用条件的简介 1 名词解释 1.1电光源将电能转换成光学辐射能的器件(有时也用于某些类型的照明器)。 1.2放电灯由气体、金属蒸气或几种气体与金属蒸气的混合放电而发光的灯。 1.3金属蒸气(放电)灯由金属蒸气放电而发光的灯,如汞(蒸气)灯、钠(蒸气)灯等等。 1.4汞(蒸气)灯由汞蒸气放电而发光的灯。 1.5高压汞(蒸气)灯放电稳定时,汞蒸气的分压强达到或大于10000Pa的汞(蒸气)灯。 1.6钠(蒸气)灯主要由钠蒸气放电而发光的灯。 1.7高压钠(蒸气)灯放电稳定时,灯内钠蒸气的分压强达到或大于10000Pa的钠(蒸气)灯。 1.8金属卤化物灯由金属蒸气与金属卤化物分解物的混合物放电而发光的放电灯。 1.9镇流器稳定放电灯放电的器件。 2 放电灯的主要性能及参数名词 2.1启动时间接通放电灯的电源开关至灯能开展工作所需的时间。 2.2再启动时间放电灯稳定工作后断开电源,从再次接通电源到灯重新开始启动工作所需的时间。 2.3启动电压放电灯开始持续放电时,电极之间所需的最低电压。 2.4灯电流光源稳定工作时,通过光源灯头触点上的电流。 2.5额定电压灯的设计工作电压(直流或交流的有效值)。 2.6额定电流灯在额定电压下的设计电流。 2.7额定功率灯的设计功率。 3 镇流器 3.1镇流器的功能 3.1.1将灯的启动电流限制在合适的范围内 启动电流是指灯在接通电源启动后的30秒内或灯预热过程中通过灯的电流。一般情况(尤其在最低温度状态)下,启动电流远大于灯的工作电流,所以每种灯都规定了启动电流的最大值。如果启动电流过大将会缩短灯的使用寿命:电流过小则不能使灯预热至正常的启动状态或完成由辉光放电向弧光放电过程。镇流器提供灯的启动电流就应该既能在较短的时间内启动灯,又不至于影响灯的正常使用寿命。 3.1.2提供的开路电压足以使灯顺利的启动 镇流器的开路峰值电压作为灯的启动电压时,必须足以电离气体放电灯中的气体,即产生峰值电流使电极之间产生辉光至弧光过度的放电,这样才能使灯启动工作。高压汞灯、金属卤化物灯在低温时比较难于启动,由镇流器提供的开路峰值电压必须足够的高。 3.1.3使灯的功率不发生较大幅度的变化 尽管灯在设计和出厂时对灯管的电压有一定范围的规定值,但在实际使用及整个寿命过程中灯管电压值却是变化的,这就需要由配套的镇流器在一定的范围内进行调整,不使灯管功率发生较大幅度的变化。理想的镇流器就应该使新近刚使用的灯和已经接近寿命终端的灯其灯管的功率不至于相差太大。 3.1.4自动控制灯的工作电流 在一定电压范围内的稳定阻抗,是阻抗式镇流器能控制灯的工作电流的基本条件。镇流器是利用电压正比于电流的时间变化率来调节灯的工作电流的。当某个周期中的开路电压导致灯工作电流增大时,镇流器的电感作用就会限制电流的增大速率:当电流开始减少时电感作用就会阻止电流减少的速率。 3.2 镇流器的主要性能指标 3.2.1电源电压和频率 每个镇流器都标明了使用的电源电压和频率,应该严格按规定进行安装、使用。否则,灯不能运行在设计

自制笔记本电脑水冷散热器

自制笔记本电脑水冷散热器国外网友为我们带来了这个新式的全手工制作超强笔记本电脑水冷散热装置。据作者介绍,他制作这个散热器的目的是为了在观看电影的时候能够摆脱笔记本电脑内部讨厌的风扇噪音。散热器主体双管散热片底部是一个铜块,铜块上面用剪刀剪出了很多长的锯齿。笔者看到这里不仅感叹,好强的剪刀啊。铜块中央使用电钻钻通,插入了一个铜导管。看来工艺越来越专业化了。铜块上部焊接了一块盒装奔腾4处理器附带的鳍状散热片。将散热器与笔记本电脑相连接为了使这个散热器发挥作用,作者还对笔记本电脑的边缘部分做了一些改造,他将笔记本电脑的塑料外壳去掉一部分以便让这个铜块的锯齿能够和主机紧密接触。不过作者也表示如果之前做的铜块锯齿足够长的话,也可以跳过这一步。、添加的微型水泵接着添加了一个微型水泵,工作电压仅为1.5V。水冷散热效果显著当使用水冷散热时,系统温度逐渐下降的屏幕截图,我们看到笔记本的温度从60度下降到了45度,看来还是十分有效的。以前还要清理CPU风扇的灰尘,以后再也不用清理CPU风扇了铜块底部有一个塑料小支架铜块与水冷管的连接部分这里先将塑料导管加热,用小镊子撑开管口,把它套接在先前铜块中央的铜导管中。下面介绍添加额外的多个水冷管和水泵的制作方法。找到一个小的电动螺旋桨将金属外壳和桨叶去掉改造为原长度一半左右的一个空管改造之后的样子改造之后内部保留原来的电线近距离再仔细看一下这是与增加的水冷管连接后的样子连接时需要用酒精喷灯给导管加热用剪刀将加热后的导管撑开将空管的两头都套上导管,注意将电线放在外面裸露的电线和水泵的电线相连接连接完成后的样子在笔记本的液晶屏上放置更长的水冷导管大功告成,大面积的水冷导管效果良好看到这里,常被笔记本的风扇噪音困扰的网友是不是也有点心动了呢不过这套水冷设备虽然造价并不高,制作过程可是需要较高的技巧的,喜欢挑战的网友不妨一试。 自制笔记本电脑水冷散热器国外网友为我们带来了这个新式的全手工制作超强笔记本电脑水冷散热装置。据作者介绍,他制作这个散热器的目的是为了在观看电影的时候能够摆脱笔记本电脑内部讨厌的风扇噪音。散热器主体双管散热片底部是一个铜块,铜块上面用剪刀剪出了很多长的锯齿。笔者看到这里不仅感叹,好强的剪刀啊。铜块中央使用电钻钻通,插入了一个铜导管。看来工艺越来越专业化了。铜块上部焊接了一块盒装奔腾4处理器附带的鳍状散热片。将散热器

电压型单相整流器双环控制实现

电力电子系统建模与控制 学院: 专业班级: 学号: 姓名: 选题:单相电压型整流器建模与控制

单相电压型整流器 1、设计要求 输入滤波为LCL滤波器,输入电压允许范围180-240V,直流参考电压360V,Po=5KW,LCL参数尽可能小,输入电流畸变率低于5%,电阻性负载,直流电压波动小于10V,50%额定负载功率波动下,直流电压能在30ms内恢复正常 1.1拓扑结构图如下: LCL滤波器可视为一等效电感L,L=L1+L2,L2=rL1 1.2 如下图LCL滤波器,将电网侧和整流器侧看作电压源,得到等效电路图:

视电网电压Vg为扰动,写出传递函数: 存在谐振频率 2、单相电压型整流器控制设计 一般使用电流内环,电压外环,使直流输出保持在设定值,网侧电流幅值和相位保持与电压同相位。 2.1、电流内环: 对于PWM采用双极性调制,使用开关逻辑函数来表示开关的工作状态 导通 导通 网侧电压和网侧电流满足: 通过对得到的偏差进行PI控制,控制器输出PWM的调制比,实现对网侧电压的控制,实现对网侧电流的控制。画出控制框图如下图:

2.2、电压外环: 将直流侧电压与电压设定值比较得到偏差,然后进行PI控制,输出电流内环电流的幅值。为方便,将电流内环的传递函数记为。为了进行单位功率因数整流,需要对电流内环的输入电流进行相位控制。 令, 直流侧电流方程为 拉氏变换得 画出控制框图:

3、参数计算 3.1、直流侧电容 作用:抑制直流电压纹波 VSSR交流侧的瞬时功率分为直流部分和交流部分 直流侧瞬时功率分负载消耗的平均功率和纹波电流流过电容的纹波功率 取直流侧电容C=4500μF 3.2、LCL参数计算 根据要求,取,,输入电压有效值为220V,频率50Hz,输出电压360V,输出功率5kW,开关频率20kHz,

拖拉机水冷系统的设计及散热分析

毕业设计(论文) 题目: 院(系): 专业: 学号: 姓名: 指导教师: 完成日期: 2013年 6月

摘要 最初拖拉机是手动的,从发明到2013年已经有一百三十多年了,期间经历了由蒸汽驱动斗回转拖拉机到电力驱动和内燃机驱动回转拖拉机、应用机电液一体化技术的全自动液压拖拉机的逐步发展过程。第一台液压拖拉机由法国波克兰工厂发明成功。由于液压技术的应用,20世纪40年代有了在拖拉机上配装液压反铲地悬挂式拖拉机。1951 年,第一台全液压反铲拖拉机由位于法国的 Poclain( 波克兰 ) 工厂推出,从而在拖拉机的技术发展领域开创了全新空间,20世纪50年代初期和中期相继研制出拖式全回转液压拖拉机和履带式全液压拖拉机。初期试制的液压拖拉机是采用飞机和机床的液压技术,缺少适用于拖拉机各种工况的液压元件,制造质量不够稳定,配套件也不齐全。从20世纪60年代起,液压拖拉机进入推广和蓬勃发展阶段,各国拖拉机制造厂和品种增加很快,产量猛增。1968-1970年间,液压拖拉机产量已占拖拉机总产量的83%,已接近100%。 第一代拖拉机:电动机、内燃机的出现,使拖拉机有了先进而合适的电动装置,于是各种拖拉机产品相继诞生。1899年,第一台电动拖拉机出现了。第一次世界大战后,柴油发动机也应用在拖拉机上,这种柴油发动机(或电动机)驱动的机械式拖拉机是第一代拖拉机。第二代拖拉机:随着液压技术的广泛使用,使拖拉机有了更加科学适用的传动装置,液压传动代替机械传动是拖拉机技术上的一次大飞跃。1950年德国的第一台液压拖拉机诞生了。机械传动液压化是第二代拖拉机。 第三代拖拉机:电子技术尤其是计算机技术的广泛应用,使拖拉机有了自动化的控制系统,也使拖拉机向高性能、自动化和智能化方向发展。机电一体化的萌芽约发生在1965年前后,而在批量生产的液压拖拉机上采用机电一体化技术则在1985年左右,当时主要目的是为了节能。拖拉机电子化是第三代拖拉机的标志。 关键词:拖拉机液压支架有限元分析

日光灯节电型电子镇流器设计

目录 目录 (Ⅰ) 摘要 (1) 关键词 (1) 一、概述 (1) (一)荧光灯的使用 (1) (二)电子镇流器的优点 (1) (三)荧光灯对电子镇流器的基本要求 (2) (四)电子镇流器有关术语 (3) 二、电子镇流器基础电路分析 (4) (一)电子镇流器基本组成 (4) (二) EMI滤波器 (4) (三)整流器电路(AC-DC变换器) (5) (四)DC-AC逆变器电路 (5) (五)输出级LC串联谐振电路 (6) 三、电子镇流器电路设计 (7) (一)电路工作原理 (8) (二)各元件作用 (8) (三)各元件参数 (9) (四)影响镇流器工作频率的因素 (11) (五)安装与试调 (12) 四、结束语 (12) 参考文献 (13)

摘要:本设计是以荧光灯电子镇流器为研究对象,通过对荧光灯交流电子镇流器电路进行剖析,讲述了电子镇流器的组成、工作原理和优点,荧光灯对电子镇流器的技术要求等相关知识。并通过自己对电子镇流器的认识与理解,设计了一个荧光灯电子镇流器电路,并对其工作原理和每个电子元件的作用进行了讲解,列举元件参数供参考。 关键词:荧光灯电子镇流器原理设计 一、概述 (一)荧光灯的使用 自从我国实施绿色照明工程和节能政策以来,由于荧光灯发光均匀、亮度适中、光色柔和等优点,使其在照明领域中得到了广泛的应用。荧光灯是一种充有氩气的低气压汞气体放电灯,光电转换效率为23%,即所输入电能的23%被转换成了光能,而另外77%的输入电能被转换成了热能。而白炽灯的光电转换效率为荧光灯光电转换效率的1/4~1/3,即输入电能仅有8%被转换成了光能,而其余92%的输入电能被转换成了热能。如果仅将世界上现用的200亿只灯泡中的50亿只换成节能的气体放电电子镇流灯,就可以节省200GW的电能。 荧光灯是通过引燃灯管内稀薄的汞蒸气进行弧光放电的,汞离子受激产生紫外线,紫外线通过激发荧光灯管内壁涂层上的荧光粉发出可见光。但是由于荧光灯的负阻工作特性( V//I),荧光灯在使用时需配用镇流器件。在现在使用的镇流器中,据估计利用高频交流电子镇流器后可较普通电感镇流器节电20%~25%,并且高频交流电子镇流器在使用过程中没有频闪效应。因此电子镇流器得到了广泛的应用。 (二)电子镇流器的优点 目前气体放电灯使用的镇流器主要有两种:电感式镇流器和高频交流电子镇流器。由于电感式镇流器工作在工频市电频率,体积大、笨重,还需要消耗大量的铜和硅钢等金属材料,散热困难、镇流效率低、发光有频闪等缺点。而电子镇流器则有以下优点:

水冷散热的设计方法

52现代制造技术与装备2017第1期总第242期 水冷散热的设计方法 张瑜 (中国空空导弹研究院,洛阳471009) 摘要:为了满足大发热量电子设备的测试需求,水冷散热系统应运而生。本文详细介绍通过计算水在循环 系统中所需的流量以及流动产生的压力损失,以选择满足使用要求的水泵;讨论计算散热器的对数平均温差、散热面积将水吸收到的热量通过散热器散出去的水冷散热方法。 关键词:水泵流量压力散热器对数平均温差散热面积 引言 现代电子设备所选用的元器件发热量越来越大,且在 研制阶段的测试时间较长。为了保障电子设备测试过程中 的安全并提高测试效率,急需一种产品能让其产生的热量 迅速冷却。水冷散热以其散热效率高、成本低廉、使用方便、经久耐用的特点,成为此类产品的首选。 1水泵的选型计算 通过计算流量和扬程来选择合适的水泵。具体的,流 量的计算为: H(1) 这里,qv为液体流量,单位m3/s;H为发热功率;C为水的比热容,即4186J/kg*K;P为水的密度,即l X103kg/m3;A t为流过散热器后水的温升,机械设计手 册推荐5?10°C,计算时可取中间值。为了留出足够的余量,A t也可以取5°C进行计算。根据工程经验,实际流量应比 计算值约大15%?20%。 2压力损失的计算 水在水冷装置中循环流动会产生压力损失,其中包括 沿程压力损失、局部压力损失、电子设备水道中的压力损失、散热器中的压力损失。 沿程压力损失的计算: a p=a-L^⑵ e d2 式中:1为管路总长度,单位m;d为管路直径,单 位m;v为管路中液体流速,单位m/s;P为水的密度,即l X103kg/m3;X为管路沿程阻力系数,其值与雷诺数Re 有关。对于光滑的管道,沿程阻力系数X只是R e的函数,可用下式进行计算。 层流时:Re 彡 2320, X=64/Re 紊流时且 3000 彡 Re 彡 105时:A =〇.3164Re^°_25 紊流且:105矣f e43_X108时* 局部压力损失的计算: A P=^⑶ r 2 式中:为局部阻力损失系数之和,包括管道入口处 的局部压力损失系数、管道出口处的局部压力损失系数、管道扩大处的局部压力损失系数、管道缩小处的局部压力 损失系数以及弯管的局部压力损失系数。实际中,可以查 找机械设计手册得到。 3电子设备中水道的压力损失 对于水冷散热系统的设计者来说,大多数情况下水道是 既定的,不需自己设计水道,只需对已有的水道模型进行计算。4散热器中的压力损失 机械设计手册会根据散热器的型式给出一个经验值,工作中可以采用将水泵、压力表与散热器相连成循环系统 测出散热器的压力损失。 5扬程的计算 将以上各压力损失相加,即可得到整个水冷系统中总的压力损失。通过计算,将压力损失转化成水泵的 Pg 扬程。根据工程经验,计算值的基础上给出1.2的安全系数. 水泵的类型很多,如微型隔膜泵能量很大、体积很小、重量很轻、价格经济实惠,但使用过程中,由于隔膜泵本 身所使用电机的技术原因,使用时间都不长,要经常更换;齿轮泵体积大、重量大、价格较贵、对过滤的要求高,但 使用寿命长,减少了维护成本。因此,需根据具体的使用 情况,选择核实的水荥。 6散热器的选型计算 散热器主要参数有两个:传热参数K和散热面积A。 传热参数K:一般情况下选定一种散热器,厂家往往能 给出散热系数,但不排除有的厂家不知道。此时,需要查 找机械设计手册得到一个范围值。 散热面积A:可以通过A=H/K*AtB进行计算得到。式中:H为散热器的吸收热量,单位W; A t>为对数平均温差,单 位°C。如果只是水冷散热,A 不需修正;如果散热器上 加风扇,属于水和空气两种不混合的交叉散热形式,与热力 学简单的顺流和逆流的换热形式不同,因此需要修正系数对平均温差进行修正。与两个无量纲的值P、R有关,有:p—Atk(4) tSK~tk 这里,Al_s为水的温升;A t k S 空气的温升;tsA为水

相关文档
最新文档