对流和辐射计算公式

对流和辐射计算公式

对流换热公式如下:

()F t t Q f w -=α (4-3)

式中,Q 为对流换热量,W ;w t 、f t 为壁面和流体的平均温度,℃;F 为对流换热面积,m 2;α为对流换热系数,C m W ??2/。

两物体辐射换热的公式如式(4-4)所示

44121100100n T T Q C F ??????=-?? ? ?????????

(4-4) 式中,n C 为辐射系数;1T 、2T 为两物体的温度;1F 为辐射体的辐射表面积。

S 为散热面积、τ为箱体对环境的温度,ε为热辐射系数,对于变压器油箱所采用的材料,其值取为0.9-0.95。

热辐射计算公式

传热学课程自学辅导资料 (热动专业) 二○○八年十月

传热学课程自学进度表 教材:《传热学》教材编者:杨世铭陶文铨出版社:高教出版时间:2006 1

注:期中(第10周左右)将前半部分测验作业寄给班主任,期末面授时将后半部分测验作业直接交给任课教师。总成绩中,作业占15分。 2

传热学课程自学指导书 第一章绪论 一、本章的核心、重点及前后联系 (一)本章的核心 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (二)本章重点 1、导热、对流、辐射的基本概念。 2、传热过程传热量的计算。 (三)本章前后联系 简要介绍了热量传递的三种基本方式和传热过程 二、本章的基本概念、难点及学习方法指导 (一)本章的基本概念 1、热传导 导热(Heat Conduction):物体各部分之间不发生相对位移时,依靠分子、原子及自由电子等微观粒子的热运动而产生的热量传递称为导热。 特点:从宏观的现象看,是因物体直接接触,能量从高温部分传递到低温部分,中间没有明显的物质迁移。 从微观角度分析物体的导热机理: 气体:气体分子不规则运动时相互碰撞的结果。 导电固体:自由电子不规则运动相互碰撞的结果,自由电子的运动对其导热起主导作用。 非导电固体:通过晶格结构振动所产生的弹性波来实现热量传递,即院子、分子在其平衡位置振动。 液体:第一种观点类似于气体,只是复杂些,因液体分子的间距较近,分子间的作用力对碰撞的影响比气体大;第二种观点类似于非导电固体,主要依靠弹性波(晶格的振动,原子、分子在其平衡位置附近的振动产生的)的作用。 热流量:单位时间传递的热量称为热流量,用Ф表示,单位为W。 3

传热系数计算方法

第四章循环流化床锅炉炉内传热计算 循环流化床锅炉炉膛中的传热是一个复杂的过程,传热系数的计算精度直接影响了受热面设计时的布置数量,从而影响锅炉的实际出力、蒸汽参数和燃烧温度。正确计算燃烧室受热面传热系数是循环流化床锅炉设计的关键之一,也是区别于煤粉炉的重要方面。 随着循环流化床燃烧技术的日益成熟,有关循环流化床锅炉的炉膛传热计算思想和方法的研究也在迅速发展。许多著名的循环流化床制造公司和研究部门在此方面也做了大量的工作,有的已经形成商业化产品使用的设计导则。 但由于技术保密的原因,目前国内外还没有公开的可以用于工程使用的循环流化床锅炉炉膛传热计算方法,因此对它的研究具有重要的学术价值和实践意义。 清华大学对CFB锅炉炉膛传热作了深入的研究,长江动力公司、华中理工大学、浙江大学等单位也对CFB锅炉炉膛中的传热过程进行了有益的探索。根据已公开发表的文献报导,考虑工程上的方便和可行,本章根椐清华大学提出的方法,进一步分析整理,作为我们研究的基础。为了了解CFB锅炉传热计算发展过程,也参看了巴苏的传热理论和计算方法,浙江大学和华中理工大学的传热计算与巴苏的相近似。 4.1 清华的传热理论及计算方法 4.1.1 循环流化床传热分析 CFB锅炉与煤粉锅炉的显著不同是CFB锅炉中的物料(包括煤灰、脱硫添加剂等)浓度C p 大大高于煤粉炉,而且炉内各处的浓度也不一样,它对炉内传热起着重要作用。为此首先需要计算出炉膛出口处的物料浓度C p,此处浓度可由外循环倍率求出。而炉膛不同高度的物料浓度则由内循环流率决定,它沿炉膛高度是逐渐变化的,底部高、上部低。近壁区贴壁下降流的温度比中心区温度低的趋势,使边壁下降流减少了辐射换热系数;水平截面方向上的横向搅混形成良好的近壁区物料与中心区物料的质交换,同时近壁区与中心区的对流和辐射的热交换使截面方向的温度趋于一致,综合作用的结果近壁区物料向壁面的辐射加强,总辐射换热系数明显提高。在计算水冷壁、双面水冷壁、屏式过热器和屏式再热器时需采用不同的计算式。物料浓度C p对辐射传热和对流传热都有显著影响。燃烧室的平均温度是床对受热面换热系数的另一个重要影响因素。床温的升高增加了烟气辐射换热并提高烟气的导热系数。虽然粒径的减小会提高颗粒对受热面的对流换热系数,在循环流化床锅炉条件下,燃烧室内部的物料颗粒粒径变化较小,在较小范围内的粒径变化时换热系数的变化不大,在进行满负荷传热计算时可以忽略,但在低负荷传热计算时,应该考虑小的颗粒有提高传热系数的能力。 炉内受热面的结构尺寸,如鳍片的净宽度、厚度等,对平均换热系数的影响也是非常明显的。鳍片宽度对物料颗粒的团聚产生影响;另一方面,宽度与扩展受热面的利用系数有关。根

导热系数、传热系数、热阻值概念及热工计算方法(简述实用版)

导热系数、传热系数、热阻值概念及热工计算方法 导热系数λ[W/(m.k)]: 导热系数是指在稳定传热条件下,1m厚的材料,两侧表面的温差为1度(K,℃),在1小时内,通过1平方米面积传递的热量,单位为瓦/米?度(W/m?K,此处的K可用℃代替)。导热系数可通过保温材料的检测报告中获得或通过热阻计算。 传热系数K [W/(㎡?K)]: 传热系数以往称总传热系数。国家现行标准规范统一定名为传热系数。传热系数K值,是指在稳定传热条件下,围护结构两侧空气温差为1度(K,℃),1小时内通过1平方米面积传递的热量,单位是瓦/平方米?度(W/㎡?K,此处K可用℃代替)。传热系数可通过保温材料的检测报告中获得。 热阻值R(m.k/w): 热阻指的是当有热量在物体上传输时,在物体两端温度差与热源的功率之间的比值。单位为开尔文每瓦特(K/W)或摄氏度每瓦特(℃/W)。 传热阻: 传热阻以往称总热阻,现统一定名为传热阻。传热阻R0是传热系数K的倒数,即R0=1/K,单位是平方米*度/瓦(㎡*K/W)围护结构的传热系数K值愈小,或传热阻R0值愈大,保温性能愈好。 (节能)热工计算: 1、围护结构热阻的计算 单层结构热阻:R=δ/λ 式中:δ—材料层厚度(m);λ—材料导热系数[W/(m.k)] 多层结构热阻: R=R1+R2+----Rn=δ1/λ1+δ2/λ2+----+δn/λn 式中: R1、R2、---Rn—各层材料热阻(m.k/w) δ1、δ2、---δn—各层材料厚度(m) λ1、λ2、---λn—各层材料导热系数[W/(m.k)] 2、围护结构的传热阻 R0=Ri+R+Re 式中: Ri —内表面换热阻(m.k/w)(一般取0.11) Re —外表面换热阻(m.k/w)(一般取0.04) R —围护结构热阻(m.k/w) 3、围护结构传热系数计算 K=1/ R0 式中: R0—围护结构传热阻 外墙受周边热桥影响条件下,其平均传热系数的计算 Km=(KpFp+Kb1Fb1+Kb2Fb2+ Kb3Fb3 )/( Fp + Fb1+Fb2+Fb3) 式中:Km—外墙的平均传热系数[W/(m.k)] Kp—外墙主体部位传热系数[W/(m.k)]

传热效率计算

传热效率计算 有一发热体发热峰值功率为4000W ,平均值为3000W 左右,需用水冷散热,可提供稳定的25度冷水,该发热体发热面积为127mm*137mm ,要求发热体表面(与水冷头接触面)温度能控制在50度以下,现需要计算如下内容: 1、 所提供的冷水的流量和流速 2、 水冷头底板厚度 3、 水冷头内部与水接触面积 4、 如果采用紫铜或铝合金加工,在同等条件下的散热效率差异。 5、 水管宜用多粗的? 解: 这里缺少条件,先假设发热体工作时间为 1 小时。 1..冷水的流量: Q=C*M*(T 2-T 1) )12(T T C Q M -==)2550(./42003600*4000℃℃℃kg J S W -=137.14 kg 2.流速:设计水管内径为:φ15mm Q=V*S S=秒 3600*0075.0*0075.0*14.3/1*1000/14.13723m m t t S Q ==0.216m/秒 3.水冷头底板厚度 取5mm. 4. 水冷头内部与水接触面积: 因为发热体发热面积为127mm*137mm ,所以取冷水头底内尺寸为127mm*137mm. 计算内高度为:

h= mm m g kg 137 * 127/ 1000 * 14 . 1373=7.88 mm 5.紫铜和铝合金的导热系数不同,紫铜的导热系数为λ =393W/(m·k),铝合金的导热系数为λ=123 W/(m·k)在同等条件下紫铜比铝合金的散热效率高。 根据导热的计算:Q=λ*A* δ? ?t公式可出在同等条件下紫铜比铝合金的散出的热量多。 6.水管宜用多粗的? 设计水管内径为:φ15mm

板式换热器的换热计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷

热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:

换热器的传热系数

1 介质不同,传热系数各不相同我们公司的经验是:1、汽水换热:过热部分为800~1000W/m2.℃饱和部分是按照公式K=2093+786V(V是管内流速)含污垢系数0.0003。水水换热为:K=767(1+V1+V2)(V1是管内流速,V2水壳程流速)含污垢系数0.0003 实际运行还少有保守。有余量约10% 冷流体热流体总传热系数K,W/(m2.℃) 水水850~1700 水气体17~280 水有机溶剂280~850 水轻油340~910 水重油60~280 有机溶剂有机溶剂115~340 水水蒸气冷凝1420~4250 气体水蒸气冷凝30~300 水低沸点烃类冷凝455~1140 水沸腾水蒸气冷凝2000~4250 轻油沸腾水蒸气冷凝455~1020 不同的流速、粘度和成垢物质会有不同的传热系数。K值通常在 2 800~2200W/m2·℃范围内。列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃范围内。板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃范围内。1.流体流径的选择哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1) 不洁净和易结垢的流体宜走管内,以便于清洗管子。 (2) 腐蚀性的流体宜走管内,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管内,以免壳体受压。(4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。(5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。(6) 需要提高流速以增大其对流传热系数的流体宜走管内,因管程流通面积常小于壳程,且可采用多管程以增大流速。(7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100) 下即可达到湍流,以提高对流传热系数。在选择流体流径时,上述各点常不能同时兼顾,应视具体情况抓住主要矛盾,例如首先考虑流体的压强、防腐蚀及清洗等要求,然后再校核对流传热系数和压强降,以便作出较恰当的选择。 2. 流体流速的选择增加流体在换热器中的流速,将加大对流传热系数,减少污垢在管子表面上沉积的可能性,即降低了污垢热阻,使总传热系数增大,从而可减小换热器的传热面积。但是流速增加,又使流体阻力增大,动力消耗就增多。所以适宜的流速要通过经济衡算才能定出。此外,在选择流速时,还需考虑结构上的要求。例如,选择高的流速,使管子的数目减少,对一定的传热面积,不得不采用较长的管子或增加程数。管子太长不易清洗,且一般管长都有一定的标准;单程变为多程使平均温度差下降。这些也是选择流速时应予考虑的问题。 3. 流体两端温度的确定若换热器中冷、热流体的温度都由工艺条件所规定,就不存在确定流体两端温度的问题。若其中一个流体仅已知进口温度,则出口温度应由设计者来确定。例如用冷水冷却某热流体,冷水的进口温度可以根据当地的气温条件作出估计,而换热器出口的冷水温度,便需要根据经济

传热系数计算

传热系数计算 散热器是一种热交换器~其热工计算的基本公式为传热方程式~其表达式为: Ф=KAΔt ,6,1, m Ф为传热量单位:W 2K为传热系数单位:W/(m〃?) A 为传热面积单位:? Δt为冷热流体间的对数平均温差单位:? m,,,从《车辆冷却传热》上可知~以散热器空气侧表面为计算基础~散热器传热系数 计算公式为: -1K=(β/h+(β×λ) +(1/η×h)+ R) ,6,2, 1管02f 式中:β为肋化系数~其等于空气侧所有表面积之和/水侧换热面积 2h为水侧表面传热系数单位:W/(m〃?) 12h为空气侧表面传热系数单位:W/(m〃?)2 2λ为散热管材料导热系数单位:W/(m〃?) 管2R为散热器水侧和空气侧的总热阻单位:,m〃?),W f η为肋壁总效率~其表达式为: 0 η=1,(×,1,η,),A ,6,3, f20 A为空气侧二次换热面积~单位:? 22 A为空气侧所有表面积之和~单位:? 2 η为肋片效率 f η,th(m×h)/ (m×h) ,6,4, fff th为双曲线函数 h为散热带的特性尺寸~即散热管一侧的肋片高度 f m为散热带参数~表达式为: 0.5 m=((2×h)/(δ×λ)),6,5, 2222h为空气侧传热系数单位:W/(m〃?) 2 δ为散热带壁厚单位:m 22λ为散热带材料导热系数单位:W/(m〃?) 2

从《传热学》上可知~表面传热系数h的公式为: 2 h= Nu×/de 单位:W/(m 〃?) ,6,6, λ为流体的热导率~对散热器~即为空气热导率 de为换热面的特性尺度~对散热器~求气侧换热系数时~因空气外 掠散热管~故特性尺度为散热管外壁的当量直径, 单位m [2]由《传热学》中外掠管束换热实验知,流体横掠管束时~对其第一排管子来说~换热情况与横掠但管相仿。 Nu=C×Re (6,7) m[3]式中C、为常数~数值见《传热学》表5.2 Re=Va×de/νa ,6,8, Va 为空气流速单位m/s 2νa为空气运动粘度单位m/s

(整理)管道总传热系数计算

1管道总传热系数 管道总传热系数是热油管道设计和运行管理中的重要参数。在热油管道稳态运行方案的工艺计算中,温降和压降的计算至关重要,而管道总传热系数是影响温降计算的关键因素,同时它也通过温降影响压降的计算结果。 1.1 利用管道周围埋设介质热物性计算K 值 管道总传热系数K 指油流与周围介质温差为1℃时,单位时间通过管道单位传热表面所传递的热量,它表示油流至周围介质散热的强弱。当考虑结蜡层的热阻对管道散热的影响时,根据热量平衡方程可得如下计算表达式: 1112ln 111ln 22i i n e n w i L L D D D KD D D D a a l l -+轾骣犏琪桫犏=+++犏犏犏臌? (1-1) 式中:K ——总传热系数,W /(m 2·℃); e D ——计算直径,m ;(对于保温管路取保温层外径的平均值,对于无保温埋地管路可取沥青层外径); n D ——管道直径,m ; w D ——管道最外层直径,m ; 1α——油流与管壁放热系数,W/(m 2·℃); 2α——管外壁与周围介质的放热系数,W/(m 2·℃); i λ——第i 层相应的导热系数,W/(m·℃); i D ,1i D +——管道第i 层的外直径,m ,其中1,2,3...i n =; L D ——结蜡后的管径,m 。 为计算总传热系数K ,需分别计算部放热系数1α、自管壁至管道最外径的导 热热阻、管道外壁或最大外围至周围环境的放热系数2α。 (1)部放热系数1α的确定 放热强度决定于原油的物理性质及流动状态,可用1α与放热准数u N 、自然对流准数r G 和流体物理性质准数r P 间的数学关系式来表示[47]。 在层流状态(Re<2000),当Pr 500Gr

太阳能辐射计算公式

一、中国太阳能直接辐射的计算方法 ()1bS a Q S +='(1) () 211111S c S b a Q S ++='(2)⊙ ()n c S b a Q S 2122++='(3) S ′为直接辐射平均月(年)总量;Q 为计算直接辐射的起始数据,可采用天文总辐射S 0,理想大气总辐射,Q i ,晴天总辐射Q 0来表示。a ,b ,a 1,b 1,c 1,a 2,b 2,c 2为系数。n 为云量。S 1为日照百分率。 相关系数的计算公式: ()() ()() ()()∑∑∑∑∑∑∑∑∑=========?? ? ??-?? ? ??--= ----= n i n i i i n i n i i i n i n i n i i i i i n i i i n i i i y y n x x n y x y x n y y x x y y x x r 12 12 12 121 1 1 1 2 21 考虑到大气透明度,则有 ()()n c S b a P P P Q n c S b a P P P Q S i m i 2122cos cos sin sin 1 2122++=++='+海 年海 年δ ?δ?(4) 其中m 为大气质量: δ ?δ?cos cos sin sin 1 sinh 1+== Θm 其中,φ为测站的纬度;δ为赤纬角,取每月15日的赤纬值作为月平均值;时角ω统一取中午12时,则ω=0,cosω=1;年P 为测站的年平均气压,P 海为海平面气压,P 海=1013.25mp ,海年P P 为对大气质量进行的高度订正。 对于a 2的计算: 当测站的海拔H≥3000m 时,a 2=0.456; 当H≤3000m 是,若年平均绝对湿度E ≤10.0mb ,则 F a ?-=00284.0688.02 否则F a ?-=01826.07023.02,其中F 为测站沙尘暴日数与浮尘日数之和。 对于(4)式中,系数之间的关系式为 { 011.1039.02222=+-=+b a c a

人体辐射换热的计算.

人 体 辐 射 换 热 的 计 算 方 法 The Calculation Method Of Radiative Heat Loss From Human Body 同济大学楼宇设备工程与管理系 叶海 摘要:本文简要介绍了两种情况下人体辐射换热的计算方法,即人体与室内整体环境间的辐射换热、人体与单一壁面间的辐射换热。作者力求避免繁复的理论推导,而仅仅就研究结果,研究方法作了归纳与总结,列出了一些计算参数的取值范围,可供工程技术人员在计算时参考。 在热舒适的研究中,我们经常要计算人体与室内环境间的热交换,进而对人体的热感觉进行预测。人体与环境之间主要通过对流和辐射方式换热,导热基本上可以忽略不计。在普通的室内气候条件下,人体外表温度高于环境平均辐射温度,而室内风速一般较小,因此辐射散热量可占总散热量的50%左右,对流散热为30%左右,其余为蒸发散热。 一、人体与室内环境间的辐射换热 人体与室内环境间的辐射换热量Q R 可按空腔与内包壁面间的换热计算,即 W )11(1 )(44-+-=S S eff p mrt surf eff R A A T T A Q εεσ (1) 式中,eff A ——人体的有效辐射面积,m 2; 428K W/m 1067.5??=-σ,黑体的辐射常数。 surf T ——人体外表的平均温度,K ; mrt T ——环境的平均辐射温度,K ; P ε ——人体外表的平均发射率,无因次; S A ——包围人体的室内总面积,m 2; S ε ——环境的平均发射率,无因次; 式(1)中,由于人体面积远小于环境面积,且一般室内材料的发射率接近于1,故分母的第二项可略去不计。在热舒适研究中,对人体的产热(即代谢率)和散热计算一般取单位皮肤面积,于是得到 244W/m )(mrt surf eff cl P r T T f f Q -=σε (2) 式中,cl f ——称为服装面积系数,无因次;后面将作进一步介绍。 eff f ——人体的有效辐射面积系数,无因次;后面将作进一步介绍。 式(2)虽然给出了人体辐射换热计算的具体形式,但令人遗憾的是,式中右边的各项大多难以从理论上确定,一般依赖于经验公式来解决。两个系数的意义在于,着装增大了人体的外表面积,而人体的外表之间存在着相互辐射。至于平均辐射温度,它是假想室内环境在均一的温度下与人体进行换热。以下将对其中各项进行详细讨论。 1-1 人体外表的平均发射率 发射率有时也称为黑度、黑率或辐射系数,它表明物体表面与黑体相比辐射能量的效率。根据基尔霍夫定律,“漫-灰表面”在温度平衡时,可以认为发射率与吸收率相等,但在工程计

热量计算(传热)

传热过程的热量衡算 热量衡算是重要的化工基本计算,不仅化工设计必须进行热量衡算,而且日常生产操作也经常要计算各个工序、设备的热量消耗和载热体的用量,目的是准确掌握能耗现状,考核各车间、班组的耗能水平,挖掘生产中的节能潜力,制定有效的节能措施。 1.热负荷Q的计算方法 生产工艺上要求换热器具有的换热能力,称为换热器的热负荷。一台能满足工艺要求的换热器,应使其传热速率等于或略大于热负荷。所以知道了换热器的热负荷,便可确定其他的传热速率。要注意,热负荷与传热速率,其数值相同或相近,但含义并不一样。 热负荷是指生产上要求换热器应具有的换热能力,传热速率则是换热器本身具有换热能力。 针对传热过程中有无相变,热负荷的计算方法有以下三种。 (1)温差法当流体在换热过程中无相变而只有温度的变化时,则热负荷计算用温差法,公式是 Q=M*C*(T2-T1) 式中M――流体的质量,kg Q――在换热中的热量,kJ C――比热容,kJ/kg.K T2、T1――流体换热前后的温度,K (2)潜热法当流体在换热过程中公有相变化时,热负荷计算用潜热法。这种情况所传递的热量是潜热,沸腾汽化吸收的热量为汽化潜热,冷凝放出的热 量为液化潜热(即冷凝潜热)。汽化潜热的符号为R,其物理意义是质量1kg 的某物质,在一定压力下,由液体完全转变为同温度的蒸气所吸收的热量, 单位为kJ/kg;反之,则为该物质的冷凝潜热。同一种物质的冷凝潜热和汽 化潜热数值是相等。潜热法计算公式是 Q=M*R 式中Q――同温相变时所需的热量,kJ M――流体的质量,kg R――物质的汽化潜热或冷凝潜,kJ/kg (3)焓差法焓,也称热焓,物质在某一状态下焓值,就是使物质由基准状态变为现状态时所需的热量。在热量计算中,物质在某温度下热焓的数值, 一般就是指1 kg流体由273K加热至某一指定温度(包括相变)时所需的 热量。热焓的符号为H,单位为kJ/kg。在热负荷的计算过程中,不论有无 相变都可采用焓差法。特别是在既有相变又有温度变化时,用焓差法计算 很方便。公式是 Q=M*(H2-H1) 式中Q――换热的热量kJ M――物质的质量kg H2、H1――物质在最初、最终的热焓,kJ/kg 2.传热过程的热量计算的步骤 (1)弄清题意明确衡算的目的要求,有哪些已知的条件,根据冷、热流体有无相变,确定采用哪种方法计算Q值。 (2)画示意图把所有数据都要标在图上,用箭头表示流体进、出方向,哪些数据属于进方或出方。

自然散热情况下辐射和对流哪个占主导作用

根据斯蒂芬波尔兹曼公式,定义一个热辐射传热系数(类似于对流传热系数): 假设辐射率=0.8 ,Ts比Ta高1℃。则辐射传热系数与环境温度的关系如下: 典型的环境温度为50℃时,辐射系数为6 W/m2-K 。 针对机箱内一个水平放置PCB来讲,其自然对流传热方程如下: (此公式从何而来?) 假设环境温度已知,为50℃(323K),PCB辐射率为0.95. 那么自然对流和辐射传热的系数分别计算如下:

从图中可以看出,在温差<20℃(K)时,辐射传热系数大于自然对流系数。温差超过20℃时,两种传热系数几乎相等。所以在温差较小时,辐射传热一定不能被忽略。 当然,实际情况千差万别,但这个简单的例子可以帮助建立一些基本的概念。 Don't underestimate radiation in electronic cooling February 1, 2001 Bruce GueninCalculation Corner, Design, Number 1, Volume 7Heat Transfer Coefficient, Stephan-Boltzmann Constant, Thermal Radiation don’t underestimate radiation in elec tronics cooling Bruce M. Guenin, Ph.D., Associate Editor, Amkor Technology, Inc. It is easy to underestimate the role of thermal radiation as a significant contributor to electronics cooling in environments without forced air flow. By its very nature it is invisible. The proper treatment of it can be intimidating due to the complicated nature of the

热传导公式

第二节传导传热 传导传热也称热传导,简称导热。导热是依靠物质微粒的热振动而实现的。产生导热的必要条件是物体的内部存在温度差,因而热量由高温部分向低温部分传递。热量的传递过程通称热流。发生导热时,沿热流方向上物体各点的温度是不相同的,呈现出一种温度场,对于稳定导热,温度场是稳定温度场,也就是各点的温度不随时间的变化而变化。本课程所讨论的导热,都是在稳定温度场的情况下进行的。 一、传导传热的基本方程式----傅立叶定律 在一质量均匀的平板内,当t1> t2热量以导热方式通过物体,从t1向t2方向传递,如图3-7所示。 图3-7 导热基本关系 取热流方向微分长度dn,在dt的瞬时传递的热量为Q,实验证明,单位时间内通过平板传导的热量与温度梯度和传热面积成正比,即: dQ∝dA·dt/dn 写成等式为: dQ=-λdA·dt/dn (3-2) 式中Q-----导热速率,w; A------导热面积,m2; dt/dn-----温度梯度,K/m; λ------比例系数,称为导热系数,w/m·K; 由于温度梯度的方向指向温度升高的方向,而热流方向与之相反,故在式(3-2)乘一负号。式(3-2)称为导热基本方程式,也称为傅立叶定律,对于稳定导热和不稳定导热均适用。

二、导热系数λ 导热系数是物质导热性能的标志,是物质的物理性质之一。导热系数λ的值越大,表示其导热性能越好。物质的导热性能,也就是λ数值的大小与物质的组成、结构、密度、温度以及压力等有关。λ的物理意义为:当温度梯度为1K/m时,每秒钟通过1m2的导热面积而传导的热量,其单位为W/m·K或W/m·℃。 各种物质的λ可用实验的方法测定。一般来说,金属的λ值最大,固体非金属的λ值较小,液体更小,而气体的λ值最小。各种物质的导热系数的大致范围如下: 金属 2.3~420 w/m·K 建筑材料0.25~3 w/m·K 绝缘材料0.025~0.25 w/m·K 液体0.09~0.6 w/m·K 气体0.006~0.4 w/m·K 固体的导热在导热问题中显得十分重要,本章有关导热的问题大多数都是固体的导热问题。因而将某些固体的导热系数值列于表3-1,由于物质的λ影响因素较多,本课程中采用的为其平均值以使问题简化。 表3-1 某些固体在0~100℃时的平均导热系数 三、平面壁稳定热传导 1、单层平面壁 设有一均质的面积很大的单层平面壁,厚度为b,平壁内的温度只沿垂直于壁面的x轴方向变化,如图3-8所示。

真空玻璃传热系数计算

一、真空玻璃热导和热阻及传热系数的简单计算方法 1 ?两平行表面之间的辐射热导可由下式估算 C 辐射=£ 有效(T (T14-T24)/(T1-T2)(1) 式中T1, T2是两表面的绝对温度,单位为K £有效是表面有效辐射率 T是斯忒芬-波尔兹曼(Stefan-Boltzmann) 常数,其数值为5.67 x 10-8Wm-2K-4 在两平行表面温差不大(如数十度)的条件下,可用下面公式(2)计算,误差在百分之一以内。 C辐射=4£有效T T3 (2) T是两表面的平均绝对温度。 (1)和(2)式中£有效为有效辐射率,由下式(3)计算: £ 有效=(£ 1-1+ £ 2-1-1)-1 ⑶ 式中£ 1是表面1的半球辐射率。 £ 2是表面2的半球辐射率。 计算例:真空玻璃的一片玻璃是4mmLow-玻璃,辐射率为0.10,另一片是4mm普通白玻,辐射率为0.84, 则可算出£ 有效=(10+1.19-1)-1=0.098 按我国测试标准, 室内侧温度:T仁18+273=291K 室外侧温度:T2=-20+273=253K 平均温度:T=272K 公式⑵ 可简化为C辐射=4.564 £有效 据此可算出C辐射=0.447Wm-2K-1 R辐射=1/C 辐射=2.237W-1m2K 2 ?圆柱支撑物热导可由公式(4)计算 式中入玻为玻璃导热系数,约为0.76Wm-1K-1 h为支撑物高度,单位为m

a为支撑物半径,单位为m b为支撑物方阵间距,单位为m 入支撑物为支撑物材料的导热系数,单位为Wm-1K-1 目前国内外均选用不锈钢材料制作支撑物,使得入支撑物比入玻大20倍以上,支撑 物高度h又比半径a小,故公式(4)可简化为 计算例:当支撑物选用a=0.25mm,h=0.15mn方阵间距b=25mm 贝U C支撑物=0.608Wm-2K-1 我国新立基公司的专利采用环形(又称C形)支撑物,热导还可比上述计算值小10济20% 此例中C支撑物可按0.50Wm-2K-1计,贝U 支撑物热阻 正在研制的支撑物半径a=0.125mm贝U C支撑物将减小一倍,为0.25Wm-2K-1 3 ?真空玻璃中的残余气体热导 真空玻璃生产工艺要求产品经过350E以上高温烘烤排气,不仅把间隔内的空气(包括水气)排出,而且把吸附于玻璃内表面表层和深层的气体尽可能排出,使真空层气压达到低于10-1Pa(也就是百万分之一大气压)以下,这样残余气体传热才可以忽略不计。 实验证明,在使用过程中,温度升高和阳光照射还会使玻璃表层放出水气和CO2等气体,破坏真空度,破坏真空玻璃热性能。因此,在真空玻璃中还需放入吸气剂来不断吸收这些气体,以确保真空玻璃的长期寿命。 理论上,在气压低到气体分子平均自由程远大于真空玻璃间隔时,气体热导可用公式⑹计算。 式中a=a1a2/[a2+a1(1-a2)]为气体综合普适常数 其中a1和a2分别为两个表面的气体普适常数 P是气体压强,单位为Pa 丫是气体的比热容比 T为间隔内两表面温度的平均值 M是气体的摩尔质量 R是摩尔气体常数

太阳能辐射计算公式

一、中国太阳能直接辐射的计算方法 (1) (2)⊙ (3) S′为直接辐射平均月(年)总量;Q为计算直接辐射的起始数据,可采用天文总辐射S0,理想大气总辐射,Qi,晴天总辐射Q0来表示。a,b,a1,b1,c1,a2,b2,c2为系数。n为云量。S1为日照百分率。 相关系数的计算公式: 考虑到大气透明度,则有 (4) 其中m为大气质量: 其中,φ为测站的纬度;δ为赤纬角,取每月15日的赤纬值作为月平均值;时角ω统一取中午12时,则ω=0,cosω=1;为测站的年平均气压,P海为海平面气压,P海=1013.25mp,为对大气质量进行的高度订正。 对于a2的计算: 当测站的海拔H≥3000m时,a2=0.456; 当H≤3000m是,若年平均绝对湿度E≤10.0mb,则 否则,其中F为测站沙尘暴日数与浮尘日数之和。 对于(4)式中,系数之间的关系式为 二、中国太阳能散射辐射的算法 其中∑D为散射辐射月(年)总辐射量,Q为计算散射辐射的起始数据,可采用天文总辐射S0,理想大气总辐射Qi,晴天总辐射Q0来表示;f(S1,n......)为天空遮蔽度函数。 D=Qi(a1+b1nt); D=Qi(a2+b2nl); D=Qi(a3+b3S1); D=Qi(a4+b4nmh) D=Qi(a5+b5nmh+c5nl) D=Qi(a6+b6nmh+c6S1) D=Qi(a7+b7P+c7nl) D=Qi(a8+b8P+c8S1) 以上8式为计算太阳能散射可筛选公式,其中D为欲计算的散射辐射量的月总量,Qi,为理想大气中的月总辐射量,nt ,nl ,nmh分别为月平均总云量、低云量和中高云量。S1为日

对流参数计算公式及说明

要素 定义 计算公式 备注(含义、意义) 湿静力温度(TSIG ) 与静力能(显能、位能、潜能之和)相对应的温度 pd pd g L T T Z q c c σ=++ 假绝热过程中,湿静力温度守恒 饱和湿静力温 度 (TSIGS ) 与饱和气块对应的湿静力温度 s s pd pd g L T T Z q c c σ=++ 凝结函数(F ) )(2 2L q T R c T R c LR p T q F s v p v p s +-= 单位质量饱和空气每上升1hPa 所凝结出的液态水。 抬升凝结温度(TC ) 气块绝热抬升至饱和时的温度 976 .0273)3.237(10 33.8976.00 00 2 4 0?++?--- =-d d d o c t t t t t t 抬升凝结高度(PC ) 气块绝热抬升至饱和时的高度 d pd R C c c t t p p ) 273273( 0++= 计算时用到抬升凝结温度 自由对流高度(PF ) 气块绝热抬升时受环境的浮力为零,在此高度上浮力为正。 == 一般在对数气压坐标中温度和对数气压为线性,用此关系求解。 平衡高度(PE ) 气块绝热抬升,若存在环境正浮力作用,此后,环境正浮力在此高度上变为零,并在此高度之上 == 一般在对数气压坐标中温度和对数气压为线性,用此关系求解。

皆为负。 对流凝结高度 地面气块受辐射加热作用而产生对流,出现凝结的高度。 == 等饱和比湿线和状态线交点高度。 对流凝结温度 地面气块受辐射加热作用升温而可产生对流。 == 等饱和比湿线和状态线交点高度处干绝热下沉至地面时的温度。 对流有效位能 (CAPE ) 见公式与备注 ( )EL LFC Z vp ve Z ve T T CAPE g dz T -=? 气块过程中所有因温度差异形 成的正浮力对气块所做的功,利用埃玛图求解时一般在气压坐标下离散求解更易。 对流抑制能量(CIN ) 见公式与备注 e p b T T CIN g dz T -=? 地表气块上升至自由对流高度 之前所必须的外界能量。一般也在气压坐标下求解。 K 指数(K ) == ()()700850500850d d T T T T T K --+-= 综合反映中低层垂直降温、低层露点及温度露点差的物理量;用于暴雨预报较好。 沙氏指数(SI ) 850hPa 气块绝热 上 升 至 500hPa 时与环境的温度差 500850 SI T T '=- 条件不稳定指数,反映850hPa 气块移动到500hPa 时的不稳定 状况。850 T '为850hPa 空气块绝热抬升至500hPa 时的温度。 抬升指数(LI ) 地表气块绝热上升至500hPa 时与环境的温度差 500suf LI T T '=- 条件不稳定指数,反映地面气块移动到500hPa 时的不稳定状 况。suf T '为地表空气块绝热抬升至500hPa 时的温度。

传热的方式计算范例

1. 传热的方式 热的传递是由于物体内部或物体之间的温度不同而引起的,根据热力学第二定律,热能 总是自动地从温度较高的物体传给温度较低的物体,传热的基本方式有三种: ① 热传导:热量从物体内温度较高的部分传递到温度较低的部分或者传递到与之接触 的温度较低的另一物体的过程; ② 对流:流体各部分质点发生相对位移而引起热量传递的过程,因而对流只发生在流 体中; ③ 热辐射:一种以电磁波传播能量的方式。 2. 夹层的传热 夹层的传热主要以热传递的方式进行,对流主要发生在筒体和接管与其中的介质之间, 热辐射在夹层间几乎不存在,在计算过程中可以忽略。 3. 传热计算 ① 设计计算依据(参数) 工作介质:液氧; 操作温度:-183℃; 内筒外径:2032mm; 外筒内径:2600mm; 绝热材料:膨胀珍珠岩(珠光砂); 室温:20℃; 温差:Δt=20-(-183)=203℃ ② 膨胀珍珠岩传热计算 111A Q t λδ ?= 厚度:δ=(2600-2032)/2=284mm=0.284m 内筒体长度:L=9.336m 导热率:λ1=0.025W/(m ·k) 传热面积:A 1=2A 封头+A 筒体 2A 5.62m ===封头 m LR π筒体A=2 2121R ln(/) m R R R R -= R 2=1.3m ,R 1=1.016m ,R 2 / R 1=1.28﹤2;则21R 1.1582m R R += =代替。 22 3.14159269.336 1.15867.928m LR m π=???=筒体 A=2 A 1=2A 封头+A 筒体=2x5.62+67.928=79.168m 2 111A 0.02579.168203Q 1414.71W 0.284 t λδ???=== ③ 下吊带传热计算 222A Q n t L λ?= 下吊带数量:n=3;不锈钢导热系数:λ2=14 W/(m ·k);下吊带长度:L=3m; 下吊带宽度:a=0.12m; 下吊带厚度:a=0.01m; A 2=a ·b=0.12x0.01=1.2x 3 10-m 2

传热过程常用计算方法

传热过程常用计算方法 6.2.2.1 换热器热工计算的基本公式 换热器热工计算的基本公式为传热方程式和热平衡方程式。 (1)传热方程 (6-12) 式中,Δt m为换热器的平均温差,是整个换热面上冷热流体温差的平均值,它是考虑冷热两流体沿传热面进行换热时,其温度沿流动方向不断变化,故温度差Δt也是不断变化的。它不能像计算房屋的墙体的热损失或热管道的热损失等时,都把其Δt作为一个定值来处理。换热器的平均温差的数值,与冷、热流体的相对流向及换热器的结构型式有关。 (2)热平衡方程式 (6-13) 式中 G1,G2:热、冷流体的质量流量,kg/s; c1,c2:热、冷流体的比热,J/(kg·℃); t1′、t2′:热、冷流体的进口温度,℃; t1″、t2″:热、冷流体的出口温度,℃; G1c1,G2c2:热、冷流体的热容量,W/℃。 即各项温度的角标意义为:“1”是指热流体,“2”是指冷流体;”′”指进口端温度,”″”指出口端温度。 6.2.2.2 对数平均温差法 应用对数平均温差法计算的基本计算公式如式(6-12)所示,式中平均温差对于顺流和逆流换热器,由传热学可得,均为: (6-14) 由于温差随换热面变化是指数曲线,顾流与逆流相比,顺流时温差变化较显著,而逆流时温差变化较平缓,故在相同的进出口的温度下,逆流比顾流平均温差大。此外,顾流时冷流体的出口温度必然低于热流体的出口温度,而逆流则不受此限制。故工程上换热器一般都尽可能采用逆流布置。逆流换热器的缺点是高温部分集中在换热器的一端。除顺流、逆流外,根据流体在换热器中的安排,还有交叉流、混合流等。对于这些其它流动形式的平均温差,通常都把推导结果整理成温差修正系数图,计算时,先一律按逆流方式计算出对数平均温差,然后按流动方式乘以温差修正系数。 用对数平均温差法计算虽然较精确,但稍显麻烦。当Δt′/Δt″<1.7时,用算术平均温差代替对数平均温差的误差不超过2.3%,一般当Δt′/Δt″<2时,即可用算术平均温差代替对数平均温差,这时误差小于4%,即 Δt m=(Δt′+Δt″)/2 6.2.2.3 效能-传热单元数法(ε-NTU法) 换热器热工计算分为设计和校核计算,它们所依据的都是式(6-12)、(6-13)。这其中,除Δt m不是独立变量外,如将KA及G l c l、G2c2作为组合变量,独立变量也达8个,

传热基本方程及传热计算

第三节 传热基本方程及传热计算 从传热基本方程 m t kA Q ?= (4-11) 或 传热热阻传热推动力= ?=kA t Q m 1 (4-11a) 可知,要强化传热过程主要应着眼于增加推动力和减少热阻,也就是设法增大m t ?或者 增大传热面积A和传热系数K。 在生产上,无论是选用或设计一个新的换热器还是对已有的换热器进行查定,都是建立在上述基本方程的基础上的,传热计算则主要解决基本方程中的m t K A Q ?,,,及有关量的 计算。传热基本方程是传热章中最主要的方程式。 一、传热速率Q的计算 冷、热流体进行热交换时,当热损失忽略,则根据能量守恒原理,热流体放出热量 h Q ,必等于冷流体所吸收的热量c Q ,即c n Q Q =,称之热量衡算式。 1. 1. 无相变化时热负荷的计算 (1) (1) 比热法 () ()1221t t c m T T c m Q pc c ph h -=-= (4-12) 式中 Q ——热负荷或传热速率,J.s -1或W ; c h m m ,——热、冷流体的质量流量,kg.s -1; ph pc c c ,——冷、热流体的定压比热,取进出口流体温度的算术平均值下的比热, k J.(kg.k )-1; 21,T T ——热流体进、出口温度,K(°C ); 21,t t -冷流体的进出口温度,K(°C )。 (2)热焓法 )(21I I m Q -= (4-13) 式中 1I ——物料始态的焓,k J.kg -1; 2I ——物料终态的焓,k J.kg -1。 2.有相变化时热负荷计算 Gr Q = (4-14) 式中 G ——发生相变化流体的质量流量,kg.s -1; r ——液体汽化(或蒸汽冷凝)潜热,k J.kg -1。 注意:在热负荷计算时,必须分清有相变化还是无相变化,然后根据不同算式进行计算。对蒸汽的冷凝、冷却过程的热负荷,要予以分别计算而后相加。 当要考虑热损失时,则有:

相关文档
最新文档