行星齿轮式矩形顶管机的设计报告

行星齿轮式矩形顶管机的设计报告
行星齿轮式矩形顶管机的设计报告

2顶管工程施工组织设计

第一部分施工组织设计文字说明 第一章编制说明 一、编制X围: 本施工组织设计方案的编制X围为本工程为D2200XX污水厂进厂管顶工程,顶管位置位于规划路中心线上,顶进长度共744米,顶管管道采用D2200钢承口钢筋混凝土管材。 二、编制依据: 1、XX呈贡新区洛龙河污水厂进厂管顶管工程施工招标文件,设计图纸等有关资料; 2、国家颁布的现行最新版本设计、施工、验收标准及规X,市政工程有关的预算定额资料等; 3、对施工工作现场及周边环境了解考察所得资料; 4、本工程项目的招标补遗书、拦标价; 5、我公司的企业管理水平,技术力量,机械装备及施工经验。 三、编制原则: 1、贯彻执行市政工程施工规X、技术规X及技术指标,建设部和其它建筑行业颁发的各项技术标准、技术规X; 2、推行现代企业制度,实施项目法施工管理; 3、保证重点、统筹安排,确保合同工期的严肃性,施工安排尽可能组织平行、流水作业,合理安排施工的顺序,组织不间断施工,保持连续均衡生产; 4、推行新技术、新工艺,推行规X化、标准化作业,按优良工程的质量标准组织本工程的施工,确保本工程质量达到一次性验收合格标准。 第二章工程概况

一、项目概况: 本工程管道为污水处理厂进厂管道,管道起点为环湖截污干渠,终点为洛龙河污水厂,污水管总长744m,管径DN2200,附属顶管工作井、接收井及污水检查井共9座。 二、项目地理位置概况 本工程以环湖截污干渠为起点W0+000.0管底高程1876.4444;终点W0+744.00管底搞成1875.70,坡度控制1.0‰。 三、工期要求 1、根据招标文件要求,本工程工期要求为3个月,预计开工时间为2010年12月16日(具体开工时间以监理工程师发出的开工令为准),完工日期为2011年3月15日。 2、施工总体安排及分项工程施工进度计划详见进度计划网络图。 四、工程特点 1、本工程为市政工程,施工中管线较复杂,分项工程项目工序交叉,工作面多,需投入的机械和人员数量多,必须精心组织、合理布局、严格管理。 2、工程地处XX市区,施工中如何引排地下水和保持城市卫生将是确保现场文明施工和优质施工的重点。 3、工程施工期经历冬季,施工防冻与排水措施必须严密有效。 4、工程施工过程中,必须严格按照XX市建筑施工环境保护的有关规定,认真做好环境保护工作,减少施工粉尘污染、噪音干扰,并妥善处理建筑垃圾。 5、顶管沿线土性分布不均匀,埋深变化也大,在施工组织设计中应就顶进的特点,将顶进设备系统、泥浆减阻、中继间接力顶进、顶进轴线的测量控制、通风与供电、纠偏作为关键技术,进行深入论证后制订出可靠有效的

行星齿轮减速器设计DOC

1 引言 行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1] 。 2 设计背景 试为某水泥机械装置设计所需配用的行星齿轮减速器,已知该行星齿轮减速器的要求输入功率为 1 740KW p =,输入转速11000rpm n = ,传动比为35.5p i =,允许传动 比偏差0.1P i ?=,每天要求工作16小时,要求寿命为2年;且要求该行星齿轮减速器传动结构紧凑,外廓尺寸较小和传动效率高。 3 设计计算 3.1选取行星齿轮减速器的传动类型和传动简图 根据上述设计要求可知,该行星齿轮减速器传递功率高、传动比较大、工作环境恶劣等特点。故采用双级行星齿轮传动。2X-A 型结构简单,制造方便,适用于任何工况下的大小功率的传动。选用由两个2X-A 型行星齿轮传动串联而成的双级行星齿轮减速器较为合理,名义传动比可分为17.1p i =,25p i =进行传动。传动简图如图1所示:

图1 3.2 配齿计算 根据2X-A 型行星齿轮传动比 p i 的值和按其配齿计算公式,可得第一级传动的内 齿轮1b ,行星齿轮1c 的齿数。现考虑到该行星齿轮传动的外廓尺寸,故选取第一级中心齿轮1a 数为17和行星齿轮数为3p n =。根据内齿轮()11 1 1 b a p i z z =- ()17.1117103.7103b z =-=≈ 对内齿轮齿数进行圆整后,此时实际的P 值与给定的P 值稍有变化,但是必须控制在其传动比误差范围内。实际传动比为 i =1+=7.0588 其传动比误差i ?= ip i ip -= 7.17.0588 7.1 -=5℅ 根据同心条件可求得行星齿轮c1的齿数为 ()1 11243c b a z z z =-= 所求得的1ZC 适用于非变位或高度变位的行星齿轮传动。再考虑到其安装条件为: 11 2 za zb += C =40 ()整数

行星齿轮的注塑模具设计

引言 伴随着全世界范围内机械加工技术的发展和计算机技术的进步,模具工业已是高新技术产业化的重要领域。例如,在电子产品生产中,制造集成电路的引线框架的精密级进冲模和精密的集成电路塑封模,计算机的机壳、插件和许多元件器件的制造中的精密塑料模具、精密冲压模具等,都是产品生产不可或缺的工具装备。精密模具已使模具行业成为一个与高新技术产品互为依托的产业。1996年至2002年间,我国模具制造业的产值年平均增长14%左右,2003年增长25%左右,沿海一带城市的增长在25%以上。而近几年来,我国模具技术有了很大发展,模具技术有了很大的提高。生产的模具有些已接近或达到国际水平。大型、精密、复杂、高效和长寿命模具又上了新台阶。 虽然在很多方面我国的模具有了很大的发展,但仍有很比较突的问题。目前模具设计及模具制造大都依靠设计的经验进行设计。模具的好坏完全由个人的平时累计的经验控制。这样使得模具设计的周期长,效率低且模具的质量也难以保证。模具工业除需要“高技艺”的从业人员外,还需要更多的“高技术”来保证。本文就是以提高模具设计效率,缩短设计周期,降低模具成本,保证模具质量为目的,试探性的研究三维技术在冲压模具中的应用与开发。 1

2 绪论 2.1模具概述 塑料,Plastic,是以高分子合成树脂为主要成分,在一定的温度和压力下,可塑成一定形状且在常温下保持形状不变的材料。 模具,mould,是利用其特定形状去成型具有一定形状和尺寸的制品的工具。 成型塑料制品的模具叫做塑料模具。对塑料模具的全面要求是:能生产出在尺寸精度、外观、物理性能等各方面均能满足使用要求的优质制品。从模具使用的角度,要求高效率、自动化、操作简便;从模具制造的角度,要求结构合理、制造容易、成本低廉。 注射成型生产中使用的模具称为注射成型模具,简称注射模,也称为注塑模。注射模主要适用于热塑性塑料的成型加工,近年来也逐渐用于加工部分热固性塑料塑料制件。注射模具有很多优点,如对塑料的适应性较广,塑料制件的外观质量较好,生产效率特别高,易于实现自动化生产等,广泛用于塑料制件的生产中。 注射模具的结构由塑件的复杂程度及注射机的结构形式等因素决定。注射模具可分为动模和定模两大部分,定模部分安装在注射机的固定模板上,动模部分安装在注射机的移动模板上,注射时动模与定模闭合构成浇注系统和型腔,开模时动模与定模分离,由推出机构推出塑品。 根据模具上各个零部件所起的作用注塑模具一般有以下几部分组成:定模机构、动模机构、浇注系统、导向装置、顶出机构、抽芯机构、冷却和加热装置、排气系统等。 注塑成型全过程分为:塑化过程、充模过程、冷却凝固过程、脱模过程,由这四个过程就形成了一个循环,完成了一次成型一个乃至数十个塑件的过程。 1.1.1我国模具业存在的问题 1、模具水平落后 在模具制造水平上,虽然我国有些设备已达到或接近世界先进水平,但总体上要比德、美、日、法、意等,发达国家落后许多。国内模具的使用寿命只有国外发达国家的1/2至1/10,甚至更短。模具生产周期却比国际先进水平长许多。此外,开发

dn2000顶管施工组织设计

DN2000顶管工程 施 工 组 织 设 计 编制: 审核: 审批:

目录 一、工程概况 二、主要施工方法和措施 三、主要工程量 四、质量管理体系要求 五、冬、雨季施工措施 六、安全文明施工措施 七、环境保护措施

一、工程概况 本工程为某路段交口顶管工程,顶管穿越十一经路。顶管用DN2000水泥管,顶进长度约为60米。需平行顶进两根,顶管完成后穿入DN1200热力工作管道两根。 二、主要施工方法和措施 (一)、工艺流程 施工准备(施工人员进场—测量放线、引测施工控制点—施工设备进场)—帷幕桩—大口井制作—工作井开挖及支护—工作井底板浇筑—洞口制作及顶进设备安装、调试—顶管机出洞—吊放第一节砼管—顶进(注浆减阻)—依次循环—顶管机进洞、顶管结束—拆卸设备 (二)、主要施工方法 1、施工准备 (1)、认真熟悉及审查图纸,领会设计意图,查看现场、校核现状资料,进一步确定管材、劳动力、机具、材料设备的供应计划。 (2)、组织施工人员认真学习工程技术文件,深入了解工程性质,工程范围、设计意图、施工期限、各种管道及构筑物的具体情况,工程质量要求、技术和安全措施等,对参加施工的施工队下达施工任务,进行技术交底。 (3)、开工前对地上地下障碍进行调查,搞好施工现场三通一平工作,布置好施工作业区。 (4)、开工前教育职工不乱泼乱倒,爱护周围环境,与周围居民搞好团结,讲究精神文明。

(5)、落实好驻地的安全、防火、防盗措施。 (6)、根据工程质量、工期、施工进度计划以及公司具体的机械,人员情况按施工组织设计要求组织采购各种材料进场。 2、顶管施工 (1)、测量放线 施工前由设计、甲方、施工单位三方确定轴线及水准点高程,并建立相应的地面控制点,便于施工时复测,经监理部门进行验收后再进行施工。 建立地面地下测量控制系统,控制点设在不易扰动,视线清楚,方便校核,易于保护的地方。 (2)、工作井和接收井的布置 DN2000顶管主副工作井尺寸为: 工作井:长7.5米,宽9米,深7.5米(含基础) 接收井:长5米,宽9米,深7.5米(含基础) (3)、工作井、接收井作法 工作井采用水泥搅拌桩单排咬打方式进行闭水。在距井边工字钢边缘0.5米处进行水泥搅拌桩帷幕施工(水泥参入量为15%),桩长10米,直径为Φ600,互相咬合200mm。 工作井后背采用36#b型工字钢竖排密打,其它三侧采用36#b型工字钢横排密打,桩长10米。工作井采用人机配合开挖,工作井内用36#b 型工字钢焊接两道双矩形支撑框架,每道支撑四周使用双层36#b型工字钢加焊三角支撑。接收井四侧施打10米长36#b型工字钢,接收井四周

泥水平衡顶管施工组织设计方案

泥水平衡顶管施工组织设计 一、工程概况 本工程为顶管工程。采用Φ800顶管,总长为m,管中心标高-6.20~-27.72m。土质由标高为m的土到m的土。 二、顶管方案 1、机头选型 本工程由于一次顶进距离较长,为确保工程质量万无一失,确保绝对工程安全,我公司根据以住施工经验,决定采用日本ISEKI公司生产的UNCLEMOLE型TCZ600具有破碎功能的泥水平衡顶管掘进机。 ①具有破碎功能的泥水平衡顶管掘进机有多种形式。 其基本原理是主轴偏心回转运动而破碎的泥水平衡顶管机,其刀盘的正面,开口比较大,便于大块的卵石等能进入顶管机内,刀盘正面上下两个泥土和石块的进口,其开口的面积约占顶管机全断面的15%~20%。 刀盘由设在主轴左右两侧的电动机驱动。电动机是通过行星减速器带动小齿轮,然后再带动设在中心的大齿轮。大齿轮与主轴及轧辊联接成一体。主轴的左端安装有刀盘。这样,只要刀盘驱动电机转动,刀盘也就转动,同时轧辊也转动。在掘进机工作时,刀盘在一边旋转切削土砂的同时还一边作偏心运动把石块轧碎。被轧碎的石块只有比泥土仓内与泥水仓联接的间隙小才能进入掘进机的泥水仓,然后从排泥管中被排出。 另外,由于刀盘运动过程中,泥土仓和泥水仓中的间隙也不断地由最小变到最大这样循环变化着,因此,它除了有轧碎小块石头的功能以外还始终能保证进水泵的泥水能通过此间隙到达泥土仓中,从而保证了掘进机不仅在砂土中,即使在粘土中也能正常工作。 一般情况下,刀盘每分钟旋转4~5转,每当刀盘旋转一圈时,偏心的轧碎动作达20~23次。由于本机有以上这些特殊的构造,因此它的破碎能力是所有具有破碎功能的掘进机中最大的,破碎的最大粒径可达掘进机口径的40%~45%之间,破碎的卵石强度可达200Mpa。 本掘进机的优点是: A、顶管机、主千斤顶、泥水循环系统和泥水分离装置(DESANDMAN)成套化。 B、带锥形破碎机的条幅刀盘,能破碎小于外径30%,一轴强度196Mpa(2000 kg/cm2)的砾石。 C、该机能适用各种土壤条件,如粘质土、砂土、砂砾混合卵石土和软岩上。 D、使用安装在轨道上的主顶油缸。一次顶进长度超过100m。 E、该机由一人在地面遥控操纵即可。 F、可在控制台上进行电视监测及方向控制,精度高。带有ISEKI专利的RSG双光靶方向控制系统,有经验的操作人员可以将方向误差控制在10mm之内! G、使用主千斤顶不间断便可单独顶进一节管子。 H、泥水分离装置DESANDMAN是一种密封性好,操作灵活的分离系统,且能节省安装空间。 此机型在现今使用较广,我们有着成功施工经验、技术成熟、可靠,对土层扰动少的特点。偏心破碎泥水平衡顶管掘进机是根据含水量较高的沙砾土而专门设计的。因此特别适应本工地基顶管的施工。 2、平面布置、井内布置及管内布置 2.1在工作井范围内实行全封闭隔离施工并布置以下必要的设施,地面指挥监测中心、办公室、仓库、配电间、冷作间等。布局要合理,环境整洁、卫生,并有专职人员进行管理。 2.2现场布置采用8t汽吊,设备进场时,采用16t汽车吊车。 2.3管道顶进时,起吊设备采用跨距为14m的龙门行车(起重能力为30t),行车导轨与顶管中心线应平行铺设,并与管中心左右对称。 2.4井内布置

行星齿轮减速器的优化设计

减速器是机械行业中十分重要的传动装置,传统的减速器设计通常3 )限制模数最小值,得: 需要有经验的人员选取适当的参数,进行反复的试凑、校核确定设计方4)限制齿宽系数b/m 的范围: ,得:案,但也不一定是最佳设计方案,而优化设计的方法则通过设计变量的选取、目标函数和约束条件的确定,建立数学模型,通过求解得到满足5)满足接触强度要求,得: 条件的最佳解,同时缩短设计周期。为了合理分配行星轮系的总传动比,并使系统体积小、质量轻,建立了具有3个设计变量、1个目标函数 和几个约束方程的优化设计数学模型,并用MATLAB 优化工具箱进行求6)满足弯曲强度要求,得:解。 2K-H (NGW )型行星齿轮减速器的优化设计: 式中: 、 -齿轮的齿形系数和应力校正系数; -许用弯曲应力。 3 所选优化方法的介绍 惩罚函数法:根据惩罚函数项的不同构成形式,惩罚函数法又可分为外点惩罚函数法、内点惩罚函数法和混合惩罚函数法三种,分别简称为外点法、内点法和混合法。 3.1 外点法:外点法的计算步骤 1)给定初始点 、收敛精度ε、初始罚因子 和惩罚因子递增系数c ,置k=0; 1-中心轮 2-行星轮 3-壳体 图1 NGW 型行星轮系机构简图 图1为NGW 型行星轮系机构简图。已知:作用于中心轮的转矩T1=1140N ·m ,传动比u =4.64,齿轮材料均为38SiMnMo ,表面淬火45-55HRC ,行星轮个数c=2,要求以重量最轻为目标,对其进行优化设计。 1 目标函数和设计变量的确定 行星齿轮减速器的重量可取太阳轮和c 个行星轮重量之和来代替, 3.2 内点法:内点法是另一种惩罚函数法 因此目标函数可简化为: 其构成形式与上式相同,但要求迭代过程始终限制在可行域内进 行。 式中:z 1-中心轮1的齿数;m-模数,单位为(mm ); b-齿宽,单位对于不等式约束 ,满足上述要求的复合函数有以下两种为(mm );c-行星轮的个数;u-轮系的传动比4.64。 影响目标函数的独立参数应列为设计变量,即 在通常情况下,行星轮个数可以根据机构类型事先选定,这样,设计变量为: 其中,惩罚因子 是一递减的正数序列,即 2 约束条件的建立 由式(2)和式(3 )可知,对于给定的某一惩罚因子 ,当点在可1)小齿轮z 1不根切,得: 行域内时,两种惩罚项的值均大于零,而且当点向约束边界靠近时,两 2)限制齿宽最小值,得: 行星齿轮减速器的优化设计 赵明侠 (宝鸡职业技术学院 机械工程系 陕西 宝鸡 721013) 摘 要: 根据可靠性设计理论和机械优化设计技术,以NGW 型行星齿轮减速器为例,初步探讨优化设计的原理和方法。关键词: 行星齿轮减速器;优化设计;优化设计方法 中图分类号:TH132 文献标识码:A 文章编号:1671-7597(2011)1010074-02 2)构造惩罚函数

行星齿轮设计【模板】

第二章 原始数据及系统组成框图 (一)有关原始数据 课题: 一种行星轮系减速器的设计 原始数据及工作条件: 使用地点:减速离合器内部减速装置; 传动比:p i =5.2 输入转速:n=2600r/min 输入功率:P=150w 行星轮个数:w n =3 内齿圈齿数b z =63 第五章 行星齿轮传动设计 (一)行星齿轮传动的传动比和效率计算 行星齿轮传动比符号及角标含义为: 123i 1—固定件、2—主动件、3—从动件 1、齿轮b 固定时(图1—1),2K —H (NGW )型传动的传动比b aH i 为 b aH i =1-H ab i =1+b z /a z 可得 H ab i =1-b aH i =1-p i =1-5.2=-4.2 a z =b z /b aH i -1=63*5/21=15 输出转速: H n =a n /p i =n/p i =2600/5.2=500r/min 2、行星齿轮传动的效率计算: η=1-|a n -H n /(H ab i -1)* H n |*H ψ H ψ=*H H H a b B ψψψ+ H a ψ为a —g 啮合的损失系数,H b ψ为b —g 啮合的损失系数,H B ψ为轴承的损失系数,H ψ 为总的损失系数,一般取H ψ=0.025 按a n =2600 r/min 、H n =500r/min 、H ab i =-21/5可得

η=1-|a n -H n /(H ab i -1)* H n |*H ψ=1-|2600-500/(-4.2-1)*500|*0.025=97.98% (二) 行星齿轮传动的配齿计算 1、传动比的要求——传动比条件 即 b aH i =1+b z /a z 可得 1+b z /a z =63/5=21/5=4.2 =b aH i 所以中心轮a 和内齿轮b 的齿数满足给定传动比的要求。 2、保证中心轮、内齿轮和行星架轴线重合——同轴条件 为保证行星轮g z 与两个中心轮a z 、b z 同时正确啮合,要求外啮合齿轮a —g 的中心距等于内啮合齿轮b —g 的中心距,即 w (a )a g - =()w b g a - 称为同轴条件。 对于非变位或高度变位传动,有 m/2(a z +g z )=m/2(b z -g z ) 得 g z =b z -a z /2=63-15/2=24 3、保证多个行星轮均布装入两个中心轮的齿间——装配条件 想邻两个行星轮所夹的中心角H ?=2π/w n 中心轮a 相应转过1?角,1?角必须等于中心轮a 转过γ个(整数)齿所对的中心角, 即 1?=γ*2π/a z 式中2π/a z 为中心轮a 转过一个齿(周节)所对的中心角。 p i =n/H n =1?/H ?=1+b z /a z 将1?和H ?代入上式,有 2π*γ/a z /2π/w n =1+b z /a z 经整理后γ=a z +b z =(15+63)/2=24 满足两中心轮的齿数和应为行星轮数目的整数倍的装配条件。 4、保证相邻两行星轮的齿顶不相碰——邻接条件 在行星传动中,为保证两相邻行星轮的齿顶不致相碰,相邻两行星轮的中心距应大于两轮齿顶圆半径之和,如图1—2所示

行星齿轮传动设计详解

1 绪论 行星齿轮传动与普通定轴齿轮传动相比较,具有质量小、体积小、传动比大、承载能力大以及传动平稳和传动效率高等优点,这些已被我国越来越多的机械工程技术人员所了解和重视。由于在各种类型的行星齿轮传动中均有效的利用了功率分流性和输入、输出的同轴性以及合理地采用了内啮合,才使得其具有了上述的许多独特的优点。行星齿轮传动不仅适用于高速、大功率而且可用于低速、大转矩的机械传动装置上。它可以用作减速、增速和变速传动,运动的合成和分解,以及其特殊的应用中;这些功用对于现代机械传动发展有着重要意义。因此,行星齿轮传动在起重运输、工程机械、冶金矿山、石油化工、建筑机械、轻工纺织、医疗器械、仪器仪表、汽车、船舶、兵器、和航空航天等工业部门均获得了广泛的应用[1-2]。 1.1 发展概况 世界上一些工业发达国家,如日本、德国、英国、美国和俄罗斯等,对行星齿轮传动的应用、生产和研究都十分重视,在结构优化、传动性能,传动功率、转矩和速度等方面均处于领先地位,并出现一些新型的行星传动技术,如封闭行星齿轮传动、行星齿轮变速传动和微型行星齿轮传动等早已在现代化的机械传动设备中获得了成功的应用。行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就,并获得了许多的研究成果。近20多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1-8]。 1.2 3K型行星齿轮传动 在图4所示的3K型行星齿轮传动中,其基本构件是三个中心轮a、b和e,故其传动类型代号为3K[10]。在3K型行星传动中,由于其转臂H不承受外力矩的作用,所以,它不是基本构件,而只是用于支承行星轮心轴所必需的结构元件,

过路顶管施工组织设计

过路顶管施工方案 1、过路顶管施工方案 一、工程概况 通辽至霍林河区段光电缆敷设过轨主要在车站站场、区间正线过轨,过轨采用专用施工 机械过轨,本次共计:15处。通霍铁路电化改造工程THSG-3标通信工程顶管统计表 二、施工组织 1、施工负责人 驻站防护员 现场防护员 800米防护员 施工作业人员15名 2、在邻近车站设置驻站防护员,施工现场设置现场防护员、800米防护员,各自携带所需防护用品、防护标志,提前做好防护准备。 三、资质审查 根据沈阳铁路局相关文件要求,提前对顶管机械设备和施工队伍要进行资质审查。我单位自查合格后,将相关资料上报监理单位进行审核,主要有以下4个方面: 1、设备核查:要能满足现场施工需要,保证施工安全和进度。 2、业绩审查:施工作业队在沈阳铁路局要有相关施工业绩。 3、人员复查:主要操作人员能熟悉该项业务,且能服从现场指挥。 4、安全培训:所有作业人员要进行营业线施工安全培训,考试合格后才能上岗,且有 书面记录。 四、施工工序

1、工程工艺流程 2、施工准备 (1)材料准备根据现场情况,工程开工前,管材、水、膨胀剂等各种材料提前到场。 (2)设备准备各种施工机械设备及顶管施工中的掘进设备,使用前要认真进行检查, 经试运正常后方可使用。 3、防护人员就位施工前,施工负责人根据当天施工任务宣读施工工作票,明确防护员 职责,防护员根据作业负责人要求,到指定位置进行防护,在防护员到位后,方允许作 业。挖探作业时,可不设两端800米防护。 4、施工方案 (1)测量定位放线根据施工要求的管道轴线放出钻机安装位置线、管道两端的具体轴 线位置;在路面上放出轴线。 a.确定钻机的安装位置、入土点、出土点的具体位置。 b.放线入土点、出土点位置左右偏差不超过200mm,沿管线轴 方向误差不超过200mm,并做出明显标记。从出土点到回拖管线路必须保持直线。 (2)管线复测施工地点位于铁路路基边坡两侧,为了防止意外,在施工前应经设备管 理单位确认光电缆路径后才允许开挖。根据现场光电缆路径调整管道轨迹,确定顶管路径。 (3)钻机就位和调试 a.钻机及配套设备就位按施工布置及规范要求将钻机及附属配套设备固定在预定位置。 钻机方向必须跟管道轴线方向一致,左右误差不超过30mm,钻机入土角调整到合适位置。 b.钻机调试钻机安装后,应进行试运转,检测各部件运行情况。 (4)钻孔导向 a.施工过程中,适当控制钻进速度,保证导向孔光滑。 b.每钻进一根钻杆,方向至少探测二次。在钻进过程中,要随时跟进探测,确保钻机方 向跟管道轴线方向之间的误差在允许范围内。 c.泥浆是定向穿越中的关键因素,据地质土层的不同,泥浆的配比也随之变化,并选用 不同的添加剂,以达到预期的效果。顶进时,通过工具管及混凝土管节上预留的注浆孔,向管道外壁压入一定量的减阻泥浆,在管道外围形成一个泥浆套,减小管节外壁和土层

人工顶管专项施工组织设计

第1章工程概述 §1工程概况 工程名称:南洲路(江南大道南~东晓南路段)污水支管连通工程 建设单位:广州市污水治理有限责任公司 设计单位:广州市市政工程设计研究院 施工单位:广东省基础工程公司 工程地点:广州市海珠区南洲路 本工程位于广州市南部,管线起点江南大道南大干围路口,由西向东沿南洲路铺设,管线终点位于东晓南路。管段的管底深度5.00m~5.50m,总长度约为821m,包括顶管工作井5个,顶管接收井6个,顶管段检查井8个。原设计为全机械顶管,经现场仔细勘察摸查发现W14~W15、W15~W16、W16~W17井段,井段长分别约39m、67m、38m,管径为DN1200钢筋混凝土管,管道拟建在南洲名苑小区外围怡居街上,怡居街道路宽度15米,以上井段经过位置两旁分别是瑞宝街使用的变电房、宝兴楼(受当时内环路建设影响房屋受损,为此本工程实施过程中专门进行了专项加固措施)及民居。经现场勘察摸查发现,管道经过位置附近埋设有供水水管、排水水管、通讯光缆和有多根高压电力电缆经变电房进出铺设在怡居街上,特别是电缆的走向与我们建设的污水管道走向一样,垂直平面位置重叠,从我们现在现场施工中的W16工作井和W17接收井的开挖位置情况能看到部分电缆设置的位置占用了工作井和接收井的使用空间,电缆的埋深深浅不一,特别是发现部分利用牵引钻进法施工铺设的电缆埋深几乎与我们施工的污水管道标高一致,而且铺设的标高很难估计。 若在上述施工段上按原设计机械顶管方案实施,将对铺设在以上井段附近的高压电缆管线安全带来较大影响,机械顶管不可遇见的地下障碍物风险也增加很大,到时涉及迁移电力电缆、供水、排水、通讯管线等工作量较大。加上之前在实施W11~W14井段时由于机械顶管工具头自重较大,施工井段的地质条件(淤泥质细砂)的地基承载力不足,导致工具头顶进时无法进行纠偏,尤其是排泥顶进时工具头自然下沉情况严重,管道标高难以控制。若进行不排泥的方式进行闷顶的话,情况是稍好一点,但是这样就会导致顶进位置的路面出现不同程度的隆起开裂现象,这种情况对附近管线的安全构成较大影响。,且涉及

3Z型行星齿轮减速器设计

1.绪论 1.1课题研究的背景和意义 “十一五”期间我国将按照国家储备与企业储备相结合,以国家储备为主的方针,统一规划,分批建设国家战略石油储备基地。为了快速建立起我国独立的石油储备基地,根据我国国情石油储备形式以大型工业油罐为主。 在使用大型油罐进行原油储备的过程中,遇到最关键的问题就是油泥的问题,储运重未经提炼制的原油重平均约含2.2%的油泥,即对一个10万立方的储罐来说,灌满原油后其中约有2200立方的油泥成点在油罐底部。如不及时清除,再次加入原油是油泥将继续累积在一起,形成硬块,为油罐的检查及清洗增加困难。而且数量如此巨大的油泥存在于油罐底部,不经减小油罐的有效储存空间,降低储存周期寿命,造成进出阀的阻塞,而且较厚的油泥层使浮顶灌的浮顶不能不下降到底而引起浮顶倾斜,对储油安全造成威胁。因此大型原油储罐在建立时就必须增设油泥防止和消除系统,以增加油罐的储油效率,提高储油安全性,减小清灌难度。 大型原油储罐灌底油泥的防止和消除方法主要是在灌内增加油泥的混合搅拌系统,使油泥破碎细化,便于通过管线输出,我们选用了旋转喷射搅拌器。但是,其喷嘴口径相对于大型储罐的直径而言是很小的,喷嘴固定是射流束的搅拌范围是有限的,于是,在旋转喷射器入口处设置轴流涡轮,考循环油泵加压后的原油流动带动轴流涡轮高速旋转,旋转的涡轮通过主轴带动结构上完全隔绝的传动箱内一系列的减速传动使喷嘴缓慢旋转,而且通过传动箱内有关参数的选择来调节喷嘴旋转的速度,是从喷嘴喷出的射流也随之缓慢旋转,射流可打击到油罐底周向任一位置的油泥,实现彻底清除油泥,不留死角的功能。 可见,旋转喷射器中减速箱是工业油罐底油泥旋转喷射混合系统中重要的一部分。高速旋转的涡轮带动喷水嘴低速的转动,中间需要一个传动比很大的减速器连接。 1.2行星齿轮减速器研究现状及发展动态 行星齿轮传动与普通定州齿轮传动相比较,具有质量小,体积小,传动比大,承载能力大以及传动平稳和传动效率高等优点,这些已经被我过越来越多的机械工程技术人员所了解和重视。由于在各种类型的行星齿轮传动种均有效地利用了功率分流性和输入,输出地同轴性以及合理的采用了内啮合,才使得其具有了上述的许多独特的优点。行星齿轮传动不仅适用于高速,大功率而且可用于低速,大转矩的机械传动装置上。它可以用作减速,增速和变速传动,运动的合成和分解,以及其特殊的应用中:

(完整word版)行星齿轮减速器设计

1引言 行星齿轮传动在我国已有了许多年的发展史,很早就有了应用。然而,自20 世纪60年代以来,我国才开始对行星齿轮传动进行了较深入、系统的研究和试制工作。无论是在设计理论方面,还是在试制和应用实践方面,均取得了较大的成就, 并获得了许多的研究成果。近20 多年来,尤其是我国改革开放以来,随着我国科学技术水平的进步和发展,我国已从世界上许多工业发达国家引进了大量先进的机械设备和技术,经过我国机械科技人员不断积极的吸收和消化,与时俱进,开拓创新地努力奋进,使我国的行星传动技术有了迅速的发展[1]。 2设计背景 试为某水泥机械装置设计所需配用的行星齿轮减速器,已知该行星齿轮减速器的要求输入功率为p1740KW ,输入转速n1 1000rpm , 传动比为i p 35.5, 允许传动比偏差iP0.1, 每天要求工作16小时,要求寿命为2 年;且要求该行星齿轮减速器传动结构紧凑,外廓尺寸较小和传动效率高。 3设计计算 3.1选取行星齿轮减速器的传动类型和传动简图 根据上述设计要求可知,该行星齿轮减速器传递功率高、传动比较大、工作环境恶劣等特点。故采用双级行星齿轮传动。2X-A 型结构简单,制造方便,适用于任何工况下的大小功率的传动。选用由两个2X-A 型行星齿轮传动串联而成的双级行星齿轮减速器较为合理,名义传动比可分为i p1 7.1, i p2 5进行传动。传动简图如图1所示:

图1 3.2 配齿计算 根据 2X-A 型行星齿轮传动比 i p 的值和按其配齿计算公式,可得第一级传动的内 齿轮 b1, 行星齿轮 c1 的齿数。现考虑到该行星齿轮传动的外廓尺寸,故选取第一级中 心齿轮 a1数为 17 和行星齿轮数为 np 3 。根据内齿轮 z b1 i p1 1 z a1 zb1 7.1 1 17 103.7 103 对内齿轮齿数进行圆整后,此时实际的 P 值与给定的 P 值稍有变化,但是必须控 制在其传动比误差范围内。实际传动比为 i = 1+ za 1 =7.0588 zb 1 其传动比误差 i = ip i = 7.1 7.0588 =5℅ ip 7.1 根据同心条件可求得行星齿轮 c1 的齿数为 所求得的 ZC1适用于非变位或高度变位的行星齿轮传动。再考虑到其安装条件为: 第二级传动比 i p2为 5,选择中心齿轮数为 23 和行星齿轮数目为 3,根据内齿轮 zb1 z c1 z b1 z a1 2 43 za1 zb1 2 C = 40 整数

顶管工程施工方案.doc

顶管工程施工组织设计 工程概况 ×××路位于×××。道路红线宽度为100米,为机非分流的城市快速路。污水管位于道路中心线南侧15.5米,管径为φ1200,平均埋深为6.5~7.0米。顶管工程分二段,第一段从21#井开始,穿越×××向东,在35#井处向南折入泵站至泵站进水闸门井,长度约632米;第二段从51#井开始至52#井结束,主要是穿越×××,长度为120米。 顶管工程工作量:752米管道顶进(φ1200)、6只顶管沉井、2只顶管工作坑。 第一章 沉井施工 沉井施工程序: 基坑测量放样→基坑开挖→刃脚垫层施工→立井筒内模和支架→钢筋绑扎→立外模和支架→浇捣混凝土→养护及拆模→封砌预留孔→井点安装及降水→凿除垫层、挖土下沉→沉降观察→铺设碎石及混凝土垫层→绑扎底板钢筋、浇捣底板混凝土→混凝土养护→素土回填。 第一节 基坑测量放样 根据沉井设计图纸和工程地质报告所揭示的地质情况,沉井基坑开挖深度取2 米,沉井刃脚外侧面至基坑边的工作距离取2米,基坑边坡采用1:1。整平场地后,根据沉井的中心座标定出沉井中心桩、纵横轴线控制桩及基坑开挖边线。施工放样结束后,须经监理工程师复核准确无误后方可开工。 工作井、接收井基坑布置示意见附图。

第二节 基坑开挖 经监理工程师认可的基坑开挖边线确定后,即可进行挖土工序的施工。挖土采用1米3的单斗挖掘机,并与人工配合操作。基坑底面的浮泥应清除干净并保持平整和干燥,在底部四周设置排水沟与集水井相通,集水井内汇集的雨水及地下水及时用水泵抽除,防止积水而影响刃脚垫层的施工。 第三节 刃脚垫层施工 刃脚垫层采用砂垫层和混凝土垫层共同受力。 1.3.1砂垫层厚度的确定 砂垫层厚度H可采用如下计算公式计算: N/B+γ H≤[σ] 砂 根据计算结果,无论是工作井还是接收井,砂垫层厚度H均为 60(厘米)。 砂垫层采用加水分层夯实的办法施工,夯实工具为平板式振捣器。 1.3.2混凝土垫层厚度的确定 混凝土垫层厚度可按下式计算公式计算: h=(G /R-b)/2 根据计算结果,混凝土垫层厚度h为10~15厘米(工作井为15厘米,接收井为10厘米)。 混凝土垫层表面应用水平仪进行校平,使之表面保持在同一水平面上。 第四节 立井筒内模和支架 由于顶管沉井高度达8米左右,因此,井身混凝土分三节浇捣,内模同样分三节按装。井筒模板采用组合钢模与局部木模互相搭配,以保证内模的密封性。 刃脚踏脚部分的内模采用砖砌结构,宽度与刃脚同宽。井身内模支架采用空心钢

NGW型行星齿轮减速器——行星轮的设计 (1).

目录 一.绪论 (3) 1.引言 (3) 2.本文的主要内容 (3) 二.拟定传动方案及相关参数 (4) 1.机构简图的确定 (4) 2.齿形与精度 (4) 3.齿轮材料及其性能 (5) 三.设计计算 (5) 1.配齿数 (5) 2.初步计算齿轮主要参数 (6) (1)按齿面接触强度计算太阳轮分度圆直径 (6) (2)按弯曲强度初算模数 (7) 3.几何尺寸计算 (8) 4.重合度计算 (9) 5.啮合效率计算 (10) 四.行星轮的的强度计算及强度校核 (11) 1.强度计算 (11) 2.疲劳强度校核 (15) 1.外啮合 (15) 2.内啮合 (19) 3.安全系数校核 (20)

五.零件图及装配图 (24) 六.参考文献 (25)

一.绪论 1.引言 渐开线行星齿轮减速器是一种至少有一个齿轮绕着位置固定的几何轴线作圆周运动的齿轮传动,这种传动通常用内啮合且多采用几个行星轮同时传递载荷,以使功率分流。渐开线行星齿轮传动具有以下优点:传动比范围大、结构紧凑、体积和质量小、效率普遍较高、噪音低以及运转平稳等,因此被广泛应用于起重、冶金、工程机械、运输、航空、机床、电工机械以及国防工业等部门作为减速、变速或增速齿轮传动装置。 渐开线行星齿轮减速器所用的行星齿轮传动类型很多,按传动机构中齿轮的啮合方式分为:NGW、NW、NN、NGWN、ZU飞VGW、W.W等,其中的字母表示:N—内啮合,W—外啮合,G—内外啮合公用行星齿轮,ZU—锥齿轮。 NGW型行星齿轮传动机构的主要特点有: 重量轻、体积小。在相同条件下比硬齿面渐开线圆柱齿轮减速机重量减速轻1/2以上,体积缩小1/2—1/3; 传动效率高; 传动功率范围大,可由小于1千瓦到上万千瓦,且功率越大优点越突出,经济效益越高; 装配型式多样,适用性广,运转平稳,噪音小; 外齿轮为6级精度,内齿轮为7级精度,使用寿命一般均在十年以上。 因此NGW型渐开线行星齿轮传动已成为传动中应用最多、传递功率最大的一种行星齿轮传动。 2.本文的主要内容 NGW型行星齿轮传动机构的传动原理:当高速轴由电动机驱动时,带动太阳轮回转,再带动行星轮转动,由于内齿圈固定不动,便驱动行星架作输出运动,行星轮在行星架上既作自转又作公转,以此同样的结构组成二级、三级或多级传动。NGW型行星齿轮传动机构主要由太阳轮、行星轮、内齿圈及行星架所组成,

行星齿轮减速机

行星齿轮减速机

2K-H型双极(负号机构)行星齿轮减速器设计 作者朱万胜 指导教师 左家圣 摘要: 本文完成了对一个2K-H型双级负号机构(NW型)的行星齿轮减速器的结构设计和传动设计。此减速器的传动比是15,而且,它具有体积小、重量轻、结构紧凑、外阔尺寸小及传动功率范围大等优点。首先简要介绍了课题的背景以及对齿轮减速器的概述,减速器是一种动力传达机构,利用齿轮的速度转换器,将马达的回转数减速到所要的回转数,并得到较大转矩的机构。然后根据原始数据及给定的系统传动方案图计算其传动效率 并选择电动机的功效,再然后就是对减速器的核心部分行星齿轮的设计,包括其各个齿轮的齿数、几何参数和配齿计算,最后根据强度理论校核齿轮的强度。然后对各齿轮进行受力分析并进行计算,然后设计计算输出轴输入轴并进行对其强度校核。最后在所有理论尺寸都算出来后绘制其总装配图。

关键字:减速器、行星齿轮、 NW型行星传动2K-H bipolar (negative body) design of planetary gear reducer Abstract: The completion of a two-stage negative bodies (NW-type) structure of the planetary gear reducer design and transmission design. This gear transmission ratio is 15, but it also has a small size, light weight, compact structure, small size and wide outside the scope of the advantages of large transmission power. Subjects were briefly introduced the background and an overview of the gear reducer, speed reducer is a dynamic communication agencies, using the gear, the speed converter, the motor's rotational speed decelerated to the desired rotational speed and get more torque institutions. Then the original data and drive a given system to calculate the transmission efficiency of the program graph and select the motor effect, and then that is a core part of the planetary gear reducer design, including all the gear teeth, with tooth geometry parameters and calculated Finally, according to the intensity of strength theory checking gear. Then the force analysis of each gear and calculated, and then design calculations and the input shaft and output shaft to check its strength. Finally, all theories are calculated size of the total assembly drawing after drawing. Keywords: reducer, planetary gear, NW planetary transmission 目录

泥水平衡顶管施工组织设计(仅供参考!)

泥水平衡顶管施工组织设计(仅供参考!)泥水平衡顶管施工组织设计(仅供参考!) 目录 一.工程概况 二.顶管方案 1、机头选型 2、平面布置 3、出土方案 4、顶力计算、中继间及中继间布置 5、出洞方案 6、测量方法 7、通风设置 8、顶管动力、照明配套 9、管接口质量控制 10、防止旋转措施 11、设备保养 12、顶进结束后机头处理 13、浅覆土安全技术 14、注浆减磨 五、安全 六、质量控制 七、进度计划

一、工程概况 本工程为顶管工程。采用Φ800顶管,总长为m,管中心标高-6.20~-27.72m。土质由标高为m的土到m的土。 二、顶管方案 1、机头选型 本工程由于一次顶进距离较长,为确保工程质量万无一失,确保绝对工程安全,我公司根据以住施工经验,决定采用日本ISEKI公司生产的UNCLEMOLE 型TCZ600具有破碎功能的泥水平衡顶管掘进机。 本掘进机的优点是: 特点: A、顶管机、主千斤顶、泥水循环系统和泥水分离装置(DESANDMAN)成套化。 B、带锥形破碎机的条幅刀盘,能破碎小于外径30%,一轴强度196Mpa(2000 kg/cm2)的砾石。 C、该机能适用各种土壤条件,如粘质土、砂土、砂砾混合卵石土和软岩上。 D、使用安装在轨道上的主顶油缸。一次顶进长度超过100m。 E、该机由一人在地面遥控操纵即可。

F、可在控制台上进行电视监测及方向控制,精度高。带有ISEKI 专利的RSG双光靶方向控制系统,有经验的操作人员可以将方向误差控制在10mm之内! 此机型在现今使用较广,我们有着成功施工经验、技术成熟、可靠,对土层扰动少的特点。偏心破碎泥水平衡顶管掘进机是根据含水量较高的沙砾土而专门设计的。因此特别适应本工地基顶管的施工。 2、平面布置、井内布置及管内布置 2.1在工作井范围内实行全封闭隔离施工并布置以下必要的设施,地面指挥监测中心、办公室、仓库、配电间、冷作间等。布局要合理,环境整洁、卫生,并有专职人员进行管理。 2.2现场布置采用8t汽吊,设备进场时,采用16t汽车吊车。 2.3管道顶进时,起吊设备采用跨距为14m的龙门行车(起重能力为30t),行车导轨与顶管中心线应平行铺设,并与管中心左右对称。 2.4井内布置 工作井井内布置主要是后靠背、导轨、主顶油缸、油泵动力站、钢制扶梯等。 3、出土方案 泥水平衡式顶管的出土采用全自动的泥水输送方式,被挖掘的土通过在机舱内的搅拌和泥水形成泥浆,然后由泥浆泵抽出,高速排土。 在沉井上部砌2只沉淀池。沉淀的余土外运需按文明施工要求和

相关文档
最新文档