十一辊中板矫正机主传动设计

十一辊中板矫正机主传动设计
十一辊中板矫正机主传动设计

十一辊中板矫正机设计

摘要

随着生产技术的进步和现代化改造的实施,中厚板生产向着高效化、高质量的方向发展,对厚度在4~60 mm的常规产品,各生产单位均采用了线上的多辊矫正设备,为了满足日益提高的板形、板面质量要求,多辊矫正设备得到了进一步的发展。因此,我对矫正机进行相应的设计,以降低成本,提高效率、产量和质量来满足生产及客户的要求。本篇论文中,首先论述了矫正机的背景与发展状况,以及未来的发展趋势,并根据当前实际情况,考虑经济性和效率性等相关因素,对相关设备做了合理选用;然后对本次设计的中厚板矫正机进行了相应的设计。该矫正机用于中厚板生产线,为四重十一辊矫正,采用机械压下,机架为预应力机架。在设计计算中,首先,确定了主传动系统的结构参数,并根据矫正力、矫正力矩和主电机功率及工作特点选择主传动系统的电机类型和型号;其次,确定了压下系统的结构参数,并根据驱动压下螺丝的驱动力矩和电机功率选择压下电机的类型和型号;再次,对压下系统蜗轮蜗杆减速机进行了设计与校核;再次,对工作辊的强度和轴承的寿命进行了相应的校核;最后,讨论了润滑方式以及设备环保经济可行性分析等内容。

关键词:中板矫正机;主传动系统;压下系统;矫正辊

The Design of the Eleven Roll Plate Straightening

Machine

Abstract

With the development of technology and the implement of Modernization, production of plate straightening moves towards efficient and high quality direction. For thikness of 4~60mm conventional Products, every production department adopts Multi-roll correction equipment. In order to meet the requirements of ever-inceasing plate types and quality of boards, the multi-roll correction equipment gets improved. Now we are studying and designing the straightening machine to reduce costs and improve efficiency, output and quality, meeting the requirements of production and our customers.In this thesis. Background, deveopment status and trend of straightening machine were firstly discussed and according to the present situation, considering economy and efficiency-related factors, I select some related equipment reasonablely and then have a corresponding design of the plate straightening machine. This straightening machine is used in plate straightening machine production line, choosing reversible straightening for 11 four-roll and with mechanical pressure and prestressed rack. In the design of calculating, firstly make sure the main drive system and according to the straightening force, correct torque, the main motor power and work characteristics, we choose types and models for the main drive system; then plan and check the reduction worm reducer system; next check the intensity of work roll and life-span of bearing; lastly, make sure ways of lubrication as well as economic feasibility analysis of equipment.

Key words: Plate straightening machine;Main drive system;Pressure system;Straightening roller

目录

摘要 ............................................................................................................................................................... I Abstract...................................................................................................................................................... II 1绪论 (1)

1.1 矫正机的发展趋势 (1)

1.2 矫正机的主要产品、技术性能与工艺参数 (2)

1.3 矫正机的类型、特点、结构组成 (2)

1.4 矫直机的工作原理 (5)

2总体方案设计 (6)

2.1 矫正方案 (6)

2.1.1小变形矫直方案 (6)

2.1.2大变形矫直方案 (6)

2.2 矫正工艺 (6)

2.3 矫正机的主传动系统 (7)

2.3.1 机座形式 (7)

2.3.2 主传动装置组成和作用 (8)

2.4 压下机构组成和作用 (9)

2.4.1蜗轮蜗杆减速机 (11)

2.4.2压下螺丝和压下螺母 (11)

2.4.3离合器 (11)

3 十一辊中板矫正机力能参数计算 (12)

3.1 原始数据 (12)

3.2 辊式矫正机基本参数确定 (12)

3.2.1 辊径与辊距的确定 (12)

3.2.2 辊身长度的确定 (14)

3.2.3 矫正辊辊颈尺寸的确定 (14)

3.2.4 矫正辊传动端的尺寸 (15)

3.3 辊式矫正机力能参数的计算 (15)

3.3.1 作用在矫正辊上的压力(矫正力) (15)

3.3.2 作用在矫正辊上的矫正扭矩 (19)

3.4 辊式矫正机主电机的选择 (20)

3.4.1 矫正功率的确定 (20)

3.4.2 选择电动机 (21)

4主要零件的强度校核 (22)

4.1 矫直辊强度校核 (22)

4.1.1 第三辊的传动力矩 (22)

4.1.2 第三辊上弯曲力矩和支反力的确定 (23)

4.1.3 第三矫正辊强度校核 (28)

4.2 工作辊轴承校核 (29)

5低速级齿轮设计 (31)

6轴的设计与校核 (37)

6.1 轴的结构设计 (37)

6.2 轴的强度校核 (38)

6.3 精确校核轴的疲劳强度 (39)

7 润滑方式的选择 (41)

7.1 辊系的润滑 (41)

7.2 压下蜗轮蜗杆的润滑 (41)

7.2.1 润滑油的选择 (42)

7.2.2 润滑油给油方法及油量 (42)

7.3压下螺丝螺母的润滑 (42)

7.4 齿轮减速器中齿轮的润滑 (43)

8 设备的环保、可靠性和经济可行性分析 (44)

8.1 设备的环保性分析 (44)

8.2设备的可靠性 (44)

8.3 设备的经济性分析 (46)

结论 (48)

致谢 (49)

参考文献 (50)

1绪论

1.1矫正机的发展趋势

中厚板生产线在线的辊式矫直机以热矫直机数量最多,总的趋势是一发展大矫直力的强力四重式矫直机为主,该系列设备总体趋势是用数字控制系统精确调整上矫直辊位置,并借助自动测厚仪自动控制矫直辊负荷和在线过程计算机进行全自动操作;高刚度矫直机机座,可满足大矫直力条件下的使用,变形小,精度高;为了提高矫直效果,矫直机出口处的上或下辊可以单独调整,且在矫直过程也可以进行调整;上矫直辊可以横向倾动,能分别调整各段支撑辊,以消除钢板的单侧或者双侧边滚;下矫直辊可以沿矫直方向倾斜以调整矫直辊负荷;装备液压安全装置和快速松开装置以便在设备过载、卡钢和停电时快速松开矫直辊;上、下矫直辊和支撑辊分别装在各自的框架上,框架及其辊子可以侧向移动进行快速换辊,实现辊系的线外整备;矫直机入口处装有水或压力空气,以消除残留的氧化铁皮;在矫直辊入口处安装一弯头压直机,消除头部钢板的上翘;为了避免矫直辊辊面的潜伤,辊面应具有一定的硬度,对四重辊式矫直机必须保证工作辊和支撑辊的辊面硬度有一个差值;在矫直机结构设计方面,正在向精密化,大型化发展,并正在加速结构更新的进度,老设备将逐步被淘汰和改造。

就我国的工业发展水平来看,常规的矫直设备尚需添补和改造,不过应该尽量采用新的高效能的常规设备,如新的拉弯矫直设备,新的3-1-3矫直机,大型二辊矫直机、滚动模转毂矫直机及变辊距矫直机等;新的矫直技术也需积极开发,如振动矫直、液压拉弯矫直、高精度压力矫直,矫直过程的计算机控制、复合辊形的矫直技术以及复合转毂矫直技术等;在矫直理论研究方面应该走出自己的道路,如材料强化影响的计算方法、变形能的测定及计算方法、等曲率朔性区长度及深度对矫直质量的影响,在矫直过程中克服残留应力影响的方法,斜辊的受力测定与计算方法、热处理轧材的矫直方法以及双向旋转矫直法等。所有这些已经遇到的和想到的问题,即使不能概括全面,只要同行们从实际出发,发现问题,抓住不放,搞出结果,将来一定会集腋成裘,形成我国的矫直理论体系。并让它更好地为我国社会主义四化建设服务。

1.2 矫正机的主要产品、技术性能与工艺参数

中板矫正机生产的主要产品除了一些常见产品外,主要还生产建筑、造船、汽车、石油、化工、国防、矿山等专用钢材。

该矫直机的技术参数主要有:工作方式,压下方式,可倾斜调整,传动矫正辊数,矫正辊直径,矫正辊辊矩,矫正辊辊身长度,矫正辊数量,中间辊辊数,中问辊直径,中间辊辊矩,支承辊辊径,支承辊排数,矫正辊辊面标高,上辊系的倾动,向倾斜调整,矫正辊传动方式,压下平衡机构,采用弹簧平衡等。

工艺要求:针对矫正机的要求提高,矫直机的主电机要由以前的一台电机改为两台,而减速机内部还是3根轴,中间有一共用轴,2台电机通过它连接起来,保证了两台电机的速度始终达到一致。在速度一致的情况下,还要两台电机达到转矩分配,即要求两台电机转矩一致,这就需要两台电机实现主从控制主从应用中,主传动是典型的速度控制,从传动是速度或转矩控制。

1.3 矫正机的类型、特点、结构组成

轧件在轧制、冷却和运输过程中,由于各种因素的影响,往往产生形状缺陷。例如钢轨、型钢和钢管经常出现弧形弯曲;某些型钢(如工字钢等)的断面会产生翼缘内并、外扩和扭转;板材和带材则会产生纵向弯曲(波浪形)、横向弯曲、边缘浪形和中间瓢曲以及镰刀弯等。为了消除这些缺陷,轧件需要在矫正机上进行矫正。

根据结构特点,矫正机可以分为压力矫正机、辊式矫正机、管棒材矫正机、拉伸矫正机(单张板材矫正机和连续式拉伸矫正机)和拉伸弯曲矫正机等几种类型。

(1)压力矫正机 轧件在活动压头和两个固定支点间,利用一次反弯的方法进行矫正。这种矫正机用来矫正大型钢梁、钢轨和大直径(大于300~200mm )钢管或用作辊式矫正机的补充矫正。压力矫正机的主要缺点是生产率低且操作较繁重。压力矫正机有立式和卧式两种。

(2)板、带材和型钢用的辊式矫正机 在辊式矫正机上轧件多次通过交错排列的转动着的辊子,利用多次反复弯曲而得到矫正。辊式矫正机生产率高且易于实现机械化,在型钢车间和板带材车间获得广泛应用。

板、带材和型钢用的辊式矫正机的类型很多,如上辊单独调整辊式矫正机、上辊整

体平行调整辊式矫正机、上辊整体倾斜调整辊式矫正机、上辊局部倾斜调整辊式矫正机等。上辊单独调整辊式矫正机的上排每个工作辊可单独调整,这种调整方式较灵活,但由于结构配置上的原因,它主要用于辊数较少、辊距较大的型钢矫正机。上辊整体平行调整辊式矫正机的上工作辊可整排平行调整。通常,出、入口的两个上工作辊(可称导向辊)做成可以单独调整的,以便于轧件的导入和改善矫正质量。这种矫正机广泛用来矫正12

4mm以

~

调整,这种调整方式使轧件的弯曲变形逐渐减小,符合轧件矫正时的变形特点。它广泛用来矫正4mm以下的薄板。上辊局部倾斜调整辊式矫正机的上排工作辊可以局部倾斜调整(也称翼倾调整)的矫正机。这种调整方式可增加轧件大变形弯曲的次数,用来矫正薄板。

(3)管材、棒材矫正机管、棒材矫正的原理也是利用多次反复弯曲轧件使轧件矫正。例如斜辊式矫正机、“313“型辊式矫正机、偏心轴式矫正机等。斜辊式矫正机的工作辊具有类似双曲线的空间曲线的形状。两排工作辊轴线相互交叉。管棒材在矫正时边旋转边前进,从而获得对轴线对称的形状。“313“型辊式矫正机的设备重量轻,易于调整和维修,用于矫正管、棒材时,效果很好。偏心轴式矫正机,用来矫正薄壁管。

(4)拉伸矫正机也称张力矫正机,主要用于矫正厚度小于6.0mm的薄钢板和有色金属板材。通常,辊式板带材矫正机只能有效地矫正轧件的纵向和横向弯曲(即二维形状缺陷)。至于板带材的中间瓢曲或边缘浪形(三维形状缺陷)则是由于板材沿长度方向各纤维变形量不等造成的。为了矫正这种缺陷,需要使轧件产生适当的塑性延伸。在普通辊式矫正机上,虽能使这种缺陷有所改善,但矫正效果不理想。这时需采用拉伸矫正方法。拉伸矫正的主要特点是对轧件施加超过材料屈服极限的张力,使之产生弹塑性变形,从而将轧件矫平。例如矫正单张板材的钳式拉伸矫正机和连续拉伸机组。钳式拉伸矫正机生产率低且夹钳夹住的部分要切除,造成的金属损耗较大;连续拉伸机组由两个张力辊组组成,拉伸所需的张力由张力辊对带材的摩擦力产生,这种矫正机主要用于有色金属。

(5)拉伸弯曲矫正机组随着工业的发展,对高强度极薄带材的需要量日益增加,同时,对板材平直度的要求也逐年提高。辊式矫正机由于其结构和矫正工艺的局限性,几乎无法矫正高强度合金钢带材的三维形状缺陷(边缘浪形和中间瓢曲等)。矫正带材

的三维形状缺陷时,应使带材产生塑性延伸。若用连续拉伸机组矫正合金钢带材,会出现下列问题:1)连续拉伸矫正时,需要使带材产生超过材料屈服限的应力,对较厚较宽的合金钢带材,必须施加很大的张力,这要消耗很大的能量;2)矫正脆性材料(屈服限和强度限很接近的材料)时,容易断带,这会造成设备事故。

为解决上述问题,研制了拉伸弯曲矫正机组。

拉伸弯曲矫正机组有很多种布置型式,但最基本的型式是在两组张力辊间装有分开布置的、数量较少的弯曲辊和矫正辊。在张力作用下的带材,经过弯曲辊剧烈弯曲时,产生弹朔性延伸,三维形状缺陷被消除,然后再经过矫平辊将残余曲率矫平。拉伸弯曲矫正工艺的矫正原理与拉伸矫正机及辊式矫正机的矫正原理都不相同,它在拉伸带材时所使用的张应力仅是材料屈服限的110~1,这就克服了连续拉伸机组矫正工艺的缺点。

拉伸弯曲矫正机组有下列特点:1)退火后的带钢经过拉伸弯曲矫正后,机械性能有明显改善,某些性能的改善超过冷平整的效果。2)能消除带材的瓢曲、边缘浪形和镰刀弯等三维形状缺陷。3)弯曲辊组和矫平辊组均是从动辊,没有驱动装置,因而可与带材同步运动,不会因打滑而擦伤带材表面。4)与辊式矫正机相比,其结构简单,重量轻,维修方便,操作容易。5)适用于几乎所有的带材加工作业线和各种金属材料(从屈服限为0.5%~1.5%的铁镍合金到铝合金和黄铜等。)在拉伸弯曲矫正机组上矫正的带材最大厚度已达到10mm,最大宽度达3000mm,矫正速度700mm,最高可达

~

3.0mm或从6

1mm的带材可在

~

1000m/min。6)矫正机组的矫正厚度范围广,例如从3

同一设备中矫正。7)可在酸洗机组中作为机械破鳞装置。采用0.5%~1.5%的延伸率,对氧化铁皮结合牢固的带材,也可取得良好破鳞效果,从而能降低酸液消耗并显著提高机组速度。8)用于镀锌机组,可使锌花更细致,镀层更均匀。9)与张力矫正机相比,拉伸弯曲机组中带材的张应力小得多,不会断带,也不影响带材质量。但是,应该指出,拉伸弯曲矫正机只能矫正连续带材,不能矫正单张板材,因而尚无法代替矫平单张钢板的夹钳式拉伸矫正机。

目前,拉伸弯曲矫正机组已在冷轧带材的连续生产作业线中得到广泛的应用。

1.4 矫直机的工作原理

在轧制产品中,除一些大断面轧件具有单值原始曲率的形状缺陷外,多数轧件上的形状缺陷其原始曲率的数值和方向均是不定的。对这类轧件的矫正,大多是先采用交变弯曲变形以消除其原始曲率的不均匀度,再逐渐将轧件矫平。

轧件上不同方向、不同数值的原始曲率,经过同一个反弯曲率的弹塑性反弯后,其残余曲率有趋向一致的特性。这是由轧件曲率方程的非线性变化规律决定的,可称之为残余曲率差值的收敛特性。有加工硬化材料的轧件,其残余曲率差值也具有这种收敛特性,只是收敛的幅度要小些。正是轧件这一特性,使得轧件经多次交变的弹塑性弯曲后,其残余曲率逐渐趋向一致,形成单值原始曲率,进而矫平。辊式矫正机就是利用这一原理矫平轧件的。

2总体方案设计

2.1矫正方案

按照每个矫直辊使钢板产生的变形程度和最终消除残余曲率的方法,矫直方案可分为小变形矫正方案、大变形矫正方案。

2.1.1 小变形矫直方案

该方案的矫直原则是:矫直反弯的压下量用于消除钢板在前一辊上产生的最大残余曲率(即进入该辊的最大原始曲率)使之变平。它的主要优点是,轧件的总变形曲率小,矫正轧件时所需要的能量也也少。

2.1.2 大变形矫直方案

这是使具有不同原始曲率的轧件经过几次剧烈的反弯以消除其原始曲率的不均匀度,形成单值曲率,然后按照矫正单值曲率轧件的矫正方法加以矫正的方案。采用大变形矫正方案,可用较少的辊子获得较好的矫正质量。但若过分的加大轧件的变形程度。则会增加轧件内部的残余应力,影响产品的质量,增大矫正机的能量消耗。

综上所述本次设计采用小变形矫正方案,因主要是单值曲率的板材,且所需功率小,残余应力小,故采用小变形矫正方案。

2.2 矫正工艺

矫正机的矫正工艺与矫正机的类型和上矫直辊的调整方式有密切的关系,以下是上排工作辊的调整方式的四种矫正工艺。

1.上排工作辊单独调整的矫正机:在这种矫正机上,第2、3辊按照大变形矫正法确定其压下量,将轧件剧烈弯曲,第四辊的压下量适当控制,使残余应力值减小,后面各辊按小变形矫正法调整压下量,将轧件逐渐矫平,一般适合型钢矫正。

2.上排工作辊整体平行调整的矫直机:这种矫直机除第1和最后一个辊子外,其余各辊的压下量是相同的,使轧件多次反复剧烈弯曲,形成单值残余曲率,最后一个辊能够单

独调整,将此处的单值残余曲率矫平。第1辊适当减小压下量,以便于轧件的咬入。采用这种调整方式的一般是7-11辊钢板矫正机,用以矫正中厚板。

3.上排工作辊整体倾斜调整的矫直机:这种矫直机轧件在入口端的第二、第三辊上的反弯曲率最大,产生大变形。迅速消除轧件的原始曲率不均匀度,以后各辊的压下量按直线关系递减。在第n-1辊处,轧件的反弯曲率最小,只产生弹性弯曲变形。这种工作辊调整方式符合矫直过程的变形特点。采用这种调整方式的一般是7—13辊的薄板矫直机和17-29辊的极薄带材矫直机,后者带有工作辊挠度调整装置,以矫直板材的瓢曲以及单、双边波浪等二、三维形状缺陷。

4.上排工作辊局部(单侧或双侧)倾斜调整的矫直机:这种矫直机出口处或入口与出口处的局部上排辊可倾斜调整,上排其余各辊整体平行调整。这种调整方式集中了平行调整与倾斜调整的优点。对于双侧局部倾斜调整的矫直机,由于入口端局部倾斜调整便于轧件的咬入 因而可加大平行调整部分的辊子压下量,适合于矫直薄带材或薄板材。本次设计采用上排工作辊整体倾斜调整的矫正机。

2.3矫正机的主传动系统

2.3.1 机座形式

辊式钢板矫直机工作机座可分为台架式和牌坊式两大类。

中厚板矫正机大多是台架式的。所以本次设计选择台架式机架。这种矫正机机座由上台架、下台架和立柱三个主要部分组成。压下螺丝(或螺母)转动,可以调整上、下台架的相互位置,从而也调整了矫正辊的压下量。它的上台架可以整体平行压下,本次设计其压下机构选择集体驱动的。本次设计的矫直机上排辊是整体平行调整的,上台架由一台电动机通过减速分配器同时带动四个两级蜗轮蜗杆减速机同时转动四个压下螺母。

2.3.2 主传动装置组成和作用

主传动装置由主电机、联轴器、联合减速机及万向接轴等组成。传动系统由两台直流电机通过联轴器一联合减速器一万向接轴一工作辊装置使设备转动运行。其主传动结构简图如图:

1 2 3 4

1-工作机座2-万向接轴3-联合减速器4-电机

图2.1主传动示意图

1.电机:电机分为高速电机和低速电机两种。

(1)高速电机:

高速电机通常是指转速超过10000r/min的电机。它们具有以下优点:一是由于转速高,所以电机功率密度高,而体积远小于功率普通的电机,可以有效的节约材料。二是可与原动机相连,取消了传统的减速机构,传动效率高,噪音小。三是由于高速电机转动惯量小,所以动态响应快。

(2)低速电机

一种旋转式机器,它将电能转变为机械能,它主要包括一个用以产生磁场的电磁铁绕组或分布的定子绕组和一个旋转电枢或转子,其导线中有电流通过并受磁场的作用而使转动,这些机器中有些类型可作电动机用,也可作发电机用。

因为低速电机的成本比较高,为了节约成本,主传动系统和压下系统均采用高速电机,提高经济效益。

2.减速机:在矫直机主传动系统中,减速机除有减速作用外,还有均衡分配传动扭矩的作用,因此也称减速分配器。它有三种主要形式 圆柱齿轮型,圆柱圆锥齿轮型和蜗轮型。这三种形式中,每种又可分为单支、双支、三支和四支等结构。

圆柱齿轮减速机的制造和安装较为简单,因此在矫正机主传动系统中获得广泛应用。在制造能力许可时,也可使用联合减速机。将减速机与齿轮座组成一个整体,可减少传动件,且结构紧凑,能减小机列总长度。在辊数大于7的矫正机上,因为传递的总扭矩大,齿轮座的齿轮尺寸也大,使齿轮座出轴的间距很大与矫正辊间距相适应。因此,在辊式钢板矫直机上大多使用多支的减速分配器,这样可以使齿轮座的载荷均匀。

3.万向接轴:由于齿轮座中心距大于矫正机的总中心距,因此,齿轮座出轴与矫正辊采用万向联轴节连接。由于齿轮座中心距大于矫正机的总中心距,因此,齿轮座出轴与矫正辊采用万向联轴节连接。矫直机常用的万向联轴节除了一般的滑块式叉头扁头型外,在辊径小于1200mm时,也采用球形万向联轴节,在小辊距矫直机上,也可以采用简易型刚球万向接轴,这种联轴节采用标准刚球,它只起定心作用,矫正扭矩是靠两叉头的侧面直接接触来传递的。这种联轴节结构简单,易于制造。

4.联轴器:联轴器的作用主要用来连接轴与轴(或轴与其它回转零件),以传递运动和转矩。联轴器的原理是在机器工作时,联轴器始终把两个轴连接在一起,只有在机器停止运行时,通过拆卸方法才能使两轴分离。联轴器包括电动机联轴器和主联轴器。电动机联轴器用来连接电动机与减速机的传动轴,而主联轴节则用来连接减速机与齿轮座的传动轴,因为此次设计中是将齿轮座与减速机设计为一体的联合减速机,所以不需要主联轴器。目前,应用最广泛的联轴器是齿轮联轴器,所以电动机联轴器选用齿轮联轴器。

2.4压下机构组成和作用

图2.2是十一辊中板矫正机压下系统简图,它的作用是实现对上辊的调整,以控制矫正的辊缝,达到良好的板材质量。常用的是上辊调整装置,由交流变频电机、齿轮减速机、蜗轮蜗杆减速机、压下螺丝和压下螺母、传动侧与被动侧由中间浮动轴联接,浮

动轴端装有电磁离合器等组成。

交流变频电机通过减速机减速,带动4个压下丝杠转动使活动横梁沿机架内侧的滑板上下移动,同步轴采用离合器实现单独调整,可根据板材厚度、宽度、材料及原始曲率调整其开口度大小,压下工作行程-15~+80mm。压下丝杠材质为合金钢,上部为渐开线花键导向,下部是轧钢机用锯齿形螺纹,承受矫正力和实现辊系的上下移动,下端部是球面结构,它可实现矫正辊系的前后倾动功能,同时下部装有起安全保护作用的液压垫,当操作者发生误操作或矫正力过大时,矫正过程中发生卡钢现象时,用以使活动梁及上辊系快速抬起,工作辊的开口度增大,对设备起到保护作用,同时油压传感器用来检测矫正过程中矫正力的大小。

1——电机2——齿轮减速机3——蜗轮蜗杆减速机

4——压下螺丝5——电磁离合器

图 2.2十一辊中板矫正机压下系统

为了避免矫正时的冲击,压下装置中装有液压平衡机构,用以平衡上辊系及活动横

梁的全部重量,消除压下螺母与丝杠之间的间隙。压下过平衡系数为1.2~1.4。压下丝杠顶部装有四个高精度的位移传感器,它可通过PLC通讯系统与压下交流变频电机形成位置闭环控制,实现工作辊缝的精确调整,保证钢板的矫正质量。

2.4.1蜗轮蜗杆减速机

在设计选择压下装置的电动机和减速机配置方案是十分重要的。因为在设计压下机构时,不仅应满足压下的工艺要求,而且还应考虑其他因素,如:电动机,减速机能否布置得开;换辊,检修导卫和处理事故时,吊车吊钩能否进入,设备检修是否方便等。而且,蜗轮蜗杆减速机在外廓尺寸不大的情况下,可以获得大的传动比,工作平稳,噪声较小,但效率较低。它的最主要的特点是:一是在传递中,可以改变90度方向;二是自锁。所以此矫正机的压下系统采用的是蜗轮蜗杆减速机传动。

2.4.2压下螺丝和压下螺母

压下螺丝一般由头部,本体和尾部三个部分组成。头部与上轧辊轴承座接触,承受来自辊颈的压力和上辊平衡装置的过平衡力。为了防止端部在旋转时磨损并使上轧辊轴承具有自动调位能力,我们可以把矫正机压下螺丝的端部做成球面形状,并与球面铜垫接触形成止推轴承。压下螺丝的本体部分带有螺纹,它与压下螺母的内螺纹配合以传递运动和载荷。压下螺丝的尾部是传动端,承受来自电动机的驱动力矩。压下螺母是平整机机座中重量较大的易损零件。我们采用稀油润滑,螺母寿命可以提高1.5~2倍。

2.4.3离合器

离合器工作原理是主动部分和从动部分借接触面间的摩擦作用,或是用液体作为传动介质(液力偶合器),或是用磁力传动(电磁离合器)来传递转矩,使两者之间可以暂时分离,又可逐渐接合,在传动过程中又允许两部分相互转动。离合器主要有机械式、电磁式、液压式、气动式、离心式、超越式、安全式等类型。本矫正机的压下系统采用的是电磁离合器。

3 十一辊中板矫正机力能参数计算

3.1 原始数据

1. 轧件材质:65n M

2. (1) 宽度mm b 2700~1500=

(2)厚度mm h 26~5.4=

(3)矫正速度s m v /6.1~8.0=

(4)压下速度s mm v /4.0=

3.2 辊式矫正机基本参数确定

辊式矫正机的基本参数包括:辊径D 、辊距t 、辊数n 、辊身长度L 和矫正速度v 。

3.2.1 辊径D 与辊距t 的确定

1. 辊距t 的确定

确定辊矩t 时,应该既考虑满足最小厚度轧件的矫正质量要求,又考虑满足矫正最大断面轧件时矫正辊的强度要求。为此,应分别计算最大允许辊距max t 和最小允许辊距min t 。最后确定的辊距t 应是max min t t t <<(尽量取小值)。

(1)最大允许辊距max t 的确定 max t 决定轧件的矫正质量。max t 值过大,轧件难以产生必要的弹塑性弯曲变形。根据文献[]377,1P 得 S E

h t σmin max 35.0= (3.1)

式中:min h ——轧件的最小厚度,mm h 5.4min =

E ——弹性模量,MPa E 5101.2?=

s σ——屈服极限,根据文献[]4查出MPa s 430=σ

将数据代入公式(3.1)得 mm t 67.2197430

101.25.435.05max

=???=

(2)最小允许辊距min t 的确定 辊距越小,对轧件可能产生的反弯曲率越大,矫正质量越高。但t 越小,矫正力P 越大。故最小允许辊距min t 受工作辊扭转强度和辊身表面接触应力限制。根据文献[]378,1P 得 s E h t σm a x

m i n 43.0= (3.2)

式中:max h ——轧件最大厚度, mm h 26max =

E ——弹性模量,MPa E 5101.2?=

s σ——轧件的屈服极限,MPa s 430=σ

将数据代入公式(3.2)得 mm t 07.247430

101.22643.05min =???= 因为max min t t t <<,并且t 尽量取小值所以可取mm t 260=。

2.辊径D 的确定

t

D b = (3.3) 式中:D ——辊径;

t ——辊距,mm t 260=

由文献[1,表11-4]得85.0=b

将数据代入公式(3.3)得

mm bt D 22126085.0=?==

圆整后取mm D 250=。

3.2.2 辊身长度L 的确定

辊身长度L 与轧件最大宽度有关,根据文献[]379,1P 通常

a b L +=m a x (3.4)

当mm b 200max <时,mm a 50=;当mm b 200max >时,mm a 300~100=。由于轧件最大宽度mm b 2700max =;所以a 可取mm 300。

将数据代入公式(3. 4)得

mm L 30003002700=+=

3.2.3 矫正辊辊颈尺寸d 和l 的确定

辊颈直径d 和长度l 与矫正辊轴承型式及工作载荷有关。由于受矫正辊轴承径向尺寸的限制,辊颈直径比辊身直径小得多。因此辊颈与辊身过渡处,往往是矫正辊强度最差的地方。只要条件允许,辊颈直径和辊颈与辊身的过渡圆角r 均应选大些。

根据文献[1,P 81]使用滚动轴承时有

55.0~5.0=D

d 式中: d ——辊颈直径

D ——辊子直径,mm D 250=

将数据代入得

mm mm d 1405.7.1355.0250≈=?=

根据文献[1,P 81]有 0.1~83.0=d

l 考虑到矫正辊传动端的结构尺寸可取mm l 1401400.1=?=。

根据文献[1,P 81]有

12.0~1.0=D

r 式中: r ——过渡圆角

D ——辊子直径

将数据代入得

mm r 252501.0=?=

3.2.4 矫正辊传动端的尺寸

根据文献[1,P 81]确定矫正辊传动端的型式与尺寸

轴头的外径d d )94.0~9.0(1=

式中:d ——辊颈直径

将数据代入得

mm d 6.131~126140)94.0~9.0(1=?= 取mm d 1301=。

3.3 辊式矫正机力能参数的计算

辊式矫正机的力能参数包括作用在矫正辊上的压力(矫正力)、矫正扭矩和矫正机的驱动功率。

3.3.1 作用在矫正辊上的压力(矫正力)

1. 轧件的屈服力矩w M

将轧件弯曲至弹性弯曲最大极限状态时的外力矩,称为屈服力矩,以w M 表示。它是最大弹性弯曲力矩,也是最小弹塑性弯曲力矩。根据文献[]10-11,1式得

W M s w ?=σ (3.5) 式中: s σ——轧件的屈服极限,MPa s 430=σ

W ——断面形状对称轧件的断面系数 5max 21069.16

?==bh W 将以上数据代入公式(3.5)得

mm N M w ??=??=7510267.71069.1430

2. 轧件的塑性弯曲力矩Ms

带式输送机选型设计

目录 1设计方案 (1) 2带式输送机的设计计算 (1) 2.1 已知原始数据及工作条件 (1) 2.2 计算步骤 (2) 2.2.1 带宽的确定: (2) 2.2.2输送带宽度的核算 (5) 2.3 圆周驱动力 (5) 2.3.1 计算公式 (5) 2.3.2 主要阻力计算 (6) 2.3.3 主要特种阻力计算 (8) 2.3.4 附加特种阻力计算 (9) 2.3.5 倾斜阻力计算 (10) 2.4传动功率计算 (10) P)计算 (10) 2.4.1 传动轴功率( A 2.4.2 电动机功率计算 (10) 2.5 输送带张力计算 (11) 2.5.1 输送带不打滑条件校核 (11) 2.5.2 输送带下垂度校核 (12) 2.5.3 各特性点张力计算 (13) 2.6 传动滚筒、改向滚筒合张力计算 (14) 2.6.1 传动滚筒合张力计算 (14) 2.6.2 改向滚筒合张力计算 (16) 2.7 初选滚筒 (17) 2.8 传动滚筒最大扭矩计算 (18) 2.9拉紧力计算 (18) 2.10绳芯输送带强度校核计算 (18) 3技术可行性分析 (18) 4经济可行性分析 (19) 5结论 (20)

带式输送机选型设计 1、设计方案 将现主平硐延伸与一水平皮带下山相连,在二水平皮带下山机头重新布置一条运输联络巷与一水平皮带下山搭接。 平硐、一水平皮带下山采用一条皮带,取消了原二水平皮带运输斜巷、+340煤仓、+347煤仓、+489煤仓。改造后巷道全长1783m,其中平硐+4‰,1111m,下山 12.5°,672米。 1-1皮带改造后示意图 2、带式输送机的设计计算 2.1 已知原始数据及工作条件 带式输送机的设计计算,应具有下列原始数据及工作条件资料 (1)物料的名称和输送能力: (2)物料的性质: 1)粒度大小,最大粒度和粗度组成情况; 2)堆积密度; 3)动堆积角、静堆积角,温度、湿度、粒度和磨损性等。 (3)工作环境、露天、室内、干燥、潮湿和灰尘多少等; (4)卸料方式和卸料装置形式; (5)给料点数目和位置; (6)输送机布置形式和尺寸,即输送机系统(单机或多机)综合布置形式、地形条件和供电情况。输送距离、上运或下运、提升高度、最大倾角等; (7)装置布置形式,是否需要设置制动器。

卧式车床主传动系统设计

《卧式车床主主传动系统设计》课程设计说明书 学院、系:机械工程学院 专业:机械工程及自动化 学生姓名: 班级: 指导教师姓名:姚建明职称:副教授 最终评定成绩: 2015 年12月10日至2016 年01月09日

目录 1普通车床传动系统的设计参数2 参数的拟定 3传动设计 4传动件的估算 5动力的设计 6结构设计及说明 7参考文献 8总结

一、普通车床传动系统的设计参数 1.1普通车床传动系统设计的设计参数: (a )主轴最低转速15主轴最高转速1500 (b )公比φ=1.26; (c )电机功率为7.5KW ; (d )电机转速为1440r/min 。 二、参数的拟定 2.2 电机的选择 已知异步电动机的转速有3000 /min r 、1500/min r 、1000/min r 、750 /min r ,已知额P =7.5KW ,根据《车床设计手册》附录表2选Y132M-4,额定功率7.5kw ,满载转速为1440 min r ,87.0=η。 1min max -== z n N N R ? n Z n R 1-=? 1lg lg += ? n R Z z=11 为了方便计算取z==12 三、传动设计 3.1 主传动方案拟定 此次设计中,我们采用集中传动型式的主轴变速箱。 3.2 传动结构式、结构网的选择

? 确定传动组及各传动组中传动副的数目 级数为Z 的传动系统由若干个顺序的传动组组成,各传动组分别有1Z 、 2Z 、……个传动副。即 321Z Z Z Z = 传动副中由于结构的限制以2或3为合适,即变速级数Z 应为2和3的因子:b a Z 3?2= ,可以有3种方案:12=3×2×2;12=2×3×2;12=2×2×3 ? 传动式的拟定 12级转速传动系统的传动组,选择传动组安排方式时,考虑到机床主轴变速箱的具体结构、装置和性能。 主轴对加工精度、表面粗糙度的影响很大,最后一个传动组的传动副常选用2。 综上所述,选传动式为12=3×2×2。 ? 结构式的拟定 对于12=3×2×2传动式,有6种结构式和对应的结构网。分别为: 12=32×21×26 12=31×23×26 12=34×22×21 12=34×21×22 12=31×26×23 12=32×26×21 根据主变速传动系统设计的一般原则传动顺序与扩大顺序相一致的原则 13612322=??

关于带式输送机在设计中托辊规格的确定

关于带式输送机在设计中托辊规格的确定 1辊径的选择 托辊辊子的直径只与输送机带宽、带速和承载能力有关系,与输送机长度和倾角都没有关系。有的人认为输送机越长、倾角越大,托辊的直径就要越大,这种想法是极端的错误。必须明确以下两个关系:a.托辊直径与带宽的关系:托辊辊径与长度应符合《GB/T990—1991 带式输送机托辊基本参数与尺寸》的规定,见表1。 表1 托辊直径与带宽的关系表 mm

根据辊子直径和承载能力,托辊辊子分为轻、中、重型三种。全部采用大游隙轴承,并保证所有辊子的转速不超过600r/min。 b.托辊直径与带速的关系:在确定带速的情况下,托辊辊子的转速不能太大。在同样寿命情况下,转速大,使用时间就短,转速小,使用时间就长。但辊子的直径不能太大,辊子直径太大,整个输送机不配套,初期投资成本就高。在皮带机设计规范中规定:辊子的转速不能超过600r/min。托辊直径与输送机带速的关系见表2。 表2 托辊辊径与转速(r/min)的关系

综合以上情况,根据表1和表2,选用托辊直径φ133mm。 2计算选择轴承型号 托辊寿命取决于轴承的失效寿命。因此,托辊的承载能力与轴承寿命有关,选用时应按带速、输送机的生产能力确定载荷,然后按辊子的承载能力选择轴承。辊子载荷系数见表3,运行系数见表4,冲击系 数见表5,工况系数见表6。 表3 辊子载荷系数 表4 运行系数

表5 冲击系数数( ) 表6 工况系数

本条皮带机的托辊形式:承载托辊采用三节辊形成的槽型托辊,回程托辊采用一节辊形式的平行下托辊;根据表3可查得,承载托辊的辊子载荷系数e=0.8,平行下托辊的辊子载荷系数e=1。 由已知条件,每天不多余16小时出煤,因此由表4可查得运行系数 =1.1。 一般情况下,井下由采煤机采的煤最大块不超过350mm,大于150mm~300mm细料中有少量最大块,并且带速v=2.5 m/s,由表5可查得冲 击系数 =1.06。 皮带机在大巷中的运行条件:可以认为正常工作和正常维修,根据这样,在表6中可查得工况系数 =1.00。 托辊之间的间距按表7确定。 表7 承载分支托辊间距(mm) 回程分支托辊间距:2.4~3m。 由表7查得承载分支托辊间距a =1200mm=1.2m;由上面的介绍,回

机床主传动系统设计

机床主传动系统设计 多轴箱是组合机床的重要专用部件。它是根据加工示意图所确定的工件加工孔的数量和位置、切削用量和主轴类型设计的传递各主轴运动的动力部件。其动力来自通用的动力箱,与动力箱一起安装于进给滑台,可完成钻扩铰镗孔等加工工序。 通用主轴箱采用标准主轴,借助导向套引导刀具来保证被加工孔的位置精度。 5.1大型主轴箱的组成 大型通用主轴箱由通用零件如箱体、主轴、传动轴、齿轮和附加机构等 组成。有箱体、前盖、后盖、上盖、侧盖等为箱体类零件;主轴、传动 轴、手柄轴、传动齿轮、动力箱或电动机齿轮等为传动类零件;叶片泵、 分油器、注油标、排油塞、油盘和防油套等为润滑及防油元件。 5.2多轴箱通用零件 1.通用箱体类零件箱体材料为HT200,前、后、侧盖等材料为HT150。 多轴箱的标准厚度为180mm,前盖厚度为55mm,后盖厚度为90mm。 2.通用主轴 1)滚锥轴承主轴 2)滚针轴承主轴 3)滚珠轴承主轴:前支承为推力球轴承、后支承为向心球轴承或圆锥滚子 轴承。因推力球轴承设置在前端,能承受单方向的轴向力,适用于钻孔 主轴。 3.通用传动轴 通用传动轴一般用45#钢,调质T235;滚针轴承传动轴用20Cr钢, 热处理S0.5~C59。 4.通用齿轮和套 多轴箱用通用齿轮有:传动齿轮、动力箱齿轮和电机齿轮。 5.3通用多轴箱设计 1.多轴箱设计原始依据图

1) 多轴箱设计原始依据图 图5-1.原始依据图 2) 主轴外伸及切削用量 表5-1.主轴参数表 3) 被加工零件:箱体类零件,材料及硬度,HT200,HB20~400 2. 主轴、齿轮的确定及动力的计算 1) 主轴型式和直径、齿轮模数的确定 主轴的型式和直径,主要取决于工艺方法、刀具主轴联结结构、刀具的进给抗力和切削转矩。钻孔采用滚珠轴承主轴。主轴直径按加工示意图所示主轴类型及外伸尺寸可初步确定。传动轴的直径也可参考主轴直径大小初步选定。 齿轮模数m (单位为mm )按下列公式估算: (30~m ≥=≈1.9(《组合机床设计简明手册》p62)

机械设计课程设计带式输送机传动系统的设计

机械设计课程设计带式输送机传动系统的设计 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

湖南工业大学 课程设计 资料袋 机械工程学院学院(系、部) 2013~2014 学年第 1 学期 课程名称机械设计指导教师银金光职称教授 学生姓名张山山专业班级机械工程1101学号 509 题目带式运输机的传动装置的设计 3 成绩 起止日期 2013 年 12 月 16 日~ 2013 年 12 月 27 日 目录清单

课程设计任务书 2010—2011学年第 1 学期 机械工程学院(系、部)机械工程专业 1101 班级 课程名称:机械设计 设计题目:带式运输机的传动装置的设计 3 完成期限:自 2013 年 12 月 16 日至 2013 年 12 月 27 日共 2 周 指导教师(签字): 2013年月日 系(教研室)主任(签字): 2013年月日

机械设计课程设计 设计说明书 带式运输机的传动装置的设计(3) 起止日期: 2013 年 12 月 16 日至 2013 年 12 月 27 日学生姓名张山山 班级机工1101班 学号509 成绩 指导教师(签字) 机械工程学院(部) 2013年 12 月 26 日 目录 一、3 二、 三、 四、 五、3 六、8 七、2

八、6 九、0 十、1 十一、2 十二、5 十三、36 十四、 一、机械设计课程设计任务书 1.设计任务 设计带式输送机传动系统中的减速器。要求传动系统中含有两级圆柱齿轮减速器。 2.传动系统总体方案(见图1) 带式输送机由电动机驱动。电动机1通过联轴器2将动力传入两级圆柱齿轮减速器3,再通过联轴器4,将动力传至输送机滚筒5,带动输送带6工作。 图1 带式输送机传动系统简图 1—电动机;2—联轴器;3—两级圆柱齿轮减速器; 4—联轴器;5—滚筒;6—输送带 3.原始数据(见表1) 设输送带最大有效拉力为F(N),输送带工作速度为v(m/s),输送机滚筒直径为D(mm),其具体数据见表1。 表1 设计的原始数据

皮带机托辊的作用

皮带机托辊的作用 皮带机托辊选用黑色橡胶皮带可以应用于袋装物体或砂石料、煤块的重载形输送。并可以在皮带上增减挡板、裙边等附件来满足散状物料的输送,在底部加装导向条,可以实现正反输送。还可以在皮带输送机两侧加装操作台,顶部安装照明灯、风扇等附件做成电子、五金行业的装配流水线,通过电器控制来提高自动化程度,减少人工投入,降低企业投资成本,提高企业生产效率。 皮带机托辊适用于食品,制药,电子,肉类加工行业中。由传动辊筒,张紧辊筒,支撑板,托辊,马达,承载皮带组成。 托辊是输送机的重要部件,种类多,数量大,托辊的质量直接影响着输送机的质量。 皮带机的托辊决定了输送机的使用效果,特别是决定输送带使用寿命的最重要部件之一。托辊组的结构在很大程度上决定了输送带和托辊所受承载的大小与性质。 皮带输送机对托辊的基本要求是:结构合理,经久耐用,密封装置防尘性能和防水性能好,使用可靠。轴承保证良好的润滑,自重较轻,回转阻力系数小,制造成本低,托辊表面必须光滑等。支承托辊的作用是支承输送带及带上的物料,减小带条的垂度,保证带条平稳运行,在有载分支形成槽形断面,可以增大运输量和防止物料的两侧撒漏。一台输送机的托辊数量很多,托辊质量的好坏,对皮带输送机的运行阻力、输送带的寿命、能量消耗及维修、运行费用等影响很大。 生产厂家 溧阳市九工机械制造有限公司拥有国内自动托辊流水线,代表了最先进的托辊制造水平。托辊年生产能力40万支,是国内规范输送机零部件专业制造商。产品出口中东,欧洲的等一些国家地区。 溧阳市九工机械制造有限公司技术力量雄厚,设备加工能力足。我厂建产建全了检测机构,并拥有高精、细检测器具,主要产品有脉冲袋式除尘器,带式输送机,皮带机托辊,皮带机改向滚筒。拥有国内自动托辊流水线,代表了最先进的托辊制造水平。托辊年生产能力40万支,是国内规范输送机零部件专业制造商。产品出口中东,欧洲的等一些国家地区。 皮带机托辊的作用 皮带机的托辊决定了输送机的使用效果,特别是决定输送带使用寿命的最重要部件之一。托辊组的结构在很大程度上决定了输送带和托辊所受承载的大小与性质。皮带输送机对托辊的基本要求是:结构合理,经久耐用,密封装置防尘性能和防水性能好,使用可靠。轴承保证良好的润滑,自重较轻,回转阻力系数小,制造成本低,托辊表面必须光滑等。支承托辊的作用是支承输送带及带上的物料,减小带条的垂度,保证带条平稳运行,在有载分支形成槽形断面,可以增大运输量和防止物料的两侧撒漏。一台输送机的托辊数量很多,托辊质量的好坏,对皮带输送机的运行阻力、输送带的寿命、能量消耗及维修、运行费用等影响很大。

数控机床主传动系统

数控机床主传动系统 第一节概述 1、对主传动系统的要求 (1)调速范围 :多用途、通用性大的机床要求主轴的调速范围大,低速大转矩功能,较高的速度,如车削加工中心。 (2)热变形: 电动机、主轴及传动件都是热源。低温升、小的热变形是对主传动系统要求的重要指标。 (3)主轴的旋转精度和运动精度: 主轴的旋转精度是指装配后,在无载荷、低速转动条件下测量主轴前端和距离前端300mm处的径向圆跳动和端面圆跳动值。主轴在工作速度旋转时测量上述的两项精度称为运动精度。数控机床要求有高的旋转精度和运动精度。 (4)主轴的静刚度和抗振性: 数控机床加工精度较高,主轴的转速又很高,因此对主轴的静刚度和抗振性要求较高。主轴的轴颈尺寸、轴承类型及配置方式,轴承预紧量大小,主轴组件的质量分布是否均匀及主轴组件的阻尼等对主轴组件的静刚度和抗振性都会产生影响。 (5)主轴组件的耐磨性: 主轴组件必须有足够的耐磨性,使之能够长期保持良好的精度。 2、主轴变速方式 (1).无级变速 (2)(分段无级变速 :1)带有变速齿轮的主传动2)通过带传动的主传动3)用两个电动机分别驱动主轴 (3)(液压拨叉变速机构在带有齿轮传动的主传动系统中,齿轮的换挡主要靠液压拨耳来完成 3、主轴部件

主轴部件是机床的一个关键部件,它包括主轴的支承、安装在主轴上的传动零件等。 机床的主轴部件满足的要求:主轴的回转精度、部件的结构刚度和抗振性、运转温度和热稳定性以及部件的耐磨性和精度保持能力等。 对于数控机床尤其是自动换刀数控机床,为了实现刀具在主轴上的自动装卸与夹持,还必须有刀具的自动夹紧装置、主轴准停装置和主轴孔的清理装置等结构。 (1)、主轴端部的结构形状 主轴端部用于安装刀具或夹持工件的夹具,在设计要求上,应能保证定位准确、安装可靠、联接牢固、装卸方便,并能传递足够的转矩 主轴为空心,前端有莫氏锥度孔,用以安装顶尖或心轴。 1)莫氏锥度是一个锥度的国际标准,用于静配合以精确定位。锥度很小,利用摩擦力可以传递一定的扭矩,方便拆卸。莫氏锥度又分为长锥和短锥,长锥多用于主动机床的主轴孔,短锥用于机床附件和机床连接孔, (2)主轴部件的支承 机床主轴带着刀具或夹具在支承中作回转运动,应能传递切削转矩承受切削抗力,并保证必要的旋转精度。机床主轴多采用滚动轴承作为支承,对于精度要求高的主轴则采用动压或静压滑动轴承作为支承。 (3)滚动轴承的精度 主轴部件所用滚动轴承的精度有高级E、精密级D、特精级C和超精级B。前支承的精度一般比后支承的精度高一级,也可以用相同的精度等级。普通精度的机床通常前支承取C、D级,后支承用D、E级。特高精度的机床前后支承均用B级精度液体静压轴承和动压轴承主要应用在主轴高转速、高回转精度的场合,对于要求更高转速的主轴,可以采用空气静压轴承,这种轴承达每分钟几万转的转速,有非常高的回转精度。 (4)(主轴滚动轴承的预紧

数控机床传动系统设计介绍

1. 开发XXX型号数控车床的目的和理由 国内数控车床经过十几年的发展,已形成较为完整的系列产品,但用户要求越来越高,对价格性能比更为看重,尤其对某些小型零件的加工,其所需负荷较小,调速范围不宽,加工工序少,效率高,但目前国内数控车床功能多,价格高,造成很大浪费,而我厂现有的数控车床,虽然在这方面做得较好,其加工范围的覆盖面也较宽,但针对上述零件加工的机床还是空白,对用户无法做到“量体裁衣”。随着市场经济的发展和产品升级换代,上述零件加工越来越多,市场对其具有较高效率,价格较低的排刀式数控车床的要求量越来越大,综上所述,为适应市场要求,扩大我厂数控车床在国内机床市场上的占有量,特进行N-089型数控车床的开发。 2 机床概况、用途和使用范围 2.1 概述: XXX型号是结合我厂数控机床和普通机床的生产经验,为满足高速、高效和高精度生产而设计成铸造底座、平床身、滚动导轨,可根据加工零件的要求自由排刀的全封闭式小规格数控车床。本机床采用SIEMENS 802S系统,主电机为YD132S-2/4双速电机。主传动采用富士FRN5.5G9S-4型变频器进行变频调速,进给采用德国SIEMENS公司生产的110BYG-550A 和110BYG-550B步进电机驱动的半闭环系统,两轴联动。 2.2 用途: XXX型号型数控车床可以完成直线、圆锥、锥面、螺纹及其它各种回转体曲面的车削加工,适合小轴类、小盘类零件的单件和批量生产,特别适合于工序少,调速范围窄,生产节拍快的小轴类零件的批量生产。 2.3 使用范围: 本机床是一种小规格,排刀式数控车床,广泛用于汽车、摩托车、纺织、仪器、仪表、航空航天、油泵油嘴等各种机械行业。 3 XXX型号型数控车床的主要技术参数: 3.1 切削区域: a. 拖板上最大回转直径75mm b. 最大切削长度180mm

皮带输送机托辊主要性能指标与比较

皮带输送机托辊主要性能指标与比较 在散状物料的输送中皮带输送机起着重要作用,托辊是皮带输送机中的重要部件之一,一般情下其造价在输送机中占第二位。在皮带输送机中运转部件最多的也是托辊,因而它的性能如何、寿命长短和可靠性高低等,将直接影响输送机维修工作量大小、运营成本高低和运行的可靠性等等。目前市场上托辊种类繁多,性能差异很大,从使用寿命上看有的托辊运转几天甚至几个小时就报废,而有的可正常运转十几年而不坏。当然其价格差别也比较大,这就给用户在选择上带来困难。 1、托辊的寿命与可靠性 托辊的寿命可分为理论寿命、计算寿命和使用寿命。理论寿命一般是指轴承的标准寿命, 由轴承生产厂提供。计算寿命是指在理论寿命的基础上考虑轴承的工作状态、托辊部件制造安装误差、托辊的受力状态和托辊轴的变形等诸多因素换算得出的。托辊的使用寿命比较简单,就是指托辊的实际运转时间。通常把轴承的寿命看作是托辊的寿命,这是符合实际的,因为在绝大多数情况下托辊的损坏都是由于轴承失效而致。 影响托辊寿命的主要因素有:托辊轴承的类型及其承载能力,托辊的选择是否正确,托辊的工作环境以及润滑条件等。 按国标规定托辊的寿命不低于2万h,影响这一指标的因素很多,首先是轴承的选择,目前国内大多数厂家选用深沟向心球轴承,而国外有用圆锥滚子轴承的,如美国朗艾道公司制造的注油托辊就是采用圆锥滚子轴承。从寿命看球轴承的使用寿命就是计算寿命,而圆锥滚子轴承的使用寿命与计算寿命不同,一般情况下使用寿命是计算寿命的3倍,那么为什么多数厂家选用深沟心球轴承?目前大多数人认为向心球轴承有如下优点:(1)价格较圆锥滚子轴承低;(2)运转阻力相对小一些;(3)允许加工误差大一些, 托辊轴承变形对其寿命影响不大。 2、托辊的运转阻力 托辊的运转阻力分为静旋转阻力和动旋转阻力两种,动旋转阻力是在加载的情况下测试的,其数值一般在2.5~4.35N之间。滚子的旋转阻力将影响皮带输送机运行阻力的大小、功率消耗的多少以及辊壳的磨损等。从制造上看托辊旋转阻力与轴承的种类、规格、装配游隙、轴承的同轴度、润滑油的种类、润滑方式和密封结构等有关,国内外较好的托辊的旋转阻力可以达到0.5N,差的可以达到6N,差别很大。一般来讲圆锥滚子轴承的旋转阻力比球轴承的旋转阻力略大一点,但在加工质量和润滑条件良好的情况下几乎是没有差别的。除此之外,皮带输送机的运行阻力不完全取决托辊阻力,胶带和物料的变形阻力占了相当大的比重,即使用圆锥滚子轴承托辊的输送机的实际运转阻力(消耗的功率)同球轴承托辊输送机一样。 3、托辊的径向跳动与运转噪声 托辊的径向跳动主要取决于辊壳的径向偏差,一般允许的跳动值在0.5~1.9mm,管径越大允许的径向跳动也就越大。托辊径向跳动值的大小,对输送机的稳定运行有较大影响,尤其是在高速运行的情况下,过大的径向跳动可能引起输送机剧烈振动,使其不能正常运转。托辊运转的噪声也与径向跳动有关,因此控制径向跳动是高速输送机托辊的关键问题之一,有效的办法是采用径向偏差较小的焊缝钢管。轴承对托辊运转的径向跳动及噪声也有一定的影响,相对来讲圆锥滚子轴承的径向跳动比球轴承小一些,运转噪声也小。

普通带式输送机的设计论文

带式输送机的设计 李扬 (河北科技师范学院机电工程学院) 指导教师:陈秀红冯丽珍 摘要:带式输送机在当今社会应用日益广泛,当然一个产品也需要不断的研发和更新,才能永保活力。我所做的单托辊全封闭带式输送机就是在一些方面进行了改进,首先用单托辊代替槽型托辊以防止跑偏,其次在输送机外加外罩来防止污染,美化环境,再次螺旋拉紧装置保证了运行的稳定和可靠性等。这些结构和技术保证了带式输送机的整机性能优良,输送量大,带速快,高效节能。 通过对国内外带式输送机技术现状的分析,得出了其在以后的发展趋势;在对带式输送机的各部件进行设计与选择,得出了对其整体的设计与选择;在其计算中验证了带式输送机的各部件满足了它的功能要求,另外输送机在设计的过程中考虑到了工作环境,运行过程中皮带易磨损等问题进行了加外罩和单托辊结构,是本输送机与其他机器的不同之处!可以使输送机在更广的范围,更可靠的运行。 关键词: 全封闭带式输送机、单托辊、螺旋拉紧装置。 前言 运输机又称带式输送机,是一种连续运输机械,也是一种通用机械。皮带运输机被广泛应用在港口、电厂、钢铁企业、水泥、粮食以及轻工业的生产线。即可以运送散状物料,也可以运送成件物品,堆取料机,堆料机,取料机,皮带机,发电等。 在煤矿的开采过程中,带式输送机的作用至关重要,其性能的好坏直接影响到煤矿行业的发展和效益,因此研究带式输送机对煤矿行业和其他一些输送类的行业有着非常重要的意义。带式输送机的工作环境一般情况下都比较恶劣,对带式输送机的性能要求也很高,在研究的同时,对其性能进行分析与提高也式目前输送行业中不可缺少的重要部分。在本次设计中的带式输送机采用了全封闭式结构,对带式输送机的工作环境恶劣的方面进行了一些改进。 带式输送机制造以其优质、高效、工艺适应性广的技术特色,深受制造业的重视,在煤矿、工程运输等高技术领域及机械制造、煤矿开采、汽车制造等产业部门一直有着广泛

机构传动方案设计

机构传动方案设计 设计方案要发散思维,参考资料文献关于机构传动方案设计知道怎么做吗?下面是小编为大家整理了机构传动方案设计,希望能帮到大家! 这种方法是从具有相同运动特性的机构中,按照执行构件所需的运动特性进行搜寻。当有多种机构均可满足所需要求时,则可根据上节所述原则,对初选的机构形式进行分析和比较,从中选择出较优的机构。 常见运动特性及其对应机构 连续转动定传动比匀速平行四杆机构、双万向联轴节机构、齿轮机构、轮系、谐波传动机构、摆线针轮机构、摩擦轮传动机构、挠性传动机构等变传动比匀速轴向滑移圆柱齿轮机构、混合轮系变速机构、摩擦传动机构、行星无级变速机构、挠性无级变速机构等非匀速双曲柄机构、转动导杆机构、单万向连轴节机构、非圆齿轮机构、某些组合机构等往复运动往复移动曲柄滑块机构、移动导杆机构、正弦机构、移动从动件凸轮机构、齿轮齿条机构、楔块机构、螺旋机构、气动、液压机构等往复摆动曲柄摇杆机构、双摇杆机构、摆动导杆机构、曲柄摇块机构、空间连杆机构、摆动从动件凸轮机构、某些组合机构等

间歇运动间歇转动棘轮机构、槽轮机构、不完全齿轮机构、凸轮式间歇运动机构、某些组合机构等间歇摆动特殊形式的连杆机构、摆动从动件凸轮机构、齿轮-连杆组合机构、利用连杆曲线圆弧段或直线段组成的多杆机构等间歇移动棘齿条机构、摩擦传动机构、从动件作间歇往复运动的凸轮机构、反凸轮机构、气动、液压机构、移动杆有停歇的斜面机构等预定轨迹直线轨迹连杆近似直线机构、八杆精确直线机构、某些组合机构等曲线轨迹利用连杆曲线实现预定轨迹的多杆机构、凸轮-连杆组合机构、行星轮系与连杆组合机构等特殊运动要求换向双向式棘轮机构、定轴轮系等超越齿式棘轮机构、摩擦式棘轮机构等过载保护带传动机构、摩擦传动机构等…………利用这种方法进行机构选型,方便、直观。设计者只需根据给定工艺动作的运动特性,从有关手册中查阅相应的机构即可,故使用普遍。 任何一个复杂的执行机构都可以认为是由一些基本机构组成的,这些基本机构具有下图所示的进行运动变换和传递动力的基本功能。

设计一台普通车床的主传动系统

一、设计题目 设计一台普通橱窗的主传动系统,完成变速级数为12~8级。 二、设计目的 1、运用、巩固和扩大已学过的知识,特别是机床课程,提高理论联系实际的设计与计算能力。 2、初步掌握机床主传动系统的设计方法与步骤,在拟定传动和变速的结构方案过程中,得到设计构思、方案分析、结构工艺性、机械制图、零件计算、编写技术文件和查阅技术资料等方面的综合训练。 3、培养使用手册、图册、有关资料及设计标准规范的能力。 4、是毕业设计教学环节实施的技术准备。 三、设计内容与基本要求 (一)运动设计 1、传动方案设计 采用集中传动方案 2、转述调整范围R 选第一组参数进行计算与设计 1.1190 1000 min max === n n R n 3、公比 由已知条件知,该传动系统为单公比传动系统公比41.1=?

4、结构式采用 42130222238??=?==z (1)确定系数 018710=+-=+-= ' Z L R L x n n n ? (2)确定结构网和结构式 ①基本组传动副数一般取20=P ②基型传动系数的结构式为:4212228??= ③因为系数00=' x ,所以变形传动系统的结构式为:4 212228??= (3)验算原基本组的变速范围 841.112<=' =?r (4)验算最末变速组的变速范围 895.341.1)12(4)12(43<===-?-??r 故所选结构式符合要求。 5、绘制转速图 1212.1119010001 ≈= ?? ? ??=-u 结构网如下:

转速图: 6、三角带设计 由<<机械设计>>表11.5知2.1=A K (1)计算功率KW P K P A c 4.55.42.1=?==。 (2)型号 由kw P c 4.5=,min /14401r n =及表11.8知应选A 型带。 (3)带轮直径1D ,2D 选mm D 1001=,则mm D D 1501000 1500 12== (4)校核带速V s m n D V /23.56000 1000 10014.36000 1 1=??= = π s m V /5min ≥;s m V /25max ≤ 所以选的带型号符合要求。 (5)初定中心矩0A mm mm D D A 500~150))(2~6.0(210=+≈

车床主传动系统设计

陕西理工学院 车床主传动系统设计 设计题目 系别 专业 学生姓名 班级学号 设计日期

目录 第一章概述--------------------------------------------------------------4 1、车床主传动系统课程设计的目的----------------------------4 2、设计参数----------------------------------------------------------4 第二章参数的拟定-----------------------------------------------------4 1、确定极限转速----------------------------------------------------4 2、主电机选择-------------------------------------------------------5第三章传动设计--------------------------------------------------------5 1、主传动方案拟定-------------------------------------------------5 2、传动结构式、结构网的选择----------------------------------5 3、转速图的拟定----------------------------------------------------6第四章传动件的估算---------------------------------------------------7 1、三角带传动的计算----------------------------------------------7 2、传动轴的估算----------------------------------------------------9 3、齿轮齿数的确定和模数的计算-------------------------------11 4、齿宽确定----------------------------------------------------------15 5、齿轮结构设计----------------------------------------------------16 6、带轮结构设计----------------------------------------------------16 7、传动轴间的中心距----------------------------------------------16 8、轴承的选择-------------------------------------------------------17第五章动力设计---------------------------------------------------------17

槽形托辊带式输送机设计

槽形托辊带式输送机设计 本文所设计的是槽形托辊带式输送机,其设计要求为:输送物料为原煤,输送量:500吨/小时,输送长度:30 米,提升高度2.5米;堆积密度:900公斤/米3;物料在带面上的动堆积角为300,输送带速: 2米/秒,上托辊槽形布置。设计中,其整体是一个倾斜的状态,上托辊都采用槽形布置;下(回程)托辊采用平行托辊。本输送机为向上运输物料,其倾斜角为3.80<150,所以采用小倾角设计。在设计带宽时,按照槽形布置来选择计算。在尾架的选取方面,采用螺旋拉紧装置尾架,使输送带能始终保持必要的张力。用Solidworks对连接轴进行有限元分析,得出其一般工作时的性能状态,并做出相应的调整。 目前,带式输送机正朝着长距离,高速度,低摩擦的方向发展,近年来出现的气垫式带式输送机就是其中的一个。在带式输送机的设计、制造以及应用方面,目前我国与国外先进水平相比仍有较大差距,国内在设计制造带式输送机过程中存在着很多不足。 前言 带式输送机是连续运行的运输设备,在冶金、采矿、动力、建材等重工业部门及交通运输部门中主要用来运送大量散状货物,如矿石、煤、砂等粉、块状物和包装好的成件物品。带式输送机是煤矿最理想的高效连续运输设备,与其他运输设备相比,不仅具有长距离、大运量、连续输送等优点,而且运行可靠,易于实现自动化、集中化控制,特别是对高产高效矿井,带式输送机已成为煤炭高效开采机电一体化技术与装备的关键设备。特别是近10年,长距离、大运量、高速度的带式输送机的出现,使其在矿山建设的井下巷道、矿井地表运输系统及露天采矿场、选矿厂中的应用又得到进一步推广。 我国生产制造的带式输送机的品种、类型都较多。产量多批次也相对的大,但其技术相对国外还是落后,特别是输送机的寿命和性能方面。带式输送机的技术水平有了很大提高,煤矿井下用大功率、长距离带式输送机的关键技术研究和新产品开发都取得了很大的进步。国外带式输送机技术的发展很快,其主要表现

带式输送机的传动系统设计 机械设计课程设计

带式输送机的传动系统设计机械设计课程设计

机 机械设计课程设计 设计说明书 设计“带式输送机的传动系统” 起止日期:2013 年12月16日至2013年12 月28 日学生姓名 班级 学号 成绩 指导教师(签字) 机械工程学院 2013年12月28日

机械设计课程设计计算说明书 一、传动方案拟定 (2) 二、电动机的选择 (2) 三、运动、动力学参数计算 (4) 四、传动零件的设计计算 (5) 五、轴的设计 (13) 六、轴承的寿命校核 (26) 七、键联接强度校核计算 (28) 八、润滑方式,润滑剂以及密封方式的选择 (29) 九、减速箱体结构尺寸 (30) 十、设计小结 (31) 十一、参考文献 (32)

计算过程及计算说明 一、传动方案拟定 设计二级圆锥-圆柱齿轮减速器 工作条件: 带式输送机在常温下连续工作、单向运转;空载启动,工作载荷较平稳;输送带工作速度v 的允许误差为±5%;二班制(每班工作8h ),要求减速器设计寿命为8年,大修为2~3年,大批生产;三相交流电源的电压为380/220 V 。 (1) 原始数据:运输机工作周转矩F=3100N ;带速n=45r/min 滚筒直径D=340mm 二、电动机选择 1、电动机类型的选择: Y 系列三相异步电动机 2、电动机功率选择: (1)工作机所需功率: P W =FV/1000 因为60/D V n π= ,把数据带入式子中得n=45r/min,所以 P W =3100×0.8/1000=2.48kW (2) 1)传动装置的总效率: 注释及说明 F=3100N n=45r/min D=340mm P W =2.48kW

皮带输送机技术要求

皮带输送机技术要求 一、输送带(占成本大约25%): 1、输送带由增强材料(带芯)、芯层材料(贴胶)、覆盖胶、边胶组成。 ①、增强材料(带芯):是输送带承载的关键,它决定了输送带的拉伸强度,能吸收物料对 输送带的冲击。 ②、芯层材料(贴胶):使增强材料织物层之间具有良好的粘合强度,防止使用过程中带芯 出现分层。 ③、覆盖胶:具有保护增强材料、传递动力、输送物料、吸收物料的冲击、抵抗磨损。 ④、边胶:保护增强材料不受介质侵蚀,吸收来自输送带侧的挤压力,防止带芯出现分 层的现象。 2、输送带按覆盖层性能分:普通输送带、耐热输送带、阻燃输送带、耐磨输送带、防撕 裂输送带、耐寒输送带。 3、普通输送带按被输送物料的磨损性和冲击性分为三种,其代号分别为H、D、L, H___强划裂工作条件;D___强磨损工作条件;L___一般工作条件。 ①、H型:用于输送密度在2.5t/m3以下的常温、非腐蚀性大块物料。 ②、D型:用于输送密度在2.5t/m3以下的常温、非腐蚀性中、小块物料。 ③、L型:用于输送密度小、磨损性小的常温、非腐蚀性粉状物料。 4、输送带按增强材料的品种分:钢丝绳芯输送带、织物芯输送带、钢网输送带,其中织 物芯输送带又分棉帆布输送带CC、尼龙输送带NN、聚酯输送带EP、玻纤输送带GG、整芯输送带。 5、输送带按加工方式外形分:整芯输送带、叠层输送带、环形输送带、挡边带、花纹输 送带。 6、叠层式输送带带芯由天然纤维向合成纤维方向发展,由多层向少层方向发展,由低强 度、低模量向高强度、高模量方向发展,棉帆布输送带CC在国外已基本淘汰,在国内也逐渐被尼龙、聚酯织物输送带所取代。 7、输送带按边胶加工不同分:包边带、切边带。 8、输送带连接的方法有机械连接法、冷胶连接法、热硫化连接法三种,其中机械连接法 和冷胶连接法只适用于织物芯输送带,热硫化连接法适用于各种橡胶输送带。 ①、机械连接法:具有操作简单,接头的时间短的优点,但是接头强度低,一般只有输 送带强度的40%~50%。 ②、冷胶连接法:是以粘接胶为原料,将输送带连接在一起的方法,它具有接头强度高, 运行无噪音,无震动,操作简单,时间短的优点,接头强度一般达到输送带强度的60%~70%。 ③、热硫化连接法:是通过热硫化使输送带连接在一起的方法,它具有接头强度高,使 用寿命长特点,接头强度一般达到输送带强度的80%~90%,但接头的时间较长。 9、输送带热硫化连接要求: ①、皮带硫化接头粘接阶梯长度≥250mm(带宽B>500~600)。 ②、皮带硫化粘接温度为130~150℃。 ③、皮带硫化加热时间为30~45分钟。

机床主传动系统设计说明

机械工程学院 课程设计说明书 专业机械设计制造及其自动化 班级XXXXXXXXXXX 姓名XXXXXXXX 学号XXXXXXXXXXXX 课题普通车床主传动系统设计 指导教师XXXXXXXXXX ___________ 年月曰

普通车床主传动系统设计说明书 设计题目:设计一台普通车床的主传动系统,设计参数: (选择第三组参数作为设计数据) 、运动设计 =1.41,因为=1.41=1.06 6,根据《机械制造装备设计》P77表3-6标准数列。首先找到 最小极限转速25,再每跳过5个数(1.26?1.06 6)取一个转速,即可得到公比为 1.41 的数列:45、63、90、125、180、250、355、500、710、1000、1400、2000。 (4)结构式采用:12 31 23 26 1)确定系数X o x0l^R n Z 1 11 12 1 0 (1)传动方案设计(选择集中传动方案) (2) 转速调速围Rn n max 200044.44 n min 45 (3)根据《机械制造装备设计》p78公式(3-2 )因为已知 R n ig R n z Z= lg +1 (Z 1}R n =11444 = 根据《机械制造装备设计》p77表3-5标准公比。这里我们取标准公比系列

In 2)确定结构网和结构式: 确定基本组传动副数,一般取P o 2 ,在这里取 F0 3 3)基型传动系统的结构式应为:12 2?2£26 4)变型传动系统的结构式,应在原结构式的基础上,将兀基本组基比指数I 加上X。而成,应为X o为0,故不发生改变。 根据“前多后少”,“前密后疏”的原则,取12 31 23 26 5)验算原基本组变形后的变速围 R2X2 F2 1 1.413 (2 1)1.413 2.8 8 6)验算最末变速的组变速围 R3 X3 F3 1 1.416"21)1.4167.858 8 传动系的结构网

第三章 带式输送机的设计计算

第三章带式输送机的设计计算 已知原始数据及工作条件 带式输送机的设计计算,应具有下列原始数据及工作条件资料 (1)物料的名称和输送能力: (2)物料的性质: 1)粒度大小,最大粒度和粗度组成情况; 2)堆积密度; 3)动堆积角、静堆积角,温度、湿度、粒度和磨损性等。 (3)工作环境、干燥、潮湿、灰尘多少等; (4)卸料方式和卸料装置形式; (5)给料点数目和位置; (6)输送机布置形式和尺寸,即输送机系统(单机或多机)综合布置形式、地形条件和供电情况。输送距离、上

运或下运、提升高度、最大倾角等; (7)装置布置形式,是否需要设置制动器。 原始参数和工作条件如下: 1)输送物料:煤 2)物料特性: 1)块度:0~300mm 2)散装密度:3m 3)在输送带上堆积角:ρ=20° 4)物料温度:<50℃ 3)工作环境:井下 4)输送系统及相关尺寸:(1)运距:300m (2)倾斜角:β=0° (3)最大运量:350t/h 初步确定输送机布置形式,如图3-1所示:

图3-1 传动系统图 计算步骤 带宽的确定: 按给定的工作条件,取原煤的堆积角为20°。 原煤的堆积密度按900 kg/3m。 输送机的工作倾角β=0°。 带式输送机的最大运输能力计算公式为 Q sυρ =() 3.6 式中:Q——输送量() t; /h v——带速() m; /s ρ——物料堆积密度(3 kg m); / s--在运行的输送带上物料的最大堆积面积, 2 m

K----输送机的倾斜系数 带速与带宽、输送能力、物料性质、块度和输送机的线路倾角有。当输送机向上运输时,倾角大,带速应低;下运时,带速更应低;水平运输时,可选择高带速.带速的确定还应考虑输送机卸料装置类型,当采用犁式卸料车时,带速不宜超过s。 表3-1倾斜系数k选用表 输送机的工作倾角=0° 查DTⅡ带式输送机选用手册(表3-1)k可取 按给顶的工作条件,取原煤的堆积角为20°; 原煤的堆积密度为900kg/3 m; 考虑山上的工作条件取带速为s; 将参数值代入上式,即可得知截面积S: S 2 350 3.6 3.69001.61 0.0675 Q m ρυκ??? ===

CK6125数控车床主传动系统设计

目录 摘要............................................................................................................ II ABSTRACT. ............................................................................................... III 第一章前言 .. (1) 1.1课题背景及目的 (1) 1.2国内外研究现状及发展趋势 (1) 1.2.1 数控系统的发展趋势 (1) 1.2.2 我国数控车床的研究现状及发展趋势 (2) 1.3课题研究内容及方法 (5) 1.3.1 课题研究内容 (5) 1.3.2 研究方法 (5) 1.4论文构成 (5) 第二章主传动系统的设计 (6) 2.1主传动系统的设计要求 (6) 2.2总体设计 (6) 2.2.1 拟定传动方案 (6) 2.2.2 选择电机 (7) 2.2.3 主运动调速范围的确定 (9) 2.2.4 转速图 (11) 第三章传动系统零部件设计 (12) 3.1传动皮带的设计和选定 (12) 3.1.1.V带传动设计 (12) 3.2轴系部件的结构设计 (14) 3.2.1 I轴结构设计 (14) 3.2.2 II轴结构设计 (17) 3.2.3电磁摩擦离合器的计算和选择 (21) 第四章主轴结构设计 (23) 4.1对主轴组件的性能要求 (23) 4.2轴承配置型式 (24) 4.3主要参数的确定 (24) 4.4主轴头的选用 (25) 4.5编码器的选择与安装 (25) 第五章结论 (27) 参考文献 (28) 致谢 (29)

相关文档
最新文档