数据挖掘期末

数据挖掘期末
数据挖掘期末

(一)概述

为什么要数据挖掘(Data Mining)?

存在可以广泛使用的大量数据,并且迫切需要将数据转转换成有用的信息和知识

什么是数据挖掘?

数据挖掘(Data Mining)是指从大量数据中提取或“挖掘”知识。

对何种数据进行数据挖掘?

关系数据库、数据仓库、事务数据库

空间数据

超文本和多媒体数据

时间序列数据

流数据

(二)数据预处理

为什么要预处理数据?

为数据挖掘过程提供干净、准确、简洁的数据,提高数据挖掘的效率和准确性,是数据挖掘中非常重要的环节;

数据库和数据仓库中的原始数据可能存在以下问题:

定性数据需要数字化表示

不完整

含噪声

度量单位不同

维度高

数据的描述

度量数据的中心趋势:均值、加权均值、中位数、众数

度量数据的离散程度:全距、四分位数、方差、标准差

基本描述数据汇总的图形显示:直方图、散点图

度量数据的中心趋势

集中趋势:一组数据向其中心值靠拢的倾向和程度。

集中趋势测度:寻找数据水平的代表值或中心值。

常用的集中趋势的测度指标:

均值:

缺点:易受极端值的影响

中位数:对于不对称的数据,数据中心的一个较好度量是中位数

特点:对一组数据是唯一的。不受极端值的影响。

众数:一组数据中出现次数最多的变量值。

特点:不受极端值的影响。有的数据无众数或有多个众数。

度量数据的离散程度

反映各变量值远离其中心值的程度(离散程度),从另一个侧面说明了集中趋势测度值的代表程度。

常用指标:

全距(极差):全距也称极差,是一组数据的最大值与最小值之差。

R=最大值-最小值

组距分组数据可根据最高组上限-最低组下限计算。

受极端值的影响。

四分位距 (Inter-Quartilenge, IQR):等于上四分位数与下四分位数之差(q3-q1)

反映了中间50%数据的离散程度,数值越小说明中间的数据越集中。

不受极端值的影响。

可以用于衡量中位数的代表性。

四分位数:

把顺序排列的一组数据分割为四(若干相等)部分的分割点的数值。

分位数可以反映数据分布的相对位置(而不单单是中心位置)。

在实际应用中四分位数的计算方法并不统一(数据量大时这些方法差别不大)。对原始数据:

SPSS中四分位数的位置为(n+1)/4, 2(n+1)/4, 3 (n+1)/4。

Excel中四分位数的位置分别为(n+3)/4, 2(n+1)/4,(3 n+1)/4。

如果四分位数的位置不是整数,则四分位数等于前后两个数的加权平均。

方差和标准差:方差是一组数据中各数值与其均值离差平方的平均数,标准差是方差正的平方根。

是反映定量数据离散程度的最常用的指标。

基本描述数据汇总的图形显示

直方图(Histogram):使人们能够看出这个数据的大体分布或“形状”

散点图

如何进行预处理

定性数据的数字化表示:

二值描述数据的数字化表示

例如:性别的取值为“男”和“女”,男→1,女→0

多值描述数据的数字化表示

例如:信誉度为“优”、“良”、“中”、“差”

第一种表示方法:优→1,良→2,中→3,差→4

第二种表示方法:

填充空缺值(不完整的数据):

忽略元组

人工填写

使用属性的均值

使用与给定元组属同一类的所有样本的属性均值

消除含噪声的数据:

分箱:

分箱前对记录集按目标属性值的大小进行排序

等深分箱法

等宽分箱法

用户自定义

分箱之后,按箱平均值平滑,按箱边界平滑

数据变换

最小-最大规范化

z-score规范化

小数定标

数据压缩

主成分分析(PCA)

特征选择

(三)数据分类

分类的定义

分类是指把数据样本映射到一个事先定义的类中的学习过程,即给定一组输入的属性向量及其对应的类,用基于归纳的学习算法得出分类。

分类问题使用的数据集格式:

描述属性的取值可以定性的数据,也可以是定量的数据;而类别属性的取值必须是定性的数据。

定量的数据是指在某一个区间或者无穷区间内取值是连续的,例如描述属性“Age”

定性的数据是指该属性的取值是不连续的,例如属性“Salary”和“Class”

获取数据

输入数据、对数据进行量化

预处理

去除噪声数据、对空缺值进行处理

数据变换、数据压缩

分类器设计

划分数据集、分类器构造、分类器测试

分类决策

对未知类标号的数据样本进行分类

决策树的基本概念

适用于定性取值属性、定量取值属性

采用自顶向下的递归方式产生一个类似于流程图的树结构

在根节点和各内部节点上选择合适的描述属性,并且根据该属性的不同取值向下建立分枝。

决策树的优点:

进行分类器设计时,决策树分类方法所需时间相对较少;

决策树的分类模型是树状结构,简单直观,比较符合人类的理解方式;

可以将决策树中到达每个叶节点的路径转换为IF—THEN形式的分类规则,这种形式更有利于理解。

决策树算法ID3

ID3只能处理定性取值属性;在选择根节点和各个内部节点上的分枝属性时,采用信息增益作为度量标准,选择具有最高信息增益的描述属性作为分枝属性

决策树算法C4.5

C4.5算法使用信息增益比来选择分枝属性,克服了ID3算法使用信息增益时偏向于取值较多的属性的不足;

C4.5既可以处理定性取值属性,也可以处理定量取值属性。

(四)数据聚类

聚类分析的定义

聚类分析是将物理的或者抽象的数据集合划分为多个类别的过程,聚类之后的每个类别中任意两个数据样本之间具有较高的相似度,而不同类别的数据样本之间具有较低的相似度

连续型属性的相似度计算方法

欧氏距离(Euclidean distance )

曼哈顿距离(Manhattan distance )

明考斯基距离(Minkowski distance )

二值离散型属性(二元变量)的相似度计算方法

对称的二值离散型属性是指属性取值为1或者0同等重要。

例如:性别就是一个对称的二值离散型属性

不对称的二值离散型属性是指属性取值为1或者0不是同等重要。

例如:血液的检查结果是不对称的二值离散型属性,阳性结果的重要程度高于阴性结果

多值离散型属性的相似度计算方法

分类变量的相似度

d 为数据集中的属性个数,u 为样本xi 和xj 取值相同的属性个数

对于包含混合类型属性的数据集的相似度通常有两种计算方法:

将属性按照类型分组,每个新的数据集中只包含一种类型的属性;之后对每个数据集进行单独的聚类分析

把混合类型的属性放在一起处理,进行一次聚类分析

k-means 聚类算法的基本概念

划分聚类方法对数据集进行聚类时包含三个要点:

选定某种距离作为数据样本间的相似性度量

选择评价聚类性能的准则函数

选择某个初始分类,之后用迭代的方法得到聚类结果,使得评价聚类的准则函数取得最优值 ∑=-=d 1k 2jk

ik j i )x x ()x ,x (d ∑=-=d

1k jk

ik j i x x )x ,x (d q /1d 1k q jk ik j i )

x x ()x ,x (d ∑=-=d

u d )x ,x (d j i -=

层次聚类方法的基本概念

层次聚类方法分为凝聚型层次聚类和分解型层次聚类。

凝聚型层次聚类按照自底向上的方式对数据集进行聚类,初始时将每个数据样本单独看作一个类别,之后按照某种相似性度量标准逐步将数据样本进行合并,直到所有的数据样本都属于同一个类别或者满足终止条件为止;

分解型层次聚类按照自顶向下的方式对数据集进行聚类,初始时将所有的数据样本归为一个类别,之后按照某种相似性度量标准逐步将数据样本分解为不同的类别,直到每个数据样本单独构成一个类别或者满足终止条件为止。

(五)关联规则

概述

关联规则(Association Rule Mining)挖掘是数据挖掘中最活跃的研究方法之一最早是由R.Agrawal等人提出的

其目的是为了发现超市交易数据库中不同商品之间的关联关系。

一个典型的关联规则的例子是:70%购买了牛奶的顾客将倾向于同时购买面包。经典的关联规则挖掘算法:Apriori算法和FP-growth算法

(六)统计分析

●某企业希望通过增加广告支出,调整产品价格等措施来增加销售量

●企业需要确定销售量与广告支出、销售价格之间的定量关系

●确定以上定量关系的过程称为回归分析

●我们感兴趣的属性(销售量)称为因变量

●影响因变量变动的属性(广告支出、销售价格)称为自变量

●表示因变量和自变量之间定量关系的函数称为回归模型

●回归模型中只包含一个自变量时,称为一元回归模型,否则,称为多元回归

模型

●回归模型中的自变量只以一次方的形式出现时,称为线性回归模型,否则,

称为非线性回归模型

●主要研究多元线性回归模型

(七)人工神经网络

人工神经网络(artificial neural networks)是实现非解析关系预测的主要手段之一,它把系统看作一个黑匣子,不关心系统内部的数据变换,只关心系统的输入数据和输出数据。

梯度下降法

梯度下降法是一个最优化算法,常在机器学习和人工智能中用来进行递归性地逼近最小偏差。

梯度下降法的计算过程就是沿梯度下降的方向求解极小值(也可以沿梯度上升方向求解极大值)。

数据挖掘实验报告

《数据挖掘》Weka实验报告 姓名_学号_ 指导教师 开课学期2015 至2016 学年 2 学期完成日期2015年6月12日

1.实验目的 基于https://www.360docs.net/doc/393750757.html,/ml/datasets/Breast+Cancer+WiscOnsin+%28Ori- ginal%29的数据,使用数据挖掘中的分类算法,运用Weka平台的基本功能对数据集进行分类,对算法结果进行性能比较,画出性能比较图,另外针对不同数量的训练集进行对比实验,并画出性能比较图训练并测试。 2.实验环境 实验采用Weka平台,数据使用来自https://www.360docs.net/doc/393750757.html,/ml/Datasets/Br- east+Cancer+WiscOnsin+%28Original%29,主要使用其中的Breast Cancer Wisc- onsin (Original) Data Set数据。Weka是怀卡托智能分析系统的缩写,该系统由新西兰怀卡托大学开发。Weka使用Java写成的,并且限制在GNU通用公共证书的条件下发布。它可以运行于几乎所有操作平台,是一款免费的,非商业化的机器学习以及数据挖掘软件。Weka提供了一个统一界面,可结合预处理以及后处理方法,将许多不同的学习算法应用于任何所给的数据集,并评估由不同的学习方案所得出的结果。 3.实验步骤 3.1数据预处理 本实验是针对威斯康辛州(原始)的乳腺癌数据集进行分类,该表含有Sample code number(样本代码),Clump Thickness(丛厚度),Uniformity of Cell Size (均匀的细胞大小),Uniformity of Cell Shape (均匀的细胞形状),Marginal Adhesion(边际粘连),Single Epithelial Cell Size(单一的上皮细胞大小),Bare Nuclei(裸核),Bland Chromatin(平淡的染色质),Normal Nucleoli(正常的核仁),Mitoses(有丝分裂),Class(分类),其中第二项到第十项取值均为1-10,分类中2代表良性,4代表恶性。通过实验,希望能找出患乳腺癌客户各指标的分布情况。 该数据的数据属性如下: 1. Sample code number(numeric),样本代码; 2. Clump Thickness(numeric),丛厚度;

数据挖掘试题与答案

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2. 时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

数据挖掘期末大作业任务

数据挖掘期末大作业 1.数据挖掘的发展趋势是什么?大数据环境下如何进行数据挖掘。 对于数据挖掘的发展趋势,可以从以下几个方面进行阐述: (1)数据挖掘语言的标准化描述:标准的数据 挖掘语言将有助于数据挖掘的系统化开发。改进多个数据挖掘系统和功能间的互操作,促进其在企业和社会中的使用。 (2)寻求数据挖掘过程中的可视化方法:可视 化要求已经成为数据挖掘系统中必不可少的技术。可以在发现知识的过程中进行很好的人机交互。数据的可视化起到了推动人们主动进行知识发现的作用。 (3)与特定数据存储类型的适应问题:根据不 同的数据存储类型的特点,进行针对性的研究是目前流行以及将来一段时间必须面对的问题。 (4)网络与分布式环境下的KDD问题:随着 Internet的不断发展,网络资源日渐丰富,这就需要分散的技术人员各自独立地处理分离数据库的工作方式应是可协作的。因此,考虑适应分布式与网络环境的工具、技术及系统将是数据挖掘中一个最为重要和繁荣的子领域。 (5)应用的探索:随着数据挖掘的日益普遍,其应用范围也日益扩大,如生物医学、电信业、零售业等 领域。由于数据挖掘在处理特定应用问题时存在局限性,因此,目前的研究趋势是开发针对于特定应用的数据挖掘系统。 (6)数据挖掘与数据库系统和Web数据库系统的集成:数据库系统和Web数据库已经成为信息处 理系统的主流。 2. 从一个3输入、2输出的系统中获取了10条历史数据,另外,最后条数据是系统的输 入,不知道其对应的输出。请使用SQL SERVER 2005的神经网络功能预测最后两条数据的输出。 首先,打开SQL SERVER 2005数据库软件,然后在界面上右键单击树形图中的“数据库”标签,在弹出的快捷菜单中选择“新建数据库”命令,并命名数据库的名称为YxqDatabase,单击确定,如下图所示。 然后,在新建的数据库YxqDatabas中,根据题目要求新建表,相应的表属性见下图所示。

数据挖掘报告

哈尔滨工业大学 数据挖掘理论与算法实验报告(2016年度秋季学期) 课程编码S1300019C 授课教师邹兆年 学生姓名汪瑞 学号 16S003011 学院计算机学院

一、实验内容 决策树算法是一种有监督学习的分类算法;kmeans是一种无监督的聚类算法。 本次实验实现了以上两种算法。在决策树算法中采用了不同的样本划分方式、不同的分支属性的选择标准。在kmeans算法中,比较了不同初始质心产生的差异。 本实验主要使用python语言实现,使用了sklearn包作为实验工具。 二、实验设计 1.决策树算法 1.1读取数据集 本次实验主要使用的数据集是汽车价值数据。有6个属性,命名和属性值分别如下: buying: vhigh, high, med, low. maint: vhigh, high, med, low. doors: 2, 3, 4, 5more. persons: 2, 4, more. lug_boot: small, med, big. safety: low, med, high. 分类属性是汽车价值,共4类,如下: class values:unacc, acc, good, vgood 该数据集不存在空缺值。

由于sklearn.tree只能使用数值数据,因此需要对数据进行预处理,将所有标签类属性值转换为整形。 1.2数据集划分 数据集预处理完毕后,对该数据进行数据集划分。数据集划分方法有hold-out法、k-fold交叉验证法以及有放回抽样法(boottrap)。 Hold—out法在pthon中的实现是使用如下语句: 其中,cv是sklearn中cross_validation包,train_test_split 方法的参数分别是数据集、数据集大小、测试集所占比、随机生成方法的可

《数据挖掘》试题与标准答案

一、解答题(满分30分,每小题5分) 1. 怎样理解数据挖掘和知识发现的关系?请详细阐述之 首先从数据源中抽取感兴趣的数据,并把它组织成适合挖掘的数据组织形式;然后,调用相应的算法生成所需的知识;最后对生成的知识模式进行评估,并把有价值的知识集成到企业的智能系统中。 知识发现是一个指出数据中有效、崭新、潜在的、有价值的、一个不可忽视的流程,其最终目标是掌握数据的模式。流程步骤:先理解要应用的领域、熟悉相关知识,接着建立目标数据集,并专注所选择的数据子集;再作数据预处理,剔除错误或不一致的数据;然后进行数据简化与转换工作;再通过数据挖掘的技术程序成为模式、做回归分析或找出分类模型;最后经过解释和评价成为有用的信息。 2.时间序列数据挖掘的方法有哪些,请详细阐述之 时间序列数据挖掘的方法有: 1)、确定性时间序列预测方法:对于平稳变化特征的时间序列来说,假设未来行为与现在的行为有关,利用属性现在的值预测将来的值是可行的。例如,要预测下周某种商品的销售额,可以用最近一段时间的实际销售量来建立预测模型。 2)、随机时间序列预测方法:通过建立随机模型,对随机时间序列进行分析,可以预测未来值。若时间序列是平稳的,可以用自回归(Auto Regressive,简称AR)模型、移动回归模型(Moving Average,简称MA)或自回归移动平均(Auto Regressive Moving Average,简称ARMA)模型进行分析预测。 3)、其他方法:可用于时间序列预测的方法很多,其中比较成功的是神经网络。由于大量的时间序列是非平稳的,因此特征参数和数据分布随着时间的推移而变化。假如通过对某段历史数据的训练,通过数学统计模型估计神经网络的各层权重参数初值,就可能建立神经网络预测模型,用于时间序列的预测。

数据挖掘作业

1、给出K D D的定义和处理过程。 KDD的定义是:从大量数据中提取出可信的、新颖的、有用的且可以被人理解的模式的高级处理过程。因此,KDD是一个高级的处理过程,它从数据集中识别出以模式形式表示的知识。这里的“模式”可以看成知识的雏形,经过验证、完善后形成知识:“高级的处理过程”是指一个多步骤的处理过程,多步骤之间相互影响反复调整,形成一种螺旋式上升的过程。 KDD的全过程有五个步骤:1、数据选择:确定发现任务的操作对象,即目标数据,它是根据用户的需要从原始数据库中抽取的一组数据;2、数据预处理:一般可能包括消除噪声、推到技术却只数据、消除重复记录、完成数据类型转换等;3、数据转换:其主要目的是消减数据维数或降维,即从初始特征中找出真正有用的特征以减少数据开采时要考虑的特征或变量个数;4、数据挖掘:这一阶段包括确定挖掘任务/目的、选择挖掘方法、实施数据挖掘;5、模式解释/评价:数据挖掘阶段发现出来的模式,经过用户或机器的评价,可能存在冗余或无关的模式,需要剔除;也有可能模式不满足用户的要求,需要退回到整个发现阶段之前,重新进行KDD过程。 2、阐述数据挖掘产生的背景和意义。 ?数据挖掘产生的背景:随着信息科技的进步以及电子化时代的到来,人们以更快捷、更容易、更廉价的方式获取和存储数据,使得数据及信息量以指数方式增长。据粗略估计,一个中等规模企业每天要产生100MB以上的商业数据。而电信、银行、大型零售业每天产生的数据量以TB来计算。人们搜集的数据越来越多,剧增的数据背后隐藏着许多重要的信息,人们希望对其进行更高层次的分析,以便更好的利用这些数据。先前的数据库系统可以高效的实现数据的录入、查询、统计等功能,但无法发现数据中存在的关系与规则,无法根据现有的数据来预测未来的发展趋势。缺乏挖掘数据背后隐藏的知识的手段。导致了“数据爆炸但知识贫乏”的现象。于是人们开始提出“要学会选择、提取、抛弃信息”,并且开始考虑:如何才能不被信息淹没?如何从中及时发现有用的知识、提高信息利用率?如何从浩瀚如烟海的资料中选择性的搜集他们认为有用的信息?这给我们带来了另一些头头疼的问题:第一是信息过量,难以消化;第二是信息真假难以辨别;第三是信息安全难以保证;第四是信息形式不一致,难以统一处理?

数据挖掘课程报告

数据挖掘课程报告 学习“数据挖掘”这门课程已经有一个学期了,在这十余周的学习过程中,我对数据挖掘这门技术有了一定的了解,明确了一些以前经常容易混淆的概念,并对其应用以及研究热点有了进一步的认识。以下主要谈一下我的心得体会,以及我对数据挖掘这项课题的见解。 随着数据库技术和计算机网络的迅速发展以及数据库管理系统的广泛应用,

人们积累的数据越来越多,而数据挖掘(Data Mining)就是在这样的背景下诞生的。 简单来说,数据挖掘就是从大量的数据中,抽取出潜在的、有价值的知识、模型或规则的过程。作为一类深层次的数据分析方法,它利用了数据库、人工智能和数理统计等多方面的技术。从某种角度上来说,数据挖掘可能并不适合进行科学研究,因为从本质上来说,数据挖掘这个技术是不能证明因果的,以一个最典型的例子来说,例如数据挖掘技术可以发现啤酒销量和尿布之间的关系,但是显然这两者之间紧密相关的关系可能在理论层面并没有多大的意义。不过,仅以此来否定数据挖掘的意义,显然就是对数据挖掘这项技术价值加大的抹杀,显然,数据挖掘这项技术从设计出现之初,就不是为了指导或支持理论研究的,它的重要意义在于,它在应用领域体现出了极大地优越性。 首先有一点是我们必须要明确的,即我们为什么需要数据挖掘这门技术?这也是在开课前一直困扰我的问题。数据是知识的源泉,然而大量的数据本身并不意味信息。尽管现代的数据库技术使我们很容易存储大量的数据,但现在还没有一种成熟的技术帮助我们分析、理解这些数据。数据的迅速增加与数据分析方法的滞后之间的矛盾越来越突出,人们希望在对已有的大量数据分析的基础上进行研究,但是目前所拥有的数据分析工具很难对数据进行深层次的处理,使得人们只能望“数”兴叹。数据挖掘正是为了解决传统分析方法的不足,并针对大规模数据的分析处理而出现的。数据挖掘可以帮助人们对大规模数据进行高效的分析处理,以节约时间,将更多的精力投入到更高层的研究中,从而提高科研工作的效率。 那么数据挖掘可以做些什么呢?数据挖掘的研究领域非常广泛,主要包括数据库系统、基于知识的系统、人工智能、机器学习、知识获取、统计学、空间数据库和数据可视化等领域。具体来说,它可以做这七件事情:分类,估计,预测,关联分析,聚类分析,描述和可视化,复杂数据类型挖掘。在本学期的学习过程中,我们对大部分内容进行了较为详细的研究,并且建立了一些基本的概念,对将来从事相关方向的研究奠定了基础。由于篇幅限制,就不对这些方法一一讲解了,这里只谈一下我在学习工程中的一些见解和心得。 在学习关联规则的时候,我们提到了一个关于“尿布与啤酒”的故事:在一

大数据时代下的数据挖掘试题和答案及解析

A. 变量代换 B. 离散化 海量数据挖掘技术及工程实践》题目 、单选题(共 80 题) 1) ( D ) 的目的缩小数据的取值范围,使其更适合于数据挖掘算法的需要,并且能够得 到 和原始数据相同的分析结果。 A. 数据清洗 B. 数据集成 C. 数据变换 D. 数据归约 2) 某超市研究销售纪录数据后发现,买啤酒的人很大概率也会购买尿布,这种属于数 据挖 掘的哪类问题 (A) A. 关联规则发现 B. 聚类 C. 分类 D. 自然语言处理 3) 以下两种描述分别对应哪两种对分类算法的评价标准 (A) (a) 警察抓小偷,描述警察抓的人中有多少个是小偷的标准。 (b) 描述有多少比例的小偷给警察抓了的标准。 据相分离 (B) 哪一类任务 (C) A. 根据内容检索 B. 建模描述 7) 下面哪种不属于数据预处理的方法 (D) A. Precision,Recall B. Recall,Precision A. Precision,ROC D. Recall,ROC 4) 将原始数据进行集成、 变换、维度规约、数值规约是在以下哪个步骤的任务 (C) 5) A. 频繁模式挖掘 C. 数据预处理 B. D. 当不知道数据所带标签时, 分类和预测 数据流挖掘 可以使用哪种技术促使带同类标签的数据与带其他标签的数 6) A. 分类 C. 关联分析 建立一个模型, B. D. 聚类 隐马尔可夫链 通过这个模型根据已知的变量值来预测其他某个变量值属于数据挖掘的 C. 预测建模 D. 寻找模式和规则

C.聚集 D. 估计遗漏值 8) 假设12 个销售价格记录组已经排序如下:5, 10, 11, 13, 15, 35, 50, 55, 72, 92, 204, 215 使用如下每种方法将它们划分成四个箱。等频(等深)划分时,15 在第几个箱子内(B) A. 第一个 B. 第二个 C. 第三个 D. 第四个 9) 下面哪个不属于数据的属性类型:(D) A. 标称 B. 序数 C.区间 D. 相异 10) 只有非零值才重要的二元属性被称作:( C ) A. 计数属性 B. 离散属性 C.非对称的二元属性 D. 对称属性 11) 以下哪种方法不属于特征选择的标准方法:(D) A. 嵌入 B. 过滤 C.包装 D. 抽样 12) 下面不属于创建新属性的相关方法的是:(B) A. 特征提取 B. 特征修改 C. 映射数据到新的空间 D. 特征构造 13) 下面哪个属于映射数据到新的空间的方法(A) A. 傅立叶变换 B. 特征加权 C. 渐进抽样 D. 维归约 14) 假设属性income 的最大最小值分别是12000元和98000 元。利用最大最小规范化的方 法将属性的值映射到0 至 1 的范围内。对属性income 的73600 元将被转化为:(D) 15) 一所大学内的各年纪人数分别为:一年级200人,二年级160人,三年级130 人,四年 级110 人。则年级属性的众数是:(A) A. 一年级 B. 二年级 C. 三年级 D. 四年级 16) 下列哪个不是专门用于可视化时间空间数据的技术:(B) A. 等高线图 B. 饼图

大学数据挖掘期末考试题

第 - 1 - 页 共 4 页 数据挖掘试卷 课程代码: C0204413 课程: 数据挖掘A 卷 一、判断题(每题1分,10分) 1. 从点作为个体簇开始,每一步合并两个最接近的簇,这是一种分裂的层次聚类方法。( ) 2. 数据挖掘的目标不在于数据采集策略,而在于对已经存在的数据进行模式的发掘。( ) 3. 在聚类分析当中,簇内的相似性越大,簇间的差别越大,聚类的效果就越差。( ) 4. 当两个点之间的邻近度取它们之间距离的平方时,Ward 方法与组平均非常相似。( ) 5. DBSCAN 是相对抗噪声的,并且能够处理任意形状和大小的簇。( ) 6. 属性的性质不必与用来度量他的值的性质相同。( ) 7. 全链对噪声点和离群点很敏感。( ) 8. 对于非对称的属性,只有非零值才是重要的。( ) 9. K 均值可以很好的处理不同密度的数据。( ) 10. 单链技术擅长处理椭圆形状的簇。( ) 二、选择题(每题2分,30分) 1. 当不知道数据所带标签时,可以使用哪种技术促使带同类标签的数据与带其他标签的数据相分离?( ) A.分类 B.聚类 C.关联分析 D.主成分分析 2. ( )将两个簇的邻近度定义为不同簇的所有点对邻近度的平均值,它是一种凝聚层次聚类技术。 A.MIN(单链) B.MAX(全链) C.组平均 D.Ward 方法 3.数据挖掘的经典案例“啤酒与尿布试验”最主要是应用了( )数据挖掘方法。 A 分类 B 预测 C 关联规则分析 D 聚类 4.关于K 均值和DBSCAN 的比较,以下说法不正确的是( ) A.K 均值丢弃被它识别为噪声的对象,而DBSCAN 一般聚类所有对象。 B.K 均值使用簇的基于原型的概念,DBSCAN 使用基于密度的概念。 C.K 均值很难处理非球形的簇和不同大小的簇,DBSCAN 可以处理不同大小和不同形状的簇 D.K 均值可以发现不是明显分离的簇,即便簇有重叠也可以发现,但是DBSCAN 会合并有重叠的簇 5.下列关于Ward ’s Method 说法错误的是:( )

数据挖掘作业

一:用R语言编程实现P56页19题 以19(2)为例编写R语言程序,其他小题程序类似1.余弦相似度 > x=c(0,1,0,1) > y=c(1,0,1,0) > xy=sum(x*y) > x1=sqrt(sum(x^2)) > y1=sqrt(sum(y^2)) > c=xy/(x1*y1) > c [1] 0 2.相关性 > x=c(0,1,0,1) > y=c(1,0,1,0) > xbar=mean(x) > ybar=mean(y) > len=length(x) > sx=sqrt((1/(len-1))*sum((x-xbar)^2)) > sy=sqrt((1/(len-1))*sum((y-ybar)^2)) > sxy=(1/(len-1))*sum((x-xbar)*(y-ybar)) > corrxy=sxy/(sx*sy) > corrxy

3.欧几里得距离 > x=c(0,1,0,1) > y=c(1,0,1,0) > dxy=sqrt(sum((x-y)^2)) > dxy [1] 2 4.Jaccard系数 > x=c(0,1,0,1) > y=c(1,0,1,0) > f00=f01=f10=f11=0 > len=length(x) > j=1 > while(j

《数据挖掘》结课报告

《数据挖掘》结课报告 --基于k-最近邻分类方法的连衣裙属性数据集的研究报告 (2013--2014 学年第二学期) 学院: 专业: 班级: 学号: 姓名: 指导教师: 二〇一四年五月二十四日

一、研究目的与意义 (介绍所选数据反应的主题思想及其研究目的与意义) 1、目的 (1)熟悉weka软件环境; (2)掌握数据挖掘分类模型学习方法中的k-最近邻分类方法; (3)在weka中以“Dress Attribute DataSet”为例,掌握k-最近邻分类算法的相关方法; (4)取不同的K值,采用不同的预测方法,观察结果,达到是否推荐某款连衣裙的目的,为企业未来的规划发展做出依据。 2、意义 此数据集共有14个属性,500个实例,包含了连衣裙的各种属性和根据销售量的不同而出现的推荐情况,按照分类模型学习方法中的k-最近邻分类方法依据各属性推断应推广哪些种类的裙子,对发展市场的扩大及企业的发展战略具有重要意义。 二、技术支持 (介绍用来进行数据挖掘、数据分析的方法及原理) 1、原理:k-最近邻分类算法是一种基于实例的学习方法,不需要事先对训练数据建立分类模型,而是当需要分类未知样本时才使用具体的训练样本进行预测,通过在训练集中找出测试集的K个最近邻,来预测估计测试集的类标号; 2、方法:k-最近邻方法是消极学习方法的典型代表,其算法的关键技术是搜索模式空间,该方法首先找出最近邻即与测试样本相对

接近的所有训练样本,然后使用这些最近邻的类标号来确定测试样本的类标号。 三、数据处理及操作过程 (一)数据预处理方法 1、“remove”属性列:数据集中属性“Dress_ID”对此实验来说为无意义的属性,因此在“Attributes”选项中勾选属性“Dress_ID”并单击“remove”,将该属性列去除,并保存新的数据集; 2、离散化预处理:需要对数值型的属性进行离散化,该数据集中只有第3个属性“rating”和第13个属性“recommendation”为数值型,因此只对这两个属性离散化。 “recommendation”属性只有2个取值:0,1,因此用文本编辑器“Ultra Edit”或者写字板打开数据集并直接修改“Dress Attribute Data Set.arff”文件,把“@attribute recommendation numeric”改为“@attribute recommendation {0,1,}”,并保存;在“Explorer”中重新打开“Dress Attribute Data Set.arff”,选中“recommendation”属性后,右方的属性摘要中“Type”值变为“Nominal”。 在过滤器Filter中单击“choose”,出现树形图,单击“weka”--“Filters”--“unsupervised”--“attribute”--“discretize”,点击“Choose”右边的文本框进行参数设置,把“attribute Indices”右边改成“3”,计划将该属性分成3段,于是把“bins”改成“3”,其它参数不更改,点“OK”回到“Explorer”,单击“Apply”离散化后的数据如下所示:

数据挖掘大作业

1.音乐分类的数据集 在这个题目中,使用了SVM分类器和贝叶斯分类器,并通过sklearn库中的GridSearchCV方法对SVM分类模型的参数进行调优,使最终的正确率提高了5个百分点左右。但仍没有文档中的论文达到的分类正确率高,因为论文中的分类器的设计使专一对音乐音调分类的,其中设计到神经网络和深度学习的一些方法。而我使用的分类器使对大部分分类问题都有效的方法。下面是对数据集的一个简单的介绍: 数据标签 第3-14列:YES or NO 第15列:共16个取值('D', 'G#', 'D#', 'Bb', 'Db', 'F#', 'Eb', 'F', 'C#', 'Ab', 'B', 'C', 'A#', 'A', 'G', 'E') 第16列:共5个取值(1,2,3,4,5) 第17列:共102个类别('C#M', 'F_m', 'D_m', 'D_d7', 'G#m', 'D_m6', 'C_m6', 'C_d7', 'F_M', 'D_M', 'BbM7', 'F#d', 'C#d', 'E_d', 'F_d7', 'F#d7', 'G_m', 'C#d7', 'AbM', 'EbM', 'D#d', 'Bbm6', 'G_M7', 'F#m6', 'Dbd', 'B_m6', 'G#M', 'D_m7', 'B_M', 'F#M7', 'Bbm', 'A#d', 'D#d7', 'Abd', 'G_M', 'F#M4', 'E_M', 'A_M4', 'E_m7', 'D#M', 'C_M7', 'A_m6', 'Dbm', 'A#d7', 'F#M', 'C#m7', 'F_m7', 'C_M', 'C#M4', 'F_M6', 'A_M', 'G_m6', 'D_M4', 'F_M7', 'B_M7', 'E_M4', 'E_m6', 'A_m4', 'G#d', 'C_m7', 'C_M6', 'Abm', 'F_m6', 'G_m7', 'F_d', 'Bbd', 'G_M4', 'B_d', 'A_M7', 'E_m', 'C#M7', 'DbM', 'EbM7', 'C#d6', 'F#m', 'G_M6', 'G_d', 'Dbd7', 'B_m7', 'DbM7', 'D_M6', 'D#d6', 'G#d7', 'A_m7', 'B_d7', 'B_M4', 'A_d', 'A_m', 'C_d6', 'D#m', 'C_M4', 'A_M6', 'BbM', 'C#m', 'D_M7', 'E_M7', 'F_M4', 'F#m7', 'Dbm7', 'B_m', 'C_m', 'Ebd') 这是一个多分类问题 1.1数据读取与训练集和测试集分离

数据挖掘报告(模板)

第一章:数据挖掘基本理论 数据挖掘的产生: 随着计算机硬件和软件的飞速发展,尤其是数据库技术与应用的日益普及,人们面临着快速扩张的数据海洋,如何有效利用这一丰富数据海洋的宝藏为人类服务业已成为广大信息技术工作者的所重点关注的焦点之一。与日趋成熟的数据管理技术与软件工具相比,人们所依赖的数据分析工具功能,却无法有效地为决策者提供其决策支持所需要的相关知识,从而形成了一种独特的现象“丰富的数据,贫乏的知识”。 为有效解决这一问题,自二十世纪90年代开始,数据挖掘技术逐步发展起来,数据挖掘技术的迅速发展,得益于目前全世界所拥有的巨大数据资源以及对将这些数据资源转换为信息和知识资源的巨大需求,对信息和知识的需求来自各行各业,从商业管理、生产控制、市场分析到工程设计、科学探索等。数据挖掘可以视为是数据管理与分析技术的自然进化产物。自六十年代开始,数据库及信息技术就逐步从基本的文件处理系统发展为更复杂功能更强大的数据库系统;七十年代的数据库系统的研究与发展,最终导致了关系数据库系统、数据建模工具、索引与数据组织技术的迅速发展,这时用户获得了更方便灵活的数据存取语言和界面;此外在线事务处理手段的出现也极大地推动了关系数据库技术的应用普及,尤其是在大数据量存储、检索和管理的实际应用领域。 自八十年代中期开始,关系数据库技术被普遍采用,新一轮研究与开发新型与强大的数据库系统悄然兴起,并提出了许多先进的数据模型:扩展关系模型、面向对象模型、演绎模型等;以及应用数据库系统:空间数据库、时序数据库、 多媒体数据库等;日前异构数据库系统和基于互联网的全球信息系统也已开始出现并在信息工业中开始扮演重要角色。

数据挖掘试卷及答案

12/13 年第2学期《数据挖掘与知识发现》期末考试试卷及答案 一、什么是数据挖掘?什么是数据仓库?并简述数据挖掘的步骤。(20分) 数据挖掘是从大量数据中提取或发现(挖掘)知识的过程。 数据仓库是面向主题的、集成的、稳定的、不同时间的数据集合,用于支持经营管理中的决策制定过程。 步骤: 1)数据清理(消除噪声或不一致数据) 2) 数据集成(多种数据源可以组合在一起) 3 ) 数据选择(从数据库中检索与分析任务相关的数据) 4 ) 数据变换(数据变换或统一成适合挖掘的形式,如通过汇总或聚集操作) 5) 数据挖掘(基本步骤,使用智能方法提取数据模式) 6) 模式评估(根据某种兴趣度度量,识别表示知识的真正有趣的模式;) 7) 知识表示(使用可视化和知识表示技术,向用户提供挖掘的知识) 二、元数据的定义是什么?元数据包括哪些内容?(20分) 元数据是关于数据的数据。在数据仓库中, 元数据是定义仓库对象的数据。 元数据包括: 数据仓库结构的描述,包括仓库模式、视图、维、分层结构、导出数据的定义, 以及数据集市的位置和内容。 操作元数据,包括数据血统(移植数据的历史和它所使用的变换序列)、数据流通(主动的、档案的或净化的)、管理信息(仓库使用统计量、错误报告和审计跟踪)。 汇总算法,包括度量和维定义算法, 数据所处粒度、划分、主题领域、聚集、汇总、预定义的查询和报告。 由操作环境到数据仓库的映射,包括源数据库和它们的内容,网间连接程序描述, 数据划分, 数据提取、清理、转换规则和缺省值, 数据刷新和净化规则, 安全 (用户授权和存取控制)。 关于系统性能的数据,刷新、更新定时和调度的规则与更新周期,改善数据存取和检索性能的索引和配置。 商务元数据,包括商务术语和定义, 数据拥有者信息和收费策略。 三、在 O L A P 中,如何使用概念分层? 请解释多维数据模型中的OLAP上卷 下钻切片切块和转轴操作。(20分) 在多维数据模型中,数据组织成多维,每维包含由概念分层定义的多个抽象层。这种组织为用户从不同角度观察数据提供了灵活性。有一些 O L A P 数据立方体操作用来物化这些不同视图,允许交互查询和分析手头数据。因此, O L A P 为交互数据分析提供了友好的环境。 上卷:上卷操作通过一个维的概念分层向上攀升或者通过维归约,在数据立方体上进行聚集。 下钻:下钻是上卷的逆操作,它由不太详细的数据到更详细的数据。下钻可以通过沿维的概念分层向下或引入新的维来实现。 切片:在给定的数据立方体的一个维上进行选择,导致一个子方。 切块:通过对两个或多个维执行选择,定义子方。

期末大作业

期末大作业 数据挖掘和基于数据的决策是目前非常重要的研究领域,是从数据库的大量数据中揭示出隐含的、先前未知的并有潜在价值的信息的特殊过程。在商业上,数据挖掘是一种决策支持过程,它主要基于人工智能、机器学习、模式识别、统计学、数据库、可视化技术等,高度自动化地分析技术,可用于分析企业数据,做出归纳性的推理,从中挖掘出潜在的模式,帮助决策者调整市场策略,减少风险,做出正确的决策。 本次作业要求完成一个相亲配对程序,让相亲者更容易找到自己的意中人。查阅相关文献,以python为工具实现K-近邻算法,从而完成一个基本版的相亲配对系统,在此基础上深入研究聚类算法(K-近邻算法为其中一种),讨论各种聚类思路及算法优劣,完成相应的研究论文。 基本的设计思路提示如下:利用附件datingTestSet.txt文档中提供的三种属性(前三列,其中第1列为对方每年出差/旅行的公里数,第2列为对方玩游戏消耗时间的百分比,第3列为对方每周消费的冷饮公升数)作为测度是否和对方匹配的标准。附件文件第4列表示了你遇到此类人产生的好恶情感,其中largeDoses表示对你极有吸引力,smallDoses表示对你吸引力一般,didntLike 表示是你不喜欢的类型。利用此文件提供的数据,以K-近邻算法为工具,进行数据挖掘,发现你的喜好标准,对新的未标定的待匹配方(即只有前三行数据)给出第4行的好恶情感标签(即largeDoses、smallDoses或didntLike)。 具体要求如下: 1.查找文献,理解完整的K-近邻算法;

2.使用python语言编程实现K-近邻算法,解决相亲配对这一明确的应用问题; 3.撰写的研究论文要有关于聚类算法的详细叙述,论文中的算法应该与程序实 现的算法相印证。 大作业要求: 1.自己设计解决方案,简易的解决方案得分较低,完整的解决方案,即使部分 完成,得分也会较高; 2.作业上交形式为电子版文件。所有文件打包为一个文件,以“学号+姓名” 的方式命名; 3.算法的python源程序(py文件); 4.对此问题进行研究得到的研究性论文,论文包括前言(简介),算法部分(算 法流程图为核心),程序设计部分(程序流程图为核心),实验结果和分析,小结等内容(doc文件); 5.论文必须有规范的发表论文格式,包括题目、作者、单位、摘要、关键字、 正文及参考文献; 6.附有少量参考资料。 字数:论文部分字数限于2000±300,太多太少均扣分。 上交期限:19周周日,由学习委员收齐统一上交。 抄袭0分!

北邮数据挖掘作业

北京邮电大学 2015-2016学年第1学期实验报告 课程名称:数据仓库与数据挖掘 实验名称:文本的分类 实验完成人: 姓名:学号: 日期: 2015 年 12 月

实验一:文本的分类 1.实验目的 1. 了解一些数据挖掘的常用算法,掌握部分算法; 2. 掌握数据预处理的方法,对训练集数据进行预处理; 3. 利用学习的文本分类器,对未知文本进行分类判别; 4. 掌握评价分类器性能的评估方法。 2.实验分工 数据准备、预处理、LDA主题模型特征提取实现、SVM算法都由范树全独立完成。 3.实验环境 ●操作系统:win7 64bit 、Ubuntu-14.04-trusty ●开发环境:java IDE eclipse 、Python IDLE 4.主要设计思想 4.1实验工具介绍 1.Scrapy 0.25 所谓网络爬虫,就是一个抓取特定网站网页的HTML数据的程序。不过由于一个网站的网页很多,而我们又不可能事先知道所有网页的URL地址,所以,如何保证我们抓取到了网站的所有HTML页面就是一个有待考究的问题了。一般的方法是,定义一个入口页面,然后一般一个页面会有其他页面的URL,于是从当前页面获取到这些URL加入到爬虫的抓取队列中,然后进入到新页面后再递归的进行上述的操作,其实说来就跟深度遍历或广度遍历一样。 Scrapy是一个基于Twisted,纯Python实现的爬虫框架,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非常之方便。Scrapy 使用Twisted这个异步网络库来处理网络通讯,架构清晰,并且包含了各种中间件接口,可以灵活的完成各种需求。 2.JGibbLDA-v.1.0 jGibbLDA是java版本的LDA实现,它使用Gibbs采样来进行快速参数估计和推断。LDA 是一种由基于概率模型的聚类算法。该算法能够对训练数据中的关键项集之于类簇的概率参数拟合模型,进而利用该参数模型实施聚类和分类等操作。 3.ICTCLAS50 中科院计算技术研究所在多年研究基础上,耗时一年研制出了基于多层隐码模型的汉语词法分析系统ICTCLAS,该系统有中文分词,词性标注,未登录次识别等功能。 4.libSVM-3.20 libSVM是台湾大学林智仁教授等开发设计的一个简单、易用和快速有效的SVM模式识

数据仓库与数据挖掘考试试题

一、填空题(15分) 1.数据仓库的特点分别是面向主题、集成、相对稳定、反映历史变化。 2.元数据是描述数据仓库内数据的结构和建立方法的数据。根据元数据用途的不同可将元数据分为技术元数据和业务元数据两类。 3.OLAP技术多维分析过程中,多维分析操作包括切片、切块、钻取、旋转等。 4.基于依赖型数据集市和操作型数据存储的数据仓库体系结构常常被称为“中心和辐射”架构,其中企业级数据仓库是中心,源数据系统和数据集市在输入和输出范围的两端。 5.ODS实际上是一个集成的、面向主题的、可更新的、当前值的、企业级的、详细的数据库,也叫运营数据存储。 二、多项选择题(10分) 6.在数据挖掘的分析方法中,直接数据挖掘包括(ACD) A 分类 B 关联 C 估值 D 预言 7.数据仓库的数据ETL过程中,ETL软件的主要功能包括(ABC) A 数据抽取 B 数据转换 C 数据加载 D 数据稽核 8.数据分类的评价准则包括( ABCD ) A 精确度 B 查全率和查准率 C F-Measure D 几何均值 9.层次聚类方法包括( BC ) A 划分聚类方法 B 凝聚型层次聚类方法 C 分解型层次聚类方法 D 基于密度聚类方法 10.贝叶斯网络由两部分组成,分别是( A D ) A 网络结构 B 先验概率 C 后验概率 D 条件概率表 三、计算题(30分) 11.一个食品连锁店每周的事务记录如下表所示,其中每一条事务表示在一项收款机业务中卖出的项目,假定sup min=40%,conf min=40%,使用Apriori算法计算生成的关联规则,标明每趟数据库扫描时的候选集和大项目集。(15分) 解:(1)由I={面包、果冻、花生酱、牛奶、啤酒}的所有项目直接产生1-候选C1,计算其支持度,取出支持度小于sup min的项集,形成1-频繁集L1,如下表所示:

大工20秋《数据挖掘》大作业题目及要求

网络教育学院 《数据挖掘》课程大作业 题目: Knn算法原理以及python实现 第一大题:讲述自己在完成大作业过程中遇到的困难,解决问题的思路,以及相关感想,或者对这个项目的认识,或者对Python与数据挖掘的认识等等,300-500字。 《数据挖掘是计算机专业一门重要的专业课。本课程是大数据背景下现代统计数据分析不可缺少的重要工具。通过本课程的学习,培养学生的数据分析技能,熟悉和掌握大数据信息提取与结果分析,培养适应社会数据分析岗位需求的专业人才。课程的重点教学内容为:网络爬虫与数据抽取、数据分析与挖掘算法-关联规则、数据分析与挖掘算法-分类与预测、数据分析与挖掘算法-聚类等。课程任务主要是让学生在学习期间掌握数据挖掘理论以及如何用数据挖掘来解决实际问题,了解某个数据挖掘解决方案对特定问题是否切实可行,学生能够借助软件工具进行具体数据的挖掘分析。本课程为计算机相关专业的基础课程,其内容涵盖了数据挖掘的相关知识。课程在阐述Python理论知识基础上,增加了数据分析和处理等知识内容,从而使学生加深对数据挖掘的理解。课程安排内容难易适中,学生可以通过实际项目加深对数据挖掘系统结构的整体流程了解。 第二大题:完成下面一项大作业题目。 2020秋《数据挖掘》课程大作业 注意:从以下5个题目中任选其一作答。 题目一:Knn算法原理以及python实现

要求:文档用使用word撰写即可。 主要内容必须包括: (1)算法介绍。 (2)算法流程。 (3)python实现算法以及预测。 (4)整个word文件名为 [姓名奥鹏卡号学习中心](如 戴卫东101410013979浙江台州奥鹏学习中心[1]VIP )答: 一、knn算法介绍 1. 介绍 邻近算法,或者说K最近邻(kNN,k-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表。kNN算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性。该方法在确定分类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。 kNN方法在类别决策时,只与极少量的相邻样本有关。由于kNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属类别的,因此对于类域的交叉或重叠较多的待分样本集来说,kNN方法较其他方法更为适合。 2. 核心概括 主要的思想是计算待分类样本与训练样本之间的差异性,并将差异按照由小到大排序,选出前面K个差异最小的类别,并统计在K个中类别出现次数最多的类别为最相似的类,最终将待分类样本分到最相似的训练样本的类中。与投票(Vote)的机制类似。 二、knn算法流程 1. 准备数据,对数据进行预处理 2. 选用合适的数据结构存储训练数据和测试元组

数据挖掘离线作业

浙江大学远程教育学院 《数据挖掘》课程作业 姓名:学号: 年级:学习中心:————————————————————————————— 第一章引言 一、填空题 (1)数据库中的知识挖掘(KDD)包括以下七个步骤:数据清理、数据集成、数据选择、数据交换、数据挖掘、模式评估和知识表示 (2)数据挖掘的性能问题主要包括:算法的效率、可扩展性和并行处理 (3)当前的数据挖掘研究中,最主要的三个研究方向是:统计学、数据库技术和机器学习 (4)孤立点是指:一些与数据的一般行为或模型不一致的孤立数据 二、简答题 (1)什么是数据挖掘? 答:数据挖掘指的是从大量的数据中挖掘出那些令人感兴趣的、有用的、隐含的、先前未知的和可能有用的模式或知识。 (2)一个典型的数据挖掘系统应该包括哪些组成部分? 答:一个典型的数据挖掘系统应该包括以下部分:1、数据库、数据仓库或其他信息库,2、数据库或数据仓库服务器,3、知识库,4、数据挖掘引擎,5、模式评估魔磕,6图形用户界面。 (3)Web挖掘包括哪些步骤? 答:数据清理:(这个可能要占用过程60%的工作量)、数据集成、将数据存入数据仓库、建立数据立方体、选择用来进行数据挖掘的数据、数据挖掘(选择适当的算法来找到感兴趣的模式)、展现挖掘结果、将模式或者知识应用或者存入知识库。 (4)请列举数据挖掘应用常见的数据源。 (或者说,我们都在什么样的数据上进行数据挖掘) 答:常见的数据源包括关系数据库、数据仓库、事务数据库和高级数据库系统和信息库。其中高级数据库系统和信息库包括:空间数据库、时间数据库和时间序列数据库、流数据、多媒体数据库、面向对象数据库和对象——关系数据库、异种数据库和遗产数据库、文本数据库和万维网等。

相关文档
最新文档