饱和黏土循环剪切强度与变形特性的试验研究

饱和黏土循环剪切强度与变形特性的试验研究
饱和黏土循环剪切强度与变形特性的试验研究

第6讲 剪切与挤压的实用计算

第6讲教学方案——剪切与挤压的实用计算

§2-13剪切和挤压的实用计算 1.工程上的剪切件 通过如图3-1所示的钢杆受剪和图3-2所示的联接轴与轮的键的受剪情况,可以看出,工程上的剪切件有以下特点: 1)受力特点 杆件两侧作用大小相等,方向相反,作用线相距很近的外力。 2)变形特点 两外力作用线间截面发生错动,由矩形变为平行四边形。(见动画:受剪切作用的轴栓)。 因此剪切定义为相距很近的两个平行平面内,分别作用着大小相等、方向相 对(相反)的两个力,当这两个力相互平行错动并保持间距不变地作用在构件上时,构件在这两个平行面间的任一(平行)横截面将只有剪力作用,并产生剪切变形。 2.剪应力及剪切实用计算 剪切实用计算中,假定受剪面上各点处与剪力Q 相平行的剪应力相等,于是受剪面上的剪应力为 A Q =τ (3-1) 式中:Q —剪力;A —剪切面积 τ—名义剪切力 剪切强度条件可表示为: []ττ≤=A Q (3-2) 式中:[]τ—构件许用剪切应力。

剪切面为圆形时,其剪切面积为: 4 2 d A π = 对于如图3-3所示的平键,键的尺寸为l h b? ?,其剪切面积为:l b A? =。 例2-14电瓶车挂钩由插销联接,如图3-4a。插销材料为20#钢,[]MPa 30 = τ,直径mm 20 = d。挂钩及被联接的板件的厚度分别为mm 8 = t和mm 12 5.1= t。牵引力kN 15 = P。试校核插销的剪切强度。 解:插销受力如图3-4b所示。根据受力情况,插销中段相对于上、下两段,沿m—m和n —n两个面向左错动。所以有两个剪切面,称为双剪切。由平衡方程容易求出 2 P Q= 插销横截面上的剪应力为 () []τ π τ< = ? ? ? = = - MPa 9. 23 10 20 4 2 10 15 2 3 3 A Q 故插销满足剪切强度要求。 例2-15 如图3-8所示冲床,400 max = P kN,冲头 []400 = σMPa,冲剪钢板360 = b τMPa,设计冲头 的最小直径值及钢板厚度最大值。 解:(1)按冲头压缩强度计算d []σ π σ≤ = = 4 2 d P A P 所以

材料力学_强度理论与组合变形1

第八章强度理论与组合变形 §8-1 强度理论的概念 1.不同材料在同一环境及加载条件下对“破坏”(或称为失效)具有不同的抵抗能力(抗力)。 例1常温、静载条件下,低碳钢的拉伸破坏表现为塑性屈服失效,具有屈服极限 σ, s 铸铁破坏表现为脆性断裂失效,具有抗拉强度 σ。图9-1a,b b 2.同一材料在不同环境及加载条件下也表现出对失效的不同抗力。 例2常温静载条件下,带有环形深切槽的圆柱形低碳钢试件受拉时,不再出现塑性变形,而沿切槽根部发生脆断,切槽导致的应力集中使根部附近出现两向和三向拉伸型应力状态。图(9-2a,b)

例3 常温静载条件下,圆柱形铸铁试件受压时,不再出现脆性断口,而出现塑性变形,此时材料处于压缩型应力状态。图(9-3a ) 例4 常温静载条件下,圆柱形大理石试件在轴向压力和围压作用下发生明显的塑性变形,此时材料处于三向压缩应力状态下。图9-3b 3.根据常温静力拉伸和压缩试验,已建立起单向应力状态下的弹性失效准则,考虑安全系数后,其强度条件为 []σσ≤ ,根据薄壁圆筒扭转实验,可建立起纯剪应力状态下的弹性失效准则,考虑安全系数后,强度条件为 []ττ≤ 。 建立常温静载一般复杂应力状态下的弹性失效准则——强度理论的基本思想是: 1)确认引起材料失效存在共同的力学原因,提出关于这一共同力学原因的假设; 2)根据实验室中标准试件在简单受力情况下的破坏实验(如拉伸),建立起材料在复杂应力状态下共同遵循的弹性失效准则和强度条件。 3)实际上,当前工程上常用的经典强度理论都按脆性断裂和塑性屈服两类失效形式,分别提出共同力学原因的假设。 §8-2四个强度理论 1.最大拉应力准则(第一强度理论) 基本观点:材料中的最大拉应力到达材料的正断抗力时,即产生脆性断裂。 表达式:u σσ=+ max 复杂应力状态

第八章组合变形构件的强度习题

第八章组合变形构件的强度习题 一、填空题 1、两种或两种以上基本变形同时发生在一个杆上的变形,称为()变形。 二、计算题 1、如图所示的手摇绞车,最大起重量Q=788N,卷筒直径D=36cm,两轴承间的距离l=80cm,轴的许用应力[]σ=80Mpa。试按第三强度理论设计轴的直径d。 2、图示手摇铰车的最大起重量P=1kN,材料为Q235钢,[σ]=80 MPa。试按第三强度理论选择铰车的轴的直径。 3、图示传动轴AB由电动机带动,轴长L=1.2m,在跨中安装一胶带轮,重G=5kN,半径R=0.6m,胶带紧边张力F1=6kN,松边张力F2=3kN。轴直径d=0.1m,材料许用应力[σ]=50MPa。试按第三强度理论校核轴的强度。 4、如图所示,轴上安装有两个轮子,两轮上分别作用有F=3kN及重物Q,该轴处于

平衡状态。若[σ]=80MPa。试按第四强度理论选定轴的直径d。 5、图示钢质拐轴,AB轴的长度l AB=150mm, BC轴长度l BC=140mm,承受集中载荷F 的作用,许用应力[σ]=160Mpa,若AB轴的抗弯截面系数W z=3000mm3,。试利用第三强度理论,按AB轴的强度条件确定此结构的许可载荷F。(注:写出解题过程) 6、如图所示,由电动机带动的轴上,装有一直径D=1m的皮带轮,皮带紧边张力为2F=5KN,松边张力为F=2.5KN,轮重F P=2KN,已知材料的许用应力[σ]=80Mpa,试按第三强度理论设计轴的直径d。 7、如图所示,有一圆杆AB长为l,横截面直径为d,杆的一端固定,一端自由,在自由端B处固结一圆轮,轮的半径为R,并于轮缘处作用一集中的切向力P。试按第三强度理论建立该圆杆的强度条件。圆杆材料的许用应力为[σ]。

剪切力的计算方法

第3章 剪切和挤压的实用计算 3.1 剪切的概念 在工程实际中,经常遇到剪切问题。剪切变形的主要受力特点是构件受到与其轴线相垂直的大小相等、方向相反、作用线相距很近的一对外力的作用(图3-1a),构件的变形主要表现为沿着与外力作用线平行的剪切面(n m -面)发生相对错动(图3-1b)。 图3-1 工程中的一些联接件,如键、销钉、螺栓及铆钉等,都是主要承受剪切作用的构件。构件剪切面上的内力可用截面法求得。将构件沿剪切面n m -假想地截开,保留一部分考虑其平衡。例如,由左部分的平衡,可知剪切面上必有与外力平行且与横截面相切的内力Q F (图3-1c)的作用。Q F 称为剪力,根据平衡方程∑=0Y ,可求得F F Q =。 剪切破坏时,构件将沿剪切面(如图3-la 所示的n m -面)被剪断。只有一个剪切面的情况,称为单剪切。图3-1a 所示情况即为单剪切。 受剪构件除了承受剪切外,往往同时伴随着挤压、弯曲和拉伸等作用。在图3-1中没有完全给出构件所受的外力和剪切面上的全部内力,而只是给出了主要的受力和内力。实际受力和变形比较复杂,因而对这类构件的工作应力进行理论上的精确分析是困难的。工程中对这类构件的强度计算,一般采用在试验和经验基础上建立起来的比较简便的计算方法,称为剪切的实用计算或工程计算。 3.2 剪切和挤压的强度计算 3.2.1 剪切强度计算 剪切试验试件的受力情况应模拟零件的实际工作情况进行。图3-2a 为一种剪切试验装置的简图,试件的受力情况如图3-2b 所示,这是模拟某种销钉联接的工作情形。当载荷F 增大至破坏载荷b F 时,试件在剪切面m m -及n n -处被剪断。这种具有两个剪切面的情况,称为双剪切。由图3-2c 可求得剪切面上的剪力为 2 F F Q =

单元5 剪切与扭转变形时的承载力计算

单元5 剪切与扭转变形时的承载力计算 【学习目标】 1.能深入理解剪切和挤压的概念; 2.能进行剪应力和压应力的计算和校核; 3.能灵活运用剪切虎克定律公式和剪应力互等定理; 4.能深入理解圆轴的扭矩的概念和公式; 5.能进行圆轴圆轴扭转强度计算,最大剪应力; 5.1 剪切与挤压变形实例 5.1.1剪切的概念 它是指杆件受到一对垂直于杆轴方向的大小相等、方向相反、作用线相距很近的外力作用所引起的变形,如铆钉连接中的铆钉及销轴连接中的销等都是心剪切变形为主要变形的构件。 图5.1 如图所示。此时,截面cd相对于动将发生相对ab错动,即剪切变形。若变形过大,杆件将在两个外力作用面之间的某一截面m—m处被剪断,被剪断的截面称为剪切面,如图5.1所示。 5.1.2挤压的概念 构件在受剪切的同时,在两构件的接触面上,因互相压紧会产生局部受压,称为挤压。 图5.2

如图5.2所示的铆钉连接中,作用在钢板上的拉力F,通过钢板与铆钉的接触面传递给铆钉,接触面上就产生了挤压。两构件的接触面称为挤压面,作用于接触面的压力称挤压力,挤压面上的压应力称挤压应力,当挤压力过大时,孔壁边缘将受压起“皱”,铆钉局部压“扁”,使圆孔变成椭圆,连接松动,这就是挤压破坏。因此,连接件除剪切强度需计算外,还要进行挤压强度计算。 图5.3 5.2 铆接或螺栓连接实用计算(剪切与挤压的实用计算) 5.2.1剪切的实用计算 剪切面上的内力可用截面法求得。 图5.4 假想将铆钉沿剪切面截开分为上下两部分,任取其中一部分为研究对象,由平衡条件可知,剪切面上的内力Q必然与外力方向相反,大小由∑X=0,F-Q=0,得:Q=F这种平行于截面的内力Q称为剪力。 与剪力Q相应,在剪切面上有剪应力η存在。剪应力在剪切面上的分布情况十分复杂,工程上通常采用一种以试验及经验为基础的实用计算方法来计算,假定剪切面上的剪应力η是均匀分布的。因此:Qη=―A式中A——剪切面面积; Q——剪切面上的剪力。 为保证构件不发生剪切破坏,就要求剪切面上的平均剪应力不超过材料的许用剪应力,即剪切时的强度条件为:Q η=―≤[η]( 5.1 ) A 式中[η]——许用剪应力,许用剪应力由剪切试验测定。

组合变形及强度理论

组合变形和强度理论习题及解答 题1.图示,水平放置圆截面直角钢杆(2 ABC p ?),直径100d mm =,2l m =,1q k N m =,[]MPa 160=σ,试校核该杆的强度。 解: 1)各力向根部简化,根截面A 为危险面 扭矩:212nA M ql = ,弯矩 23 2 zA M ql =+,剪力2A Q ql = 2) 2348ZA M ql W d s p ==, 3132W d p =,3 116 p W d p =, 扭转剪应力:2 3 810.18n P M ql MPa W d t p ===, 3) []364.42r MPa s s = =<, ∴梁安全 题2、 平面曲杆在C 端受到铅重力P 作用。材料的 [σ]=160MPa 。若P=5KN ,l =1m ,a=0.6m 。试根据第四强度理论设计轴AB 的直径d. 解:属于弯扭组合变形 危险面A 处的内力为: 题3、平面曲拐在C 端受到铅垂力P 作用,材料的[σ]=160MPa ,E=2.1?10 5 MPa ,。 杆的直径 d=80mm ,l =1.4m ,a=0.6m ,l 1=1.0m 。若P=5KN (1) 试用第三强度理论校核曲拐的强度。 (2) 求1-1截面顶端处沿45?方向的正应变。 解: (1)危险A 上的内力为:5 1.4 7z M kN m =?? B

曲拐安全 (2)1-1截面内力:5,3z M kN m T kN m =?? 顶点的应力状态 题4. 图示一悬臂滑车架,杆AB 为18 号工字钢,其长度为 2.6l m =。试求当荷载F =25kN 作用在AB 的中点D 处时,杆内的最大正应力。设工字钢的自重可略去不计。 B 解:18号工字钢4 3421851030610.,.W m A m --=?? AB 杆系弯庄组合变形。 题5. 砖砌烟囱高30h m =,底截面m m -的外径13d m =,内径22d m =,自重 2000P kN =,受1/q kN m =的风力作用。试求: (1)烟囱底截面上的最大正应力; (2)若烟囱的基础埋深04h m =,基础及填土自重按21000P kN =计算,土壤的许用应力 []0.3MPa s =圆形基础的直径D 应为多大? 注:计算风力时,可略去烟囱直径的变化,把它看作是等截面的。 解:烟囱底截面上的最大正应力:

剪切变形过程及切边质量判定标准

剪切变形过程及切边质量判定标准 1前言 为保证切边质量,对圆盘剪的横向间隙、重叠量等工艺参数重要性有更深入的认识, 2 剪切变形过程及切边质量判定标准 2.1剪切变形的过程

2.2 切边质量判定标准 切断层部分由于发生了塑性变形而产生了加工硬化,使切断层部分抵抗变形的能力增强和塑性能力的恶化。而撕断层部分由于直接撕裂的作用,其内部的金属没有发生大的强化作用,因而变形抗力相对较弱。 切断层金属由于变形抗力的增加和塑性能力的恶化,是造成分切后边部(单边)出现缺陷的重要原因。钢带双边质量一致性是切边质量的判定标准,作为指导生产和调节圆盘剪参数的依据。 判定标准为:切断面约占带钢厚度的1/3;切断面与断裂面分界线连续、平直;整个剪切面平整光滑、无缺口、无大的毛刺。 3剪刃间隙调整和切边质量的关系 重叠量和间隙的设定问题对剪切缺陷有很大的影响。一般保证撕裂区和剪切区的比例为2:1左右,有时候可能需要加大一些重叠量。间隙太小,剪刃瓢曲都易产生毛刺。一般可以通过断面颜色及粗燥判断间隙是否合适: 断面光滑发亮间隙太小 断面铅灰色略小 断面白色略带铅灰合适 断面白色,塌肩,断面呈颗粒状粗燥太大 断面情况周期变化,剪刃瓢曲 瓢曲包括剪刃本身瓢曲或装配不当造成间隙周期变化。 3.1 侧隙和切边质量的关系 剪刃的侧向间隙是影响带钢剪切质量的最重要因素,实践表明,侧隙大小对剪切质量的影响比重叠量的影响要敏感得多,因而设定出合理的侧隙值是圆盘剪间隙调整的关键。 从带钢的剪切断面来看

3.2 重叠量和切边质量的关系 剪刃重叠量应根据带钢厚度及剪切情况进行调整,一般来说重叠量太小时,会造成剪切力太大,边部弯曲产生扣头现象,严重者会造成剪切下的带边在溜槽内卡钢;重叠量过大时则可能会造成带钢无法剪切。 重叠量主要通过影响带钢的咬入角进而影响剪切力,关系式如下: D s h+ - =1 cosα , 其中h为带钢厚度;D为圆盘剪刀片直径,400 mm;s为重叠量。可以验证,若带钢为3.0 mm,当重叠量从1 mm减小到0时,咬入角仅减小了0.69°。

组合变形的强度计算

§9.1 组合变形概述 前面研究了杆件在拉伸(压缩)、剪切、扭转和弯曲四种基本变形时的强度和刚度问题。但在工程实际中,许多构件受到外力作用时,将同时产生两种或两种以上的基本变形。例如建筑物的边柱,机械工程中的夹紧装置,皮带轮传动轴等。 我们把杆件在外力作用下同时产生两种或两种以上的基本变形称为组合变形。常见的组合变形有: 1.拉伸(压缩)与弯曲的组合; 2.弯曲与扭转的组合; 3.两个互相垂直平面弯曲的组合(斜弯曲); 4.拉伸(压缩)与扭转的组合。 本章只讨论弯曲与扭转的组合。 处理组合变形问题的基本方法是叠加法,将组合变形分解为基本变形,分别考虑在每一种基本变形情况下产生的应力和变形,然后再叠加起来。组合变形强度计算的步骤一般如下: (1) 外力分析将外力分解或简化为几种基本变形的受力情况; (2) 内力分析分别计算每种基本变形的内力,画出内力图,并确定危险截面的位置; (3) 应力分析在危险截面上根据各种基本变形的应力分布规律,确定出危险点的位置及其应力状态。 (4) 建立强度条件将各基本变形情况下的应力叠加,然后建立强度条件进行计算。 §9.2 弯扭组合变形强度计算 机械中的转轴,通常在弯曲和扭转组合变形下工作。现以电机为例,说明此种组合变形的强度计算。图10-1a所示电机轴,在轴上两轴承中端装有带轮,工作时,电机给轴输入一定转矩,通过带轮的皮带传递给其它设备。带紧边拉力为F T1,松边拉力为F T2,不计带轮自重。

图10-1 (1) 外力分析将作用于带上的拉力向杆的轴线简化,得到一个力和一个力偶,如图10-1(b),其值分别为 力F使轴在垂直平面内发生弯曲,力偶M1和电机端产生M2的使轴扭转,故轴上产生弯曲和扭转组合变形。 (2) 内力分析画出轴的弯矩图和扭矩图,如图10-1(c)、(d)所示。由图知危险截面为轴上装带轮的位置,其弯矩和扭矩分别为

弯曲变形剪切变形

很常见的四个概念,但是一定要小心~ 弯曲变形、剪切变形,弯曲型变形、剪切型变形。注意,一个字之差,意思却大不相同。弯曲变形、剪切变形:这两个是材料力学和结构力学中的概念,分别指构件中的某一个截面的弯矩、剪力产生的变形,可以由弯矩和抗弯刚度EI、剪力和抗剪刚度GA计算得到。框架结构,剪力墙结构和框剪结构在侧向力作用下的水平位移曲线的特点:1、框:抗侧刚度较小,其位移由两部分组成:梁和柱的弯曲变形产生的位移,侧移曲线呈剪切型,自下而上层间位移减小;柱的轴向变形产生的侧移,侧移曲线呈弯曲型,自下而上层间位移增大.第一部分是主要的,第二部分很小可以忽略,所以框架结构在侧向力作用下的侧移曲线以剪切型为主,故称为剪切型变形. 2、剪:抗侧刚度较大,剪力墙的剪切变形产生位移,侧向位移呈弯曲型,即层间位移由下至上逐渐增大,相当于一个悬臂梁; 3、框剪:位移曲线包括剪切型和弯曲型,由于楼板的作用,框架和墙的侧向位移必须协调.在结构的底部,框架的侧移减小;在结构的上部,剪力墙的侧移减小,侧移曲线呈弯剪型,层间位移沿建筑物的高度比较均匀,改善了框架结构及剪力墙结构的抗震性能,也有利于减少小震作用下非结构构件的破坏 框架结构抗侧刚度小,在水平力作用下产生较大侧向位移该位移变形包括1、由柱子的拉压变形产生水平位移而引起的整体弯曲,该部份所占比例小而被忽略了2、梁柱杆件发生弯曲变形后产生的水平位移而引起的剪切变形。底部的剪力大剪切变形就大,楼层增高该变形逐渐减小. 而剪力墙结构就是2楼说的它是一根下部嵌固的悬臂深梁 剪力墙结构的侧向刚度较大,在水平力作用下其结构类似于一根竖向悬臂构件, 可以把地球理解成这根竖向悬臂构件的支座,地面就是它的固定端, 它的变形当然是离固定端近的就比较小了,好象挑梁一样. 弯曲变形对应弯曲破坏,是延性破坏,剪力墙刚度大,对应的是弯曲变形, 给一个单位力施加在结构上,所产生的位移对应是柔度, 框架结构变形较剪力墙变形大,是相对其剪力墙较柔,刚度较差。 剪切变形对应剪切破坏,是脆性破坏,结构中尽量避免,延迟。 有些概念,只是概念,结构中很多是试验得到的,有时太深入,反而把自己搞晕了。 2#楼的好像说的也不是很清楚。 我试着说说。根据结构力学我们知道结构在荷载作用下的位移包括三部分:弯矩引起的、剪力引起、轴力引起。一般多层框架结构的变形主要是由梁柱的弯曲变形产生的,层间剪力除以层抗侧刚度,高层的话轴力变形也是不容忽略的。这种变形的形状和悬臂梁在剪力作用下的相似,所以叫剪切变形。 而剪力墙结构的变形主要由弯曲和剪切变形,变形的形状和悬臂梁的弯曲变形相似,所以称为弯曲变形。 为什么都是和悬臂梁的变形做比较,每个建筑从整体上看都是坐落在大地上的悬臂梁。老庄结构总提的老子的思想,一生二,从悬臂梁转化简支梁、固端梁等等。

工程力学习题库-弯曲变形

第8章 弯曲变形 本章要点 【概念】平面弯曲,剪力、弯矩符号规定,纯弯曲,中性轴,曲率,挠度,转角。 剪力、弯矩与荷载集度的关系;弯曲正应力的适用条件;提高梁的弯曲强度的措施;运用叠加法求弯曲变形的前提条件;截面上正应力分布规律、切应力分布规律。 【公式】 1. 弯曲正应力 变形几何关系:y ερ = 物理关系:E y σρ = 静力关系:0N A F dA σ==?,0y A M z dA σ==?,2z z A A EI E M y dA y dA σρ ρ == =?? 中性层曲率: 1 M EI ρ = 弯曲正应力应力:,M y I σ= ,max max z M W σ= 弯曲变形的正应力强度条件:[]max max z M W σσ=≤ 2. 弯曲切应力 矩形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F bh F S S 2323max ==τ 工字形梁弯曲切应力:d I S F y z z S ??=* )(τ,A F dh F S S ==max τ 圆形截面梁弯曲切应力:b I S F y z z S ??=* )(τ,A F S 34max =τ 弯曲切应力强度条件:[]ττ≤max

3. 梁的弯曲变形 梁的挠曲线近似微分方程:()''EIw M x =- 梁的转角方程:1 ()dw M x dx C dx EI θ= =-+? 梁的挠度方程:12( )Z M x w dx dx C x C EI ??=-++ ??? ?? 练习题 一. 单选题 1、 建立平面弯曲正应力公式z I My /=σ,需要考虑的关系有( )。查看答案 A 、平衡关系,物理关系,变形几何关系 B 、变形几何关系,物理关系,静力关系; C 、变形几何关系,平衡关系,静力关系 D 、平衡关系, 物理关系,静力关系; 2、 利用积分法求梁的变形,不需要用到下面那类条件( )来确定积分常 数。 查看答案 A 、平衡条件 B 、边界条件 C 、连续性条件 D 、光滑性条件 3、 在图1悬臂梁的AC 段上,各个截面上的( )。 A .剪力相同,弯矩不同 B .剪力不同,弯矩相同 C .剪力和弯矩均相同 D .剪力和弯矩均不同 图1 图2 4、 图2悬臂梁受力,其中( )。 A .A B 段是纯弯曲,B C 段是剪切弯曲

非饱和土的强度及变形特性

目录 1概述 2非饱和土基本特性 3应力状态变量 3.1吸力 3.2有效应力 3.3应力状态变量. 4强度理论 4.1Mohr一Coulomb准则 4.2非饱和土的破坏准则 4.3非饱和土抗剪强度公式的讨论 5变形特性

岩土工程中的非饱和土比比皆是,主要是自然干燥土和压实土。在地基工程、边坡工程和洞室工程中尤为常见,因此研究非饱和土的性质实属必要。非饱和土力学涉及的一系列工程,如土坝的建造与运行、环境条件变化情况下的天然土坡、竖直挖方的边坡稳定、膨胀土造成的地面隆起及湿陷性土中的许多实际问题,均要对土的渗流、体变和抗剪强度特性有所了解才能解决。非饱和土是由固相、液相和气相组成的复合介质,其性质远比饱和土复杂。目前对非饱和土的研究还停留在初步阶段,对非饱和土力学涉及的实际问题还缺乏建立在非饱和土三相特性基础之上的严密理论和正确解决方案。非饱和土分布广,并且应用广,但对其特性研究不足的矛盾使得对非饱和土问题的解决成为日益紧迫的研究课题。 1 概述 1936年召开的第一届国际土力学和基础工程会议为建立饱和土力学的原理和公式提供了论坛,这些原理和公式在随后几十年的研究工作中始终起着关键性的作用。在同一会议上讨论了有关非饱和土性状的许多论文,但遗憾的是没有出现适用于非饱和土的类似的原理和公式。随后的岁月非饱和土理论发展缓慢(Fredlund,1979),一直到50年代后期,解释非饱和土性状的若干概念才在英国帝国大学建立起来(Bishop,1959)。 20世纪60年代前,非饱和土力学研究的主要特点是以毛细作用为主要研究内容。在30年代进行大规模城市建设的时候,兴建了大量与城市建设有关的灌溉工程和交通工程,使工程师感到困难的就是地下水位以上土体中水的流动问题。他们使用了毛细作用来描述水从地下水位向上的流动,以后对土中毛细水流动的研究至少长达20年。在1936年的国际会议上,Ostashev 提出了两篇有关土中毛细作用的论文,他指出了土中存在毛细作用;Boulichev 介绍了计算毛细水压力和毛细水高度的方法。Terzaghi 在《理论土力学》中总结和吸收Hogentogle 和Barder 的研究成果,假定土的孔隙率n 和渗透系数k 不变,提出毛细水上升到某个高度z 所需要的时间t :log nh h z t k h z h ????=- ???-???? 式中:h ——毛细水的最大高度。 这一阶段研究的主要精力都在毛细水,局限性明显,因此研究进展缓慢,所取得的成功有限。 20世纪60年代到80年代末,这一阶段研究的特点是将饱和土力学有关理论借用到非饱和土力学研究中,以Bishop 和Fredlund 为代表。Hogentogle 和Barder 就已经认识到毛细水的应力状态对非饱和土强度的影响,并认为毛细水的流动严格符合公认的表面张力、重力和水力学原理;Bernatizk 也已经观测到水-气弯液面会使土的强度增加,并建议用土的无侧限抗压强度来研究毛细张力;Black 和Crony (1957),Williams (1957),Bishop (1960)等和Aitchison (1967)将饱和土有效应力原理引进非饱和土中,提出非饱和土有效应力的概念,并用其解决非饱和土的强度问题;Coleman (1962),Matyas 和Radhakrishna (1968),以及Fredlund 和Morgenstern (1977)用两个独立的应力状态变量来研究非饱和土的力学性质。这阶段对非饱和土强度问题取得一些公认的结果,对变形问题还处于探索阶段。 20世纪80年代后,对非饱和土的变形进行了更深入地研究。Alonso(1990)和Toll(1990)分别提出了土的弹塑性本构模型;Alonso(1992)根据非饱和土(膨胀土)的变形特性提出了描述膨胀土体积和剪切变形的本构模型;陈正汉(1998)

剪切和挤压

第3章 剪切与挤压 3.1 剪切的概念和实用计算 3.1.1 剪切的概念 力之间的横截面发生相对错动称为剪切变形。该发生相对错动的面称为剪切面。 剪切变形的受力特点和变形特点归纳如下:作用于构件两侧且与构件轴线垂直的外力,可以简化为大小相等、方向相反、作用线相距很近的一对力,使构件沿横截面发生相对错动。 3.1.2 剪切的实用计算 3.1.2.1 剪切内力—剪力 图3.1 联接件螺栓的剪切变形 图3.2 联接件键的剪切变形 图3.3 联接件销钉的剪切变形 图3.4 焊缝的剪切变形 图3.5 剪切变形的一般情形 图3.6 剪切内力—剪力

3.1.2.2 剪切的实用计算 剪切面上仅有剪应力,假定其均匀分布。于是螺栓剪切面上应力的大小为 A Q = τ (3.1) 式中Q 为剪切面上的剪力,A 为剪切面的面积。剪应力τ的方向与Q 相同。实际是平均剪应力,称其为名义剪应力。 测得破坏载荷后,按(3.1)式求得名义极限剪应力b τ,再除以安全系数n ,得到许用剪应力[τ],: [] b n ττ= (3.2) 与轴向拉伸(压缩)类似,剪切的强度条件为: [] ττ≤= A Q (3.3) 对于钢材,常取: []()[]στ8060.~.= (3.4) 式中[]σ为其许用拉应力。 【例3.1】电瓶车挂钩由插销联接(例题3.1a 图)。插销材料为20钢,[]τ=30MPa ,直径d =20mm 。 挂钩及被联接的板件的厚度分别为t =8mm 和1.5t =12mm.牵引力P =15kN 。试校核插销的剪切强度。 解:插销受力如例题3.1b 图所示。根据受力情况,插销中段相对于上、下两段,沿m m -和n n -两个面向左错动。所以有两个剪切面,称为双剪切。由平衡方程容易求得 2 P Q = 插销横截面上的名义剪应力为 []τπ τ<=??? ?==--MPa 9.23)1020(4 210152 33 A Q 故插销满足强度要求,安全。 3.2 挤压的概念和实用计算 3.2.1 挤压的概念 当螺栓发生剪切变形时,它与钢板接触的侧面上同时发生局部受压现象,这种现象称为挤压,相应的接触面称为挤压面。在挤压面上的受力之合力称为挤压力以bs P 记之,与之对应的应力称为挤压应力,记为bs σ。 校核插销的剪切强度

第十二章 组合变形的强度计算

第十二章 组合变形的强度计算 思 考 题 1 何谓组合变形?如何计算组合变形杆件横截面上任一点的应力? 2 何谓平面弯曲?何谓斜弯曲?二者有何区别? 3 何谓单向偏心拉伸(压缩)?何谓双向偏心拉伸(压缩)? 4 将斜弯曲、拉(压)弯组合及偏心拉伸(压缩)分解为基本变形时,如何确定各基本变形下正应力的正负? 5 对斜弯曲和拉(压)弯组合变形杆进行强度计算时,为何只考虑正应力而不考虑剪应力? 6 什么叫截面核心?为什么工程中将偏心压力控制在受压杆件的截面核心范围内? 习 题 1 矩形截面悬臂梁受力如图所示,F通过截面形心且与y轴成角,已知F=1.2kN ,l=2m,5.1, 12==?b h ?,材料的容许正应力[σ]=10MPa ,试确定b和h的尺寸。 2 承受均布荷载作用的矩形截面简支梁如图所示,q与y轴成?角且通过形心,已知l=4m,b=10cm,h=15cm,材料的容许应力[σ]=10MPa ,试求梁能承受的最大分布荷载m ax q 。 题 1 图 题 2 图 3 如图所示斜梁横截面为正方形,a =10cm,F=3kN作用在梁纵向对称平面内且为铅垂方向,试求斜梁最大拉压应力大小及其位置。

4 矩形截面杆受力如图所示,F 1和F2的作用线均与杆的轴线重合,F3作用在杆的对称平面内,已知F1=5kN ,F2=10kN ,F3.=1.2kN , =2m,b=12cm ,h=18cm ,试求杆中的最大压应力。 题 3 图 题 4 图 5 图为起重用悬臂式吊车,梁AC由№18工字钢制成,材料的许用正应力[σ] =100MPa 。当吊起物重(包括小车重)Q=25kN,并作用与梁的中点D时,试校核梁AC的强度。 6 柱截面为正方形,边长为a,顶端受轴向压力F作用,在右侧中部挖一个槽(如图),槽深4 a 。求开槽前后柱内的最大压应力值。 题 5 图 题 6 图 7 砖墙及其基础截面如图,设在1m长的墙上有偏心力F=40kN 的作用,试求截面1-1和2-2上的应力分布图。 8 矩形截面偏心受拉木杆,偏心力F=160kN ,e=5cm ,[σ]=10MPa ,矩形截面宽度b=16cm ,试确定木杆的截面高度h

剪切和联结的实用计算

第四部分 剪切和联结的实用计算 3.1预备知识 一、基本概念 1、联接件 工程构件中有许多构件往往要通过联接件联接。所谓联接是指结构或机械中用螺栓、销钉、键、铆钉和焊缝等将两个或多个部件联接而成。这些受力构件受力很复杂,要对这类构件作精确计算是十分困难的。 2、实用计算 联接件的实用计算法,是根据联接件实际破坏情况,对其受力及应力分布作出一些假设和简化,从而建名义应力公式,以此公式计算联接件各部分的名义工作应力。 另一方面,直接用同类联接件进行破坏试验,再按同样的名义应力公式,由破坏载荷确定联接件的名义极限应力,作为强度计算依据。实践证明,用这种实用计算方法设计的联接许是安全可靠的。 3、剪切的实用计算 联接件一般受到剪切作用,并伴随有挤压作用。剪切变形是杆件的基本变形之一,它是指杆件受到一对垂直于杆轴的大小相等、方向相反、作用线相距很近的力作用后所引起的变形,如图3—1a 所示。此时,截面cd 相对于ab 将发生错动(滑移)(图3—1b )即剪切变形。若变形过大,杆件将在cd 面和ab 面之间的某一截面m —m 处被剪断,m —m 截面称为剪切面。 联接件被剪切的面称为剪切面。剪切的名义切应力公式为A Q =τ,式中Q 为剪力,A 为剪切面面积,剪切强度条件为 []ττ≤= A Q 4、挤压的实用计算 联接件中产生挤压变形的表面称为挤压面。名义挤压应力公式为jy jy jy A F =σ ,式中F jy 为 挤压力,A jy 是挤压面面积。当挤压面为平面接触时(如平键),挤压面积等于实际承压面积;当接触面为柱面时,挤压面积为实际面积在其直径平面上投影。 挤压强度条件为 [] jy jy jy jy A F σσ≤= (a) (b)

煤矿开采影响地表横向剪切变形论文中英文资料对照外文翻译文献综述

中英文资料对照外文翻译文献综述 翻译部分 英语原文 O N M INING-I NDUCED H ORIZONTAL S HEAR DEFORMATIONS OF THE GROUND SURFACE Gang Li1, Robert Paquet1, Ray Ramage1 and Phil Steuart1 ABSTRACT:Horizontal shear deformations have not been commonly considered in subsidence engineering and risk management practices. This situation is quite different from many other engineering disciplines. This article presents the authors’ initial findings of case studies from a number of collieries across all NSW Coalfields. The objective of this article is to highlight the significance of a ground deformation mode, that is, horizontal shear, and its implications to subsidence engineering and risk management. A Shear Index is suggested to facilitate studies of mining-induced shear deformations of the ground surface. INTRODUCTION This article presents an argument that conventional subsidence parameters specifying horizontal deformations, in particular, horizontal strains (i.e. change in length), are inadequate for subsidence engineering and risk management. The above-mentioned inadequacy can become practically important in areas where only low magnitude of conventionally defined horizontal strains is detectable due to deep cover depths (or relatively low “extraction width-to-cover depth” ratios). Through the preliminary investigation of a number of coals in NSW, the study found there is clear evidence to suggest that the above-mentioned inadequacy is related to a lack of understanding of mining-induced horizontal deformations of the ground surface, in particular, horizontal shear deformations. Despite theoretical definitions found in limited literature on mine subsidence (e.g. 1992), horizontal shear deformations have not been commonly considered in subsidence engineering and risk management practices. This situation is quite different from many other engineering disciplines.

剪切变形下的钢筋混凝土动态分析

剪切变形下的钢筋混凝土动态分析 发表时间:2019-09-21T23:21:28.470Z 来源:《基层建设》2019年第19期作者:高日升1,2 [导读] 摘要:现有建筑物的加固或者重建需要对他们的抗横向负荷能力进行一种评估,这种能力可能被他们关键区域的强度和粘结能力所限制。 1.北京博鼎诚工程设计有限公司广州分公司广东广州 510000; 2.广东寰球广业工程有限公司广东广州 510665 摘要:现有建筑物的加固或者重建需要对他们的抗横向负荷能力进行一种评估,这种能力可能被他们关键区域的强度和粘结能力所限制。从评估中可制定重建或者加固的方法。在现有的钢筋混凝土框架中,梁柱节点缺少充分的约束和抗剪钢筋可能是在地震中引起脆性破坏的原因。大部分的非线性动力分析程序忽视了加固细节,而是把混凝土框架中梁柱节点假定为无线刚性节点。为了正确的分析现有的结构,需要考虑非弹性剪切变形和钢筋粘结的滑移。这种情况下当承受动态荷载时所出现的反应同带有刚性节点的框架所出现的反应进行对比。结果显示,含有非弹性剪切变形节点的模型对于地震响应中滑移和损害中效果显著。事实上刚性节点的假定是不合适的。 关键词:剪切变形;钢筋混凝土;框架;分析;损坏 引言 在钢筋混凝土抗弯矩构架抗震分析,通常假定节点是刚接的。这种节点表明即使在杆件已经发生了严重的剪切变形,但是仍然保持直角。在新的抗震规范颁布之前,所建造的现有的非延性钢筋混凝土框架,可能节点的钢筋和细部构造有所不足,这就可能在其他抗弯杆达到屈服时节点处导致剪切变形和局部剪切破坏。在对这些结构的地震危险评估中,节点区域的扭曲可能对结构的层间位移和整体偏转有显著的影响。因此,研究在节点中的剪切变形和在梁柱界面中的钢筋粘结滑移中是非常重要的。 节点变形是由两种因素引起的:(a),由于剪切应力传递引起的节点核心区剪切变形。(b),由于粘结破坏引起通过节点核心区的钢筋发生了滑移。节点的剪切变形产生的节点侧面发生扭转。这些扭转量是节点核心区的变形角度与节点尺寸的的函数。当梁的钢筋在具有良好的粘结条件下,高的剪切力就转移到了需要充分用箍筋加固的节点上。由于钢筋粘结的破坏导致了梁柱截面的开裂。这些裂缝引起在节点中的梁框架杆端发生旋转。低粘结状态沿着梁中的钢筋或者不充分的锚固长度引起了及节点发生旋转作为一个刚体来适应钢筋的过度滑移。在这种情况下,节点的剪切力变小并且相对于层间位移的钢筋滑移作用伴随着节点变形引起的位移而减小。 研究的目的是为了表达一个简单而准确的节点宏观模型,模型在反复的循环荷载和钢筋粘结滑移下,明确的指明了剪切变形特性。 1、节点模型的描述 用两个串联转动的弹簧表示一个节点,一个代表节点的剪切变形,另一个代表钢筋的粘结滑移。两个弹簧的节点之间的相对转动代表模型的自由度。杆件传递的弯矩就是梁传到柱的传递弯矩值。杆件的变形代表的节点剪切变形(在连接的梁柱之间的角度改变)或额外由于粘结梁的纵向钢筋滑移引起的节点扭转。在这个杆件中,两端所受约束的杆件产生的水平位移是相同的。 2、框架的分析描述 用九层的非延性混凝土结构用来分析剪切变形的节点效应。这样的结构在许多建筑中可以找到。这种建筑物在竖直方向是30m,跨度为6m(三跨到五跨)。层高为3.6m。柱子采用C40混凝土500x500mm,钢筋用HPB400M. 主梁按照1/10跨度计算,次梁按照15/1计算。在设计中考虑了水平荷载、风荷载和重力荷载,但是风荷载引起的柱子的偏心值小于规范限定的最小偏心值。钢筋的搭接长度以及。小的剪力要求最小的剪切钢筋。对于剪切变形钢筋采用10mm直径的间隔。楼面和屋面的厚度是150mm。 3、框架修复体系 希望恢复现有的建筑来满足当前的规范条例,那么升级所有的结构杆件是必要的。这种替代是不现实的,而且也是极其昂贵的。一个有缺陷的结构体系可以通过修复部分结构杆件来防止早期的非延性破坏模式。修复一个给定结构的特定杆件主要关注的是限定未加固杆件的破坏。两个框架是通过柱和节点的夹套来进行修复。夹套增加了强度并且提高了延性通过阻止节点剪力的脆性破坏。为了修复梁底部钢筋的不连续性,外部的角钢和背带用地脚螺栓来连接梁底部两侧的节点。这样的修复体系提供了约束和充分的节点剪切里。这种修复的节点使用带有相同剪切能力、剪切变形、根据实验数据得到的梁纵向钢筋的粘结阻力值的三线模型来进行建模。 4、计算模型 在动态分析中,使用了一个钢筋混凝土框架地震分析计算程序。程序是适用于计算二维钢筋混凝土框架结构的非线性静态和动态响应。该程序是一个模拟钢筋混凝土杆件刚度和强度的退化后的改造模型,允许分析的间断,使用切向刚度和位移控制分析的选项来计算模态振型和固有频率。该程序被修改用来计入发达节点的杆件模拟节点处的剪切变形和在梁柱接口处的钢筋粘结滑移。 在动态分析模型中,把板看做是平面内固定的隔板。建筑被理想化为一系列在楼层平面连接的平面框架。这种理想化的结果每层只有一个侧面水平自由度。在建模后框架的梁柱中,使用梁柱杆件的一维性。忽略了梁的剪切变形。用二线性和三线性的弹簧分别表示剪切节点和粘结的滑移。 框架承受的重力荷载包括横在和活载。重力荷载是运用在梁的在梁端分析中具体的固定端力来建模的。附加的楼板面积、墙台和分区的质量都假设集中在梁端节点处。之后输入地震进行动态分析。 5、模型观测 (1)破坏模式 在框架的中间楼层,由于产生节点的横向钢筋发生屈服,损害预计在节点处。如果有的话,或发生关节剪切破坏。连接元件的故障被归类为拉伸破坏或压缩破坏。当在混凝土中的压应力达到混凝土的最大强度会发生压缩破坏。由于裂缝的存在混凝土的抗压强度就会降低,它是比较合适的通过在混凝土中的最大应变以限定压缩破坏。 在框架的低楼层处,破坏发生在梁上由于钢筋的拔出或者/和铰接的弯曲。在低层楼板中,柱子的抗弯能力是梁的好几倍。另外,节点的尺寸和很高的轴向荷载增加了节点的剪切能力。在负弯矩处,梁的整个弯矩被修改。在正弯矩处,钢筋的拉出减少了在节点的力,否则的话就被实施正弯矩。然而,由实验观察可得,嵌入钢筋的拉拔可能影响关节混凝土的完整性,而这可能会降低联合剪切能力。 (2)基本周期随时间的变化 一些杆件刚度的降低会导致整个框架的刚度降低,并增加了它的基本周期。经分析,最终周期的确定是困难的,因为它随着与每个时间间隔变化而变化。

第三章材料力学的基本概念第六节杆件变形的基本形式

第三章材料力学的基本概念 第六节杆件变形的基本形式 有下列说法,________是错误的。 A.杆件的几何特征是长度远大于横截面的尺寸 B.杆件的轴线是各横截面形心的连线 C.杆件的轴线必是直线 D.A+B+C 下列说法________是正确的。 A.与杆件轴线相正交的截面称为横截面 B.对于同一杆件,各横截面的形状必定相同 C.对于同一杆件,各横截面的尺寸必定相同 D.对于同一杆件,各横截面必相互平行 下列说法________是正确的。 A.与杆件轴线相平行的截面称为横截面 B.对于同一杆件,各横截面的形状必定相同 C.对于同一杆件,各横截面的尺寸不一定相同 D.对同一杆件,各横截面必相互平行 不管构件变形怎样复杂,它们常常是由________种基本变形形式所组成。 A.3 B.4 C.5 D.6 不管构件变形怎样复杂,它们常常是轴向拉压、________、扭转和弯曲等基本变形形式所组成。 A.位移 B.错位 C.膨胀 D.剪切 不管构件变形怎样复杂,它们常常是轴向拉压、剪切、________和________等基本变形形式所组成。 A.错位/膨胀 B.膨胀/弯曲 C.弯曲/扭转 D.扭转/位移 在一对大小相等、方向相反的沿杆件轴线的外力作用下使杆件产生伸长变化的变形,称为________。 A.弯曲变形 B.扭转变形

C.轴向拉伸变形 D.剪切变形 在一对大小相等、方向相反的沿杆件轴线的外力作用下使杆件产生缩短变化的变形,称为________。 A.弯曲变形 B.扭转变形 C.轴向压缩变形 D.剪切变形 受拉压变形的杆件,各截面上的内力为________。 A.剪力 B.扭矩 C.弯矩 D.轴力 轴力的单位是________。 A.牛顿 B.牛顿/米 C.牛顿·米 D.牛顿/米2 关于轴力,下列说法中________是正确的。 ①轴力是轴向拉压杆横截面上唯一的内力;②轴力必垂直于杆件的横截面;③非轴向拉压的杆件,横截面上不可能有轴向力;④轴力作用线不一定通过杆件横截面的形心。 A.①② B.③④ C.①③ D.②④ 受拉压变形的杆件,各截面上的应力为________。 A.正应力 B.扭应力 C.剪应力 D.弯应力 受拉压变形的杆件,各截面上的内力为________。 A.正应力 B.剪应力 C.拉压应力 D.轴力 受拉压变形的杆件,各截面上的应力为________。

相关文档
最新文档