变速恒频风力发电技术研究

变速恒频风力发电技术研究
变速恒频风力发电技术研究

变速恒频风力发电技术研究

目录

摘要 ....................................................................................................................... 错误!未定义书签。Abstract ................................................................................................................. 错误!未定义书签。第一章绪论 (1)

1.1风力发电研究的背景和意义及现状 (1)

1.2 风力发电系统组成及原理 (2)

1.2.1 风力机工作原理 (2)

1.2.2 风电系统 (3)

1.3 风力发电技术 (4)

1.3.1 定桨距失速调节型风力发电机组 (4)

1.3.2 变桨距调节型风力发电机组 (5)

1.3.3 主动失速调节型风力发电机组 (5)

1.3.4 变速恒频风力发电机组 (5)

1.4变速恒频风力发电技术 (6)

1.4.1 恒速恒频风力发电技术 (6)

1.4.2 变速恒频风力发电技术 (6)

第二章变速恒频风力发电电机及其系统 (10)

2.1变速恒频风力发电机组的运行原理 (10)

2.2 笼型异步发电机变速恒频风力发电系统 (12)

2.3 永磁发电机变速恒频风力发电系统 (13)

2.4 交流励磁双馈型变速恒频发电系统 (13)

2.5无刷双馈发电机变速恒频风力发电系统 (14)

2.6磁场调制型变速恒频风力发电系统 (15)

第三章变速恒频双馈电机风力发电控制策略 (16)

3.1变速恒频双馈电机风力发电控制策略 (16)

3.2双馈电机存在的主要问题 (16)

3.3双馈电机的控制策略综述 (17)

3.3.1 双馈电机标量控制 (17)

3.3.2 双馈电机直接转矩控制 (18)

3.3.3 双馈电机转子磁场定向控制 (19)

3.4变速恒频双馈电机风力发电功率控制 (20)

3.5双馈电机风电场的无功功率控制技术 (22)

3.6风力发电机组的并网控制技术 (22)

3.7结论 (23)

结论 (24)

致谢 (25)

参考文献 (26)

第一章绪论

1.1风力发电研究的背景和意义及现状

风力发电是电力可持续发展的最佳战略选择。清洁、高效成为能源生产和消费的主流,世界各国都在加快能源发展多样化的步伐。从 20 世纪 90 年代开始,世界能源电力市场发展最为迅速的已经不再是石油、煤和天然气,而是太阳能发电、风力发电等可再生能源。世界各地都在通过立法或不同的优惠政策积极激励、扶持发展风电技术,而中国是风能资源较丰富的国家,更需要开发利用风电技术。风力发电是解决边远农村供电的重要途径。

目前我国正在进行西部大开发。由于西部地区地广人稀,土地贫瘠,工业基础薄弱,人均用电量小,靠大电网去解决那里的用电问题是不够的,必须同时开发像风力发电这样的分散供电系统,才能较好地满足当地人民生产生活对电力的需求。

风电的优点包括:

(1)利用自然界的可再生能源,干净无污染,无须燃料;

(2)运行成本低,风电机组的设计寿命约为 20-25 年,运行和维护的费用通常相当于机组总成本的 3%-5%;

(3)建设周期短,若不计测风,快者一年左右可建成。

进入 21 世纪,全球可再生能源也在不断发展,而在可再生能源中风能始终保持最快的增长态势,并成为继石油燃料、化工燃料之后的核心能源,目前世界风能发电厂以每年 32%的增长速度在发展,2008 年初,全球风力发电机容量达5000 万 MW。

由此可见,风电正在以超出预期的发展速度不断增长。如今在全球的风能发展中,欧洲风能发电的发展速度很快,预计 15 年之后欧洲人口的一半将会使用风电。欧洲是目前全世界风力发电发展速度最快,同时也是风电装机最多的地区。在欧洲,德国的风电发展处于领先地位。

在近期德国制定的风电发展长远规划中指出到 2025 年风电要实现占电力总用量的 25%,到 2050 年实现占总用量的 50%的目标。其中丹麦风能产业年营业额在 30 亿欧元左右,并网发电机组达 312 万千瓦,风能发电量占全国电力总量的 22%,居全球首位;而在该国的西北部地区,这个比例甚至已经达到 100%。

我国幅员辽阔,陆疆总长达 2 万多公里,还有 18000 多公里的海岸线,边缘海中有岛屿 5000 多个,风能资源丰富。可按风速频率曲线和机组功率曲线,估算国际标准大气状态下该机组的年发电量。我国相当于 6 米/秒以上的地区,在全国范围内仅仅限于较少数几个地带。就内陆而言,大约仅占全国总面积的1/100,主要分布在

长江到南澳岛之间的东南沿海及其岛屿,这些地区是我国最大的风能资源区以及风能资源丰富区。

中国陆地 10 米高度层实际可开发的风能储量为 2.53 亿千瓦,考虑到近海风能,总储量应该不止 2.53 亿千瓦。风电项目通常要求年利用小时数高过 2000小时,目前中国已经建成的风电场平均利用小时约 2300 小时,主要位于“三北”地区(西北、东北和华北)及东南沿海。中国风电真正开始有较大规模的发展是从1996 年、1997 年开始的。

1.2 风力发电系统组成及原理

风能发电的原理是利用风轮将风能转变为机械能,风轮带动发电机再将机械能转变为电能。大型风力发电机组发出的电能直接并到电网上,向电网馈电,小型风力发电机一般将风力发电机组发出的电能用储能设备储存起来(一般用蓄电池),需要时再提供给负载(可直流供电,亦可用逆变器变换为交流供给用户)。

1.2.1 风力机工作原理

(1)风力发电机

风力发电机可以分为两种类型,一种是主要靠和风向方向一致的空气动力产生的力矩来驱动;另外一种是主要靠和风向方向垂直的空气动力产生的力矩来驱动。前者的功率系数很小,能量变换效率低下,所以逐渐被淘汰。后者又可包括水平轴的风力机和垂直轴的风力机,垂直轴的风力机主要缺点是转矩脉动大,在遇到强风时不易调速,在 80 年代后期各国己经停止了对这种风车的研制和开发,现在的风力机主要是水平轴螺旋桨推进器型的。

水平轴风力机主要风轮、增速齿轮箱、发电机、偏航装置、控制系统、塔架等部件所组成。风轮的作用是将风能转换为机械能,它由气动性能优异的叶片(目前商业机组一般为 2—3 个叶片)装在轮毅上所组成,风轮采用定桨距或变桨距两种,以定桨距居多。低速转动的风轮通过传动系统由增速齿轮箱增速,将动力传递给发电机。上述这些部件都安装在机舱平面上,整个机舱由高大的搭架举起,由于风向经常变化,为了有效地利用风能,必须要有迎风装置,它根据风向传感器测得的风向信号,由控制器控制偏航电机,驱动与塔架上大齿轮咬合的小齿轮转动,使机舱始终对风。风力发电机组的调向装置大部分是上风向尾翼调向。调速装置采用风轮偏置和尾翼铰接轴倾斜式调速、变桨距调速机构或风轮上仰式调速,在风速较大,达到风车的额定功率时,调节桨距可进行失速调节来限制负荷的大小,以限制负荷的大小保护风车。发电装置主要由塔楼和安装在塔顶的引擎舱组成。水平轴的风力机通常根据风力机不同的使用目的使用不同数目的叶片。风力发电主要使用 2 到 3 个桨叶的风力机,20 个

或更多桨叶的风力机主要用于水泵等机械装置的驱动。桨叶数目少的风车启动力矩小,叶片端速比大,因此可工作的风速范围较大,主要应用在风力发电中。风车中还包括许多控制装置功率较大的机组还装有手动刹车机构,以确保风力机在大风或台风情况下的安全。

(2)风力机的功率

由于实际上风力机械不可能将桨叶旋转的风能全部转变为轴的机械能,因而风力机的实际功率应为风轮所接受风的动能与通过风轮扫掠面积的全部风的动能比值。

以水平轴风力机械为例,理论上最大风能利用系数为 0.593 左右,这是贝兹极限,但再考虑到风速变化和桨叶空气动力损失等因素,风能利用系数能达到0.4 就相当高了。考虑到风力机和发电机将风能转化为电能的效率,则计算公式表示为: p2 = c p Aρ v3ηtη g (W) (1-1) 式中: ηt ——风力机传动装置机械效率,η g ——发电机机械效率。

为了表示风轮在不同风速中的状态,用叶片的叶尖圆周速度与风速之比来衡量,称为叶尖速比λ。

λ=2π Rn ω R=vv (1-2) 式中 n——风轮的转速,单位为 r/s;ω——风轮的角速度,单位为 rad/s;R——风轮的半径,单位为 m; v ——上游风速,单位为 m/s;

通过以上的分析我们知道,风力发电系统包括风车、发电机、电力变换及其控制系统。其中基于空气动力学设计的风车,其技术发展水平己经比较成熟,各种各样的发电机,如感应电机、同步电机、永磁电机可以满足不同情况下的需求。

风力机和发电机将风能转化为电能的效率大约为 35%。

风电机组的功率调节有两种方式,一种是失速调节,另一种是变桨距调节,即叶片可以绕叶片上的轴转动,改变叶片气动数据,实现功率调节;整台机组由电控系统进行监视与控制,可以实现无人操作管理。

(3)风力机的转矩一转速特性

风车就是通过其桨叶将风能转化为机械能(风车的转速及其作用于其上的转矩)的装置。风车的功率可表示为:

pt = Twωt (1-3) 其中: Tw 为风力作用在风车上的转矩;ωt 为风车的角速度。

1.2.2 风电系统

使用小型风力发电机多是偏远地区。由于风速的多变,使得风力发电机的电压及频率变化,不易于直接被负载利用,这就出现了储能环节,以便从储能设备中提取能源。一般小型风力发电机使用蓄电池储能,先用整流器将发电机的交流电变成直流电

向蓄电池充电,然后用逆变器将蓄电池的直流电变换成交流电,供给负载。整流器和逆变器可以做成两个装置,也可以合为一体。1KW ~ 10KW 的风力发电机组主要应用于小型风电系统。该系统适用于远离电网,有一定用电量的家庭农场,公路、铁路养路站、小型微波发射站、移动通讯发射站、光纤通讯信号放大站、输油管线阴级保护站等用户。系统原理图包括:风力机、控制器、储能设备及逆变器等。

并网型风力发电机组由传动系统、偏航系统、液压系统、制动系统、发电机、控制及安全等系统组成。发电机将风轮的机械能转换为电能,并入电网。

1.3 风力发电技术

风力机和发电机是风力发电系统实现机电能量转换的两大主要部分,有限的机械强度和电气性能必然使其受到功率和速度的限制,因此,风力机和发电机的功率和速度控制是风力发电的关键之一。根据定桨矩失速型风机和变速恒频变桨矩风机的特点,国内目前装机的电机一般分为二类:

(1)异步型

①笼型异步发电机;功率为 600/125kW、750kW、800kW、1250\180kW 定子向电网输送不同功率的 50Hz 交流电;

②绕线式双馈异步发电机;功率为 1500kW 定子向电网输送 50Hz 交流电,转子由变频器控制,向电网间接输送有功或无功功率。

(2)同步型

①永磁同步发电机;功率为 750kW、1200kW、1500kW 由永磁体产生磁场,定子输出经全功率整流逆变后向电网输送 50Hz 交流电

②电励磁同步发电机;由外接到转子上的直流电流产生磁场,定子输出经全功率整流逆变后向电网输送 50Hz 交流电。

目前风力发电机组按照风电机的调节技术分主要有以下 4 种:①定桨距失速调节型风力发电机组;②变桨距调节型风力发电机组;③主动失速调节型风力发电机组;

④变速恒频风力发电机组。以下将分别进行讨论。

1.3.1 定桨距失速调节型风力发电机组

定桨距是指桨叶与轮毂的连接是固定的,桨距角固定不变,即当风速变化时,桨叶的迎风角度不能随之变化。失速型是指桨叶翼型本身所具有的失速特性,当风速高于额定风速时,气流的攻角增大到失速条件,使桨叶的表面产生涡流,效率降低,来限制发电机的功率输出。为了提高风电机组在低风速时的效率,通常采用双速发电机(即大/小发电机)。在低风速段运行时,采用小电机使桨叶具有较高的气动效率,提高发电机的运行效率。

失速调节型的优点是失速调节简单可靠,当风速变化引起的输出功率的变化只通过桨叶的被动失速调节而控制系统不作任何控制,使控制系统大为减化。其缺点是叶片重量大(与变桨距风机叶片比较),桨叶、轮毂、塔架等部件受力较大,机组的整体效率较低。

1.3.2 变桨距调节型风力发电机组

变桨距是指安装在轮毂上的叶片通过控制改变其桨距角的大小。其调节方法为:当风电机组达到运行条件时,控制系统命令调节桨距角调到 45o,当转速达到一定时,再调节到 0o直到风力机达到额定转速并网发电;在运行过程中,当输出功率小于额定功率时,桨距角保持为 0o位置不变,不作任何调节;当发电机输出功率达到额定功率以后,调节系统根据输出功率的变化调整桨距角的大小,使发电机的输出功率保持在额定功率。

随着风电控制技术的发展,当输出功率小于额定功率状态时,变桨距风力发电机组采用了最优尖速比技术,即根据风速的大小,调整发电机转差率,使其尽量运行在最佳叶尖速比,优化输出功率。变桨距调节的优点是桨叶受力较小,桨叶做的较为轻巧。桨距角可以随风速的大小而进行自动调节,因而能够尽可能多的吸收风能转化为电能,同时在高风速段保持功率平稳输出。缺点是结构比较复杂,故障率相对较高。

1.3.3 主动失速调节型风力发电机组

将定桨距失速调节型与变桨距调节型两种风力发电机组相结合,充分吸取了被动失速和桨距调节的优点,桨叶采用失速特性,调节系统采用变桨距调节。在低风速时,将桨叶节距调节到可获取最大功率位置,桨距角调整优化机组功率的输出;当风力机发出的功率超过额定功率后,桨叶节距主动向失速方向调节,将功率调整在额定值以下,限制机组最大功率输出,随着风速的不断变化,桨叶仅需要微调维持失速状态。主动失速调节型的优点是具备了定桨距失速型的特点,并在此基础上进行变桨距调节,提高了机组的运行效率,减弱了机械刹车对传动系统的冲击,控制较为容易,输出功率较平稳。

1.3.4 变速恒频风力发电机组

变速恒频是指在风力发电的过程中,发电机的转速可以跟踪风速的变化,由于转速发生变化必然导致发电机频率的变化,必须采用适当的控制手段(AC-DC-AC 或AC-AC 变频器)来保证与电网同频率后并入电网。机组在叶片设计上采用了变桨距结构。其调节方法是:在起动阶段,通过调节变桨距系统控制发电机转速,将发电机转速保持在同步转速附近,寻找最佳并网时机然后平稳并网;在额定风速以下时,主要

调节发电机反力转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上时,采用变速与桨叶节距双重调节,通过变桨距系统调节限制风力机获取能量,保证发电机功宰输出的稳定性,获取良好的动态特性;而变速调节主要用来响应快速变化的风速,减轻桨距调节的频繁动作,堤高传动系统的柔性。变速恒频这种调节方式是目前公认的最优化调节方式,也是未来风电技术发展的主要方向。

变速恒频的优点是大范围内调节运行转速,来适应因风速变化而引起的风力机功宰的变化,可以最大限度的吸收风能,因而效率较高。控制系统采取的控制手段可以较好的调节系统的有功功率、无功功率,但控制系统较为复杂。

1.4变速恒频风力发电技术

发电机及其控制系统是风力发电系统的另一大核心部分,它负责将机械能转换为电能,风力发电机及其控制系统的运行状况和控制技术,也决定着整个系统的性能、效率和输出电能质量。根据发电机的运行特征和控制技术,风力发电技术可分为恒速恒频(Constant Speed Constant Frequency,简称 CSCF)风力发电技术和变速恒频(Variable Speed Constant Frequency,简称 VSCF)风力发电技术。

1.4.1 恒速恒频风力发电技术

恒速运行的风力机转速不变,而风速经常变化,cp值往往偏离其最大值,使风力机常常运行于低效状态。恒速恒频发电系统中,多采用笼型异步电机作为并网运行的发电机,并网后在电机机械特性曲线的稳定区内运行,异步发电机的转子速度高于同步转速。当风力机传给发电机的机械功率随风速而增加时,发电机的输出功率及其反转矩也相应增大。当转子速度高于同步转速3%-5%时达到最大值,若超过这个转速,异步发电机进入不稳定区,产生的反转矩减小,导致转速迅速升高,引起飞车,这是十分危险的。

1.4.2 变速恒频风力发电技术

虽然目前大多数采用异步发电机的风力发电系统属于恒速恒频发电系统,但作为一种新型发电技术,变速恒频发电是一种新型的发电技术,非常适用于风力、水力等绿色能源开发领域,尤其是在风力发电方面,变速恒频体现出了显著的优越性和广阔的应用前景。

(1)风能是一种具有随机性、爆发性、不稳定性特征的能源。传统的恒速恒频发电方式由于只能固定运行在同步转速上,当风速改变时风力机就会偏离最佳运行转速,导致运行效率下降,不但浪费风力资源,而且增大风力机的磨损。采用变速恒频发电方式,就可按照捕获最大风能的要求,在风速变化的情况下实时地调节风力机转

速,使之始终运行在最佳转速上,从而提高了机组发电效率,优化了风力机的运行条件。

(2)变速恒频发电可以在异步发电机的转子侧施加三相低频电流实现交流励磁,控制励磁电流的幅值、频率、相位实现输出电能的恒频恒压。同时采用矢量变换控制技术,实现发电机输出有功功率、无功功率解藕(简称 P、Q 解藕)控制。控制有功功率可调节风力发电机组转速,实现最大风能捕获的追踪控制;调节无功功率可调节电网功率因数,提高风力发电机组及电力系统运行的动、静态稳定性。

(3)采用变速恒频发电技术,可使发电机组与电网系统之间实现良好的柔性连接,比传统的恒速恒频发电系统更易实现并网操作及运行。变速恒频发电技术的诸多优点使其受到了人们的广泛关注,它越来越多地被应用到风力发电中。变速恒频发电风力发电系统有多种形式,有的是通过发电机与电力电子装置相结合实现变速恒频,有的是通过改造发电机本身结构而实现变速恒频。

图1.1 磁场调制发电机系统

变速恒频风力发电系统主要有以下几种:

(1)交-直-交风力发电系统

这种系统中的变速恒频控制是在电机的定子电路中实现的。由于风速的不断变化,风力机和发电机也随之变速运行。发电机发出频率变化的交流电首先通过三相桥式整流器变换成直流电,然后通过逆变器变换为恒定电网频率的交流电。因此,变频器的容量和发电机的容量相同。这种系统在并网时没有电流冲击,对系统几乎没有影响;同时由于频率变换装置采用静态自励式逆变器,虽然可调节无功功率,但有高频电流流向电网。这类系统可以采用同步发电机、笼型异步发电机、绕线式异步发电机和永磁发电机。

(2)磁场调制发电机系统

这种变速恒频发电系统由一台专门设计的高频交流发电机和一套电力电子变换

电路组成,图 1.1示出磁场调制发电机单相输出系统的原理方框图及各部分的输出电压波形。发电机本身具有较高的旋转频率?r,与普通同步电机不同的是,它不用直流励磁,而是用频率为?m的低频交流励磁(?m即为所要求的输出频率,一般为 50 Hz),当频率?m远低于频率?r时,发电机三个相绕组的输出电压波形将图 1.1磁场调制发电机系统是由频率为(?m+?r)和(?m-?r)的两个分量组成的调幅波,如图 1.1(b)所示,这个调幅波的包络线的频率是?m,包络线所包含的高频波的频率是?r。将三个相绕组接到一组并联桥式整流器,得到如图 1.1(c)所示的基本频率为?r的全波整流正弦脉动波。再通过晶闸管开关电路使这个正弦脉动波的一半反向,得到图 1.1(d)。最后经滤波器滤去纹波,即可得到与发电机转速无关、频率为?m的恒频正弦波输出,如图 1.1 (e)所示。输出电压的频率和相位取决于励磁电流的频率和相位,正是这一特点使得磁场调制发电机非常适合于并网型风力发电系统。与交-直-交系统相比,磁场调制发电机系统的特点是:

①由于经桥式整流器后得到的是正弦脉动波,输入晶闸管开关电路后基本上是在波形过零点时作开关换向,因而换向简单容易,换向损耗小,系统效率较高;

②晶闸管开关电路输出波形中谐波分量很小,且谐波频率很高,很易滤去,可以得到相当好的正弦输出波形;

③磁场调制发电机系统的输出频率在原理上与励磁电流频率相同,因而这种变速恒频风力发电机组与电网或柴油发电机组并联运行简单可靠。这种发电机系统的主要缺点与交-直-交系统类似,也是电力电子变换装置处在主电路中实现全功率变换,因而容量较大;

④发电机要经特殊设计,不能利用通常形式的发电机。

(3)交流励磁双馈型异步发电系统

该系统采用转子交流励磁的双馈型异步发电机,双馈型异步发电机的定子并到电网上,转子通过一励磁变换器和进线电抗器与电网相连。当风速变化引起发电机转速变化时,控制转子电流的频率,可使定子频率恒定,即应满足:

f1 = pn f m + f 2 (1-4) 式中:?m为转子机械频率, m=nm/60, m为发电机机械转速;pn 为电机的极对数;?n?1为电网频率;?2 为转子电流频率。

发电机的机械转速和电转速之间的关系为nr =pnnm或ωr=pnωm。当发电机的转速nr小于同步转速n1时,处于亚同步状态,此时励磁变换器向发电机转子提供交流励磁,电机由定子发出电能给电网;当nr >n1时,处于超同步状态,此时发电机同时由定子和转子发出电能给电网,励磁变换器的能量流向逆向;当nr =n1时,处于同步状态,此时发电机作为同步电机运行,f2=0,励磁变换器向转子提供直流励磁。由式(1-4)可知,当发电机的转速nm变化时,即pn?m变化时,若控制?2相应变化,可使?1保持恒定不变,实现了变速恒频控制。由于这种变速恒频控制方案是在转子

电路实现的,流过转子电路的功率是由发电机的转速运行范围所决定的转差功率,仅为定子额定功率的一部分,因此图中所示的双向励磁变换器的容量仅为发电机容量的一小部分,成本将会大大降低。交流励磁双馈型异步发电机的控制方案除了可实现变速恒频控制、减小变换器的容量外,在磁场定向矢量控制下还可实现P、Q解耦控制,对电网而言可起到无功补偿的作用。双馈型异步发电机对转子侧励磁变换器的主要要求是输入、输出特性好,功率可以双向流动。

此系统采用的是双PWM型交-直-交变换器,它由两个PWM型变换器组成:靠近发电机的称为机侧变换器,靠近电网的称为网侧变换器。双PWM型变换器输入输出特性好,能量可以双向流,是双馈型异步发电机较理想的一种励磁变换器。励磁电源除了采用交-直-交变换器外,也可以采用交-交变换器。6脉波、36 管的交-交变换器输出电压富含低次谐波,严重影响发电质量,必须进行谐波抑制。12 脉波、72 管的交一交变频器结构符合励磁电源要求,但结构和控制复杂。矩阵式交-交变换器的输入、输出特性较好,功率可以双向流,主电路结构简单,但控制方法还不成熟,需要依赖更加成熟的双向开关器件。

(4)无刷双馈型发电机系统

这种系统采用的发电机为无刷双馈型发电机。其定子有两套极数不同的绕组,一为功率绕组,直接接电网;另一为控制绕组,通过双向变换器接电网。无刷双馈型发电机转子为特殊设计的笼型结构,取消了电刷和滑环,转子的极数应为定子两个绕组极对数之和。

无刷双馈型发电机定子的功率绕组和控制绕组的作用分别相当于交流励磁双馈型异步发电机的定子绕组和转子绕组,因此,尽管这两种发电机的运行机制有着区别,但却可以通过同样的控制策略实现变速恒频控制。对于无刷双馈型发电机,有:

f p ± f c = ( p p + pc ) f m (1-5)

式中: fp为定子功率绕组电流频率;fc为定子控制绕组电流频率;pp为定子功率绕组的极对数;pc为定子控制绕组的极对数;fm由于其与电网相连,与电网频率相同。超同步时,式(1-6)取“+”;亚同步时,取“-”。由式(1-6)可知,当发电机转速气变化时,即几变化时,若控制关相应变化,可使其保持恒定不变,实现了变速恒频控制。尽管这种变速恒频控制方案是在定子电路实现的,但流过定子控制绕组的功率仅为无刷双馈型发电机总功率的一小部分,这是由于控制绕组的功率为功率绕组功率的pc /(pp +pc)小双向变换器的容量也仅为发电机容量的一小部分。

无刷双馈型发电机具有与有刷双馈型异步发电机相同的特性,但没有滑环和电刷,既降低了电机的成本,又提高了系统运行的可靠性。只是目前仍处于实验研究阶段,尚未进入工程实用阶段。

如果将风力机和发电机直接祸合,省去变速齿轮箱,这样可以大大降低成本,减少维护,并且可以降低系统噪音,避免变速箱漏油的问题;交流励磁双馈型异步发电

机系统和无刷双馈型异步发电机系统的变换器容量仅为系统总容量的一部分,所以这两种方案适用于大、中容量的风力发电系统,其他方案例如交-直-交系统适用于小容量的风力发电系统。风力发电系统还可以采用其他电机,变磁阻电机,双速异步电机,但是它们的技术目前还不够成熟,需要进一步的研究开发。

第二章变速恒频风力发电电机及其系统

变速恒频发电技术的诸多优点受到了人们的广泛关注,使它越来越多地被应用到大型风力发电机组中。自上世纪 90 年代开始,国外新建的大型风力发电系统大多采用变速恒频方式,特别是 MW 级以上的大容量风电系统。

2.1变速恒频风力发电机组的运行原理

风力机的作用是从空气中获取能量,将风能转化为动能。根据空气动力学的原理,风力机的功率与风速的三次方成正比,风轮叶片从风中获取的能量公式为:

1p1 = c p Aρ v3 (2—1) C5C p (λ , β ) = C1 (λi? C3 β? C4 )e λi + C6λ(2—2)

λi=10.035?3λ + 0.08ββ + 1 (2—3)

λ = ωR / v (2—4)其中ρ为空气密度,单位kg/m3;v为风速,单位m/s ;A为风力机的扫掠面积,单位m2 ; Cp 为风力机的输出功率系数(一般Cp=1/3-2/5,最大不超过16/27=0.59),它是叶尖速比λ和桨叶节距角β的函数;ω为风力机机械角速度;R为风轮半径。根据桨叶节距角β为一定时,风力机CP-λ曲线可知:对于一台确定的风力机,在桨叶节距角β不变时总有一个对应着最佳功率系数CPmax的最佳叶尖速比λopt,此时风力机的转换效率最高。换而言之,对于一个特定的风速v,风力机只有运行在一个特定的转速ω下才会有最高的风能转换效率。

恒速恒频的风力机转速保持不变,而风速又经常变化,显然Cp不可能保持在最大值。变速恒频风力发电系统的特点是风力机和发电机的转速可在很大范围内变化而不影响输出电能的频率。可以通过适当的控制,使风力机的转速可变,使风力机的尖速比处于或接近于最佳值,从而最大限度的利用风能。

变桨距风力机的风能利用系数CP与尖速比和桨叶的节距角成非线性关系。对于不同的节距角,风机拥有不同的效率。

变速风力发电机组的运行根据不同的风况可分三个不同阶段。第一阶段是起动阶段,发电机转速从静止上升到切入速度。在切入速度以下,发电机并没有工作,机组在风力作用下作机械转动,并不涉及发电机变速的控制,因此对该阶段不作讨论。第

二阶段是风力发电机组切入电网后运行在额定风速以下的区域,风力发电机组开始获得能量并转换成电能,从理论上来说,根据风速的变化风轮可以运行在任何转速下,但是由于受到运行转速的限定,不得不将该阶段分成两个区域,即变速运行区域和恒速运行区域。

在变速区域时应保持CP恒定为最大值,必须使变速发电机转以便最大限度地获取能量。为了使风轮能在CP最大区运行,速能够被控制以跟踪风速的变化。当风速不断增大时,风力发电机转速会达到其极限值,因此风力发电机组开始运行在在恒速区域下,发电机转速为其额定转速,其CP降低,但发电机输出功率仍旧增加。在更高的风速下,风力发电机组的机械和电气极限要求转子速度和输出功率维持在限定值以下,这个限制就确定了变速风力发电机组的第三个运行阶段,该阶段称为功率恒定区。图 2.1 为三个运行区域的CP变化情况图。

图 2.1 为三个运行区域的CP值变化情况图

变速风力发电机组的桨叶节距角开始是恒定的。当风速达到起动风速后,风轮转速由零增大到发电机可以切入的转速, P值不断上升,C风力发电机组开始做发电运行。通过对发电机转速进行控制,风力发电机组逐渐进入CP恒定区(CP=Cpmax)这时机组在最佳状态下运行。在变速运行区,发电机转速总是跟从风速的变化而变化,此时风力机能获得最大的风能。

根据方程(2—1)(2—3),令λ=λopt,则可得风力机运行在曲线上输出的最大功率的方程为:

Popt = ρ AC pmax ( Rωw )3 / 2λopt = kω w3 (2—5)可以看出,在同一风速下,不同的转速会使风力机输出不同的功率,要想追踪曲线,必须在风速变化时及时调整转速,保持最佳叶尖速比。以Popt为指令调节发电机输出功率,即可实现最大功率俘获的目的。

风机转速ω可以通过风力机桨叶变节距调节,也可以通过控制发电机输出功率调节。采用风力机变节距调速的困难在于风速难检测,调速精度低,变距系统结构复杂,维护困难。为避免这些问题,在很多情况下通过控制发电机输出有功功率来调节发电机的电磁阻转矩,进而调节发电机的转速。在Cp恒定区,风力发电机组受到给定的功

率一转速曲线控制Popt的给定参考值随转速变化,由转速反馈算出Popt,连续控制发电机输出功率,使其跟踪Popt曲线变化。用目标功率与发电机实测功率之偏差驱动系统达到平衡。

随着风速增大,转速亦增大,最终达到一个允许的最大值,这时,只要功率低于允许的最大功率,转速便保持恒定。在转速恒定区,保持转速恒定,随着风速增大,Cp值减少,但功率仍然增大。达到功率极限后,机组进入功率恒定区,这时随风速的增大,转速必须降低,使尖速比减少的速度比在转速恒定区更快,从而使风力发电机组在更小的Cp值下作恒功率运行。高于额定风速时,变速风力发电机组的变速能力主要用来提高传动系统的柔性。为了获得良好的动态特性和稳定性,在高于额定风速的条件下采用节距控制得到了更为理想的效果。在变速风力机的开发过程中,对采用单一的转速控制和加入变桨距控制两种方法均作了大量的实验研究。

结果表明:在高于额定风速的条件下,加入变桨距调节的风力发电机组,显著提高了传动系统的柔性及输出的稳定性。因为在高于额定风速时,我们追求的是稳定的功率输出。采用变桨距调节,可以限制转速变化的幅度。当桨叶节距角向增大方向变化时,Cp值得到了迅速有效的调整,从而控制了由转速引起的发电机反力矩及输出电压的变化。采用转矩与节距双重调节,虽然增加了额外的变桨距机构和相应的控制系统的复杂性,但由于改善了控制系统的动态特性,仍然被普遍认为是变速风力发电机组理想的控制方案。

因此风力发电系统的总体控制如图 2.1所示。根据变速风力发电机组在不同区域的运行,我们将基本控制策略确定为:低于额定风速时,通过对变频器进行控制,从而控制发电机的电磁转矩,以改变发电机的转速,从而能在在变速运行区域跟踪Cpmax曲线,风力发电机受到给定的功率-转速曲线控制,获得最大能量。在转速恒定区域,保持发电机转速恒定,功率在到达极限值之前仍一直增大。风力机在高于额定风速时,进入功率恒定区,通过对桨距角和发电机的电磁转矩的控制,跟踪Pmax 曲线,并保持输出稳定。变速恒频发电风力发电系统有多种形式:交—直—交系统,变流励磁发电系统、无刷双馈电机系统、开关磁阻电机系统、磁场调制发电系统、同步异步变速恒频发电系统。这些变速恒频发电系统有的是通过改造发电机本身结构而实现变速恒频的,有的则是发电机与电力电子装置、微机系统相结合而实现变速恒频的,各有各的特点,适用场合也不一样。以下就常用的风力发电系统的 5 种变速恒频控制方案进行简单的论述。

2.2 笼型异步发电机变速恒频风力发电系统

该系统采用的发电机为笼型转子。其变速恒频控制策略在定子电路实现。由于风速的不断变化,导致风力机以及发电机的转速也随之变化,所以实际上笼型风力发电

机发出的电压频率是变化的。可通过定子绕组与电网间的变频器,把变频的电压转换为与电网频率相同的恒频电压。尽管实现了变速恒频控制,具有变速恒频控制的一系列优点,但由于变频器在定子侧,变频器的容量要求与发电机的容量相同,使整个系统的成本、体积和重量显著增加,尤其是对于大容量风力发电系统。

采用的发电机为笼型转子, 风力机通过变速箱拖动发电机的转子, 而电机的定子绕组通过变频器和电网相连接。由于风速的不断变化, 风力机及发电机的转速也随之变化, 既电机发出来的电是变频的。采用转子磁链定向的矢量控制以及网侧 PWM 整流的方法把频率变化的电能转换为与电网频率相同的恒频电能, 这样就实现变速恒频。由于其控制策略在定子侧实现, 变频器的容量和发电机的容量之比大于 100%, 使整个系统的成本、体积和重量显著增加(尤其对于大型风力发电系统); 而且由于变频器直接和电网相连接, 不可避免地对电网造成一些谐波污染。但鼠笼式异步电机因其结构简单、坚固耐用、运行可靠、易于维护和适宜恶劣的工作环境等优点, 得到了广泛的应用, 特别是在离网型风力发电系统中,目前多用于 100KW 以下的风力发电系统。

2.3 永磁发电机变速恒频风力发电系统

该系统与笼型变速恒频风力发电系统类似,只是所采用的发电机为永磁式发电机;转子为永磁式结构,无需外部提供励磁电源,提高了效率。其变速恒频控制也是在定子电路实现的,把永磁发电机变频的交流电通过变频器转变与电网同频的交流电,因此变频器的容量与系统的额定容量相同。

采用永磁发电机可做到风力机与发电机的直接耦合,省去齿轮箱,即为直接驱动式结构,可大大减小系统运行噪声,提高可靠性。尽管由于直接耦合,永磁发电机的转速很低,使发电机体积大、成本高,但由于省去了价格较高的齿轮箱,使整个系统的成本还是降低了。

2.4 交流励磁双馈型变速恒频发电系统

该系统采用的发电机为转子交流励磁双馈发电机。其结构与绕线式异步发电机类似,但转子上需要有 3 个或 4 个滑环。馈电方式则和双馈电机或异步发电机超同步串级调速系统相似,即定子绕组接电网,转子绕组则由一套交—交或交—直—交变频器提供频率、相位、幅值都可调节的电源,实现恒频输出,还通过改变励磁电流的幅值和相位实现发电机有功、无功功率的独立调节。

由于变频器只需供给转差功率,大大减少了容量的需求。这是变速恒频中的优化方案。大型机组通常采用交—交变频器。系统为了得到恒频输出,由变频器提供这个磁场旋转速度ωs ,与转子的低频励磁电流在转子中形成一个低速旋转磁场,机械转

速ωr 相加等于定子磁场同步转速ω1 ,即ω1 = ωs ±ωr ,从而发电机定子感应出工频电压。当风速变化引起发电机转速ωr 变化时,改变转子绕组电流的频率和旋转磁场的转速ωs ,可使定子旋转磁场ω1 保持恒定,达到变速恒频的目的。由于这种变速恒频控制方案是在转子电路实现的,流过转子电路的功率是由交流励磁发电机的转速运行范围所决定的转差功率。该转差功率仅为定子额定功率的 1 /4~1 /3,这样该变频器的成本以及控制难度大大降低。另外发电机变速运行的范围比较宽,既可超同步运行,也可亚同步运行,而定子输出电压和频率可以维持不变,既可调节电网的功率因数,又可以提高系统的稳定性。这种采用交流励磁双馈发电机的控制方案除了可实现变速恒频控制,减小变频器的容量外,还可实现有功功率、无功功率的灵活控制,对电网而言可起到无功补偿的作用。缺点是交流励磁发电机仍然有滑环和电刷,电刷和滑环之间的机械磨损会影响电机的寿命, 需要经常维护, 目前这种风力发电机技术已经商品化, 能生产出MW 级风力发电系统。

2.5无刷双馈发电机变速恒频风力发电系统

该系统采用的发电机为无刷双馈发电机。其定子有两套极数不同的绕组,一个称为功率绕组,直接接电网,另一个称为控制绕组,通过双向变频器接电网。(定子绕组也可只有一套绕组,但需有 6 个出线端,3 个为功率端口,接工频电网;另外 3 个出线端为控制端口,通过变频器接电网)。其转子为笼型或磁阻式结构,无需电刷和滑环,转子的极数应为定子两个绕组的极数之和。这种无刷双馈发电机定子的功率绕组和控制绕组的作用分别相当于交流励磁双馈发电机的定子绕组和转子绕组。因此,尽管这两种发电机的运行机制有着质的区别,但却可以通过同样的控制策略实现变速恒频控制。

无刷双馈电机中定子的功率绕组和控制绕组的作用,相当于绕线式双馈电机的定子绕组和转子绕组, 单电机的无刷化比双电机方案体积小、成本低, 其缺点是电机的设计比双电机复杂。虽然两种电机的运行机制不同, 但在控制上可以通过和绕线式双馈电机同样的策略实现:

fp±fc=( Pp+Pc ) fm (2-6)式中: fp是定子功率绕组电流频率, 与电网频率相同; fc是定子控制绕组电流频率; Pp是定子功率绕组的极对数; Pc是定子控制绕组的极对数。超同步时, 取“+”, 亚同步时取“-”。

当发电机转速nm变化时, 即fm变化时, 若控制fc相应发生变化, fp 将保持恒定不变, 从而实现了变速恒频控制。

尽管这种变速恒频控制方案是在定子电路实现的,但流过定子控制绕组的功率仅为无刷双馈发电机总功率的一小部分。这是由于控制绕组的功率为功率绕组功率的

Pc / ( Pp + Pc ) 。

这种采用无刷双馈发电机的控制方案除了可实现有功、无功功率的灵活控制,对电网而言可起到无功补偿的作用,同时发电机本身没有滑环和电刷,既降低了电机的成本,又提高了系统运行的可靠性。

2.6磁场调制型变速恒频风力发电系统

系统如图 2.2所示,采用的发电机为磁场调制型发电机。磁场调制型变速恒频发电机系统由一台专门设计的三相高频交流发电机和一套功率转换电路组成。

发电机本身具有较高的旋转频率 fr ,用频率为 fm (一般是工频 50 Hz)的低频交流电励磁,则三相电枢绕组的输出电压将是由频率为 fr +fm 和 fr - fm 的两个分量组成的调幅波。通过并联桥式整流器整流,然后通过可控硅开关电路,将波形的一半反向,最后经滤波器滤波,即得到与发电机转速无关频率为 fm 的恒频正弦波输出。它实质上是利用一台三相高频交流发电机,通过磁场调制和解调技术来产生一个所需的低频单相输出。

图 2.2 磁场调制型变速恒频风电系统

可见,磁场调制发电机系统输出电压的频率和相位仅取决于励磁电流的频率和相位,而与发电机的转速无关。这个特点非常适合用于并网运行。风力发电机的励磁通过励磁变压器取自电网,风力发电机的输出总是自动与电网同步,这样,风力发电机的输出总是自动与电网同步,不存在失步问题,而且整个系统控制相当简单,运行非常可靠。它的另一个优点是可以使风力机在很大风速范围内以最佳效率运行,提高了风能转化效率,且简化风力机的调速机构,只需采取适当的限速措施即可,并且在限速运行区仍可允许转速有一定范围的波动,从而降低风力机机械部分的造价,并能提高运行可靠性。另外,电路输出波形中谐波分量很小,可以得到相当好的正弦波输出波形。还有,该系统中的换向操作简单容易、换向损耗小、系统效率较高。

它的缺点是若想得到三相输出,则必须采用三套磁场调制发电机系统,且各套发电机系统间应保持某一适合的相位差,这就提高了整个系统的成本。磁场调制发电

机系统用的高频发电机的转速较高,而风轮转速较低,故系统需要转速比较大的增速器,也提高了系统的成本。另外,因其电力电子变换装置处在主电路中,因而容量要大,提高了成本。

第三章变速恒频双馈电机风力发电控制策略

3.1变速恒频双馈电机风力发电控制策略

双馈电机控制系统的发展矢量控制(VC)和直接转矩控制(DTC)是交流电气传动系统比较成熟的两种控制方法矢量控制是德国的研究人员在二前提出的,现在己经比较成熟,并己广泛应用,很多生产厂商都推出了他们的矢量控制交流传动产品,最近又大量推出了无速度传感器的矢量控制产品。直接转矩控制是大约在十五年前由德国和日本的研究人员提出的,在过去十年中得到大量的研究,现在 ABB 公司己向市场推出了直接转矩控制的传动产品,使得人们对直接转矩控制的研究兴趣增加,将来在直接转矩控制中将会用到人工智能技术,并将完全地不需要常规的电机数学模型了。但是这两种相对成熟的控制方法以及最近出现的瞬时功率控制方法;一般运用于普通的感应电机,对新型、特殊电机的运用实例还很少见。

由于对无刷双馈电机的理论研究的不成熟和电力电子技术器件的限制,早期的无刷双馈电机都只是对电机本体进行研究,很少涉及到电机的闭环控制。70年代 Hunt 发明的电机,也没有涉及到电机的速度和功率因数的控制,仅对无刷双馈电机的开环性能进行了研究。80 年代末 90 年代初,无刷双馈电机动态数学模型和两轴数学模型的建立,为无刷双馈电机的动态仿真和控制性能的优化提供了坚实的基础。各种控制方法被应用于无刷双馈电机,如标量控制、磁场定向控制、直接转矩控制、模型参数自适应控制等等。而电力电子器件和微处理器的发展,如 IGBT、8XC196、DSP等,又进一步促进了无刷双馈电机的发展。目前,国外都在研究及开发无刷双馈电机调速系统,在美国、德国、俄罗斯等国己有成功经验,效果很好,并己在工业电力传动和恒频恒压发电领域应用。如前苏联系列化生产 315- 2000kW 的双馈电机调速系统;日立公司在 90 年代初研制容量高达 395kW 的双馈发电机系统,并己在抽水蓄能电站投入使用;西门子公司生产了 500-5000kW 系列恒频恒压双馈发电机系统。

3.2 双馈电机存在的主要问题

无刷双馈电机的开环运行的效果都不是很好,主要存在着以下的几个问题:

①谐波含量大。因为无刷双馈电机是通过改变变频器的电压和频率来进行调速的,电机的电流等参数的谐波含量大,特别是在电机的运行状态改变的瞬间电磁转矩、

转速波动较大。

②电机的损耗大。因为变频器输出的电流存在丰富的谐波分量,所以无刷双馈电机的损耗就比一般的异步电机要大。

③单馈运行时存在着“转换转矩”点,在此转换转矩附近电机的特性性质不一样。当负载转矩小于“转换转矩”,电机相当于Pp极普通异步电机;当负载转矩大于“转换转矩”时电机就相当于Pp+PC极普通的异步电机。实际应用中,如果电机的负载转矩恰好在这个转换转矩附近变动,则电机运行不稳定,易造成事故。

④开环运行,不能有效地发挥无刷双馈电机的优势。无刷双馈电机通过适当地调节变频器输出压频比和功率绕组或控制绕组电压的相位差来调节输入电机的无功分量来调节功率绕组的功率因数。开环运行于一定的功率因数时,所对应的变频器的电压和相位差计算量大,实际上不容易得到精确的结果,因此不能有效地控制电机的功率因数。

⑤无刷双馈电机的结构复杂,发热量较普通异步电机大。电机的参数如电阻等易受外界的影响而改变,参数的变化和测定的正确与否直接影响控制的成功实现。在无刷双馈电机的数学模型基础上,几乎所有可用于异步电机的控制策略如标量控制、磁场定向控制、直接转矩控制、模型参考自适应控制等都可以用在无刷双馈电机的控制中,但是无刷双馈电机的特殊结构工作原理使得其控制策略与传统异步电机的各种控制策略有所不同。下面简要介绍几种主要的闭环控制策略。

3.3 双馈电机的控制策略综述

从以上章节可以看出无刷双馈电机虽然可以在恒压频比或恒电流控制的开环控制下稳定运行,但是速度与负载转矩的动态性能比较差,而且采用开环控制不可能实现功率因数和效率的优化。因此有必要对无刷双馈电机的各种闭环控制方法进行研究。

无刷双馈电机由于其电机本身的特点:只有控制绕组可控,而功率绕组是不可控的,必将导致其控制策略和方法与传统的感应电动机的控制策略和方法有所不同。但是几乎所有可用于感应电机的控制策略都可以经过适当的处理直接用在无刷双馈电机的控制中。到目前为止,国内外学者已经对无刷双馈电机的各种闭环控制方法进行了较为深入的研究,如标量控制、直接转矩控制、模型参数自适应控制、转子磁场定向控制等,其中较为成熟的是转子磁场定向控制。

3.3.1 双馈电机标量控制

无刷双馈电机的理想工作方式是双馈同步运行方式。在这种运行方式下,通过改变控制绕组激励的幅值以及频率fc即可实现速度、转矩以及电机性能(效率、功率因

数等)的控制。这就是标量控制的思想。就可以得到控制绕组的电压频率,即变频器的供电频率:

f c = 2π nr ( f p ? ( p p + pc ) f rm ) / 60 (3—1)

功率绕组的功率因数控制可以通过控制变频器的输出电压或电流的幅值可以用来控制 2Pp 极的功率因数。功率绕组的电流电压的有效值可以被检测出来,其它需要在功率因数控制中用到的量可以通过图 3.1 所示的稳态等效电路计算出来。

图 3.1无刷双馈电机的稳态等效电路

由于变频器一般运行于电流控制模式,因此控制绕组电流的给定值需要计算出来。由稳态等效电路的转子电路可得

X pr I p cos φ p = X cr I cr +Irr (3.2)其中 I cr , I p 分别为控制绕组电流实轴和虚轴分量。

在实际应用中,要求的功率因数可能为一常数,这样使控制绕组电流的幅值随着负载的变化而变化即可保证功率因数为给定值。标量控制利用反馈,采用简单 PI 调节器来实现给定,增加系统的稳定性。控制算法采用稳态等效电路,控制系统主要特点是具有一个同步回路。标量控制采用算法比较简单,容易在较低价格的微处理器上实现,可以在一定程度上提高无刷双馈电机的机电性能。适用于对动态性能要求不高的场合,如风机、水泵等。

3.3.2 双馈电机直接转矩控制

在无刷双馈电机中,由于一套绕组不可控,因此用来使转矩和磁链达到所需方向的矢量是不确定的,这导致传统的直接转矩控制方法必须加以改进才能应用无刷双馈电机。于是提出了基于一套绕组来估计磁链和转矩变化的无刷双馈电机的直接转矩控制方法。

如果能估计出转矩及磁链的变化,那么控制绕组的给定电压就可以计算出来,从而得到变频器的开关函数,控制变频器使之输出需要的电流幅值以及频率。直接转矩的控制框图如图 3.2 所示。

直接转矩控制需要测量端电压、端电流以及转子速度来估计电机的磁链与转矩。

与普通的感应电机控制不同,BDFM 电机需要采用转子坐标系。这样,无刷双馈电机的直接转矩控制就需要比普通感应电机的直接转矩控制知道更多的信息,而且在控制算法中要包括一个转子坐标系到静止坐标系的转换。因此,在系统设计中需要对信号的采集与处理进行精心地设计。

直接转矩控制的计算量较大,不能采用一般的微处理器,需要采用高速的微处理器,实时地处理输入输出量,因而成本较高,但其性能比标量控制优良得多。近来,在直接转矩控制基础上又出现了一种模型自适应控制,使无刷双馈电机对负载惯量的变化

图 3.2 无刷双馈电机的直接转矩控制框图

不敏感;而直接转矩控制本身对电机参数的变化不是十分敏感,这样两者的结合可以使无刷双馈电机达到更佳的性能。但这种方法的实现更加复杂,只处于理论仿真阶段。

3.3.3 双馈电机转子磁场定向控制

转子磁场定向控制采用同步数学模型,忽略了功率绕组的电阻及磁路饱和的ce 影响,将无刷双馈电机分为两个独立的子系统。通过由同步坐标系到静止定子坐标系的转换,可得瞬时电流值 I ac 、 I bc 、 I cc 。采用双同步坐标数学模型,获得了适合于无刷双馈电机的转子磁场定向控制策略。无刷双馈电机的转子磁场定向控制原理图如图 3.3。

对无刷双馈电机实行建立在同步坐标系下的转子磁场定向控制为一种较好的控制方法,实现难度与感应电机的转子磁场定向控制相当,动态性能比较优良。虽然在转子定向控制的推导中采用了一系列假设,但各方面性能还是比较优越的,动态性能介于标量控制和直接转矩控制之间,可满足大部分工业驱动的要求。从难易程度及性能指标考虑,选择转子磁场定向控制方式对无刷双馈电机进行控制较为合适。与普通

变速恒频双馈风力发电机的主要优点和基本原理

变速恒频双馈风力发电机的原理和优点研究 变速恒频发电技术 变速恒频发电技术是一种新型风力发电技术,其主要优点在于风轮以变速运行。这一调速系统和变桨距调节技术环节结合起来,就构成了变速恒频风力发电系统。其调节方法是:起动时通过调节桨距控制发电机转速;并网后在额定风速以下,调节发电机的转矩使转速跟随风速变化,保持最佳叶尖速比以获得最大风能;在额定风速以上,采用失速与桨距双重调节、减少桨距调节的频繁动作,限制风力机获取的能量,保证发电机功率输出的稳定性和良好的动态特性,提高传动系统的柔性。上述方式目前被公认为最优化的调节方式,也是未来风电技术发展的主要方向。其主要优点是可大范围调节转速,使风能利用系数保持在最佳值;能吸收和存储阵风能量,减少阵风冲击对风力发电机产生的疲劳损坏、机械应力和转矩脉动,延长机组寿命,减小噪声;还可控制有功功率和无功功率,改善电能质量。尽管变速系统与恒速系统相比,风电转换装置中的电力电子部分比较复杂和昂贵,但成本在大型风力发电机组中所占比例并不大,因而大力发展变速恒频技术将是今后风力发电的必然趋势。 目前,采用变速恒频技术的风力发电机组,由于采用不同类型的发电机,并辅之相关的电力电子变流装置,配合发电机进行功率控制,就构成了形式多样的变速恒频风力发电系统。主要有以下几类:鼠笼型异步发电机变速恒频风力发电系统、绕线式异步发电机变速恒频风力发电系统、同步发电机变速恒频风力发电系统、双馈发电机变速恒频风力发电系统。其中,由双馈发电机构成的变速恒频控制方案是在转子电路实现的,采用双馈发电方式,突破了机电系统必须严格同步运行的传统观念,使原动机转速不受发电机输出频率限制,而发电机输出电压和电流的频率、幅值和相位也不受转子速度和瞬时位置的影响,变机电系统之间的刚性连接为柔性连接。基于诸多优点,由双馈发电机构成的变速恒频风力发电系统已经成为目前国际上风力发电方面的研究热点和必然的发展趋势。

风力发电机及风力发电控制技术综述 姜礼龙

风力发电机及风力发电控制技术综述姜礼龙 发表时间:2019-06-11T17:39:57.053Z 来源:《电力设备》2019年第1期作者:姜礼龙 [导读] 摘要:风能是目前全球发展最快的可再生绿色能源,风力发电系统是将风能转化为电能的关键系统,它直接关系到风力发电的性能与效率。 (我是国华(科左中旗)风电有限公司内蒙古通辽 028000) 摘要:风能是目前全球发展最快的可再生绿色能源,风力发电系统是将风能转化为电能的关键系统,它直接关系到风力发电的性能与效率。由于风能的能量密度低,具有不稳定性和随机性,控制技术是大型风力发电机组安全高效运行的关键。本文就风力发电的现状及风力发电机工作原理进行分析,着重探讨风力发电控制技术,提升风力发电经济效益。 关键词:风力发电;控制技术 随着我国经济发展有中低端迈向中高端的转型升级发展,更加各种清洁能源在经济社会发展中的作用、环保价值与开发前景。作为清洁可再生能源,风能的应用正在我国逐步推进。但是我国风能研究理论与应用技术落后于欧美国家。 1 风力发电的现状及原理 1.风力发电在能源开发企业中属于重点开发的项目。历经多年的发展,风力发电获得了较好的成绩。现阶段风力发电技术发展的现状较为良好。风力发电技术的单机容量近年一直在增加,能满足更多场合的发电需求。同时,风力发电技术需要投入较高的成本,日常运营过程中风力发电的运营费用却较少。另外,随 着能源公司规模的不断发展与扩大,整个发电行业中风能发电的占有比例也随之增大。从技术发展的层面进行分析我们不难发现,我国现有的市场经济环境中,风电企业从最开始的单存引进阶段到将国外的技术经过革新本土化后应用,最后到自主创新的阶段,当前已经有了基本的技术积累。尤其是兆瓦级机组在国内市场中的普及,更是标志着我国自主研发能力,已经进入了全新的阶段。 2.风力发电机的工作原理。风力发电机是将风能转换为机械能,机械能转换为电能的电力设备。它是一种以太阳为热源,以大气为工作介质的热能利用发动机。风力发电利用的是自然能源。风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风力发电机技术,大约是每秒三公尺的微风速度,便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。风力发电机因风量不稳定,故其输出的是13~25V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。机械连接与功率传递:水平轴风机桨叶通过齿轮箱及其高速轴与万能弹性联轴节相连,将转矩传递到发电机的传动轴,此联轴节应按具有很好的吸收阻尼和震动的特性,表现为吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。另一种为直驱型风机桨叶不通过齿轮箱直接与电机相连风机电机类型。 2 风力发电控制技术 1.定桨距失速风力发电技术。定桨距风力发电机迈入风力发电市场是在20世纪80年代中期,其研制成功解决了发电机组的并网问题,运行安全可靠定桨距风力发电机主要是软并网技术、空气动力刹车技术、偏行与自动解缆技术三种技术的结合。定桨距风力发电机组的特点是桨叶与轮毅固定连接,在风速发生变化时,桨叶的迎风角度不发生变化结合桨叶翼型本身的失速特性,在风速高于额定值时,气流的功角就会达到失速状态,可使桨叶的表面的表面产生紊流,使发动机的效率降低来达到限制功率的目的,风力发动机的这一特性控制发电系统安全可靠,但是为了达到限制功率的目的,导致叶片重,结构复杂,机组的整体效率较低,所以说当风速达到某一限度时必须要停比使用。发电机转速是由电网频率限制,输出功率由桨叶本身性能限制,当风速比额定转速高时,桨叶能够通过失速调节功能将功率控制在额定值范围之内,其起到重大作用的是叶片独特的翼型结构,在遇到强风时,流过叶片背风面的气流产生紊流,降低叶片气动效率,影响能量捕获,产生失速失速是一个较为复杂的过程,在风速不稳定时,很难得出失速的效果,因此很少用来控制MW级以上的大型风力发电机。 2.变桨距风力发电技术。从空气动力学角度考虑,当风速过高时,可以通过调整桨叶节距、改变气流对叶片攻角,改变风力发电机组获得的空气动力转知,以保持稳定的输出功率采用变桨距调节方式,风机输出功率曲线平滑,在阵风时,塔筒、叶片、基础受到的冲击较失速调节型风力发电机要小,可减少材料使用率,降低整机重量它能自动调节叶片桨距角度,适应不同风况下功率的调节,特别是使得在接近额定风速附近得功率曲线充实,增加风力发电机的年发电量但其也有一定的缺点,即其需要一套复杂的变桨距机构,变桨距机构的设计要求对阵风的响应速度足够快,以减小由于风的波动引起的功率脉动同时,变桨距执行机构及液压驱动系统较复杂,运行可靠性难以有效保证,其成本也较高。 3.主动失速、混合失速发电技术。主动失速。混合失速发电技术是上述两种技术的组合低风速时采用变桨距调节可提高气动效率,使桨距角向减小的方向转过一个角度,增大相应的攻角,加深叶片的失速效应,从而限制风能的捕获这种方变桨距调节不需要很灵敏的调节速度,执行机构的功率相对较小风力发电机组在超过额定风速(一般为14-16m/s)以后,由于机械强度和发电机、电力电子容量等物理性能的限制,必须降低风力机的能量捕获,使功率输出保持在额定值附近,同时减少叶片承受负荷和整个风力机收到的冲击,从而有效避免风力机受到损害这种调节将引起叶片攻角的变化,从而导致更深层次的失速,使功率输出更加平滑。 4.变速风力发电技术。风力发电机组分恒速恒频风力发电和变速恒频风力发电。变速风力发电技术是改变了风力机的恒速运动规律,可以根据风速的变化调整运行,保持恒频发电,当风速小时争取获得更大的风能,风速过大时调整储存转化能量,比恒速风力发电机组的实用范围更广泛。变速风力发电技术可以根据风速的变化保证恒定的最佳叶尖速比,低风速时尽量获取多的风能,以保证平稳输出;高风速时及时调整风轮转速储存能量,避免功率过大当风速变大风能变强时风轮可以吸收储存部分的风能,提高了传动系统的柔性,减轻了主轴承受的应力及扭知通过电力电子装置的作用,变速风力的风能转化为可以输入电网的电能,使风力机组安全平稳的运行,能量传输机构系统也平稳运行。 3 技术发展趋势展望 为提高风力发电效率,降低成本,改善电能质量,减少噪声,实现稳定可靠运行,风力发电将向大容量、变转速、直驱化、无刷化、智能化以及微风发电等方向发展: 1.风力发电机大型化。这可以减少占地,降低并网成本和单位功率造价,有利于提高风能利用效率。

风力发电机及风力发电控制技术研究

风力发电机及风力发电控制技术研究 摘要:基于对风力发电机及风力发电控制技术的研究,首先,阐述风力发电机 基本内容。然后,分析风力发电控制技术具有减少环境污染、减少能源消耗等重 要作用。最后,对风力发电控制技术进行分析,包括传统控制技术、智能控制技 术等。 关键词:风力;发电机;风力发电控制技术 社会的快速发展带来的是,环境污染、能源消耗、资源浪费等一系列问题。此类 问题的出现,对人们生活质量与生活水平的提升会产生很大影响。实现人类与环 境的和谐发展与共同进步,我国针对环境污问题、能源资源浪费问题,出台各种 政策条例,将发展清洁能源作为重点与关键。因此,风能以及风力发电受到更多 人的重视与关注,无论是风力发电机,还是风力发电控制技术,都得到进步与完善。所以,本文将针对风力发电机及风力发电控制技术相应内容进行阐述。 1、风力发电机基本概述 风力发电在缓解能源危机中发挥着不可替代的作用,因为风力发电具备可再生、 清洁等优势,在全世界范围内得到重视与关注(如图一)。传统风力发电机的类 型有很多,比如,有刷双馈异步发电机、垄型异步发电机等。垄型异步发电机在 实际工作过程中,要对电容器进行合理应用,使用电容器的主要原因就是无功补偿。垄型异步发电机同步转速,相较附近的恒速转速要高,在垄型异步发电机运 行期间,可以使定桨距失速方式。有刷双馈异步发电机在应用过程中,促使功率 变化器的功率降低。同步发电机其转速相对较低、轴向尺寸较小,因此,可以将 其应用在启动力矩较大的电机并网中,这样可以将同步发电机的作用与价值发挥 出来。在如今社会快速发展背景下,使得风力发电机也得到一定完善与创新,比如,目前使用较为广泛的永磁无刷同步发电机、永磁同步发电机以及无刷双馈异 步发电机等。在这其中无刷双馈异步发电机的自身优势较为明显,比如,结构较 为简单、有着较强裹在能力,有着较高的运行效率,运行的可靠性与安全性能够 得到保障。将传统标准型的双馈电机运行中存在的问题在最大程度上弥补,具有 垄型异步发电机优点。不同风力发电机都有着自身优势与特点,因此,对于不同 风力发电机都要有正确认识,这样才能达到良好风力发电效果。 2、风力发电控制技术的重要作用 风力发电控制技术应用的重要作用主要体现在以下几点中:(1)在风力发电中,通过对风力发电控制技术的科学合理应用,使得风力发电控制技术的应用范围与 推广范围得到拓展。在一定程度上,缓解我国能源紧张与能源压力问题,减少对 资源的消耗。提升工作质量与工作效率,促使风力发电能够在我国得到更好发展,同时推动风力发电能够朝着智能化与现代胡方向进步。(2)特别是在大型风力 发电控制工作中,将风力发电控制技术优势发挥出来[1]。可以减少对土地资源的 占用,系统运行功率也将会得到提高。变桨距以及变速恒频技术的优化与完善, 将规模局限性问题更好解决。特别是在对直驱技术的应用中,可以节约更多风力 发电费用成本,提升资源利用率。通过该种方式,可以创造更多经济效益、社会 效益以及生态效益,防止对周围环境造成破坏。 3、风力发电控制技术分析 3.1传统控制技术

风力发电机组控制技术研究 李斌

风力发电机组控制技术研究李斌 发表时间:2019-09-19T08:52:32.897Z 来源:《电力设备》2019年第8期作者:李斌 [导读] 摘要:如今,人们解决能源和环境问题迫在眉睫,有些资源有限,还会产生许多污染。 (国华(乾安)风电有限公司吉林省 131400) 摘要:如今,人们解决能源和环境问题迫在眉睫,有些资源有限,还会产生许多污染。所以,世界各地都在关注可再生能源,而风电有许多优点,所以,利用可再生能源已成为各国的重点发展方向。我国的风能资源并不匮乏,所以开发潜力很大。我国的风力发电产业和控制技术的发展很快,因而,通过分析现阶段我国风力发电的情况和控制技术水平的发展情况,为实现可持续发展战略提供一些有价值的信息。 关键词:风力;发电机组;控制技术 1问题分析 1.1风能能源的评估有待完善 对于风能资源进行评估并以此制定风力发电的规划是我国风力发电进行管理的基础。目前我国的相关机构在开展的风力能源评估还处于有点完善的状态,距离世界上的发达国家还存在明显的差距,因此,开展对于风力发电的相关资料整理以及重新进行调查评估是非常有必要的,相关部门应该更加严格的对我国沿海地区和内陆地区的风力分别进行检测和评估,同时还需要不断对我国现有的风力发电场所产能进行更科学合理的长远规划。 1.2自主创新需要提升 在目前我国对于风力发电产业生态圈建设尚未完成的过程中,我国的企业对于大型兆瓦发电机的信息技术吸收还没有充分进行。与此同时,我国对于风力发电机组中的核心设备和相关零件还无法进行自主生产,这是制约我国风力发电发展的关键问题。因此更快地进行我国风力发电设备制作的自主创新,同时加强完整知识产权的风力发电机组设备的研究,都是保障我国风力发电事业发展的重要目标。 1.3国家电力网络与风力发电的发展不协调 目前我国电力网络设施的管理和运用并没有与风力发电产生足够的协调性。在风力发电场所接入电网的工作并没有很好地得到完成,整个国家电网的发展规划也缺乏对于风力发电场所的重视。就这个问题,还需要我国的政府相关部门更好地制定相应的管理办法,从而保证风力发电场所与国家电网之间可以共同协调发展,更好地为风力发电的发展提供保障。 1.4电价制定需要重新规划 在目前的供电市场中,风力发电项目经常面临亏损的危机。造成这种情况的主要原因在于我国的电价制定,只有政府进行充分的规范和引导,同时为风力发电提供一些优惠的政策。目前风力发电的电价过低,使得投资方在工程中的经济效益明显降低,这也是我国风力发电发展缓慢的重要原因。 2我国风力发电的现况 我国风力发电的发展在技术方面上分为三步,一是引进新技术,二是把技术消化吸收三是进行自主创新。现如今,在这方面我国以快速发展起来。例如,我国的风力制造业不断提升。还有随着国内5WM 容量等级风电产品的不断改进,我国的兆瓦级机组在风力发电市场被大量使用。虽然我国的风力发电机组制造业和配置零组件的发展足以满足所需,但是一些高级配置仍然需要从国外进口。所以,培养自主创新能力和不断探索新技术迫在眉睫。 目前,是创新的年代,是需要快速发展的时代,新能源就是一个活生生的例子。作为新能源的一个重要部分,风力发电近年来的发展越来越好。全球的能源越来越少,之前的能源已经不足人们也已经意识到了这个问题,风力发电无污染,施工时间比较短,投资也不多,而且需要的地区也不多,这就使得各个国家对其越来越关注。在风力发电系统中,并网逆电器是一个非常重要的装置,其特性的好坏决定了发电是否灵活。随着信息技术的发展,人们也将风力发电系统做出了很多改变,使其性能得到了很大改进,促进了其进一步发展。 3双馈变速恒频型风力发电机组 该种类型的发电机组可以实现对叶片桨距角的全面调节,还可以利用具备变速功能的双馈性发电机,实现恒频恒压状态下的电能输出。如果整个风速比额定风速还要低,则该种类型的发电机组便可以通过叶片桨距角以及转速变化,将发电机组的整个运行状态改善,确保输出始终保持在最大状态。如果风速超过了额定速率,人们可以通过叶片桨距角的改变,将发电机组的功率控制在额定功率范围之内,这样一来,整个风力发电机组将会得到有效控制。 4风力发电机组控制技术的分析 4.1最优控制 在风力发电过程中,其发电机组的基本组成均处于非线性、干扰较大等特点,而且由于环境的不确定性,风速变量也会呈现出一定的不规则特点,从而无法利用精确的数学控制来实现机组控制,但人们可以利用最优的系统性控制实现风力发电机组的最优控制。在该项控制技术实施过程中,可以通过线性化模型设计来实现,并通过周围工作点的精确把握,提升控制工作的控制效果。而且在该种控制技术实施过程中,可以根据具体的线性化模型设计,对周围的工作点进行快速寻找,与此同时,还能通过大范围的反馈内容,对偶线性化实现精确性破解,以此来实现风力和风能的全面性捕捉。另外,针对于电功率波动较小、无功功率输出要求等矛盾,聚能在最优系统的作用下,将上述问题解决,避免由于线路故障而出现较大的电压波动。与此同时,在最优系统的应用过程中,工作人员还能将风能变化情况以及自动控制进行合理掌握,避免在后续工作之中出现新的问题。 4.2模糊控制技术 模糊控制技术以模糊推理及语言规则作为基础,能够避免受到非线性因素的影响。在风力发电机组中使用模糊控制技术,能够显著的提升风能的使用率,同时,还能够跟踪最大功率。对于风力发电机组来说,模糊控制技术的使用推动了其向着智能化控制的方向发展,优化了风力发电机组的控制效果。例如,在变桨距并网型风力发电机组中,通过模糊控制技术的使用,能有对风力机转速进行控制,并对抖振现象进行了降低,提升了风力发电机组的运行效率。 4.3滑模变结构控制技术 风力发电机组是一种非线性的系统,在实际的运行过程中,有着复杂且多变的特性。当在实际运行的过程中,发生了风向变化、风力

风电产业创新分析

到位并做好自己责任内的功课,尽职尽责地动员和唤起员工们自主管理的积极性,则绩效管理必定能够成功提升整个组织的运作效率,从而促进组织目标的步步高升。 参考文献 [1] 邓小军,整合绩效管理与企业升值战略的实现[J],价值工程,2010(5) [2] 殷新华,绩效管理运用及其关键[J],企业技术开发,2006(1) Analysis of Common Difficulties in Performance Management Li Ping (Advanced Training Center of Shanxi Electric Power Company) Abstract: based on objective reality,This article content give in-depth analysis of common questions in Performance Management, and pointed out the roots of problems. These problems are common in sectors whose overall goals and targets at all levels are not easy to quantify and not clear enough. The problems are typical. Adopting the approach of drilling top-down analysis combined with the implementation process, the paper discussed common problems in Performance Management and pointed out the roots of the problems. Key words: performance management; management philosophy; self-management 风电产业创新分析 刘学鹏① 赵冬梅 (中山职业技术学院) 摘要:我国风电产业建设步伐加快,产业规模逐步扩大,风电已成为能源发展的重要领域。但我国风电发展尚处于起步阶段,存在风能资源评价和规划工作滞后、风电产业体系不健全、技术创新能力不强、关键技术和装备依赖进口、等问题。本文从风电制造信息精细化和技术创新的精细化出发,提出了叶片技术、偏航系统、控制监测系统、风机传动系统、风机与电网的柔性连接、高可靠性设计风电安装设备等几个方面的创新。 关键词:创新;制造信息精细化化;技术创新精细化 1 引言 近年来,新兴市场的风电发展迅速。中国本土企业的市场份额在风电设备领域越来越大,到2009年底这中国风机市场份额已超过了7成。过低的市场准入门槛是致使风电设备制造业在短时间内爆发性增长的主要诱因。但是我国风机产业增长背后却是一系列奇怪现象:进口设备多,价格昂贵,国产风机维修频率大大高于进口风机维修的频率,尤其是国产风机的齿轮箱、主轴、液压缸等电机元件的损坏问题比较严重。 为了尽快扭转风电装备制造业被动局面,我国的机械制造协会等部门正在抓紧修订风电装备制造业相关的设备技术标准,准备实施强制性论证,主要包括完整的风电机组整机和零部件技术标准,以及涵盖设计评估、质量管理体系评估、制造监督和样机试验等环节的认证体系,以提高风电设备制造业的准入门槛,促进我国风电产业的健康规范发展。 本文对风电产业从风电制造信息精细化和技术创新精细化的角度,结合风电产业创新方法、技术路线以及工艺流程,进行创新分析,提出了相关措施。 2 创新内容 风电产业的创新是一个系统工程,本文从以下几个方面进行论述。 2.1 风电制造信息精细化 建立符台我国自然环境和资源条件的风电设备标准、检测和认证体系,并积极准备建立 ①作者简介:刘学鹏、赵冬梅,中山职业技术学院。

变速恒频风力发电机组的无功功率极限

变速恒频风力发电机组的无功功率极限 申洪,王伟胜,戴慧珠 (中国电力科学研究院,北京100085) 摘 要:根据变速恒频风电机组的工作原理,建立了变速恒频风电机组的稳态数学模型,该模型考虑了风力机、双馈电机及其转速控制的稳态特性。在此模型的基础上,提出了计算变速恒频风电机组无功功率极限的方法,并对一变速恒频风电机组进行了计算分析,验证了所提方法的可行性。 关键词:变速恒频风电机;双馈电机;无功功率极限 1 引言 近年来世界风力发电发展迅速,风电装机容量平均每年以高于20%的速度增长。截止到2002年底,全世界风力发电装机容量约为31128MW,其中我国风电装机容量达468.42MW。目前,兆瓦级风力发电机组已逐渐取代600kW级的机组,成为国际上风力发电机市场的主力机型,风电机组正向着大型化、变桨距和变速恒频的方向不断发展和完善。 虽然变速恒频风电机组与固定转速的风电机组相比在性能上有较大改善,但由于风速变化的随机性,变速恒频风电机组的并网运行对电力系统而言仍然是一种波动的冲击功率,因而必须对这种风电机组的并网运行特性进行研究。变速恒频风电机组的发电机采用双馈感应电机,文献[1]~[3]对它的稳态模型进行了研究,建立了基于与定子磁场同步旋转的dq坐标系的数学模型。因为双馈发电机的转速和定子侧的无功功率都可以调节,所以转速控制规律和无功功率控制规律对变速恒频风电机组的稳态特性也有很大的影响。文献[1]、[2]介绍了转速控制和无功功率控制的基本思想,其中转速控制的目标是使风力机的功率系数最优,而无功功率控制则根据其接入的电力系统的实际运行方式可以设定为功率因数恒定或端电压恒定两种控制方式。 风电机组发出的有功功率主要取决于风速的大小,而无功功率则取决于风电机组的无功控制方案。一般风电场位于偏远地区,电网结构薄弱,当无功功率控制的设定值达到风电机组的无功功率极限时,一方面转子绕组发热将导致风电机组停机,另一方面由于不能向系统中提供或吸收足够的无功功率,将导致端电压降低或升高,严重时将导致系统电压失稳。因而研究变速恒频风电机组的无功功率极限是很有必要的。文献[4]对此问题进行了一定的研究,但它只讨论了发电机定子绕组中有功功率和无功功率的稳态运行域问题,并没有解决整个风电机组注入系统的有功功率和无功功率的稳态运行域问题。另外,该文献没有考虑转速控制规律的影响。

变速恒频风力发电技术研究

变速恒频风力发电技术研究 目录 摘要 ............................................................................ I Abstract ........................................................................ II 第一章绪论 . (1) 1.1风力发电研究的背景和意义及现状 (1) 1.2 风力发电系统组成及原理 (2) 1.2.1 风力机工作原理 (2) 1.2.2 风电系统 (3) 1.3 风力发电技术 (4) 1.3.1 定桨距失速调节型风力发电机组 (4) 1.3.2 变桨距调节型风力发电机组 (5) 1.3.3 主动失速调节型风力发电机组 (5) 1.3.4 变速恒频风力发电机组 (5) 1.4变速恒频风力发电技术 (6) 1.4.1 恒速恒频风力发电技术 (6) 1.4.2 变速恒频风力发电技术 (6) 第二章变速恒频风力发电电机及其系统 (10) 2.1变速恒频风力发电机组的运行原理 (10) 2.2 笼型异步发电机变速恒频风力发电系统 (12) 2.3 永磁发电机变速恒频风力发电系统 (13) 2.4 交流励磁双馈型变速恒频发电系统 (13) 2.5无刷双馈发电机变速恒频风力发电系统 (14) 2.6磁场调制型变速恒频风力发电系统 (15) 第三章变速恒频双馈电机风力发电控制策略 (16) 3.1变速恒频双馈电机风力发电控制策略 (16) 3.2 双馈电机存在的主要问题 (16) 3.3 双馈电机的控制策略综述 (17) 3.3.1 双馈电机标量控制 (17) 3.3.2 双馈电机直接转矩控制 (18) 3.3.3 双馈电机转子磁场定向控制 (19) 3.4变速恒频双馈电机风力发电功率控制 (20) 3.5双馈电机风电场的无功功率控制技术 (22) 3.6风力发电机组的并网控制技术 (22) 3.7结论 (23) 结论 (24) 致谢 (25) 参考文献 (26)

风力发电机及风力发电控制技术综述 刘涛

风力发电机及风力发电控制技术综述刘涛 发表时间:2018-05-14T10:53:29.810Z 来源:《电力设备》2017年第36期作者:刘涛 [导读] 摘要:随着现代社会经济的迅猛发展,世界能源发展也在逐步的改变,目前面临着资源紧张、环境污染、气候变化的三大难题。 (国华(通辽)风电有限公司内蒙古通辽 028000) 摘要:随着现代社会经济的迅猛发展,世界能源发展也在逐步的改变,目前面临着资源紧张、环境污染、气候变化的三大难题。在我国风能发电可再生资源中作为广泛的运用,如太阳能、生物质能、地热能、海洋能等,在自然界都可循环再生资源,这些都是与人类紧密相连的能源。这些取之不尽,用之不竭的能源可谓是一项朝阳产业,本文主要对现在风力发电技术和风力发电机原理进一步分析入手,并对我国风能发电机的特点进一步的探讨与研究。 关键词:风力发电机;可再生能源;控制技术;探讨研究 前言 随着风力发电技术水平的提高,风力发电由早期的直流发电机、笼型异步发电机等演变为当前的低速直驱永磁同步发电,风能是一种可再生、永不枯竭、无污染且储量巨大的绿色可再生能源。相对而言风能的利用比较简单,不同于其他能源的利用那么复杂,因此,风力发电机整体的技术进步使变速恒频风力发电也得以实现,根据当地的实际情况合理利用风力发电,具有重要的现实意义。所以我们应该不断加强风力发电技术的探索和实践,为我国的经济发展提供能源保障。 1 风力发电机及风力发电控制技术发展现状 风力发电系统主要由风轮、齿轮箱、发电机、功率变换器、变压器等部分构成,因此风力发电机是风电系统中实现风能转换为电能的核心部件。对于不同类型的风力发电机,控制单元会有所不同,但主要是因为发电机的结构或类型不同而使得控制方法不同的方案。根据目前风力发电技术不断地提高,更有利于的促进了风力发电整体技术的进步,也成为当前风力发电系统的主流。 2 发展技术前景 2.1 目前,风力发电机组中的发电机一般采用高滑差异步发电机和变速恒频的双馈异步发电机,目前全国各地正朝着怎样增大单机容量,减轻每单位容量的自重大型风力发电机组,来提高转换效率的方向发展,这样就可以使机组的运行风况范围大大增加,但同样的发电机的效率是不会降低的。因此,各国研究人员为了提高风力发电机组的效率和可靠性、降低大型发电机的制造难度等各个角度出发,提出有效的地商业化潜力的风力发电机,并且发出电能的频率也符合电网要求,使发电机组的噪声降低,达到一定的可靠性。 2.2 同步发电机的并网一般有两种方式,一种是交并网,控制技术主要交任务是对最佳叶尖速比的测量监控,另一种是准同期直接并网,这种方法在大型风力发电中极少采用,控制技术主要交任务是对最佳叶尖速比的测量监控。如果以异步发电机为主流的发电机,其结构简单、坚固耐用、价格便宜等优点,被作为电动机广泛使用。但也有自身的缺点,由于运行范围窄、功率因数较低等,发展空间也有限。如今,大型风力发电厂一般都采用变速风力发电机组,关键技术则是利用了绕线型异步发电机或同步电机,使得机组在允许风速的任何情况下都可以获得理想的功率输出。 2.3 根据以上分析,部分国外学者也提出了永磁异步电机的概念,不仅具备了效率高、功率密度高、功率因素高等优点,而且在实际运行中也提高了功率因数和发电效率,大大的降低了维护成本。至今,永磁异步电机具备广阔的发展前景;在实际应用中越来越受到关注,并得到广泛的运用。 2.4 风能是一种可再生、永不枯竭、无污染且储量巨大的绿色可再生能源。目前风力发电已经成为世界各地的发展重点能源之一,近年来,风力发电系统的不断增加,风力发电机与发电系统共同发展,相互促进,使各种新型化的风力发电机和控制系统不断的流向社会,总之,风力发电机的制造也会成为新兴的制造产业,更快的促进风力发电机控制技术的发展前景。 3 风力发电掌控技术 3.1 定桨距失速风力发电技术 对于变桨距叶片运行的方式:它主要是改变叶片剖面攻角,依据对桨距角的改变。如何适应风速的变化,是在其低风速运行的状态下最大限度的发挥风能的利用价值,发电机转速是由电网频率限制,输出功率由桨叶本身性能限制,当风速比额定转速高时,桨叶能够通过失速调节功能将功率控制在额定值范围之内,提高气动输出的性能,使发动机的效率降低来达到限制功率的目的,风力发动机的这一特性控制发电系统安全可靠。发电机转速是由电网频率限制,输出功率由桨叶本身性能限制,要降低叶片的气动性能,可以对攻角进行改变,降低叶片在高风速运行下的功率,从而达到在低功率下进行调速的目的。 3.2 变桨距风力发电技术 在并网过程中,变桨距控制还可实现快速无冲击并网,一方面保证获取较大的能量,另一方面减少风力对风力机的冲击,在并网过程中,快速无冲击并网还可使用变浆距控制,变桨距控制系统与变速恒频技术相配合,最终会提高整个风力发电机系统的发电效率和电能质量。如果要增加风力发电机的年发电量也会存在一定的缺点,不仅需要具备一套相对复杂的变浆距机构,并且在变浆距结构的设计上也会有一定的要求,要对阵风的响应速度足够快,变桨距执行机构及液压驱动系统较复杂,运行可靠性难以有效保证,如果以减小由于风的波动引起的功率脉动同时,其成本也会随之翻倍。所以以上所述,在使用电动变桨距系统就是可以允许三个桨叶独立实现变桨,它提供给风力发电机组功率输出和足够的刹车制动能力,这样还可以避免对过载风机的破坏。 3.3 混合失速/主动失速发电技术 风力发电在并网的过程中也是一个操作起来极其复杂的非线性工作,并且风力发电机组存在着随机扰动大、不确定因素过多,还有难以准确的描述并网特性的各个特点。所以根据反馈量的多少,在规定的并网时间内,可使导通角逐步增加,电机的定子电压逐步提高,使之达到软并网、限制电流的目的。在并网过程结束机组进入正常工作状态,上述两种技术的组合也就是所谓的混合失速/主动失速发电技术。 4 风力变速发电技术 4.1 风能本就是绿色、环保、无污染的可再生资源,由于其本身稳定性较差,无法正常控制风速等特性。所以在利用风能发电时,根据风向的变化性和风机叶不断的变化,一定要合理利用并掌控好操作技术,否则会影响风能发电的工作效率,影响用电质量。做好调整工作,考虑发电机在运行时会出现的各种变化,完全可以保证风能发电的最大化利用。另外,在我国目前的风能发电机控制系统中,最常采

河北省风电产业发展概况

河北省风电产业发展概况

————————————————————————————————作者:————————————————————————————————日期:

河北省风电产业发展概况 风电场分布: 张家口: 一,2009年6月大唐张北乌登山风电场一期4.95万千瓦风电工程正式获得河北省发展和改革委员会的核准批复,大唐张北乌登山风电场位于河北省张北县大西湾乡区域。 二,七甲山风电场项目建设规模19.95万千瓦,拟安装单机容量1500千瓦风电机组133台,设计年发电量约4.62亿千瓦时。预计2010年全部并网发电。 三,尚义龙源风电场核准总装机容量为15万千瓦,总投资13.2亿元,将建设100台1500千瓦风电机组。预计2010年全部并网发电。 四,张北县绿脑包风电场核准总装机容量10.05万千瓦,将建设67台1500千瓦风电机组 目投资额为9.5亿元,年发电量约为2.42亿千瓦时,预计2010年全部并网发电。 五,2009年7月河北省张北县满井风电场风电项目全部建成投产。满井风电场风电项目单体容量达19.35万KW,是国内目前单体容量最大的风电场。满井风电场的建成,不仅对改善华北电网能源结构和有效改善北京、天津等华北地区的环境状况有重要的现实意义,而且也将有效地促进和带动当地经济的发展。满井风电场年可实现发电量约4.5亿KW.h 六,2010年1月,华电沽源九龙泉风电场一期(100.5MW)工程67台风电机组全部调试完成、顺利并网发电,成为国家规划的首个百万千瓦级风电基地中第一个实现全部投产发电的风电场。与此同时,这县还顺利入围了2009年中国新能源百强县。 为该风电场全部建成投产奠定了良好的基础。2009年12月31日67台风机全部并网发电,成为国家规划的首个百万千瓦级风电基地中第一个实现全部投产发电的风电场。截止目前,该县已实现累计并网发电18.3万千瓦。今年全县风电装机和开工总量将达到90万千瓦,实现并网发电50万千瓦,2012年可并网100万千瓦。2010年2月为止张家口市风电装机容量已突破200万千瓦,位居全省首位,成为全国风电装机容量最多的成市之一。 承德: 一,河北省红松风力发电股份有限公司经营业务为风力发电,至2006年底,承德红松风力发电有限公司已先后完成其投资风电项目的一、二、三期建设工程,总投资 8.86亿元,总装机158台,装机总量达到10.62万千瓦。装机10万千瓦的四、五 期工程也于年初开工建设,并网发电后,总装机容量将达到20.62万千瓦,年发电量可达2.68亿千瓦。 二,2009年12月随着张家湾项目风机的启动,河北省、承德市重点项目———由河北围场龙源建投风力发电有限公司等承建的4个49.5MW风电项目,在历时近一年零八个月的施工建设后,成功并网发电。其中49.5MW竹子下项目、49.5MW广发永实现了在华北坝上地区1500KW风电机组的计划。 三,2009年10月21日河北承德华能围场御道口牧场风电场二期工程场址位于河北省承德市围场县城西北的御道口牧场,距县城66km,海拔高度1390m~1578m。 风电场规划总装机规模249MW,分2期建设。本期为第二期,装机容量199.5MW,

风力发电电气控制技术发展探讨 王明佺

风力发电电气控制技术发展探讨王明佺 发表时间:2019-05-24T10:27:59.593Z 来源:《电力设备》2018年第32期作者:王明佺 [导读] 摘要:随着国家新能源发展战略的提出和实施,我国风电产业进入跨越式发展的阶段。 (华能河北清洁能源分公司河北石家庄 050000) 摘要:随着国家新能源发展战略的提出和实施,我国风电产业进入跨越式发展的阶段。风力发电是一种主要的发电形式,是可持续发展理念的主要体现。因此,本文简要分析了风力发电控制技术的新发展,同时对我国风电技术发展过程中存在的问题提出了相关建议。关键词:风力发电;电气控制技术;发展 1引言 随着国内5WM容量等级风电产品的相继下线,国内兆瓦级机组在风电市场的普及,标志我国已具备兆瓦级风机的自主研发能力。同时,我国风电装备制造业的产业集中度进一步提高,国产机组的国内市场份额逐年提高。现阶段我国风电机组整机制造业和关键零部件配套企业已能基本满足国内风电发展需求,我国风电装备制造业必须增强技术上的自主创新,加强风电核心技术攻关,尤其是加强风电关键设备和技术的攻关。 2电气控制技术概述分析 就目前的情况看,这一技术已应用到包括电厂等各领域当中。以风力发电为例,相对于火力及水力发电等,风力发电受自然环境影响严重,一旦气压以及空气温度等发生了变化,其发电过程也会受到影响,因此可以说,其发电过程具有不稳定性。为了提高风力发电效率,我国已经对发电机组的叶片直径进行了改良,一定程度上使得发电效率得到了提高,但鉴于风力发电所面临的自然环境的恶劣性,为了使发电过程能够更加顺利的实现,必须加强对整个运行过程控制,从而实现更好的控制效果。电气控制技术的出现为控制过程的实现提供途径,将其应用到风力发电过程中,已成为该领域发展的必然环节。 3风力发电过程中存在的问题分析 风力发电对能源节约及环境保护的重要性不言而喻,但受自然环境等多种因素的影响,其在运行过程中仍存在一定的问题,主要体现在以下方面: 3.1 电网质量得不到保证 风力发电具有一定的不稳定性,这是导致电网质量得不到保证的主要原因。风力发电主要是通过对风资源的利用而实现发电的过程,风资源本身具有很大的不稳定性,其速度以及方向均不固定,因此,若无法对其进行合理的控制,在上述两方面因素发生变化时,电力负荷以及电能均会产生一定的变化,如变化过大,超过电网所能够承受的范围,电网质量便会受到影响。 3.2 风力发电系统构成情况复杂 受技术水平等因素的影响,现阶段我国风力发电系统的构成情况以及动态特性都十分复杂。作为两种主要系统模型,线性模型与非线性模型在风力发电过程中均有所应用,但由于两者在功能的发挥以及对于环境的要求方面有所不同,因此采用传统的技术手段,统一对其进行技术控制,必定无法充分满足两种模式下风力发电系统的运行需求,由此可见,将新的控制技术应用到系统中已经开始变得尤为必要。 4风力发电电气控制技术的应用与发展策略分析 风力发电电气控制技术主要包括变速风力发电技术、变桨距风力发电技术、主动失速风发电技术及定桨距失速发电技术四种,四种技术分别凭借不同的原理而实现,主要体现在以下方面: 4.1 变速风力发电技术 一般情况下,风力发电机在运行过程中其速度均保持平衡与稳定,针对这一特点,一旦自然界中的风速发生了变化,其运行情况以及发电频率便会受到影响。变速风力发电技术的应用能够使上述问题得到有效解决。发电机的转速能够根据风速的代销做出调整,在风速较大时,为了避免功率过大而引起电网的损坏,发电机能够根据风速情况自行实现转速调整,进而使功率得以平衡。我国国土面积较大,采用这一技术能够有效的适应不同地区的不同风速情况,因此,将其应用到风力发电过程中很有必要。 4.2 变桨距风力发电技术 变桨距风力发电技术通过对桨叶角度的调整,实现对较大的功率的调整,相对于其他电气控制技术而言,这一技术的应用所使用的材料整体重量较轻,因此即使发生外力影响,其所受到的危害也相对较小,对于风力发电持续性的保证能够起到一定效果。但具有缺陷,主要体现在对成本要求高这一方面。从长远的角度看,随着对该技术科研力度的加大,其成本必定能够得到有效的减少,同时其应用范围也必定能够得到扩大。 4.3 定桨距失速发电技术 定桨距失速发电技术是在传统风力发电技术的基础上发展起来,通过对叶片结构的改良,实现对功率的控制的一种技术。在将其应用到实际风力发电过程中后发现,该技术实现有效控制功率的目的,但基于其本身叶片重量的影响,该技术下风力发电的整体效率却无法得到保证。变桨距风力发电技术是对定桨距风力发电技术的改良,解决了其中存在的桨叶重量过大的问题。 4.4 主动失速发电技术 为解决定桨距失速发电技术中存在的风力发电效率不高的问题,解决变桨距失速发电技术中存在的对成本要求过高的问题,主动失速发电技术出现。在综合考虑上述两种技术的优势的基础上,主动失速发电技术对两者的优势进行继承,并对其缺陷进行了优化与改良,最终使得两种技术下存在的缺陷得到了解决。 因此,该技术的原理在于根据桨距角在不同情况下的变化去控制风能的捕获量以及速度,理论上看,具有较高的应用价值,但从实践的角度看,易造成更加严重的失速,使得功率脱离控制,而对整个电网的运行造成不良影响。解决上述技术存在的缺陷是风力发电领域必须研究的主要内容。 5风力发电机组控制技术的发展 控制技术是风力发电机组安全高效运行的关键技术,主要在于: 自然风速的大小和方向随着大气的气压、气温和湿度等的活动和风电场地形地貌等因素的随机性和不可控性,这样风力机所获得的风

变速恒频风力发电关键技术研究

变速恒频风力发电关键技术研究 发表时间:2018-06-07T10:41:35.750Z 来源:《电力设备》2018年第1期作者:李琳[导读] 摘要:本文主要对风力发电技术进行研究,首先从传统的恒速恒频发电入手与变速恒频发电做对比,展示了变速恒频发电在性能方面的突出优点,再分析变速恒频发电机组的工作原理和机组中的两种发电系统:交流励磁双馈发电系统和无刷双馈发电系统,分别对两种系统的工作原理、控制方式、优点及缺点等方面作出了阐述。 (大唐新能源黑龙江公司 150038)摘要:本文主要对风力发电技术进行研究,首先从传统的恒速恒频发电入手与变速恒频发电做对比,展示了变速恒频发电在性能方面的突出优点,再分析变速恒频发电机组的工作原理和机组中的两种发电系统:交流励磁双馈发电系统和无刷双馈发电系统,分别对两种系统的工作原理、控制方式、优点及缺点等方面作出了阐述。 关键词:变速恒频;风力发电;技术研究前言:根据我国目前生态建设和可持续发展的需要,大力开发可再生能源已经成为了当下应用能源的新型趋势,而风能正是符合这一需求的可再生绿色能源。风力发电技术早在上个世纪就开始进行研究和应用,但是在一定程度上机组性能尚不完善,关键技术的研发未有突破,导致了风能利用率较低。在近些年逐步发展的变速恒频风力发电技术在一定程度上可以对此改善,在技术研究上也有了新突破。 1.风力发电的技术分析 1.1恒速恒频风力发电机组分析 恒速恒频风力发电机组是一种运行后叶轮不能根据风速的变化而发生变化的,是由电网频率决定的风轮转速和电能频率在运行时基本保持不变的风电机组。主要发展于上世纪八十年代和九十年代之间,曾经被我国广泛应用于风力发电,并在此期间不断被研究者优化的一种风力发电形式。恒速恒频风力发电机组最开始的容量只有几十千瓦级,逐步发展为兆瓦级,并且有着一系列优点,例如:性能稳定、操作简便等,但仍属于非智能操作系统。 在恒速恒频风力发电机组中,由两种较为常用的控制方式:主动失速控制和定桨距失速控制。其中,主动失速控制是应用于大容量机组的一种控制方式,这种控制方式可以使机组具有稳定的输出功率,也会有部分机组采用定桨距失速控制,但是,该方式的输出功率不稳定还会造成一定程度上的齿轮箱磨损。 在恒速恒频风力发电系统中,由于外界风速变化无常,但风力发电机本身的转速不会改变,就会造成数据的不准确,风机效率低下等状况。在风力发电中,要提高风力发电系统的发电效率是首要任务,在整个过程中捕获最大风能是要点,所以发电系统一直在向着目标改进发展。随着科学技术的发展,在风力发电方面也有了明显的突破,正如近年来慢慢发展并强大的变速恒频风力发电系统。 1.2变速恒频与恒速恒频的对比分析 变速恒频风力发电机组是当今的主流风力发电机组,是二十世纪末期发展起来的一种高效的风力发电方式。与恒速恒频风力发电机组相比,变速恒频风力发电机组有明显的优势。变速恒频风电机组可以应对不同风速大小,在不同风速下进行自身调节,最大化捕捉风能,提高风能的利用率。恒速恒频发电机组在遇到较大风力时,自身产生的较大电流会使自身结构遭到损害。变速恒频风力发电机组本身可以根据外界风速的变化进行自身调节,减少因力的相互作用而导致装置内部结构遭到破坏的现象,从而大大延长了机组的使用寿命。不仅如此,变速恒频风力发电机组主要是通过对内部转子交流励磁电流幅值、频率以及相位的控制,实现在变速下对于频率的恒定控制,,这种控制方式还可以达到对输出功率的控制,使装置运行更加灵活,以便于整个机组的运作。 2.变速恒频风力发电的关键技术分析 2.1变速恒频风力发电工作原理 在变速恒频风力发电机组中,主要的三个部,分是风力机、发电机和辅助构件。变速恒频风力发电的基本工作原理是风力机构件中的叶轮吸收风能,在风能的作用下发生转动,使之转化为机械能,而后,叶轮的转动带动齿轮箱工作,产生机械能,再将产生的机械能通过发电机转化为电能,并经过一定转化输入电网,再由电网对各个用户进行传输。 目前的变速风力发电系统完全实现了机械自动化,属于智能运作系统,不需要人工调节,可以根据风速风力进行自身调节,适应外界变化。对于变速恒频发电机组而言,在额定风速以上运行时,可以使叶轮上的载荷控制在安全值内,并且,有效的调节风电机组吸收的能量。风力机的叶轮由于质量较大,具有较大的惯性,在变桨控制产生作用时,叶轮不会及时发生变化,通常情况下会滞后一定时间才能有所表现,这一情况很容易使功率有大幅度的波动。所以,在额定风速上运行时,需要用发电机转矩来进行快速的调节,来保证输出稳定的能量。当机组处于额定风速以下时,可以通过提高对发电机转矩的控制,使机组变速运行,以达到提高能量转换率的目的。 2.2变速恒频发电系统 交流励磁双馈发电系统:这种发电系统内部的主要结构有叶轮、齿轮箱、发电机、四象限变频器、交流励磁控制器、检测装置以及风力发电控制器等,其内部还存在滑环和电刷。馈电方式为装置内部转子绕组通过交流—交流的方式或是交流—直流—交流方式的变频器提供相关数据可以调节的电源,定子绕组接电网。交流励磁控制器还可以通过对于转子变频器输出的电压、幅值、相位以及频率的控制来调节转矩和定子的无功功率。在装置中,变频器提供给转子低频旋转磁场,且满足公式:ω1=ωs±ωr。其中ω1代表定子磁场同步转速,ωs代表整个磁场旋转速度,ωr代表转子机械旋转速度。 无刷双馈发电系统:这种电力系统的深入研究始于上世纪七十年代末,在此期间的几十年中,主要由美国Wisconsin大学、Ohio州立大学等高等院校对无刷双馈发电系统进行深入研究。其内部结构主要有电网、功率绕组、控制绕组、变频器、无刷电机、风力机等。在其内部定子上,一般有两套三相对称绕组,一个为主绕组,一个为副绕组。一般由工频交流电源直接为主绕组供电,如果副绕组短路,系统能够在异步运行方式下运作。无刷双馈发电系统内部的转子一般分为磁阻转子和笼形转子两类,其中,磁阻转子以ALA型较为常见,笼形以笼形短路绕组转子较为常见。 在风力发电系统的研究中表明,无电刷和滑环的发电转子在应用中更为稳定耐用,可靠性强。并且,发现在所有的发电系统研究中双馈型有刷及无刷的变速恒频控制在性能上都较为优越,较为常用,可以在此结论的基础上进一步对于双馈型变速恒频空间展开研究,进一步发展我国变速恒频风力发电的应用。 3.结语

相关文档
最新文档