温度变送器 终期1

温度变送器 终期1
温度变送器 终期1

电子线路设计终期报告

——温度变送器

设计目的:利用Pt100等构成高精度温度变送器

设计要求:1、温度范围0——100C。

2、显示电压范围0——5V

3、设计精度达到 0.01v

设计原理:

本设计根据课程要求,使用铂热电阻PT100做温度传感器,自行

设计可变电源、精密恒流源电路、线性误差较小的医用放大器、AD

转换以及温度数码显示。在设计过程中,电路的模拟均以orcad或protus仿真完成。

pt100温度-阻值对应图

在贯穿设计过程中一个最重要的换算公式如下:

假设恒流源电流为a ,医用放大器的放大倍数为x ,当温度在0-100摄氏度变化时,pt100阻值为100-140欧姆,最后一部分的放大倍数为t 则

(140-100)ax*t=5v

(一)稳压电源的设计

性能指标要求Vo=+3~+15V ,Iomax=800mA ,P OP V -?≤5MS,V S ≤3*10^-3 在实际应用中,基于成本等方面的考虑,改换电源方案:

(1)选择电源变压器。因为稳压器的最大允许电流Icm

所以V

+,

3

V40

3

Vi

15+

因此V

V43

18≤

Vi

副边电压V2≥Vimin/1.1V,取V2=17V,副边电流I2>Iomax=0.8A,取I2=1A,变压器的副边输出功率为P2≥17W,根据小型变压器的效率表1-2,此变压器η=0.7,则原边输入功率P1≥P2/η=24.3W,为留有余地故选择30W变压器。

表1-2 小型变压器的效率表

副边功率P2/VA <10 10~30 30~80 80~200

效率η0.6 0.7 0.8 0.85

(2)选择整流二极管即滤波电容。整流二极管选择4个1N4001,其

极限参数是Vrm ≥50V ,If=1A 。满足Vrm>2

V2,If=Iomax 的条件。

滤波电容C=p ip C V t I -?/

其中,P IP V -?为稳压器输入端纹波电压的峰峰值,t 为电容C 的放电时间,t=T/2=0.01s ;Ic 为滤波电容的放电电流,可取Ic=Iomax ,且其耐压值应大于

2

V2。

即由纹波电压P OP V -?和稳压系数V S 来确定。已知Vo=12V ,Vi=18V,P OP V -?=5MA,V S =3103-?,则 I V ?=V

O I

P

OP

S V V V -?=2V

所以C=

I

C V t I ?=

I

o V t I ?max =1000F μ

且电容的耐压值应大于2

V2=24V,故取两个470uF 、25V 电容

与原设计过程相比存在的问题:

设计参数基本不变,只是将2200uf 的电容改换成470uf ,耐压值加大为50v ,在实验过程中出现以下问题:

1、曾用7905制造-5v 电压,但输出相当不稳定,有时能达到-11v ,由于变压器输出15v ,经整流后达到20v 之高,远远高于7905的输入电阻;

2、在做正负电源时必须用三抽头变压器,中间是地线,可以稳定地控制7912,7812,7805的输出与地线的电压差;

3、整流后的滤波电容一定要有足够的耐压值,避免烧毁; (3)电路的安装与调试。

1、在变压器的副边接入保险丝FU,以防短路时损坏电路;

2、装集成稳压电路,再装整流滤波电路,最后安装变压器。安装一级测试一级;

3、测试说明:【1】稳压电路,在其输入端加Vi<12V,输出电压Vo固定不变且为正常值,则正常;【2】整流电路部分,要注意检查,避免整流二极管反接,安装前用万用表测其正负;【3】变压器,整流输出电压Vi应为正。断开交流电源,将整流滤波电路与稳压电路相连,再接通电源。

4、最终级联后的电路整体性能指标测试电路1-3

测量过程:输出端姐负载电阻Rl,输入端接220V交流电压,数字电压表的测量值为Vo,使Rl逐渐减小,直到Vo下降5%,此时的负载电流为Iomax。

(记下测量值后迅速增大Rl,以减小稳压电源的功耗)

图1-3稳压电源性能指标测试电路

我们对电源进行了测试,结果较为理想,稳定输出+12v,+5v,-12v 误差在 0.02

(二)恒流源的设计

为避免pt100本身发热引起的非线性误差,取恒流源电流Io=1mA 选用设计中的方案2

方案二:利用集成芯片5532,如图2-2

原理:根据运算放大器的虚短和虚断,lm358的2脚和3脚等电平,为4.000V,根据虚断,(0-V2)/R1+(Vo-V2)/Vp=0,则在pt100上的压降V=Vo-V2=V2/R1*Rp,即为恒流源。

图2-2

本电路所要计算的参数不多,对于图中R4与R5的分压部分采用1k 与4.7k变阻构成,为符合对称要求,使R1=3k,图中R7代表PT100,通过表格可知其电阻范围在100-140Ω之间。

存在的问题:

尝试过试用方案一,即三极管方案,但是实行起来相当麻烦,无法达到所需电流值,加上偏臵不当以及三极管本身的误差,改换低二套方案,即上述方案,利用功放虚短和虚断的特性。实行起来问题不大,只是要注意元件参数的选择,特别注意功率。

(三)两级放大器部分的设计

我们要求中的温度为0~100?C,而pt100对应的阻值为100~138.5Ω,我们选定恒流源的电流为1mA,即pt100两端的电压为

0.1000~0.1385V ,最终要得到的电压应为0~5V ,放大倍数应为

1000

.01385.05

=129.87,分两级来实现。

1、通过对有关资料的查阅,放大器电路中,一般首级放大器有低噪声、低输入偏臵电流、高共模抑制比等要求,故采取弱信号检测放大器,即双端输入-单端输出、且拥有较高的共模抑制比的放大器。如图3-1,其中U1、U2构成前几对称的同相反相输入放大器、后级为差分放大器。在这个模块,为保证放大器的高性能,参数的对称性与一致性非常重要。 R1=R2=24k R3=R4=39k R5=R6=82k

U1与U2完全相同,R8为10k 与4.7k 变阻器串联。

图3-1

3

5

8211

2)1(R R R R R V V Vo A S S VD ++

=-=

以两级设计如上,并没有达到预期效果,主要表现在调途中华东变阻器,不能达到变换增益的效果,原因如下:

1、偏执不当,我们组设计的第一个电源7905输出不稳;

2、由于线路复杂,有短路

种种问题,导致不得不弃用本套方案,该为集成以用放大器ad620,管脚图如下:

2、第二级放大电路如图3-2

图3-2 在本级中,放大倍数=

VD

A -

+-V V V O '=

1

3R R

温度为0'C 时,pt100为100欧姆,此时经过第一级放大后得到V+=0.1000*12=1.2000V ,调节偏臵使第二级放大电路得到的输出电压为0~5V ,即-V =1.25V

在此图中,取标称值R1=R2=5.1k ,R3=R4=51k ,R5=1k ,R6=5k 在这一部分中,重要的是参数计算 存在的问题:

偏臵电压的更换,引来很多问题,特别是元件的更换,需要重新计算参数,重新调试,不过这个模块的结果最重要的问题是精度问题。电路本身存在不可补偿的误差,使电压无法达到精确度。

(四)AD 转化

对于AD 来说,最重要的两个技术指标是转化精度和转化速率。首先考虑AD 精度的问题,实验要求精确到0.01V ,因此V

V N

REF

01.02

1≤?,

所以N=10,选取十位AD转换。本次试验本来计划选用选取逐次逼近型AD即AD571进行AD转化。但AD571价格昂贵,为节约成本改用十位串行输出的ad转换芯片tlc1543

数码管显示部分大体框图如下:

开始

AD取入十位

0000000000—

01××××××××

A转化为BCD码

ANL A, #00FH//取小数点后第二位

写入显示数码管

ANL A ,#0F0H//取小数点后第二位

写入显示数码管

ANL A , #0F00H//取小数点后第二位

写入显示数码管

下面着重介绍一下tlc1543 的性能:

引脚号名称I/O 说明

1-9、11、12 A0-A10 1 模拟输入端。这11个模拟信号输入由内部

驱动电路的阻抗必须小于或等于1k

15 CS 1 片选段。

17 ADDRESS 串行数据输入端。一个4位的串行地址选

将被转换的模拟输入。在I/O CLOCK的前

臵入,在4个地址位读入后,后续信号无

16 DATAOUT O 用于A/D转换结果输出的三态串行输出端

在CS为高时处于高祖状态,为低时处于激

一旦有效,按照前以此转换结果的MSB值

从高祖状态转变成相应的逻辑电平。剩下

出。注意:上升沿控制。

19 EOC O 转换结束端。在第十个I/O CLOCK,该输

高电平编程低电平并保持低,直到转换完

备输出

10 GND i 地

18 I/O CLOCK I 输入输出时钟端,有以下功能:

1、在I/O CLOCK的前四个上升沿,将4个

入地址寄存器

2、从第一个开始,连续十个上升沿,将

入单片机

14 REF+ I 正基准电压端。基准电压的正端加到vcc

电压范围取决于与加于REF-端的电压差13 REF- I 负基端电压端。接地

20 VCC 正电源端

ORG 0000H EOC BIT P1.0 CLK BIT P1.1 ADDR BIT P1.2 DO BIT P1.3 CS BIT P1.4

AD1 EQU 30H AH EQU 31H AL EQU 32H LJMP START ORG 1000H START:

MOV SP,#30H MOV P1,#0FFH NEXT:

CLR CLK MOV AD1,#00H MOV A,#00H MOV AH,A MOV AL,A

ACALL ADC

JNB EOC,$

MOV R7,AH

MOV R6,AL

MOV A,#00H

MOV R0,#60H

MOV R5,#5

LOP0:

MOV @R0,A

INC R0

DJNZ R5,LOP0

MOV R0,#60H

LOP4:

MOV A,R7

JZ LOP2

LOP3:

MOV A,R6

MOV B,#10

DIV AB

MOV R6,A

MOV R1,B

MOV A,R7

MOV B,#10

DIV AB

MOV R7,A

MOV R2,B

MOV A,#25

MUL AB

ADD A,R6

MOV R6,A

MOV A,R2

MOV B,#6

MUL AB

ADD A,R1

MOV B,#10

DIV AB

MOV @R0,B

ADD A,R6

MOV R6,A

INC R0

LJMP LOP4

LOP2:

MOV A,R6

JNZ LOP3 ACALL DISPLAY JMP NEXT ADC:

SETB CS

CLR CS

MOV R0,#2H LOP1:

MOV A,AH MOV C,DO

RLC A

MOV AH,A MOV A,AD1 RLC A

MOV ADDR,C MOV AD1,A SETB CLK

NOP

CPL CLK

DJNZ R0,LOP1 MOV R0,#2H LLOP2:

MOV A,AL

MOV C,DO

RLC A

MOV AL,A

MOV A,AD1 RLC A

MOV ADDR,C MOV AD1,A SETB CLK

NOP CPL CLK

DJNZ R0,LLOP2

MOV R0,#6H

LLOP3:

MOV A,AL

MOV C,DO

RLC A

MOV AL,A

SETB CLK

NOP

CPL CLK

DJNZ R0,LLOP3

SETB CS

RET

DISPLAY:

MOV R0,#4

MOV R1,#60H

SLOP1:

MOV DPTR,#NUMTAB1

MOV R2,#250

SLOP2:

MOV DPTR,#NUMTAB1

MOV A,@R1

MOVC A,@A+DPTR

MOV P0,A

CLR P1.5

ACALL DELAY1MS

SETB P1.5

INC R1

MOV A,@R1

MOVC A,@A+DPTR

MOV P0,A

CLR P1.6

ACALL DELAY1MS

SETB P1.6

INC R1

MOV A,@R1

MOV DPTR,#NUMTAB2

MOVC A,@A+DPTR

MOV P0,A

CLR P1.7

ACALL DELAY1MS

SETB P1.7

DJNZ R2,SLOP2

DJNZ R0,SLOP1

RET

DELAY1MS:

MOV R7,#80

DJNZ R7,$

RET

DEL:

MOV R2,#04H

D1:

MOV R3,#0FFH

D2:

MOV R4,#0FFH

D3:

DJNZ R4,D3

DJNZ R3,D2

DJNZ R2,D1

RET

NUMTAB1:

DB

3FH,06H,5BH,4FH,66H,6D

H,7DH,07H,7FH,6FH

NUMTAB2:

DB

0BFH,86H,0DBH,0CFH,0E

6H,0FDH,87H,0FFH,0EFH

SJMP $

END

#include "reg51.h"

#include "intrins.h"

#define uint unsigned int; #define uchar unsigned char; sbit _cs=P1^4; sbit d_out=P1^3; sbit clk=P1^1; sbit addr=P1^2;

sbit w=P2^7;

sbit wula0=P1^5;

sbit wula1=P1^6;

sbit wula2=P1^7;

uint data ad;

uchar data ah=0;

uchar data al=0;

//uint ad_rslt;

uint wu_bai; //转换结果百位...

uint wu_shi; //转换结果十位...

uint wu_ge; //转换结果个位...

int i=0;

//int y=0;

uchar code table[]={

0x3f,0x06,0x5b,0x4f,

0x66,0x6d,0x7d,0x07,

0x7f,0x6f,0x77,0x7c,

0x39,0x5e,0x79,0x71};

void delay(){

int y,j;

for(y=0;y<10;y++)

for(j=0;j<110;j++);

}

uint get_AD(unsigned char port){

//AD采样函数...

_cs=0;

clk=0;

port<<=4;

//送入地址信息...

for(i=0;i<4;i++){

addr=(bit)(port&0x80);

clk=1;

clk=0;

port<<=1;

}

for(i=0;i<6;i++){

clk=1;

clk=0;

}

//等待转换...

_cs=1;

//delay();

_nop_();

_nop_();

_nop_();

_nop_();

_cs=0;

//送入数据...

for(i=0;i<2;i++){

d_out=1;

clk=1;

//clk=0;

if(d_out){

ah |=0x01;

}

ah<<=1;

clk=0;

}

for(i=0;i<8;i++){

d_out=1;

clk=1;

//clk=0;

if(d_out){

al |=0x01;

}

al<<=1;

clk=0;

}

_cs=1;

ad=(unsigned int)ah;

ad<<=8;

ad |=al;

return ad;

}

void main(){

float temp;

unsigned int ad_rslt;

while(1){

temp=(float)get_AD(0x00);

// temp=0x01dc;

temp=(temp/0x03ff)*5000;

ad_rslt=(unsigned int)(temp/10);

wula0=0;

wu_bai=(ad_rslt%1000)/100;

P2=table[wu_bai];

w=1;

delay();

wula0=1;

wula1=0;

wu_shi=(ad_rslt%100)/10;

P2=table[wu_shi];

delay();

wula1=1;

wula2=0;

wu_ge=ad_rslt%10;

P2=table[wu_ge];

delay();

wula2=1;

}

} /*

void delay(unsigned int z){

for(i=z;i>=0;i--)

for(y=110;y>=0;y--); }*/

调试中出现问题的地方有:

1、对单片机的基础知识不熟练,走了不少弯路,譬如:在调试初期,我们使用P0口输出,却没有加上拉电阻,以至于软件仿真、面包板调试都失败,且找不到原因,实验停滞一周之久;

2、后来改用p2口输出,但仍然存在问题,p2口内臵上拉电阻,但是由于电阻阻值相当大,使接数码管后,电流不足以驱动;

件仿真虽然成功,真正电路上却无法正常工作;如下图:

4、最终改换p2 口外置上拉电阻,数码管亮度大大增加;

5、但是软件上仍存在问题,程序无法正确显示,经过多次调试,仍然未能达到预期结果,存在频闪和误差的问题,利用单片机进行补偿,也没有效果。

总结:

其实可以说本学期电子线路设计是以失败告终的,这个从设计到连接到调试的过程走的十分坎坷,问题时时刻刻存在,但由于我们本身对于所学知识的机械掌握,不能活学活用,解决问题的过程也十分艰难,板子一改再改,器件一换再换,即使仿真成功,即使面包板上的结果正确,依然无法在焊接过程中万无一失,错误一再出现,失败一再重复。

但是,我相信在我们的错误中,我们已经得到了宝贵的经验,一方面加强了对知识的理解与应用,一方面也真正动手去设计制作自己的电子设计,学到了很多书上不会讲明白的东西,还有一方面就是我们学会了很多有用的操作或元件特性,在这个实验报告中,有很多元件工作手册都是英文的,我们全自主翻译,设计需要,还自学了orcad 与protus软件。而且在这个过程中,尽管失败的结果带来了我们心情的失落,但我们的合作十分融洽,分工明确,又互相帮助,面对失败,我们坦然接受,一旦有转机,不论何时,也会积极地兴奋地去完成,哪怕有一点点的成果,也会让我们每个人兴奋不已,毕竟这样的机会不多,毕竟这每一点都是我们一再更改一再努力后得到的。

失败的滋味十分苦涩,但有我们共同承受着,很多人说,付出与回报是等价的,我们的付出换来的该是什么样的回报呢?我们从开题时候就没有轻松过,都是第一次动手设计,都是第一次做自己设计的东西,改动在所难免,我们欣然接受。不论周末也好,隔离时期也好,我们从未放弃过电子设计,每一个元件,每一条连线都是见证,不惜一切,我们向着同样的目标奋斗,直到验收的前一天晚上,束手无策。沉默,让实验结果的失败给我们带来的失落更加昭然若揭,但是,相信每一个人心中都明白,我们努力了,尽力了,归咎于我们知识的局限,相信这次电子设计会鞭策我们奋发学习,打破这个僵局,让它永远不要再出现。

温度变送器选型安装规范

1、范围 1.1 本规范规定了公司多相流量计设计中常用的铂(Pt)热电阻温度变送器选 型、设计、安装的具体技术要求和检验规程。其它同类型温度变送器亦应 参照使用。 1.2 本规范适用于二线制温度变送器的选型,不包括其他类型的温度变送器。 1.4 公司所有温度变送器的设计、采购、验收和施工均不得低于本规范的要求。 2 、基本工作原理 热电阻温度变送器是利用感温材料的电阻值和温度之间的数学模型关系,将随温度变化而变化的电阻值转换为4~20mA的直流电流信号或1~5V的直流电压信号输出。 3、构成与功能 一体化温度变送器主要由温度传感器、保护套管、变送器等部分组成。 传感器将温度的变化转换成电阻值的变化。 保护套管用于隔离工艺介质,保护电阻体。 变送器将变化的电阻值转换成为变化的4~20mA(或1~5V)模拟信号输出。 4、主要技术性能 4、1铂热电阻 基本误差:A级±(0.15+0.002∣t∣)℃ B级±(0.30+0.005∣t∣)℃ 注:t为感温元件实测温度 允许通过电流:<5mA 常温绝缘电阻:环境温度为15--35℃和相对湿度不大于80%时热电阻感温元件和保护管之间的绝缘电阻应不小于100MΩ(电压100V)。 热电阻插入最小深度:一般不小于其保护管外径的8---10倍。 4、2 变送器 精度等级:0. 2级 负载电阻:250Ω 供电电源:24VDC ±10%

环境温度:-25~70℃ 输出信号:4~20mA(或1~5V) DC 测量范围:0~100(150)℃ 防爆等级:根据使用要求选用。 5、选型原则 5、1 根据多相流量计装置的操作条件和使用场所,选用定型的、技术成熟可靠的产 品。对于新的产品,应在经过鉴定,确保质量的基础上选用。 5、2 在同一项目中,仪表品种规格不宜过多,并力求统一。 5、3 应根据现行的有关爆炸和火灾危险场所电气设备设计规范的规定,按一体化温 度变送器安装场所的爆炸等级和爆炸性混合物的分类,确定其防爆形式及级别、组别。 5、4应根据被测介质和周围环境,考虑温度变送器是否需要防冻、防震、防晒、防 腐等。 5、5 属于PDO项目的产品,应在PDO推荐的厂方名录中选用相关仪表;如果不在PDO 的推荐名录中,则必须向PDO提出申请,得到批准后方可使用。表1为PDO推荐使用的温度变送器厂家及型号。 表1 PDO推荐使用温度变送器 5、6按照PDO的标准,对于6”以下的工艺管线,传感器保护管的插入深度统一为 230mm;6”以上的工艺管线,传感器保护套管的插入深度统一为255mm。承压法兰至测温管嘴之间距离为150mm。 5、7为便于标准化设计以及现场维护的可互换性和可操作性,温度变送器所配传感 器统一选用外径围6mm的铠装热电阻。 6、安装规范 6、1温度传感器的安装 6.1.1正确选择测温点

差压变送器工作原理及常见故障分析

差压变送器工作原理及常见故障分析 差压变送器工作原理及常见故障分析 差压变送器在工业自动化生产中对压力、压差流量的测最应用愈见广泛,生产中遇到的问题也越来越多,故障的及时判定分析和处理,对正在进行的生产来说是至关重要的。本文介绍日常维护中的经验和故障判定分析方法,供参考。 一、差压变送器工作原理 来自双侧导压管的差压直接作用于变送器传感器双侧隔离膜片上,通过膜片内的密封液传导至洲量元件上,测最元件将测得的差压信号转换为与之对应的电信号传递给转换器,经过放大等处理变为标准电信号输出。差压变送器的几种应用测最方式: 1 .与节流元件相结合,利用节流元件的前后产生的差压值测量液体流量. 2 .利用液体自身重力产生的压力差,测是液体的高度。 3 .直接测量不同管道、魄休液体的压力差值。 二、差压变送器故障诊断方法 除了回顾故障发生前的打火、冒烟、异味、供电变化、雷击、潮湿、误操作、误维修等情况;以及观察回路的外部损伤、导压管的泄漏,回路的过热,供电开关状态等现象外,还应通过检测来诊断故障。 1 .断路检侧:将怀疑有故障的部分与其他部分分割开来,查看故障是否消失,如果消失,则可确定故障在此处。否则可进行下一步查找,如:智能差压变送器不能正常Ha 性远程通讯,可将电源从仪表本体中断开 用现场另加电源的方法为变送器通电进行通讯,以查看是否叠加有约Zk - HZ 的电磁信号而干扰通讯。 2 .短接检测:在保证安全的情况下,将相关部分回路直接短接,如:差压变送器输出值偏小,可将导压管断开,从一次取压阀外将差压信号直接引到差压变送器双侧,观察变送器输出,以判断导压管路有无堵、漏及连通性。 3 .替换检测:更换怀疑有故障的部分,判断故障部位。如:怀疑变送器电路板发生故障,可临时更换一块,以确定原因。 4 .分部检侧:将测皿回路分割成几个部分(如:供电电源、信号输出、信号变送、信号检测),按各部分分别检查,由简至繁,由表及里,缩小范围,找出故障位置。 三、常见故障检修 1 .输出过大的可能原因和解决方法: ( l )导压管。检查导压管是否泄漏或堵塞;检查截止阀是否全开;检查气体导压管内是否有液体,液体导压管内是否有气休;检查变送器压力容室内有无沉积物. ( 2 )变送器的电气连接。检查变送器的传感器组件连接情况.保证接插件接触处清洁;检查8 号插针是否可靠接表壳地. . ( 3 )变送器电路故障。用备用电路板代换检查、判断有故障的电路板及更换有故障的电路板. ( 4 )检查电源的输出是否符合所需的电压值. 2 .输出过小或无输出的可能原因和解决方法: ( 1 )导压管。检查导压管是否泄漏或堵塞;检查液体导压管内是否有气体;检查变送器压力容室内有无沉积物;检查截止阀是否开全,平衡阀是否关严。 ( 2 )变送器的电气连接。检查变送器传感器组件的引出线是否短接;保证接插件接触处清洁;检查各调节螺钉是否在控制范围内。

WBS一体化温度变送器

WBS系列 一体化温度变送器 安装使用说明书 开封开仪自动化仪表有限公司

1 概述 WBS系列温度变送器(以下简称仪表)是我公司于国内首家研制出来,85年投放市场至今已历经20多年持续完善和改进的产品,在国内首先实现了传感器与变送电路一体化结构。它以热电阻或热电偶作为温度敏感元件,采用专用电路模块,就地把敏感元件的信号转换成与温度呈线性的标准电流,用一般铜导线即可传输,不仅节少了贵重的补偿线或电缆,而且有信号传递失真小,抗干扰能力强,可进行远距离传输等优点。能非常方便的与各种二次仪表或计算机系统配套,实现温度的测量与控制。 1.1 用途 该仪表适用于工业领域,管道、容器中的介质温度,或其它气体、液体的温度、炉膛温度的检测。 1.2 防护类型 a. 普通型:具有防水、防尘性能,可用于室内或室外安装,IP65。 b. 防爆型:经国家级仪器仪表防爆安全监督检验站(NEPSI)审查防爆安全性能符合GB3836.1-2000、GB3836.2-2000、GB3836.4-2000标准规定的有关要求,防爆标志为ExdⅡBT4~T6(隔爆型)合格证号GYB05673 ,ExiaⅡCT4~T6(本质安全型)合格证号GYB05674 本安型在防爆场合安装,需和经防爆检验站验单位认证的安全栅配套方可使用于现场存在ⅡC级以下的爆炸性气体混合物的场所。 1.3 仪表的指示方式 a. 无指示:只输出与温度呈线性的标准电流。 b. 数字表头指示:除输出功能外,仪表还具有液晶数字显示器,指示当前所测温度值,指示单位℃。 c. 指针表头指示:除输出功能外,仪表用指针表头指示输出的电流信号值,指示量程的0~100%。 1.4 型号规格分类 a. 型号分类(表1)

一体化温度变送器使用说明书

热电偶热电阻 温度变送器 (一体化) 使用说明书 香港东辉仪器仪表(集团)公司

一、产品概述 东辉智能仪器有限公司生产的“Daryens”大延牌S系列SBWR 型热电偶温度变送器和SBWZ型热电阻温度变送器是小型一体化二线制仪表新产品,代表着当今传感器一体化发展趋势。由于该产品实现了小型化,可以直接在温度传感器的接线盒内安装,将传感器的微弱信号直接转换成符合标准化的4~20mA直流信号远传至控制室,从而提高了信号的抗干扰能力。产品主要特点有: 1.小型化、体积小,重量轻,全密封封装,耐环境性强。 2.一体化、二线制(变送器所用电源和输出信号共用两条线)节省补偿导线及连接导线,便于安装使用。 3.低功耗,一台24V/1A直流电源可给几十台变送器供电。 4.适用于各种分度号的热电偶、热电阻温度传感器。 5.具备冷端温度补偿,断偶报警等功能。 6.输入信号最低量程为5mVDC。 7.一体化现场安装使用。 8.与国内Ⅲ型或S系列仪表的“配电器”配套,可构成隔离型检测或控制系统。 二、主要技术指标 1.输入信号量程及范围 SBWR型热电偶温度变送器: 最小量程5mVDC;最大量程80mVDC。 SBWZ型热电阻温度变送器:

最小量程10Ω;最大量程400Ω。 2.输出信号:4~20Madc 3.允许负载电阻:500Ω(24VDC供电) 4.工作条件:环境温度—40~85℃;相对湿度≤95% 5.基本误差:0.5% 6.长时间漂移:<±5ppm/℃ 7.温度漂移:≤±100 ppm/℃ 8.断偶报警输出:3.8mA 9.供电电源V PO:24V±20%DC 10.消耗功率:<0.5W 11.外形尺寸:Φ46×28 12.安装尺寸:Φ4+0.2+0.1二个安装孔,孔距L=36±0.1 三、型号规格 1.变送器型号用SBW□—□□表示,定义如下: 第一节第一、二、三位“SBW”表示S系列仪表温度变送器;第一节第四位表示测温元件类型,R—表示热电偶,Z—表示热电阻温度变送器; 第二节第二位表示分度号代码: 0:通用型; 1:E或Cu50 2:K或Cu100;3:S; 4:B或Pt100 5:T; 6:J; 7:R

变送器原理.doc

变送器原理 两线制V/I变换器IC:DH4-20 工业上普遍需要测量各类非电物理量,例如温度、压力、速度、角度等,都需要转换成模拟量电信号才能传输到几百米外的控制室或显示设备上。这种将物理量转换成电信号的设备称为变送器。工业上最广泛采用的是用4~20mA电流来传输模拟量。 采用电流信号的原因是不容易受干扰。并且电流源内阻无穷大,导线电阻串联在回路中不影响精度,在普通双绞线上可以传输数百米。上限取20mA是因为防爆的要求:20mA的电流通断引起的火花能量不足以引燃瓦斯。下限没有取0mA的原因是为了能检测断线:正常工作时不会低于4mA,当传输线因故障断路,环路电流降为0。常取2mA作为断线报警值。 电流型变送器将物理量转换成4~20mA电流输出,必然要有外电源为其供电。最典型的是变送器需要两根电源线,加上两根电流输出线,总共要接4根线,称之为四线制变送器。当然,电流输出可以与电源公用一根线(公用VCC或者GND),可节省一根线,称之为三线制变送器。 其实大家可能注意到, 4-20mA电流本身就可以为变送器供电,如图1C所示。变送器在电路中相当于一个特殊的负载,特殊之处在于变送器的耗电电流在4~20mA之间根据传感器输出而变化。显示仪表只需要串在电路中即可。这种变送器只需外接2根线,因而被称为两线制变送器。工业电流环标准下限为4mA,因此只要在量程范围内,变送器至少有4mA供电。这使得两线制传感器的设计成为可能。 在工业应用中,测量点一般在现场,而显示设备或者控制设备一般都在控制室或控制柜上。两者之间距离可能数十至数百米。按一百米距离计算,省去2根导线意味着成本降低近百元!因此在应用中两线制传感器必然是首选。 输出为标准信号的传感器。这个术语有时与传感器通用。 变送器种类很多,总体来说就是由变送器发出一种信号来给二次仪表使二次仪表显示测量数据。 将物理测量信号或普通电信号转换为标准电信号输出或能够以通讯契约方式输出的设备。一般分为:温度/湿度变送器,压力变送器,差压变送器,液位变送器,电流变送器,电量变送器,流量变送器,重量变送器等。 变送器——遵循一个物理定律(或实验数学模型)将物理量的变化转化成4-20mA等标准信号的装置。 变送器将传感信号转换为统一的标准信号:0/4-20mADC,1-5VDC,0-10VDc 变送器:除有传感的效用之外还有放大整形的效用,输出为标准的控制信号.如:4-20mA 什么是变送器的二线制和四线制信号传输方式? 二线制传输方式中,供电电源、负载电阻、变送器是串联的,即二根导线同时传送变送器所需的电源和输出电流信号,目前大多数变送器均为二线制变送器;四线制方式中,供电电源、负载电阻是分别与变送器相连的,即供电电源和变送器输出信号分别用二根导线传输。......请看变送器八问八答。 一.什么是两线制电流变送器? 什么是两线制?两线制有什么优点? 两线制是指现场变送器与控制室仪表联系仅用两根导线,这两根线既是电源线,又是信号线。两线制与三线制 (一根正电源线,两根信号线,其中一根共GN D) 和四线制(两根正负电源线,两根信号线,其中一根GND)相比,两线制的优点是: 1、不易受寄生热电偶和沿电线电阻压降和温漂的影响,可用非常便宜的更细的导线;可节省大量电缆线和安装费用; 2、在电流源输出电阻足够大时,经磁场耦合感应到导线环路内的电压,不会产生显著影响,因为干扰源引起的电流极小,一般利用双绞线就能降低干扰;两线制与三线制必须用屏蔽线,屏蔽线的屏蔽层要妥善接地。 3、电容性干扰会导致接收器电阻有关误差,对于4~20mA两线制环路,接收器电阻通常为250Ω(取样Uout=1~5V)这个电阻小到不足以产生显著误差,因此,可以允许的电线长度比电压遥测系统更长更远; 4、各个单台示读装置或记录装置可以在电线长度不等的不同通道间进行换接,不因电线长度的不等而造成精度的差异,实现分散采集,分散式采集的好处就是:分散采集,集中控制.... 5、将4mA用于零电平,使判断开路与短路或传感器损坏(0mA状态)十分方便。 6,在两线输出口非常容易增设一两只防雷防浪涌器件,有利于安全防雷防爆。 三线制和四线制变送器均不具上述优点即将被两线制变送器所取代,从国外的行业动态及变送器心片供求量即可略知一斑,电流变送器在使用时要安装在现

简单说明温度变送器的原理及参考书籍

简单说明温度变送器的原理及参考书籍 《工厂电气控制》 《电工手册》 原理是 如:热电阻隔离变送器Pt100: 通过感应温度变化达到阻值的变化 温度变送器: 1.通过确认阻值的不同计算出当前的温度 2.再根据热点阻的量程变送输出对应的标准 信号(4-20mA)值 即: 温度变化--热电阻隔离变送器--电阻变化--温度变送器--4~20mA信号 举个例子: Pt100的量程为:-199.9度-600.0度 温度变送器就把这个转化为标准信号后对应的 4mA就是-199.9度 20mA就是600.0度 通过确认变送器输出的电流大小就可以知道当前的温 摘要:现场总线是应用在生产现场,在微机化测量控制设备(称为现场总线仪表)之间实现双向串行多节点数字通信系统,它在制造业、流程工业、交通、楼宇等方面的自动化系统中具有广泛的应用前景。本文从工程应用出发,介绍了现场总线温度变送器的原理和应用,以供自动化人员参考。 关键词:现场总线、温度变送器、原理、应用。 一、引言 信息技术的飞速发展,引起了自动化系统结构的变革,逐步形成了以网络集成自动化系统为基础的企业信息系统。现场总线就是顺应这一形势发展起来的新技术。现场总线是应用在生产现场,在微机化测量控制设备(称为现场总线仪表)之间实现双向串行多节点数字通信系统,也被称为开放式、数字化、多点通信的底层控制网络,它在制造业、流程工业、交通、楼宇等方面的自动化系统中具有广泛的应用前景。 目前,在国内可购到的FF(现场总线基金会)现场总线仪表有:罗斯蒙特公司的FF3051压力(压差)变送器、FF3244MV温度变送器、FFDVC50000智能阀门;Smart公司的FFLD302压力(压差)变送器、FFTT302温度变送器、FFFP302现场总线到气压转换器。本文从工程应用出发,对FFTT302现场总线温度变送器的原理和应用加以介绍,以供自动化人员参考。 二、原理

模拟量温度变送器

温度变送器 1. 产品介绍 1.1 产品概述 该温度变送器广泛适用于通讯机房,仓库楼宇以及自控等需要温度监测的场所,传感器内输入电源,测温单元,信号输出三部分完全隔离。安全可靠,外观美观,安装方便。1.2 功能特点 采用美国的测温单元,测量精准。采用专用的模拟量电路,使用温度范围宽。10~30V 宽电压范围供电,规格齐全,安装方便。可同时适用于四线制与三线制接法。 1.3 主要技术指标【T:156-28-95-61-86】 直流供电(默认)10~30V DC 最大功耗电流输出 1.2W 电压输出 1.2W 默认精度温度±0.5℃(25℃) 宽量程精度温度±1℃(25℃)变送器电路工作温度-20℃~+60℃,0%RH~80%RH 探头工作温度-100℃~+300℃(定做),默认量程:-40℃~+80℃探头工作湿度0~100%RH 长期稳定性温度≤0.1℃/y 响应时间温度≤10s(1m/s风速) 输出信号电流输出4~20mA 电压输出0~5V/0~10V 负载能力电压输出输出电阻≤250Ω 电流输出≤600Ω 注:带显示产品最大电流增加5mA

WD- 单温度变送、传感器N01- RS485通讯(Modbus-RTU协议) 1- 86液晶壳 2- 壁挂王字壳 9- 管道壳 1 外置圆形不锈钢探头 2 外置磁吸式探头 3 外置扁形不锈钢探头 4 外置4分管螺纹探头 4L 外置4分管螺纹长探头

3. 设备安装说明 3.1 设备安装前检查 设备清单: ■变送器设备1台 ■12V/2A电源1台(选配) ■合格证、售后服务卡、保修卡等 3.2 接线 3.2.1 电源接线 宽电压电源输入10~30V均可。针对0~10V型输出,只能用24V供电。 3.2.2输出接口接线 设备标配是具有1路模拟量输出。可同时适应三线制与四线制。 3.3 具体型号接线 3.3.1:壁挂王字壳接线

RS485温度变送器使用说明书全解

485型温度变送器 使用说明书 1. 介绍 1.1 概述 该变送器广泛适用于通讯机房、仓库楼宇以及自控等需要温度监测的场所,传感器内输入电源,测温单元,信号输出三部分完全隔离。安全可靠,外观美观,安装方便。 1.2 功能特点 采用美国进口的测温单元,测量精准。采用专用的485电路,通信稳定。可选择一路继电器输出或者蜂鸣器报警。10~30V 宽电压范围供电,规格齐全,安装方便。 1.3 主要技术指标 供电电源:10~30V DC 普通测温范围:-40℃~80℃(默认) 默认精度:±0.5℃ 超宽温:-100℃~300℃ (需定制) 宽量程精度:±1℃ 通信协议:Modbus-RTU(详见第5部分) 存储环境:-40℃~80℃ 输出信号:485信号、继电器(选配)、内置蜂鸣器(选配) 参数设置:通过上位机软件配置 1.4 系统框架图 485总线 USB 转485或232转485 10~30V DC UPS 电源(选配) AC220V 市电 监控电脑

1号设备2号设备3号设备n号设备 系统方案框图 2. 产品选型 RS- 仁硕公代号 WD- 单温度变送、传感器 N01- RS485通讯(Modbus协议) 1- 86液晶壳 2- 壁挂王字壳 1 外置圆形不锈钢探头 2 外置磁吸式探头 3 外置扁形不锈钢探头 4 外置4分管螺纹探头 4L 外置4分管螺纹长探头

3. 设备安装说明 3.1 设备安装前检查 设备清单: ■变送器设备1台 ■产品合格证、保修卡、售后服务卡等 ■12V/2A防水电源1台(选配) ■USB转485(选配) ■485终端电阻(多台设备赠送) 3.2 接口说明 3.2.1 电源及485信号 宽电压电源输入10~30V均可。485信号线接线时注意A\B两条线不能接反,总线上多台设备间地址不能重复。 3.2.2继电器接口 设备可选配一路开关量常开触点输出或内置蜂鸣器报警。 3.3 具体型号接线 3.3.1:壁挂王字壳接线 线色 说明 电源棕色电源正(10~30V DC)黑色电源负 通信黄色485-A 蓝色485-B 3.3.2:86液晶壳接线

压力变送器的原理[1]

压力变送器的原理 压力变送器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用压力变送器的原理及其应用 1、应变片压力变送器原理与应用 力学传感器的种类繁多,如电阻应变片压力变送器、半导体应变片压力变送器、压阻式压力变送器、电感式压力变送器、电容式压力变送器、谐振式压力变送器及电容式加速度传感器等。但应用最为广泛的是压阻式压力变送器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式压力变送器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变变送器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 金属电阻应变片的内部结构 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情 2、陶瓷压力变送器原理及应用 抗腐蚀的压力变送器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0~70℃,并可以和绝大多数介质直接接触。 陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40~135℃,而且具有测量的高精度、高稳定性。电气绝缘程度>2kV,输出信号强,长期稳定性好。高特性,低价格的陶瓷传感器将是

什么叫一体化温度变送器

什么叫一体化温度变送器 KHWB 一体化温度变送器是温度传感器与变送器的完美结合,以十分简捷 的方式把-200~+1600 ℃范围内的温度信号转换为二线制4~20mA DC 的电信号传输给显示仪、调节器、记录仪、DCS 等,实现对温度的精确测量和控制。KHWB 一体化温度变送器是现代工业现场、科研院所温度测控的更新换代产品,是集散系统、数字总线系统的必备产品。●特点超小型(模块φ44×18 )一体化,通用性强二线制4~20mA DC 输出。传输距离远,抗干扰能力强。冷端、温漂、非线形自动补偿。测量精度高,长期稳定性好。 温度模块内部采用环氧树脂浇注工艺,适应于各种恶劣和危险场所使用。 一体化设计,结构简单合理,可直接替换普通装配式热电偶、热电阻。机 械保护IP65 。采用热电偶温变,可免用补偿导线,降低成本液晶、 数码管、指针等多种指示功能方便现场适时监控。现场环境温度70 ℃时,变送器和现场显示仪表可采用分离(隔离)式安装防爆等级:dIIBT4 、dIIBT5 。防护等级:IP54●技术指标类别SK-SBW 模块式温 变SK-SBW 一体化温变准确度0.2%F.S 0.5%F.S输入热电偶:B 、S 、T 、K 、J热电阻:Pt100 、Pt10 、Cu100 、Cu50输出二线制4-20mA DC使用温度-25-85 ℃(一体化LCD 表头时0- 60 ℃)温度影响≤0.05%/℃湿度5-95%RH现场显示无3 1/2LED 3 1/2LCD 0-100% 等分刻度显示精度无数字式:0.5 级指针式:2.0 级负载能力600 Ω(额定负载250 Ω)外形尺寸44×1870 ×100(中继器)KHWB 一体化温度变送器一般由测温探头(热电偶或热电 阻传感器)和两线制固体电子单元组成。采用固体模块形式将测温探头直接安 装在接线盒内,从而形成一体化的变送器。KHWB 一体化温度变送器一般分为

EJA变送器工作原理及维护

EJA差压变送器工作原理及产品维护: EJA变送器是日本横河电机株式会社九十年代中期最新推出的产品,率先采用真正的数字化传感器—单晶硅谐振式传感器,开创了变送器的新时代,产品具有更高的精度、稳定性、可靠性,自推向市场,深受各界好评。 EJA差压变送器采用日本横河电机开发的单晶硅谐振式传感器技术,是目前世界上最先进的变送器,进入中国市场后,深受广大用户的青睐,是变送器领域最具活力的名牌产品。CYS 作为日本横河电机EJA智能变送器全球三大生产基地之一,以ISO9000质量保证体系与日本横河电机5M质量管理方式相结合,采用其先进的制造工艺和高新设备,确保CYS制品与日本制品同一品质。为了满足市场的更高需求,公司推出了精度更高、安全性更强、重量更轻、功能更全的EJX系列智能变送器。 主要特点: 除保证高精度外,还实现了静压、温度等环境影响极小的高性能。 可长期连续使用的高可靠性。 小型、轻量,使其不受安装场所的限制,可自由安装。 采用微型计算机技术,具有完整的自诊断功能和通讯功能。 开发时重视零点的稳定性,提高了维护效率。连续五年不需调校零点。 EJA差压变送器工作原理: 采用微电子加工技术(MEMS)在一个单晶硅芯片表面的中心和边缘制作两个形状、尺寸、材质完全一致的H形状的谐振梁,谐振梁在自激振荡回路中作高频振荡。单晶硅片的上下表面受到的压力不等时,将产生形变,导致中心谐振梁因压缩力而频率减小,边缘谐振因受拉伸力而频率增加。两频率之差信号直接送到CPU进行数据处理,然后 (1)经D/A转换成4-20mA输出信号,通讯时叠加Brain或Hart数字信号; (2)直接输出符合现场总线(Fieldbus Foundation TM)标准的数字信号。 优越性能: 压影响忽略不计,当加有静压(工作压力)时,两形状、尺寸、材质完全一致的谐振梁形变相同,故频率变化也一致,故偏差自动清除(公式和图类似温度影响)。 单向过压特性优异,接液膜片与膜盒本体采用独创的波纹加工技术,使外部压力增大到某一数值时,接液膜片能与本体完全接触,硅油传递给传感器的压力不再随外力的增加而增加,从而达到对传感器的保护作用。(安装灵活,可无需支架,直接安装,常规使用,无需三阀组,组态灵活简便,可通过计算机或手操器对变送器组态,也可通过变送器上的量程设置按钮和调零按钮,进行现场调整。 差压变送器常出现的问题及简单维护: 一、差压变送器输出不稳定是差压变送器应用过程中经常出现的问题,差压式流量计(V 锥流量计或者孔板流量计)现场应用的时候,经常会遇到这样那样的问题,但是追究其原因,只要是在安装正确的情况下,主要问题都是出现在二次仪表和差压变送器上,下面主要给大家介绍下出现这些问题的时候主要检查的地方: 1、差压变送器输出过低 主要原因在于:正压管发生泄露或者堵塞,差压变送器量程过大,管道内流量过小。对于一般测量流体,导压管发生泄露或者堵塞正是不可能的,发生这个现象的正常是现场测量煤气或者含杂质的介质,只要我们即使检查导压管,排除堵塞,调整差压变送器量程和调节

YTA一体化温度变送器规格型号

YTA一体化温度变送器规格型号 YTA 系列一体化温度变送器的型号和规格代码由3部分构成,写成3行。 YTA HR 型号 基本规格代码描述YTA110 YTA310 YTA320 ??????????????????????????? ??????????????????????????? ??????????????????????????? 配YTA110型温度变送器配YTA310型温度变送器 配YTA320型温度变送器 输出信号-D ???????????????????????? -E ????????????????????????? -F ????????????????????????? 4- 20mA DC 输出, BRAIN 通信协议4 - 20mA DC 输出, HART 通信协议数字通讯(基金会现场总线)*1— A ??????????????????????总为 A 电气接口 0????????????????????2???????????????????? 3???????????????????? 4???????????????????? G1/2内螺纹1/2 NPT 内螺纹Pg13.5内螺纹M20内螺纹内置显示器D??????????????? N??????????????? 数字指示仪 无安装支架B???????????? D??????????? N??????????? SUS304 不锈钢2”管水平安装 *2SUS304 不锈钢2”管垂直安装 *2无选项规格/ □ 选项规格 *1:仅适用于YTA320,现场总线通讯参照GS 01C50T02-00E 。*2:若用于平板安装,请准备螺栓和螺母。 项目 描述代码 避雷器电源电压: 10.5~ 32 V DC ,允许电流:最大6000A (1×40us), 重复1000A(1×40μs)100次 A 涂漆涂层改变环氧树脂烤漆X1 颜色改变仅放大器外壳蒙塞尔标记代码:N1.5 ,黑P1蒙塞尔标记代码:7.5BG4/1.5,翡翠绿P2金属银P7 校验单位oF/oR 单位D2 变送器故障输出低信号*1输出低信号: -5 %,≤ 3.2 mA DC 。传感器故障设定为低:-2.5 %,3.6 mA DC C1兼容MAMUR NE43*1 输出信号极限:3.8mA~20.5mA 故障报警下刻度:CPU 故障和硬件出错时输出 状态为-5%,≤ 3.2 mA DC 。传感器故障也被设为低:-2.5 %,3.6 mA DC C2 故障报警上刻度:CPU 故障和硬件出错时输出 状态为110%,≥21.6mA DC 。在这种情况下传感器故障为高:110 %,21.6 mA DC C3 传感器匹配功能*2热电阻传感器匹配功能CM1 不锈钢壳体*3壳体材质 : SCS14A 不锈钢(相当于SUS316铸造不锈钢和ASTM CF-8M ) E1弯头垂直安装电气接口朝上时推荐加装,防止渗漏,材质SUS304W *1:不适用于输出信号代码F 。 *2:不适用于YTA110。当订购品输出信号代码为F 时不必指定,因为此功能已包含在内。*3:适用于附加规格代码A ,D2,C1,CM1,W ,NF2,NS2。 注:每台仪表有主要性能测试数据成绩表,若需要订货时请注明。 I 温度变送器部分II 温度传感器部分(热电偶为HR ,热电阻为HZ ) III 保护套管部分(可选项)这里http://www.yhllj.com/进行帮助。

温度变送器的工作原理和分类

温度变送器的工作原理和分类 因为感温元件品种繁多,其信号输出类型也多。为了便于自动化检测,所以对各种温度传感器的信号输出做了统一的规定,也就是为统一的4~20mA信号。为了使各种温度传感器的输出能统一为4~20MA的信号,所以用了温度变送器。利用温度变送器来使输入的各种电阻和电势信号,变成了统一的4~20MA的电流信号,这就是温度变送器的由来。 温度变送器完成测量信号的采集后转化成统一的4~20MA电流信号输出。同时还起隔离作用。 按工作原理分类,主要是热敏元件的不同, 有:热电偶,热电阻(金属),和半导体热敏电阻 一体化温度变送器将温度传感元件(热电阻或热电偶)与信号转换放大单元有机集成在一起,用来测量各种工艺过程中-200-1600℃范围内的液体、蒸汽及其它气体介质或固体表面的温度。它通常和显示仪表、记录仪表以及各种控制系统配套使用。 特点 温度传感器温度影响产生电阻或电势效应,经转换产生一个差动电压信号。此信号经放大器放大,再经电压、电流变换,输出与量程相对应的4-20mA的电流信号。 热电偶一般用于中高温的测量,而热电阻主要是低温的测量。采用何种,具体看看下面的介绍: 热电偶 热电偶是工业上最常用的温度检测元件之一,热电偶工作原理是基于赛贝克(seeback)效应,即两种不同成分的导体两端连接成回路,如两连接端温度不同,则在回路内产生热电流的物理现象。其优点是: ①测量精度高。因热电偶直接与被测对象接触,不受中间介质的影响。 ②测量范围广。常用的热电偶从-50~+1600℃均可边续测量,某些特殊热电偶最低可测到-269℃(如金铁镍铬),最高可达+2800℃(如钨-铼)。 ③构造简单,使用方便。热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。 1.热电偶测温基本原理 将两种不同材料的导体或半导体A 和B焊接起来,构成一个闭合回路。当导体A和B的两个执着点1和2之间存在温差时,两者之间便产生电动势,因而在回路中形成一个大小的电流,这种现象称为热电效应。热电偶就是利用这一效应来工作的。 2.热电偶的种类及结构形成 (1)热电偶的种类 常用热电偶可分为标准热电偶和非标准热电偶两大类。所调用标准热电偶是指国家标准规定了其热电势与温度的关系、允许误差、并有统一的标准分度表的热电偶,它有与其配套的显示仪表可供选用。非标准化热电偶在使用范围或数量级上均不及标准化热电偶,一般也没有统一的分度表,主要用于某些特殊场合的测量。 标准化热电偶我国从1988年1月1日起,热电偶和热电阻全部按IEC国际标准生产,并指定S、B、E、K、R、J、T七种标准化热电偶为我国统一设计型热电偶。 (2)热电偶的结构形式为了保证热电偶可靠、稳定地工作,对它的结构要求如下: ①组成热电偶的两个热电极的焊接必须牢固; ②两个热电极彼此之间应很好地绝缘,以防短路; ③补偿导线与热电偶自由端的连接要方便可靠; ④保护套管应能保证热电极与有害介质充分隔离。 3.热电偶冷端的温度补偿 由于热电偶的材料一般都比较贵重(特别是采用贵金属时),而测温点到仪表的距离都很远,为了节省热电偶材料,降低成本,通常采用补偿导线把热电偶的冷端(自由端)延伸到温度比较稳

压力变送器的工作原理

压力变送器的工作原理 压力变送器的工作原理 压力变送器主要由测压元件传感器(也称作压力传感器)、放大电路和支持结构件三类组成。它能将测压元件传感器测量到的气体、液体等物理压力参数变化转换成电信号(如4~20mA等),以提供指示报警仪、记载仪、调理器等二次仪表进行显示、指示和调整。 压力变送器用于测量液体、气体或蒸汽的液位、密度和压力,然后转换为成4~20mA 信号输出。 压差变送器也称差压变送器,主要由测压元件传感器、模块电路、显示表头、表壳和过程连接件等组成。它能将接收的气体、液体等压力差信号转变成标准的电流电压信号,以供给指示报警仪、记录仪、调节器等二次仪表进行测量、指示和过程调节。 差压变送器根据测压范围可分成一般压力变送器(0.001MPa~20MPA)和微差压变送器(0~30kPa)两种。 差压变送器的测量原理是:流程压力和参考压力分别作用于集成硅压力敏感元件的两端,其差压使硅片变形(位移很小,仅μm级),以使硅片上用半导体技术制成的全动态惠斯登电桥在外部电流源驱动下输出正比于压力的mV级电压信号。由于硅材料的强性极佳,所以输出信号的线性度及变差指标均很高。工作时,压力变送器将被测物理量转换成mV级的 电压信号,并送往放大倍数很高而又可以互相抵消温度漂移的差动式放大器。放大后的信号经电压电流转换变换成相应的电流信号,再经过非线性校正,最后产生与输入压力成线性对应关系的标准电流电压信号。 压力传感器工作原理 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1 、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式

变送器的工作原理及其应用

电流变送器的工作原理及其应用 集成电流变送器亦称电流环电路,根据转换原理的不同可划分成以下两种类型:一种是电压/电流转换器,亦称电流环发生器,它能将输入电压转换成4~20mA 的电流信号(典型产品有1B21,1B22,AD693,AD694,XTR101,XTR106和XTR115);另一种属于电流/电压转换器,也叫电流环接收器(典型产品为RCV420)。上述产品可满足不同用户的需要。电流变送器可以直接将被测主回路交流电流或者直流电流转换成按线性比例输出的DC4~20mA(通过250Ω 电阻转换DC 1~5V或通过500Ω电阻转换DC2~10V)恒流环标准信号,连续输送到接收装置(计算机或显示仪表)。

电流变送器的分类及概述 电流变送器分直流电流变送器和交流电流变送器两种。交流电流变送器是一种能将被测交流电流转换成按线性比例输出直流电压或直流电流的仪器,产品广泛应用于电力、邮电、石油、煤炭、冶金、铁道、市政等部门的电气装置、自动控制以及调度系统。交流电流、电压变送器具有单路、三路组合结构形式,其特点为: 1、准确度高(典型:0.2% 最好0.05%)。 2、整个量程范围都有极高的线性度。 3、集成化程度高,结构简单,优良的温度特性和长期工作稳定性,使变送器免于定期校验。 直流电流变送器将被测信号变换成一电压,经HCNR200/201线性光耦直接变换成一个与被测信号成极好线性关系并且完全隔离的电压,再经恒压(流)至输出。具有原理非常简单,线路设计精炼,可靠性高,安装方便等优点。霍尔电流变送器。 什么是电流变送器? 电流变送器可以直接将被测主回路交流电流转换成按线性比例输出的 DC4~20mA(通过250Ω 电阻转换DC 1~5V或通过500Ω电阻转换DC2~10V)恒流环标准信号,连续输送到接收装置(计算机或显示仪表)。电流变送器原副边高度绝缘隔离,两线制输出接线,辅助工作电源+24V与输出信号线DC4~20mA共用,具有精度高,体积小、功耗小、频响宽、抗干扰、国内首创4种补偿措施和6大全面保护功能,两线端口防感应雷能力强,具有雷击波和突波的保护能力等优点。特别适用发电机、电动机、智能低压配电柜、空调、风机、路灯等负载电流的智能监控系统;电流变送器超低功耗,单只静态时0.096W,满量程功耗为0.48W,输出电流内部限制功耗为0.6W。 工作原理

一体化温度变送器维护检修规程

一体化温度变送器维护检修规程 1.概述 一体化温度变送器是直接将热电阻、热电偶的信号转换成 4~20mA(0~10mA)标准电流信号的仪表,可利用普通导线实现远距离传输。 2.技术标准 2.1输入方式:热电偶(K、E、S、B、J、T)。 热电阻(Cu50、Cu100、Pt10、Pt100) 2.2 输出方式:二线制4~20mA.DC 1~5V DC 三线制0~10mA.DC 4~20mA.DC 1~5V DC 双支式一组,4~20mA.DC;另一组,热电阻或热电偶信号。 2.3供电电源:24V DC 负载为0Ω时,电源允许范围10~30V DC。 负载为250Ω时,电源允许范围15~35V DC。 变化时变送器输出值变化≤量程35V DC~15电源电压从 的0.02%。 2.4 环境温度影响:环境温度变化10℃时输出变化≤± 0.1%FS。 2.5基本误差:±0.2%;±0.3%;±0.5%;±1.0%。 冷端补偿温度误差<1℃(0~100℃)。

2.6工作环境温度:±0.2%;±0.3%;±0.5%;±1.0%。2.7测温范围: 热电阻变送器测温范围:-100~500℃。 热电偶变送器测温范围:0~1300℃;600~1600℃。 2.8相对湿度:≤90%RH。 2.9功耗:≤0.5W。 3.检查校验 3.1检查 一体化温度变送器应清洁、干燥、完整,接线柱和调整螺丝无锈蚀,连接导线的绝缘良好。 3.2校验 校验仪器与设备3.2.1. a.24V稳压电源 1台; b.标准电阻箱或毫伏信号发生器0.05级 1台; c.标准直流电流表(0~25mA)0.05级 1台。 3.2.2校验方法 a.按下页图接好校验接线图(二线制一体化温度变送器),通电稳定15min。 b.以Pt100热电阻为例,测温范围0~200℃。 c.查Pt100热电阻的阻值与温度对照表,0℃时的阻值为100Ω。用电阻箱输入100Ω看变送器输出电流是否为4.00mA DC,则调整零点螺丝,使输出为4.00mA DC。

一体化温度变送器的工作原理

利用液体静压力的测量原理工作。该变送器利用液体静压力的测量原理工作。它一般选用硅压力测压传感器将测量到的压力转换成电信号,再经放大电路放大和补偿电路补偿,再经放大电路放大和补偿电路补偿,最后以4~20mA DC 电信号输出。 一体化温度变送器能有实际的真空,而是在电路处理环节上进行调整以获得绝对压力。表压测量变送器相对于大气压力测量,相当于P2参考大气压力参考大气压力P0。相对于大气压力测量,相当于参考大气压力。现场大部分的压力测量是这种情况,例如主蒸汽压力测量等。测量是这种情况,例如主蒸汽压力测量等。差压测量变送器差压测量变送器主要分为液位测量和流量测量。差压测量变送器主要分为液位测量和流量测量。 一体化温度变送器的延伸理解液位传感器基于所测液体静压与该液体的高度成比例的原理,基于所测液体静压与该液体的高度成比例的原理,采用国外先进的隔离型扩散硅敏感元件或陶瓷电容压力敏感传感器,将静压转换为电信号,散硅敏感元件或陶瓷电容压力敏感传感器,将静压转换为电信号,再经过温度补偿和线性修正,转化成标准电信号。 一体化温度变送器通过平衡电路将这个微小的电容变化转化成标准的电流(或电压)输出,从而便得到了与压力变化成线性关系输出的电流(或电压)信号。输出,从而便得到了与压力变化成线性关系输出的电流(或电压)信号。电感式变压器的工作原理也是类似的。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有 10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关变送器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.360docs.net/doc/312976038.html,。

相关文档
最新文档