2019届高考物理一轮复习第十章电磁感应题型探究课一电磁感应中的电路和图象问题题型专练新人教版

2019届高考物理一轮复习第十章电磁感应题型探究课一电磁感应中的电路和图象问题题型专练新人教版
2019届高考物理一轮复习第十章电磁感应题型探究课一电磁感应中的电路和图象问题题型专练新人教版

题型探究课(一) 电磁感应中的电路和图象问题

[学生用书P207]

1.如图所示是两个互连的金属圆环,小金属环的电阻是大金属环电阻的二分之一,磁场垂直穿过大金属环所在区域.当磁感应强度随时间均匀变化时,在大环内产生的感应电动势为E ,则a 、b 两点间的电势差为( )

A.1

2E B.13E C.23

E D .E

解析:选B.a 、b 间的电势差等于路端电压,而小环电阻占电路总电阻的13,故U ab =1

3E ,

B 正确.

2.如图甲所示,一个圆形线圈的匝数n =100,线圈的面积S =200 cm 2

,线圈的电阻r =1 Ω,线圈外接一个阻值R =4 Ω的电阻,把线圈放入一方向垂直线圈平面向里的匀强磁场中,磁感应强度随时间变化规律如图乙所示.下列说法中正确的是( )

A .线圈中的感应电流方向为顺时针方向

B .电阻R 两端的电压随时间均匀增大

C .线圈电阻r 消耗的功率为4×10-4

W D .前4 s 内通过R 的电荷量为4×10-4 C

解析:选C.由楞次定律,线圈中的感应电流方向为逆时针方向,选项A 错误;由法拉第电磁感应定律,产生的感应电动势恒定为E =nS ΔB

Δt

=0.1 V ,电阻R 两端的电压不随时间变化,选项B 错误;回路中电流I =

E

R +r

=0.02 A ,线圈电阻r 消耗的功率为P =I 2

r =4×10

-4

W ,选项C 正确;前4 s 内通过R 的电荷量为q =It =0.08 C ,选项D 错误. 3.

如图所示,PN 与QM 两平行金属导轨相距1 m ,电阻不计,两端分别接有电阻R 1和R 2,且R 1=6 Ω,ab 杆的电阻为2 Ω,在导轨上可无摩擦地滑动,垂直穿过导轨平面的匀强磁场的磁感应强度为1 T .现ab 以恒定速度v =3 m/s 匀速向右移动,这时ab 杆上消耗的电功率与R 1、R 2消耗的电功率之和相等.则( )

A .R 2=6 Ω

B .R 1上消耗的电功率为0.75 W

C .a 、b 间电压为3 V

D .拉ab 杆水平向右的拉力为0.75 N

解析:选D.杆ab 消耗的功率与R 1、R 2消耗的功率之和相等,则R 1·R 2

R 1+R 2

=R ab .解得R 2=3 Ω,故A 错误;E =Blv =3 V ,则I ab =

E

R 总

=0.75 A ,U ab =E -I ab ·R ab =1.5 V ,P R 1=错误!=0.375 W ,故B 、C 错误;F 拉=F 安=BI ab ·l =0.75 N ,故D 正确.

4.(高考全国卷Ⅰ)如图甲,线圈ab 、cd 绕在同一软铁芯上,在ab 线圈中通以变化的电流,用示波器测得线圈cd 间电压如图乙所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab 中电流随时间变化关系的图中,可能正确的是( )

解析:选C.由题图乙可知在cd 间不同时间段内产生的电压是恒定的,所以在该时间段内线圈ab 中的磁场是均匀变化的,则线圈ab 中的电流是均匀变化的,故选项A 、B 、D 错误,

选项C 正确.

5.(2015·高考安徽卷)如图所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计,已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于

cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )

A .电路中感应电动势的大小为 Blv

sin θ

B .电路中感应电流的大小为

Bv sin θ

r

C .金属杆所受安培力的大小为 B 2lv sin θ

r

D .金属杆的热功率为

B 2lv 2

r sin θ

解析:选B.金属杆的运动方向与金属杆不垂直,电路中感应电动势的大小为E =Blv (l 为切割磁感线的有效长度),选项A 错误;电路中感应电流的大小为I =E R =

Blv l

sin θ

r

=Bv sin θr ,选项B 正确;金属杆所受安培力的大小为F =BIl ′=B ·Bv sin θr ·l sin θ=B 2lv

r ,选项C 错误;金属杆的热功率为P =I 2

R =B 2v 2sin 2θr 2·lr sin θ=B 2lv 2sin θr

,选项D 错误.

6.

(多选)(2018·江西新余模拟)如图所示,在坐标系xOy 中,有边长为L 的正方形金属线框abcd ,其一条对角线ac 和y 轴重合、顶点a 位于坐标原点O 处.在y 轴的右侧,在Ⅰ、Ⅳ象限内有一垂直纸面向里的匀强磁场,磁场的上边界与线框的ab 边刚好完全重合,左边界与y 轴重合,右边界与y 轴平行.t =0时刻,线框以恒定的速度v 沿垂直于磁场上边界的方向穿过磁场区域.取沿a →b →c →d →a 方向的感应电流为正,则在线框穿过磁场区域的过程中,感应电流i 、ab 间的电势差U ab 随时间t 变化的图线是下图中的( )

最新电磁感应动力学问题归纳

电磁感应动力学问题归纳 重、难点解析: (一)电磁感应中的动力学问题 电磁感应和力学问题的综合,其联系桥梁是磁场对感应电流的安培力,因为感应电流与导体运动的加速度有相互制约的关系,这类问题中的导体一般不是做匀变速运动,而是经历一个动态变化过程再趋于一个稳定状态,故解这类问题时正确进行动态分析确定最终状态是解题的关键。 1. 动态分析:求解电磁感应中的力学问题时,要抓好受力 分析和运动情况的动态分析,导体在拉力作用下运动,切割磁感线产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化,周而复始地循环,当循环结束时,加速度等于零,导体达到稳定运动状态。此时a=0,而速度v通过加速达到最大值,做匀速直线运动;或通过减速达到稳定值,做匀速直线运动. 2. 两种状态的处理:当导体处于平衡态——静止状态或匀速直线运动状态时,处理的途径是:根据合外力等于零分析。当导体处于非平衡态——变速运动时,处理的途径是:根据牛顿第二定律进行动态分析,或者结合动量的观点分析. 长为L,质量m,电阻R,导轨光滑,电阻不计 L,质量m,电阻R;导轨光滑,电阻不计 4. 解决此类问题的基本步骤: (1)用法拉第电磁感应定律和楞次定律(包括右手定则)求出感应电动势的大小和方向(2)依据全电路欧姆定律,求出回路中的电流强度. (3)分析导体的受力情况(包含安培力,可利用左手定则确定所受安培力的方向). (4)依据牛顿第二定律列出动力学方程或平衡方程,以及运动学方程,联立求解。

问题1、电磁感应现象中的动态与终态分析问题: 例:如图甲所示,两根足够长的直金属导轨MN 、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L. M 、P 两点间接有阻值为R 的电阻. 一根质量为m 的均匀直金属杆ab 放在两导轨上,并与导轨垂直,整套装置处于磁感应强度为B 的匀强磁场中,磁场方向垂直斜面向下,导轨和金属杆的电阻可忽略。让ab 杆沿导轨由静止开始下滑,导轨和金属杆接触良好,不计它们之间的摩擦. (1)由b 向a 方向看到的装置如图乙所示,请在此图中画出ab 杆下滑过程中某时刻的受力示意图; (2)在加速下滑过程中,当ab 杆的速度大小为v 时,求此时ab 杆中的电流及其加速度的大小; (3)求在下滑过程中,ab 杆可以达到的速度的最大值。 【解析】(1)重力mg ,竖直向下;支持力N ,垂直斜面向上;安培力F ,沿斜面向上,如图所示; (2)当ab 杆速度为v 时,感应电动势Blv E =,此时电路中电流 R Blv R E I == 。 ab 杆受到安培力 R v L B BIL F 22= =, 根据牛顿运动定律,有 R v L B sin mg ma 22-θ= mR v L B sin g a 22- θ= (3)当θ =sin mg R v L B 2 2时,ab 杆达到最大速度m v 22m L B sin mgR v θ= 变式1、 【针对训练1】如图甲所示,CD 、EF 是两根足够长的固定平行金属导轨,两导轨间的距离为l ,导轨平面与水平面的夹角是θ,在整个导轨平面内都有垂直于导轨平面斜向上方的匀强磁场,磁感强度为B ,在导轨的C 、E 端连接一个阻值为R 的电阻。一根垂直于导轨放置的金属棒ab ,质量为m ,从静止开始沿导轨下滑,求ab 棒的最大速度。(要求画出ab 棒的受力图,已知ab 与导轨间的动摩擦因数μ,导轨和金属棒的电阻都不计)

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

(含答案)电磁感应中的动力学问题

电磁感应中的动力学问题分析 一、基础知识 1、安培力的大小 由感应电动势E =Bl v ,感应电流I =E R 和安培力公式F =BIl 得F =B 2l 2v R . 2、安培力的方向判断 3、导体两种状态及处理方法 (1)导体的平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零)列式分析. (2)导体的非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 4、解决电磁感应中的动力学问题的一般思路是 “先电后力”,即:先做“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; 再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力; 然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力; 最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型. 二、练习 1、(2012·广东理综·35)如图所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金

属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d 的平行金属板,R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻. (1)调节R x =R ,释放导体棒,当导体棒沿导轨匀速下滑时,求通过导体棒的电流I 及导体棒的速率v . (2)改变R x ,待导体棒沿导轨再次匀速下滑后,将质量为m 、带电荷量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x . 解析 (1)对匀速下滑的导体棒进行受力分析如图所示. 导体棒所受安培力F 安=BIl ① 导体棒匀速下滑,所以F 安=Mg sin θ② 联立①②式,解得I =Mg sin θBl ③ 导体棒切割磁感线产生感应电动势E =Bl v ④ 由闭合电路欧姆定律得I =E R +R x ,且R x =R ,所以I =E 2R ⑤ 联立③④⑤式,解得v =2MgR sin θB 2l 2 (2)由题意知,其等效电路图如图所示. 由图知,平行金属板两板间的电压等于R x 两端的电压. 设两金属板间的电压为U ,因为导体棒匀速下滑时的电流仍为I ,所以由欧姆定律知 U =IR x ⑥ 要使带电的微粒匀速通过,则mg =q U d ⑦ 联立③⑥⑦式,解得R x =mBld Mq sin θ . 答案 (1)Mg sin θBl 2MgR sin θB 2l 2 (2)mBld Mq sin θ 2、如图所示,两足够长平行金属导轨固定在水平面上,

电磁感应中的动力学和能量问题计算题专练

电磁感应中的动力学和能量问题(计算题专练) 1、如图所示,在倾角θ=37°的光滑斜面上存在一垂直斜面向上的匀强磁场区域MNPQ,磁感应强度B的大小为5 T,磁场宽度d=0.55 m,有一边长L=0.4 m、质量m1=0.6 kg、电阻R=2 Ω的正方形均匀导体线框abcd通过一轻质细线跨过光滑的定滑轮与一质量为m2=0.4 kg的物体相连,物体与水平面间的动摩擦因数μ=0.4,将线框从图示位置由静止释放,物体到定滑轮的距离足够长.(取g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)线框abcd还未进入磁场的运动过程中,细线中的拉力为多少? (2)当ab边刚进入磁场时,线框恰好做匀速直线运动,求线框刚释放时ab边距磁场MN边界的距离x多大? (3)在(2)问中的条件下,若cd边恰离开磁场边界PQ时,速度大小为2 m/s,求整个运动过程中ab边产生的热量为多少? 解析(1)m1、m2运动过程中,以整体法有 m1g sin θ-μm2g=(m1+m2)a a=2 m/s2 以m2为研究对象有F T-μm2g=m2a(或以m1为研究对象有m1g sin θ-F T=m1a) F T=2.4 N (2)线框进入磁场恰好做匀速直线运动,以整体法有 m1g sin θ-μm2g-B2L2v R =0 v=1 m/s ab到MN前线框做匀加速运动,有 v2=2ax x=0.25 m (3)线框从开始运动到cd边恰离开磁场边界PQ时: m1g sin θ(x+d+L)-μm2g(x+d+L)=1 2 (m1+m2)v21+Q 解得:Q=0.4 J 所以Q ab=1 4 Q=0.1 J 答案(1)2.4 N (2)0.25 m (3)0.1 J 2、如图所示,足够长的金属导轨MN、PQ平行放置,间距为L,与水平面成θ角,导轨与定值电阻R1和R2相连,且R1=R2=R,R1支路串联开关S,原来S闭合.匀强磁场垂直导轨平面向上,有一质量为m、有效电阻也为R的导体棒ab与导轨垂直放置,它与导轨粗糙接触且始终接触良好.现将导体棒ab从静止释放,沿导轨下滑,当导体棒运动达到稳定状 态时速率为v,此时整个电路消耗的电功率为重力功率的3 4 .已知 重力加速度为g,导轨电阻不计,求: (1)匀强磁场的磁感应强度B的大小和达到稳定状态后导体棒ab 中的电流强度I; (2)如果导体棒ab从静止释放沿导轨下滑x距离后达到稳定状态,这一过程回路中产生的电热是多少? (3)导体棒ab达到稳定状态后,断开开关S,从这时开始导体棒ab下滑一段距离后,通过导

高考物理--电磁感应中的动力学问题(习题)

第61课时 电磁感应中的动力学问题(题型研究课) [命题者说] 电磁感应动力学问题是历年高考的一个热点,这类题型的特点一般是单棒或双棒在磁场中切割磁感线,产生感应电动势和感应电流。感应电流受安培力而影响导体棒的运动,构成了电磁感应的综合问题,它将电磁感应中的力和运动综合到一起,其难点是感应电流安培力的分析,且安培力常常是变力。这类问题能很好地提高学生的综合分析能力。 (一) 运动切割类动力学问题 考法1 单杆模型 [例1] (2016·全国甲卷) 水平面(纸面)间距为l 的平行金属导轨间接一电阻,质量为m 、长度为l 的金属杆置于导轨上。t =0时,金属杆在水平向右、大小为F 的恒定拉力作用下由静止开始运动。t 0时刻,金属杆进入磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场区域,且在磁场中恰好能保持匀速运动。杆与导轨的电阻均忽略不计,两者始终保持垂直且接触良好,两者之间的动摩擦因数为μ。重力加速度大小为g 。求 (1)金属杆在磁场中运动时产生的电动势的大小; (2)电阻的阻值。 单杆模型的分析方法 (1)电路分析:导体棒相当于电源,感应电动势E =BLv ,电流I = E R +r 。 (2)受力分析:导体棒中的感应电流在磁场中受安培力F 安=BIL ,I =BLv R +r ,F 安=B 2L 2v R +r 。 (3)动力学分析:安培力是变力,导体棒在导轨上做变加速运动,临界条件是安培力和其他力达到平衡,这时导体棒开始匀速运动。 考法2 双杆模型 [例2] (1)如图1所示,两根平行的金属导轨,固定在同一水平面上,磁感应强度为B 的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计,导轨间的距离为l ,两根质量均为m 、电阻均为R 的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直。在t =0时刻,两杆都处于静止状态。现有一与导轨平行,大小恒为F 的力作用于金属杆甲上,使金属杆在导轨上滑动,试分析金属杆甲、乙的收尾运动情况。 (2)如图2所示,两根足够长的固定的平行金属导轨位于同一水平面,导轨上横放着两根导体棒ab 和cd ,构成矩形回路。在整个导轨平面都有竖直向上的匀强磁场,设两导体棒均可沿导轨无摩擦地滑行。开始时,棒cd 静

完整版电磁感应综合典型例题

电磁感应综合典型例题 【例11电阻为R的矩形线框abed,边长ab=L, ad=h,质量为m 自某一高度自由落下,通过一匀强磁场,磁场方向垂直纸面向里,磁 场区域的宽度为h,如图所示,若线框恰好以恒定速度通过磁场,线 框中产生的焦耳热是 _________ ?(不考虑空气阻力) 【分析】线框通过磁场的过程中,动能不变。根据能的转化和守恒,重力对线框所做的功全部转化为线框中感应电流的电能,最后又全部转化为焦耳热?所以,线框通过磁场过程中产生的焦耳热为 Q=W=mg- 2h=2mgh 【解答1 2mgh

【说明】本题也可以直接从焦耳热公式Q=l2Rt进行推算: 设线框以恒定速度v通过磁场,运动时间 从线框的cd边进入磁场到ab边离开磁场的过程中,因切割磁感 线产生的感应电流的大小为 cd边进入磁场时的电流从d到c, cd边离开磁场后的电流方向从a到b.整个下落过程中磁场对感应电流产生的安培力方向始终向上, 大小恒为 据匀速下落的条件,有 因线框通过磁场的时间,也就是线框中产生电流的时间,所以据 焦耳定律,联立(I )、(2)、(3)三式,即得线框中产生的焦耳热 为

Q=2mgh 两种解法相比较,由于用能的转化和守恒的观点,只需从全过程 考虑,不需涉及电流的产生等过程,计算更为简捷. 【例2】一个质量m=0.016kg、长L=0.5m,宽d=0.1m、电阻R=0.1 Q的矩形线圈,从离匀强磁场上边缘高h i=5m处由静止自由下落.进 入磁场后,由于受到磁场力的作用,线圈恰能做匀速运动(设整个运 动过程中线框保持平动),测得线圈下边通过磁场的时间△t=0.15s,取g=10m/s,求: (1)匀强磁场的磁感强度B; (2)磁场区域的高度h2;

电磁感应的发现

中学高二年级选修3-2 册物理学科导学案(学生版) 课题:电磁感应的发现 【学习目标】(清晰、具体、可检测性强) 1.了解电磁感应现象的发现过程,认识电磁感应现象的时代背景和思想历程。 2.知道电磁感应现象产生的电流叫感应电流。 3.知道科学探究的的一般方法,了解相关的实验。 【学习重点】 认识电磁感应现象,了解相关实验 【学习过程】(预热衔接、问题引领、自主学习、交流互助、学生展示、质疑探究、精彩点评) 一、复习:奥斯特-----电流的磁效应。 阅读教材并回忆有关奥斯特发现电流磁效应的内容。 (1)是什么信念激励奥斯特寻找电与磁的联系的?在这之前,科学研究领域存在怎样的历史背景? (2)奥斯特发现电流磁效应的过程是怎样的?回忆学过的知识如何解释? (3)电流磁效应的发现有何意义?谈谈自己的感受。 二、学习过程: 1.法拉第发现电磁感应现象。 (1)奥斯特发现电流磁效应引发了怎样的哲学思考?法拉第持怎样的观点? (2)法拉第做了大量实验都是以失败告终,失败的原因是什么? (3)法拉第经历了多次失败后,终于发现了电磁感应现象,他发现电磁感应现象的具体的过程是怎样的?之后他又做了大量的实验都取得了成功,他认为成功的“秘诀”是什么? (4)从法拉第探索电磁感应现象的历程中,你学到了什么?谈谈自己的体会。 2.电磁感应现象的分类。 阅读教材并回答: 法拉第发表的论文中,把电磁感应现象分为五类: ①、 ②、

③、 ④、 ⑤、 学生活动:自主完成。 3.感应电流:由产生的电流叫感应电流。 (1)讨论交流,设计实验,如何利用提供的器材产生感应电流?(画出设计草图) (2)观察演示实验,认识感应电流。 4.电磁感应现象发现的意义。 阅读教材并思考回答电磁感应发现的意义: (1)电磁感应的发现,使人们发明了,把能转化为能。 (2)电磁感应的发现,使人们发明了,解决了电能远距离传输中的能量大量损耗的问题。 (3)电磁感应的发现,使人们制造了,反过来把能转化为能,比如生活中的、、。 【课堂总结】 1、我们可以通过哪些实验与现象来说明(证实)磁现象与电现象有联系? 2、如何让磁生成电? 3、生活中电磁有关的现象? 【当堂训练】 【例1】发电的基本原理是电磁感应。发现电磁感应现象的科学家是(C) A.安培B.赫兹C.法拉第D.麦克斯韦 【例2】发现电流磁效应现象的科学家是__奥斯特__,发现通电导线在磁场中受力规律的科学家是_安培_,发现电磁感应现象的科学家是_法拉第_,发现电荷间相互作用力规律的的科学家是_库仑_。 【例3】下列现象中属于电磁感应现象的是(B) A.磁场对电流产生力的作用B.变化的磁场使闭合电路中产生电流 C.插在通电螺线管中的软铁棒被磁化D.电流周围产生磁场 【作业】思考:产生感应电流的条件?

应用动力学和能量观点处理电磁感应问题

应用动力学和能量观点处理电磁感应问题 (限时:45分钟) 1.(2014·浙江·24)某同学设计一个发电测速装置,工作原理如图1所示,一个半径为R =0.1 m 的圆形金属导轨固定在竖直平面上,一根长为R 的金属棒OA ,A 端与导轨接触良好,O 端固定在圆心处的转轴上.转轴的左端有一个半径为r =R 3的圆盘,圆盘和金属棒能随转轴一起 转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m =0.5 kg 的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B =0.5 T .a 点与导轨相连,b 点通过电刷与O 端相连.测量a 、b 两点间的电势差U 可算得铝块速度.铝块由静止释放,下落h =0.3 m 时,测得U =0.15 V .(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g =10 m/s 2) 图1 (1)测U 时,与a 点相接的是电压表的“正极”还是“负极”? (2)求此时铝块的速度大小; (3)求此下落过程中铝块机械能的损失. 答案 (1)正极 (2)2 m/s (3)0.5 J 解析 (2)由电磁感应定律得U =E =BR ·Rω2=1 2BωR 2 v =rω=1 3ωR 所以v =2U 3BR =2 m/s. (3)ΔE =mgh -1 2m v 2 ΔE =0.5 J. 2.(2014·天津·11)如图2所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m ,导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN .Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg 、电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、

(完整版)电磁感应经典例题

电磁感应 考点清单 1 电磁感应现象 感应电流方向 (一)磁通量 1.磁通量:穿过磁场中某个面的磁感线的条数叫做穿过这一面积的磁能量.磁通量简称磁通,符号为Φ,单位是韦伯(Wb ). 2.磁通量的计算 (1)公式Φ=BS 此式的适用条件是:○1匀强磁场;○2磁感线与平面垂直. (2)如果磁感线与平面不垂直,上式中的S 为平面在垂直于磁感线方向上的投影面积. θsin S B ?=Φ 其中θ为磁场与面积之间的夹角,我们称之为“有效面积”或“正对面积”. (3)磁通量的方向性 磁通量正向穿过某平面和反向穿过该平面时,磁通量的正负关系不同.求合磁通时应注意相反方向抵消以后所剩余的磁通量. (4)磁通量的变化 12Φ-Φ=?Φ ?Φ可能是B 发生变化而引起,也可能是S 发生变化而引起,还有可能是B 和S 同时发生变化而引起的,在确定磁通量的变化时应注意. (二)电磁感应现象的产生条件 1.产生感应电流的条件:穿过闭合电路的磁通量发生变化. 2.感应电动势的产生条件:无论电路是否闭合,只要穿过电路的磁通量发生变化, 这部分电路就会产生感应电动势.这部分电路或导体相当于电源. [例1] (2004上海,4)两圆环A 、B 置于同一水平面上,其中A 为均匀带电绝缘环,B 为导体环.当A 以如图13-36所示的方向绕中心转动的角速度发生变化时,B 中产生如图所示方向的感应电流.则( ) 图13-36 A.A 可能带正电且转速减小 B.A 可能带正电且转速增大 C.A 可能带负电且转速减小 D.A 可能带负电且转速增大 [解析] 由题目所给的条件可以判断,感应电流的磁场方向垂直于纸面向外,根据楞次定律,原磁场的方向与感应电流的磁场相同时是减少的,环A 应该做减速运动,产生逆时针方向的电流,故应该带负电,故选项C 是正确的,同理可得B 是正确的.

探究电磁感应的产生条件及条件(练习题含答案)

探究电磁感应的产生条件 [学习目标] 1.了解电磁感应现象的发现过程 2.了解奥斯特、法拉第等科学家的科学思维方法 3.理解磁通量的概念,会用公式 BS = φ 计算穿过某一面积的磁通量和该公式中每一个物 理量的物理意义 4.知道穿过某一面积的磁通量大小也可以用穿过这一面积的磁感线多少来表示,且与磁感线怎样穿过(垂直该面或倾斜该面穿过)无关,如果有一条磁感线穿过某一面积但又穿过来一条,则穿过这一面积的磁通量为零。 5.知道磁通量的变化 φ ?等于末磁通量 2 φ与初磁通量 1 φ的差,即 1 2 φ φ φ- = ? 6.理解产生感应电流的条件:穿过闭合电路的磁通量发生变化。 穿过闭合电路的磁通量发生变化,有两个要点,一是闭合电路,二是磁通量变化;与穿过闭合电路的磁通量有无,多少无关,只要磁通量变化,闭合电路中就有感应电流,不变就没有。如图1所示,闭合线圈在匀强磁场中绕垂直磁场方向的轴转动,当线圈平面与磁场垂直时,穿过线圈平面的磁通量最大,但此时磁通量不变,线圈中无感应电流(可用示波器观察)。 [自主学习] 1、定义:的现象称为电磁感应现象。在电磁感应现象中所产生的电流称为。 2、到了18世纪末,人们开始思考不同自然现象之间的联系,一些科学家相信电与磁之间存在着某种联系,经过艰苦细致地分析、试验,发现了电生磁,即电流的磁效应;发现了磁生电,即电磁感应现象。 3、在电磁感应现象中产生的电动势称为,产生感应电动势的那段导体相当于; 4、产生感应电流的条件是:。

5、判断感应电流的方向利用或,但前者应用于闭合电路的一部分导体在磁场中做切割磁感线运动,后者可应用于一切情况。 [典型例题] 图2 例1 如图2所示,两个同心圆形线圈a 、b 在同一水平面内,圆半径 b a R R ?,一条形磁铁穿过圆心垂 直于圆面,穿过两个线圈的磁通量分别为a φ和b φ, 则: b a A φφ?)(,b a B φφ=)(,b a C φφ?)(,(D )无法判断 分析:在磁铁的内部磁感线从S 极指向N 极,在磁铁的外部磁感线从N 极指向S 极;故从下向上穿过的磁感线条数一样多,但面积越大从上向下穿过来的磁感线条数越多,则磁感线的条数差越少,磁通量越少,C 正确 例2 光滑曲面与竖直平面的交线是抛物线,如图3所示,抛物线的方程是2x y =,下部处在一个水平方向的匀强磁场中,磁场的上边界是a y =的直线(图中的虚线所示)。一个小金属块从抛物线上b y =(b ?a )处以速度V 沿抛物线自由下滑,假设抛物线足够长,金属块沿抛物线下滑后产生的总热量是: 图3 221221)()()()()()(mv a b mg D a b mg C mv B mgb A +-- 分析:金属块可以看成一圈一圈的线圈组成的,线圈在进、出磁场的过程中,穿过线圈的磁通量变化,有感应电流产生,金属块的机械能越来越少,上升的最大高度越来越小,最后限定在磁场内运动,由能量守恒定律 mga mv mgb Q -+=)(221 ,所 以D 正确。 [针对训练] 1、1831年8月29日,法拉第终于取得突破性进展。这次他用一个软铁圆环,环上绕两个互相绝缘的线圈A 和B ,如图4所示,他在日记中写道:“使一个有10对极板,每板面积为4平方英寸的电池充电。用一根铜导线将一个线圈,或更确切地说把B 边的线圈的两个端点连接,让铜线通过一个距离,恰好经过一根磁针的上方(距铁环3英尺远)

专题突破电磁感应中的动力学问题课后练习

专题突破电磁感应中的动力学问题 (答题时间:30分钟) 1. 如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1。用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后() A. 金属棒ab、cd都做匀速运动 B. 金属棒ab上的电流方向是由b向a C. 金属棒cd所受安培力的大小等于2F/3 D. 两金属棒间距离保持不变 2. 如图(a)所示为磁悬浮列车模型,质量M=1 kg的绝缘板底座静止在动摩擦因数μ1=0.1的粗糙水平地面上。位于磁场中的正方形金属框ABCD为动力源,其质量m=1 kg, 边长为1 m,电阻为1 16Ω,与绝缘板间的动摩擦因数μ2=0.4。OO′为AD、BC的中线。在金属框有可随金属框同步移动的磁场,OO′CD区域磁场如图(b)所示,CD恰在磁场边缘以外;OO′BA区域磁场如图(c)所示,AB恰在磁场边缘以(g=10 m/s2)。若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,则金属框从静止释放后()

A. 若金属框固定在绝缘板上,金属框的加速度为3 m/s2 B. 若金属框固定在绝缘板上,金属框的加速度为7 m/s2 C. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板仍静止 D. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板的加速度为2 m/s2 3. 如图所示,两根光滑的平行金属导轨竖直放置在匀强磁场中,磁场和导轨平面垂直,金属杆ab与导轨接触良好可沿导轨滑动,开始时电键S断开,当ab杆由静止下滑一段时间后闭合S,则从S闭合开始计时,ab杆的速度v与时间t的关系图象可能正确的是() 4. 如图甲所示,垂直纸面向里的有界匀强磁场磁感应强度B=1.0 T,质量为m=0.04 kg、高h=0.05 m、总电阻R=5 Ω、n=100匝的矩形线圈竖直固定在质量为M=0.08kg的小车上,小车与线圈的水平长度l相同。当线圈和小车一起沿光滑水平面运动,并以初速度v1=10 m/s进入磁场,线圈平面和磁场方向始终垂直。若小车运动的速度v随车的位移x变化的v-x图象如图乙所示,则根据以上信息可知() A. 小车的水平长度l=15 cm B. 磁场的宽度d=35cm C. 小车的位移x=10 cm时线圈中的电流I=7 A D. 线圈通过磁场的过程中线圈产生的热量Q=1.92J

高中物理电磁感应经典例题总结

1.如图,金属棒ab 置于水平放置的U 形光滑导轨上,在ef 右侧存在有界匀强磁场B ,磁场方向垂直导轨平面向下,在ef 左侧的无磁场区域cdef 内有一半径很小的金属圆环L ,圆环与导轨在同一平面内。当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环L 有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 答案:收缩,变小 解析:由于金属棒ab 在恒力F 的作用下向右运动,则abcd 回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 2.如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d ,其右端接有阻值为R 的电阻,整个装置处在竖直向上磁感应强度大小为B 的匀强磁场中。一质量为m (质量分布均匀)的导体杆ab 垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u 。现杆在水平向左、垂直于杆的恒力F 作用下从静止开始沿导轨运动距离L 时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r ,导轨电阻不计,重力加速度大小为g 。则此过程 ( BD ) A.杆的速度最大值为 B.流过电阻R 的电量为 C.恒力F 做的功与摩擦力做的功之和等于杆动能的变化量 D.恒力F 做的功与安倍力做的功之和大于杆动能的变化量 解析:当杆达到最大速度v m 时,022=+- -r R v d B mg F m μ得()()22d B r R mg F v m +-=μ,A 错;由公式 () ()r R BdL r R S B r R q +=+= += ??Φ ,B 对;在棒从开始到达到最大速度的过程中由动能定理有: K f F E W W W ?=++安,其中mg W f μ-=,Q W -=安,恒力F 做的功与摩擦力做的功之和等于杆动能的变 化量与回路产生的焦耳热之和,C 错;恒力F 做的功与安倍力做的功之和等于于杆动能的变化量与克服摩擦力做的功之和,D 对。 3.(09·浙江·17)如图所示,在磁感应强度大小为B 、方向竖直向上的匀强磁场中,有一质量为m 、阻值为R 的闭合矩形金属线框abcd 用绝缘轻质细杆悬挂在O 点,并可绕O 点摆动。金属线框从右侧某一位置静止开始释放,在摆动到左侧最

电磁感应典型例题

典型例题——电磁感应与电路、电场相结合 1.如图所示,螺线管的导线的两端与两平行金属板相接,一个带负电的通草球用丝线悬挂在 两金属板间,并处于静止状态,若条形磁铁突然插入线圈时,通草球的运动情况是( ) A 、向左摆动 B 、向右摆动 C 、保持静止 D 、无法确定 解:当磁铁插入时,穿过线圈的磁通量向左且增加,线圈产生感应电动势,因此线圈是一个产生感应电动势的电路,相当于一个电源,其等效电路图如图,因此A 板带正电,B 板带负电,故小球受电场力向左 答案:A 3.如图所示,匀强磁场B=,金属棒AB 长0.4m ,与框架宽度相同,电阻为R=1/3Ω,框架电阻不计,电阻R 1=2Ω,R 2=1Ω当金属棒以5m/s 的速度匀速向左运动时,求: (1)流过金属棒的感应电流多大 (2)若图中电容器C 为μF,则充电量多少(1),(2)4×10-8C 解:(1)金属棒AB 以5m/s 的速度匀速向左运动时,切割磁感线,产生的感应电动势为Blv E =,得V V E 2.054.01.0=??=, 由串并联知识可得Ω=3 2外R ,Ω=1总R , 所以电流 A I 2.0= (2)电容器C 并联在外电路上, V U 3 4 .0= 外 由公式 N

C CU Q 3 4 .0103.06? ?==-C 8104-?= 4.(2003上海)粗细均习的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。 现使线框以同样大小的速度沿四个不同方向平移出磁场,如图100-1所示,则在移出过程中线框的一边a 、b 两点间电势差绝对值最大的是( ) 解:沿四个不同方向移出线框的感应电动势都是Blv E =,而a 、b 两点在电路中的位置不同,其等效电路如图100-2所示,显然图B’的Uab 最大,选B 。 5.(2004年东北三校联合考试)粗细均匀的电阻丝围成如图12-8所示的线框abcd e (ab =bc )置于正方形有界匀强磁场中,磁场方向垂直于线框平面.现使线框以同样大小的速度匀速地沿四个不同方向平动进入磁场,并且速度方向始终与线框先进入磁场的那条边垂直,则在通过图示位置时,线框ab 边两端点间的电势差绝对值最大的是

高中物理电磁感应交变电流经典习题30道 带答案

一.选择题(共30小题) 1.(2015?嘉定区一模)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率()A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变D.先增大,再减小,最后不变 2.(2014?广东)如图所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块() A.在P和Q中都做自由落体运动 B.在两个下落过程中的机械能都守恒 C.在P中的下落时间比在Q中的长 D.落至底部时在P中的速度比在Q中的大 3.(2013?虹口区一模)如图所示,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,长直导线中电流i随时间变化,使线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.图中箭头表示电流i的正方向,则i随时间t变化的图线可能是() A.B.C.D. 4.(2012?福建)如图,一圆形闭合铜环由高处从静止开始加速下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴线始终保持重合.若取磁铁中心O为坐标原点,建立竖直向下为正方向的x轴,则图中最能正确反映环中感应电流i随环心位置坐标x变化的关系图象是() A.B.C.D.

5.(2011?上海)如图,均匀带正电的绝缘圆环a与金属圆环b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺时针方向的感应电流,且具有收缩趋势,由此可知,圆环a() A. 顺时针加速旋转B.顺时针减速旋转 C .逆时针加速旋转D.逆时针减速旋转 6.(2010?上海)如图,一有界区域内,存在着磁感应强度大小均为B,方向分别垂直于光滑水平桌面向下和向上的匀强磁场,磁场宽度均为L,边长为L的正方形线框abcd的bc边紧靠磁场边缘置于桌面上,使线框从静止开始沿x轴正方向匀加速通过磁场区域,若以逆时针方向为电流的正方向,能反映线框中感应电流变化规律的是图() A.B.C.D. 7.(2015春?青阳县校级月考)纸面内两个半径均为R的圆相切于O点,两圆形区域内分别存在垂直纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化.一长为2R的导体杆OA绕过O点且垂直于纸面的轴顺时针匀速旋转,角速度为ω,t=0时,OA恰好位于两圆的公切线上,如图所示.若选取从O指向A的电动势为正,下列描述导体杆中感应电动势随时间变化的图象可能正确的是() A.B.C.D. 8.(2014?四川)如图所示,不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H、P固定在框上,H、P的间距很小.质量为0.2kg的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1m 的正方形,其有效电阻为0.1Ω.此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B=(0.4﹣0.2t)T,图示磁场方向为正方向,框、挡板和杆不计形变.则()

电磁感应的产生条件实验设计

探究电磁感应的产生条件实验设计 山东省泗水县实验中学巩涛 “探究电磁感应的产生条件”是高中物理新课程(选修3-2)第四章第二节的内容,是电磁学的核心内容之一,在整个高中物理中占有相当重要的地位。本节内容揭示了磁和电的内在联系,通过探究实验总结归纳出了“磁生电”的规律,在教材中起到了承前启后的作用,是学生今后深入学习法拉第电磁感应定律、楞次定律和交变电流的产生等知识的基础。 在教材的编排上本节从初中知识点闭合电路的部分导线切割磁感线产生电流入手,再设计学生分组探究实验,对现象进行分析归纳,最后总结出产生感应电流的条件,这样的编排符合学生的认知规律。除了从知识上让学生了解并掌握电磁感应的产生条件外,更为重要的是,本节教材内容一个显著的特点就是探究性强,通过观察三个实验,理出头绪、分析论证进而归纳总结出结论,充分体现了实验探究的具体过程,能够很好的培养学生的探究能力。 实验器材: 灵敏电流计,蹄形磁铁,导体棒,导体线框,条形磁铁,大小螺线管各一个,电源,滑动变阻器,导线若干。 实验过程: (1)实验一:导体棒切割磁感线运动,如图1所示。 学生操作实验,记录观察结果。 ②小组讨论,归纳总结结论:当闭合电路的部分导体切割磁感线运动时,电路中会产生感应电流。 (2)探究实验二:向线圈中插拔磁铁,如图2所示

②小组讨论,归纳总结结论:当向线圈中插、拔磁铁时线圈中会有感应电流产生。 (3)探究实验三:模仿法拉第的实验,如图3所示。 ①学生操作实验,记录观察结果。 ②小组讨论,归纳总结结论:当螺线管A中的电流发生变化时,线圈B中会有感应电流产生。 分析论证: 总结一:对于实验一,我们画出俯视图,如图4所示。当导体棒AB向左、右运动时,导体棒切割磁感线的运动使得闭合回路包围的面积发生变化,在闭合电路中产生了感应电流。

电磁感应中的动力学能量

电磁感应中的动力学能量问题 突破一电磁感应中的动力学问题 1.两种状态及处理方法 状态特征处理方法 平衡态加速度为零根据平衡条件列式分析 非平衡态加速度不为零根据牛顿第二定律进行动态分析或结合功能关系进行分析 2.电学对象与力学对象的转换及关系 1.如图所示,竖直平面内有一宽L=1 m、足够长的光滑矩形金属导轨,电阻不计。在导轨的上、下边分别接有电阻R1=3 Ω和R2=6 Ω。在MN上方及CD下方有垂直纸面向里的匀强磁场Ⅰ和Ⅱ,磁感应强度大小均为B=1 T。现有质量m=0.2 kg、电阻r=1 Ω的导体棒ab,在金属导轨上从MN上方某处由静止下落,下落过程中导体棒始终保持水平,与金属导轨接触良好。当导体棒ab下落到快要接近MN时的速度大小为v1=3 m/s。不计空气阻力,g取10 m/s2。 (1)求导体棒ab快要接近MN时的加速度大小; (2)若导体棒ab进入磁场Ⅱ后,棒中的电流大小始终保持不变,求磁场Ⅰ和Ⅱ之间的距离h;

2.如图所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B 。电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计。现给导线MN 一初速度,使导线MN 向右运动,当电路稳定后,MN 以速度v 向右做匀速运动时( ) A.电容器两端的电压为零 B.电阻两端的电压为BLv C.电容器所带电荷量为CBLv D.为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2v R 突破二 电磁感应中的能量问题 1.电磁感应中的能量转化 2.求解焦耳热Q 的三种方法 3.解电磁感应现象中的能量问题的一般步骤 (1)在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源。 (2)分析清楚有哪些力做功,就可以知道有哪些形式的能量发生了相互转化。 (3)根据能量守恒列方程求解。 1(2015·天津理综)如图所示, “凸”字形硬质金属线框质量为m ,相邻各边互相垂直,且处于同一竖直平面内,ab 边长为l ,cd 边长为2l ,ab 与cd 平行,间距为2l 。匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面。开始时,cd 边到磁场上边界的距离为2l ,线框由静止释放,从cd 边进入磁场直到ef 、pq 边进入磁场前,线框做匀速运动,在ef 、pq 边离开磁场后,ab 边离开磁场之前,线框又做匀速运动。线框完全穿过磁场过程中产生的热量为Q 。线框在下落过程中始终处于原竖直平面内,且ab 、cd 边保持水平,重力加速度为g 。求:

电磁感应中的动力学和能量问题(教师版)

专题 电磁感应中的动力学和能量问题 一、电磁感应中的动力学问题 1.电磁感应与动力学、运动学结合的动态分析,分析方法是: 导体受力运动产生感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,直至达到稳定状态. 2.分析动力学问题的步骤 (1)用电磁感应定律和楞次定律、右手定则确定感应电动势的大小和方向. (2)应用闭合电路欧姆定律求出电路中感应电流的大小. (3)分析研究导体受力情况,特别要注意安培力方向的确定. (4)列出动力学方程或平衡方程求解. 3.两种状态处理 (1)导体处于平衡态——静止或匀速直线运动状态. 处理方法:根据平衡条件——合外力等于零,列式分析. (2)导体处于非平衡态——加速度不为零. 处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析. 二、电磁感应中的能量问题 1.电磁感应过程的实质是不同形式的能量转化的过程.电磁感应过程中产生的感应电流在磁场中必定受到安培力作用,因此要维持感应电流存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能,“外力”克服安培力做多少功,就有多少其他形式的能转化为电能;当感应电流通过用电器时,电能又转化为其他形式的能.可以简化为下列形式: 其他形式的能如:机械能 ――→安培力做负功电能 ――→电流做功其他形式的能如:内能 同理,安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能. 2.电能求解的思路主要有三种 (1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功; (2)利用能量守恒求解:机械能的减少量等于产生的电能; (3)利用电路特征求解:通过电路中所产生的电能来计算. 例1 如图所示,MN 、PQ 为足够长的平行金属导轨,间距L =0.50 m ,导轨平面与水平面间夹角θ=37°,N 、Q 间连接一个电阻R =5.0 Ω,匀强磁场垂直于导轨平面向上,磁感应强度B =1.0 T .将一根质量为m =0.050 kg 的金属棒放在导轨的ab 位置,金属棒及导轨的电阻不计.现由静止释放金属棒,金属棒沿导轨向下运动过程中始终与导轨垂直,且与导轨接触良好.已知金属棒与导轨间的动摩擦因数μ=0.50,当金属棒滑行至cd 处时,其速度大小开始保持不变,位置cd 与ab 之间的距离s =2.0 m .已知g =10 m/s 2,sin 37°=0.60,cos 37°=0.80.求: (1)金属棒沿导轨开始下滑时的加速度大小; (2)金属棒到达cd 处的速度大小; (3)金属棒由位置ab 运动到cd 的过程中,电阻R 产生的热量. 解析 (1)设金属棒开始下滑时的加速度大小为a ,则 mg sin θ-μmg cos θ=ma a =2.0 m/s 2 (2)设金属棒到达cd 位置时速度大小为v 、电流为I ,金属棒受力平衡,有mg sin θ=BIL + μmg cos θ I =BL v R 解得v =2.0 m/s (3)设金属棒从ab 运动到cd 的过程中,电阻R 上产生的热量为Q ,由能量守恒, 有mgs sin θ=12 m v 2+μmgs cos θ+Q 解得Q =0.10 J 突破训练1 如图所示,相距为L 的两条足够长的平行金属导轨,与水平面的夹角为θ,导轨上固定有质量为m 、电阻为R 的两根相同的导体棒,导体棒MN 上方轨道粗糙、下方轨

相关文档
最新文档