开题报告 量子自旋霍尔效应与拓扑绝缘体

开题报告  量子自旋霍尔效应与拓扑绝缘体
开题报告  量子自旋霍尔效应与拓扑绝缘体

附表1:

嘉应学院 15 届物理学院

本科毕业论文(设计)开题报告表

课题类型指:理论研究、实验研究、计算机软件设计、工程设计(实践)等。

教研室主任(签名)院长(签名)

年月日

霍尔传感器简介

霍尔效应-----------------百度百科 编辑本段发现 霍尔效应在1879年被E.H. 霍尔发现,它定义了磁场和感应电压之间的关系,这种效应和传统的感应效果完全不同。当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个垂直于弟子运动方向上的的作用力,从而在导体的两端产生电压差。 虽然这个效应多年前就已经被大家知道并理解,但基于霍尔效应的传感器在材料工艺获得重大进展前并不实用,直到出现了高强度的恒定磁体和工作于小电压输出的信号调节电路。根据设计和配置的不同,霍尔效应传感器可以作为开/关传感器或者线性传感器。 霍尔效应 编辑本段解释 在导体上外加与电流方向垂直的磁场,会使得导线中的电子与电洞受到不同方向的洛伦兹力而往不同方向上聚集,在聚集起来的电子与电洞之间会产生电场,此一电场将会使后来的电子电洞受到电力作用而平衡掉磁场造成的洛伦兹力,使得后来的电子电洞能顺利通过

方便起见,假设导体为一个长方体,长度分别为a,b,d,磁场垂直ab平面。电流经过ad,电流I = nqv(ad),n为电荷密度。设霍尔电压为VH,导体沿霍尔电压方向的电场为VH / a。设磁场强度为B。 霍尔效应推导 ? 编辑本段相关反应 量子霍尔效应 热霍尔效应:垂直磁场的导体会有温度差。 Corbino效应:垂直磁场的薄圆碟会产生一个圆周方向的电流。 自旋霍尔效应 编辑本段本质 固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。平行电场和电流强度之比就是电阻率。大量的研究揭示:参加材料导电过程的不仅有带负电的电子,还有带正电的空穴。 编辑本段应用 霍尔效应在应用技术中特别重要。霍尔发现,如果对位于磁场(B)中的导体(d)施加一个电压(Iv),该磁场的方向垂直于所施加电压的方向,那么则在既与磁场垂直又和所施加电流方向垂直的方向上会产生另一个电压(UH),人们将这个电压叫做霍尔电压,产生这种现象被称为霍尔效应。好比一条路, 本来大家是均匀的分布在路面上, 往前移动. 当有磁场时, 大家可能会被推到靠路的 右边行走. 故路 (导体) 的两侧, 就会产生电压差. 这个就叫“霍尔效应”。根据霍尔效应做成的霍尔器件,就是以磁场为工作媒体,将物体的运动参量转变为数字电压的形式输出,使之具备传感和开关的功能。 讫今为止,已在现代汽车上广泛应用的霍尔器件有:在分电器上作信号传感器、ABS系统中的速度传感器、汽车速度表和里程表、液体物理量检测器、各种用电负载的电流检测及工作状态诊断、发动机转速及曲轴角度传感器、各种开关,等等。 例如汽车点火系统,设计者将霍尔传感器放在分电器内取代机械断电器,用作点火脉冲发生器。这种霍尔式点火脉冲发生器随着转速变化的磁场在带电的半导体层内产生脉冲电压,控制电控单元(ECU)的初级电流。相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶

诺奖级发现—量子反常霍尔效应Science-2013-Chang-science.1234414

Reports Quantum Hall effect (QHE), a quantized version of the Hall effect (1), was observed in two-dimensional (2D) electron systems more than 30 years ago (2, 3). In QHE the Hall resistance, which is the voltage across the transverse direction of a conductor divided by the longitudinal cur-rent, is quantized into plateaus of height h /νe 2, with h being Planck's constant, e the electron's charge, and ν an integer (2) or a certain fraction (3). In these systems, the QHE is a consequence of the formation of well-defined Landau levels, and thus only possible in high mobility samples and strong external magnetic fields. However, there have been numerous proposals to realize QHE without applying any magnetic field (4–11). Among these proposals, using the thin film of a magnetic topo-logical insulator (TI) (6–9, 11), a new class of quantum matter discov-ered recently (12, 13), is one of the most promising routes. Magnetic field induced Landau quantization drives a 2D electron system into an insulating phase that is topologically different from the vacuum (14, 15); as a consequence, dissipationless states appear at sam-ple edges. The topologically non-trivial electronic structure can also occur in certain 2D insulators with time reversal symmetry (TRS) bro-ken by current loops (4) or by magnetic ordering (6), requiring neither Landau levels nor external magnetic field. This type of QHE induced by spontaneous magnetization is considered the quantized version of the conventional (non-quantized) anomalous Hall effect (AHE) discovered in 1881 (16). The quantized Hall conductance is directly given by a topological characteristic of the band structure called the first Chern number. Such insulators are called Chern insulators. One way to realize a Chern insulator is to start from a time-reversal-invariant TI. These materials, whose topological properties are induced by spin-orbit coupling, were experimentally realized soon after the theo-retical predictions in both 2D and 3D systems (12, 13). Breaking the TRS of a suitable TI (17) by introduc-ing ferromagnetism can naturally lead to the QAH effect (6–9, 11). By tuning the Fermi level of the sample around the magnetically induced energy gap in the density of states, one is expected to observe a plateau of Hall conductance (σxy ) of e 2/h and a vanishing longitudi-nal conductance (σxx ) even at zero mag-netic field [figure 14 of (7) and Fig. 1, A and B]. The QAH effect has been predicted to occur by Mn doping of the 2D TI realized in HgTe quantum wells (8); however, an external magnetic field was still required to align the Mn mo-ments in order to realize the QAH ef-fect (18). As proposed in (9), due to the van Vleck mechanism doping the Bi 2Te 3 family TIs with isovalent 3d magnetic ions can lead to a ferromag-netic insulator ground state, and for thin film systems, this will further induce QAH effect if the magnetic exchange field is perpendicular to the plane and overcomes the semiconductor gap. Here we investigate thin films of Cr 0.15(Bi 0.1Sb 0.9)1.85Te 3 (19, 20) with a thickness of 5 quintuple layers (QL), which are grown on dielectric SrTiO 3 (111) substrates by molecular beam epitaxy (MBE) (20, 21) (fig. S1). With this composition, the film is nearly charge neutral so that the chemical potential can be fine-tuned to the electron- or hole-conductive regime by a positive or negative gate voltage, respectively, applied on the backside of the SrTiO 3 substrate (20). The films are manually cut into a Hall bar configuration (Fig. 1C) for transport measurements. Varying the width (from 50 μm to 200 μm) and the aspect ratio (from 1:1 to 2:1) of the Hall bar does not influence the result. Figure 1D displays a series of meas-urements, taken at different temperatures, of the Hall resistance (ρyx ) of the sample in Fig. 1C, as a function of the magnetic field (μ0H ). At high temperatures, ρyx exhibits linear magnetic field dependence due to the ordinary Hall effect (OHE). The film mobility is ~760 cm 2 /(Vs), as esti-mated from the measured longitudinal sheet resistance (ρxx ) and the car-rier density determined from the OHE. The value is much enhanced compared with the samples in our previous study (20, 21), but still much lower than that necessary for QHE (2, 3). With decreasing temperature, ρyx develops a hysteresis loop characteristic of the AHE, induced by the ferromagnetic order in the film (22). The square-shaped loop with large coercivity (H c = 970 Oersted at 1.5 K) indicates a long-range ferromag-netic order with out-of-plane magnetic anisotropy. The Curie tempera-ture is estimated to be ~15 K (Fig. 1D, inset) from the temperature dependence of the zero field ρyx that reflects spontaneous magnetization of the film. Experimental Observation of the Quantum Anomalous Hall Effect in a Magnetic Topological Insulator Cui-Zu Chang,1,2* Jinsong Zhang,1* Xiao Feng,1,2* Jie Shen,2* Zuocheng Zhang,1 Minghua Guo,1 Kang Li,2 Yunbo Ou,2 Pang Wei,2 Li-Li Wang,2 Zhong-Qing Ji,2 Yang Feng,1 Shuaihua Ji,1 Xi Chen,1 Jinfeng Jia,1 Xi Dai,2 Zhong Fang,2 Shou-Cheng Zhang,3 Ke He,2? Yayu Wang,1? Li Lu,2 Xu-Cun Ma,2 Qi-Kun Xue 1,2? 1 State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China. 2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, The Chinese Academy of Sciences, Beijing 100190, China. 3 Department of Physics, Stanford University, Stanford, CA 94305–4045, USA. *These authors contributed equally to this work. ?To whom correspondence should be addressed. E-mail: qkxue@https://www.360docs.net/doc/357928024.html, (Q.K.X.); kehe@https://www.360docs.net/doc/357928024.html, (K.H.); yayuwang@https://www.360docs.net/doc/357928024.html, (Y.W.) The quantized version of the anomalous Hall effect has been predicted to occur in magnetic topological insulators, but the experimental realization has been challenging. Here, we report the observation of the quantum anomalous Hall (QAH) effect in thin films of Cr-doped (Bi,Sb)2Te 3, a magnetic topological insulator. At zero magnetic field, the gate-tuned anomalous Hall resistance reaches the predicted quantized value of h/e 2, accompanied by a considerable drop of the longitudinal resistance. Under a strong magnetic field, the longitudinal resistance vanishes whereas the Hall resistance remains at the quantized value. The realization of the QAH effect may lead to the development of low-power-consumption electronics. Figure 2, A and C, shows the magnetic field dependence of ρyx and ρxx , respectively, measured at T = 30 mK at different bottom-gate voltag-es (V g s). The shape and coercivity of the ρyx hysteresis loops (Fig. 2A) vary little with V g , thanks to the robust ferromagnetism probably mediat-ed by the van Vleck mechanism (9, 20). In the magnetized states, ρyx is nearly independent of the magnetic field, suggesting perfect ferromag-netic ordering and charge neutrality of the sample. On the other hand, the AH resistance (height of the loops) changes dramatically with V g , o n M a r c h 14, 2013 w w w .s c i e n c e m a g .o r g D o w n l o a d e d f r o m

什么是量子霍尔效应-

什么是量子霍尔效应? 2018年12月17日复旦大学物理学系修发贤课题组在《自然》杂志上刊发了他们的研究成果:在拓扑半金属砷化铬纳米片中观测到由外尔轨道形成的新型三维量子霍尔效应。该项研究成果我国科学家首次在三维空间中发现量子的霍尔效应。 什么是霍尔效应 在中学物理课本我们都学过霍尔效应,它实际上一种电磁效应的。我们给一块半导体通电,在导体外面外加一个与电流方面垂直的磁场,磁场会使半导体中的电子与空穴(可以视为正电荷)受到不同方向的洛伦兹力而在不同方面上聚集,聚集起来的电子和空穴之间会产生电场,此时在半导体两侧产生了垂直于磁场和电流方向的电压,而且在此电压生成的电场力和磁场的洛伦兹力平衡以后,后来的电子和空穴就不在聚集,顺利通过不发生偏移。 这种现象是由美国物理学家霍尔于1879年研究金属导电机制的时候发现的,所以命名为“霍尔效应”,且在实际生活中产生了广泛的应用,根据霍尔效应做成的霍尔器件,就是以磁场为工作媒介,将物体的运动参数转变为数字电压的形式输出,使之具备传感和开关功能。 如:汽车的点火系统,设计人员将霍尔传感器放在分电器内取代机械断电器,用作机械断电器,用作点火脉冲发生器。这种霍尔点火发生器随着转速变化的磁场在带电半导体内产生脉冲电压,控制电控单元的初级电流。相对于机械断电器而言,霍尔式点火脉冲发生器无磨损免维护,能够适应恶劣的环境,同时能够精确的控制点火,具有明显的优势。 什么是量子霍尔效应(二维) 我们上面所说的霍尔效应是在三维的导体中实现的,其中的电子可以在导体中自由运动。现在科学家通过某些手段将电子限制在一个二维平面内,之后添加一个垂直于该平面的磁场,同时沿着二维电子平面一个方向通以电流,此时在二维平面的另一个方向上测量到电压。这种现象称为量子霍尔效应,属于量子力学版的霍尔效应。 该现象是由德国物理学家冯?克利青发现,并因此获得1985年的诺贝尔物理学奖。但是为

霍尔效应

霍尔效应 摘要:霍尔效应是霍尔--德国物理学家于1879年在他的导师罗兰的指导下发现的这一效应,这一效应在科学实验和工程技术中得到广泛应用。可以用它测量磁场、半导体中载流子的浓度及判别载流子的极性,还可以利用这一原理作成各种霍尔器件,已广泛地应用到各个领域中。近年来霍尔效应得到了重要发展,冯·克利青发现了量子霍尔效应,为此,冯·克利青获得1985年度诺贝尔物理学奖。关键词: 霍尔效应副效应霍尔电压直流电压高精度的隔离传送和检测直流电流高精度的隔离检测监控量越限时准确的隔离报警 引言:利用霍尔效应电压与磁场的线性关系可知,通过测量元件两端的电压,可以得知空间某区域的磁场分布及其此处的磁感应强度。如今,霍尔效应不但是测定半导体材料电学参数的主要手段,而且随着电子技术的发展,利用该效应制成的霍尔器件,由于结构简单、频率响应宽、寿命长、可靠性高等优点,已广泛用于非电量测量和信息处理等方面。 正文:通过自己多次到实验室去体验并做了这些试验,本试验共有4个实验--霍尔效应、直流电压高精度的隔离传送和检测、直流电流高精度的 隔离检测和监控量越限时准确的隔离报警。现在把实验内容及其结 论在下面做详细介绍: 一、霍尔效应试验 实验目的:认识霍尔效应并懂得其机理;研究霍尔电压与工作电流的关系;研究霍尔电压与磁场的关系;了解霍尔效应的副效应及消除方法。 实验原理:霍尔元件是根据霍尔效应原理制成的磁电转元件,如图所示

图1.1 霍尔效应磁原理 图1.2 霍尔效应磁电转换 在磁场不太强时,电位差H V 与电流强度I 和磁感应强度B 成正比,与板的厚度 d 成反比,即 d IB R V H H =(1.1)或 IB K V H H =(1.2)式(1.1)中H R 称为霍尔系数, 式(1.2)中H K 称为霍尔元件的灵敏度,单位为mv /(mA ·T)。如图1.1所示, 一快长为l 、宽为b 、厚为d 的N 型单晶薄片,置于沿Z 轴方向的磁场B 中,在 X 轴方向通以电流I ,则其中的载流子—电子所受到的洛仑兹力为 j eVB B V e B V q F m -=?-=?=(1.3)。即b V e eVB H =得 VBb V H =(1.5)此时B 端电位高于A 端电位。若N 型单晶中的电子浓度为n ,则流过样片横截面的电流 I =nebdV (1.6) 得 nebd I V = (1.7)将(1.6)式代入(1.5)式得 IB K d IB R IB ned V H H H === 1 (1.8)式中ne R H 1=称为霍尔系数,ned K H 1=称为 霍尔元件的灵敏度,一般地说,H K 愈大愈好,以便获得较大的霍尔电压H V 。 由(1.8)式可知,如果霍尔元件的灵敏度H R 已知,测得了控制电流I 和产生的霍尔电压H V ,则可测定霍尔元件所在处的磁感应强度为H H IK V B = 。霍尔效应实

《量子霍尔效应》阅读答案

《量子霍尔效应》阅读答案 《量子霍尔效应》阅读答案 阅读下面文字,完成5-7题。(9分,每小题3分) 1980年,德国科学家冯·克利青发现整数量子霍尔效应,1982年,美国科学家崔琦和施特默发现分数量子霍尔效应,这两项成果均获得诺贝尔物理学奖。 量子霍尔效应是整个凝聚态物理领域中最重要、最基本的量子效应之一。它的应用前景非常广泛。我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题。这是因为常态下的芯片中,电子运动没有特定的轨道,会相互碰撞从而发生能量损耗。而量子霍尔效应则可以为电子的运动制定一定的规则,让它们在各自的跑道上“一往无前”地前进。好比一辆高级跑车,常态下是在拥挤的农贸市场上前进,而在量子霍尔效应下,则可以在高速路上前进。 然而,量子霍尔效应的产生需要非常强的磁场。为了一台计算机的量子霍尔效应,相当于需外加10个计算机大的磁铁,不但体积庞大,而且价格昂贵,不适合个人电脑和便携式计算机。 1988年,美国物理学家霍尔丹提出可能存在不需要外磁场的量子霍尔效应,即“量子反常霍尔效应”。它与已知的量子霍尔效应具有完全不同的物理本质,是一种全新的量子效应;但它的实现也更加困难,需要精准的材料设计、制备与调控。多年来,人们一直未能找到能实现这一特殊量子效应的材料体系和具体物理途径。自1988年开始,就不断

有理论物理学家提出各种方案,然而在实验上没有取得任何进展。2006年,美国斯坦福大学张首晟教授领导的理论组成功地预言了二维拓扑绝缘体中的量子自旋霍尔效应,并于2008年指出了在磁性掺杂的拓扑绝缘体中实现量子反常霍尔效应的新方向。2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系。这个方案引起了国际学术界的广泛关注。德国、美国、日本等国有多个世界一流的研究团队沿着这个思路在实验上寻找量子反常霍尔效应,但一直没有取得突破。 由清华大学薛其坤院士领衔,清华大学、中科院物理所和斯坦福大学研究人员联合组成的团队,经过近4年的研究,生长测量了1000多个样品。最终,他们利用分子束外延方法,生长出了高质量的Cr掺杂(Bi,Sb)2Te3拓扑绝缘体磁性薄膜,并在极低温输运测量装置上成功观测到了量子反常霍尔效应。这项研究成果将推动新一代低能耗晶体管和电子学器件的发展,可能加速推进信息技术革命进程。 2013年3月14日,该成果发表于美国《科学》杂志。《科学》杂志的评审作出评价:“这篇文章结束了对量子反常霍尔效应多年的探寻,这是一项里程碑式的工作。”诺贝尔物理奖得主、清华大学高等研究院名誉院长杨振宁教授说,这是“诺贝尔奖级的发现”。 5.关于“量子霍尔效应”与“量子反常霍尔效应”的区别,以下表述小正确的一项是:

霍尔效应与霍尔传感器简介

霍尔效应 科技名词定义 中文名称:霍尔效应 英文名称:Hall effect 定义1: 在物质中任何一点产生的感应电场强度与电流密度和磁感应强度之矢量积成正比的现象。 应用学科:电力(一级学科);通论(二级学科) 定义2: 通过电流的半导体在垂直电流方向的磁场作用下,在与电流和磁场垂直的方向上形成电荷积累和出现电势差的现象。 应用学科:机械工程(一级学科);工业自动化仪表与系统(二级学科);机械量测量仪表-机械量测量仪表一般名词(三级学科) 百科名片 霍尔效应是磁电效应的一种,这一现象是美国物理学家霍尔(,1855—1938)于1879年在研究金属的导电机构时发现的。当电流垂直于外磁场通过导体时,在导体的垂直于磁场和电流方向的两个端面之间会出现电势差,这一现象便是霍尔效应。这个电势差也被叫做霍尔电势差。 发现 霍尔效应在1879年被E.H. 霍尔发现,它定义了磁场和感应电压之间的关系,这种效应和传统的感应效果完全不同。当电流通过一个位于磁场中的导体的时候,磁场会对导体中的电子产生一个垂直于电子运动方向上的的作用力,从而在导体的两端产生电压差。虽然这个效应多年前就已经被大家知道并理解,但基于霍尔效应的传感器在材料工艺获得重大进展前并不实用,直到出现了高强度的恒定磁体和工作于小电压输出的信号调节电路。根据设计和配置的不同,霍尔效应传感器可以作为开/关传感器或者线性传感器。 霍尔效应(图中电场方向应向上) 解释 在导体上外加与电流方向垂直的磁场,会使得导线中的电子与电洞受到不同方向的洛伦兹力而往不同方向上聚集,在聚集起来的电子与电洞之间会产生电场,此一电场将会使后来的电子电洞受到电力作用而平衡掉磁场造成的洛伦兹力,使得后来的电子电洞能顺利通过不会偏移,此称为霍尔效应。而产生的内建电压称为霍尔电压。 方便起见,假设导体为一个长方体,长度分别为a,b,d,磁场垂直ab平面。电流经过ad,电流I = nqv(ad),n为电荷密度。设霍尔电压为VH,导体沿霍尔电压方向的电场为VH / a。设磁场强度为B。 霍尔效应推导 相关反应 量子霍尔效应 热霍尔效应:垂直磁场的导体会有温度差。 Corbino效应:垂直磁场的薄圆碟会产生一个圆周方向的电流。 自旋霍尔效应 本质 固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。正交电场和电流强度与 大量的研究揭示:

量子霍尔效应

量子霍尔效应 霍尔效应是电磁效应的一种,这一现象是美国物理学家霍尔(E.H.Hall,1855-1938)于1879年在研究金属的导电机制时发现的。当电流垂直于外磁场通过半导体时,载流子发生偏转,垂直于电流和磁场的方向会产生一附加电场,从而在半导体的两端产生电势差,这一现象就是霍尔效应,这个电势差也被称为霍尔电势差。霍尔效应使用左手定则判断。 发现 霍尔效应在1879年被物理学 家霍尔发现,它定义了磁场和感应 电压之间的关系,这种效应和传统 的电磁感应完全不同。当电流通过 一个位于磁场中的导体的时候,磁 场会对导体中的电子产生一个垂直 于电子运动方向上的作用力,从而 在垂直于导体与磁感线的两个方向 上产生电势差。 虽然这个效应多年前就已经被人们知道并理解,但基于霍尔效应的传感器在材料工艺获得重大进展前并不实用,直到出现了高强度的恒定磁体和工作于小电压输出的信号调节电路。根据设

计和配置的不同,霍尔效应传感器可以作为开/关传感器或者线性传感器,广泛应用于电力系统中。 解释 在半导体上外加与电流方向垂直的磁场,会使得半导体中的电子与空穴受到不同方向的洛伦兹力而在不同方向上聚集,在聚集起来的电子与空穴之间会产生电场,电场力与洛伦兹力产生平衡之后,不再聚集,此时电场将会使后来的电子和空穴受到电场力的作用而平衡掉磁场对其产生的洛伦兹力,使得后来的电子和空穴能顺利通过不会偏移,这个现象称为霍尔效应。而产生的内建电压称为霍尔电压。 方便起见,假设导体为一个长方体,长度分别为a、b、d,磁场垂直ab平面。电流经过ad,电流I=nqv(ad),n为电荷密度。设霍尔电压为VH,导体沿霍尔电压方向的电场为VH/a。设磁感应强度为B。 洛伦兹力 F=qE+qvB/c(Gauss单位制) 电荷在横向受力为零时不再发生横向偏转,结果电流在磁场作用下在器件的两个侧面出现了稳定的异号电荷堆积从而形成横向霍尔电场 由实验可测出E=UH/W定义霍尔电阻为 RH=UH/I=EW/jW=E/j j=qnvRH=-vB/c/(qnv)=-B/(qnc)

拓扑绝缘体.本科毕业论文

本科毕业论文 ( 本科毕业设计题目:新型拓扑绝缘材料的研究

摘要 拓扑绝缘体是一种新的量子物态,为近几年来凝聚态物理学的重要科学前沿之一,已经引起的巨大的研究热潮。拓扑绝缘体具有新奇的性质,虽然与普通绝缘体一样具有能隙,但拓扑性质不同,在自旋一轨道耦合作用下,在其表面或与普通绝缘体的界面上会出现无能隙、自旋劈裂且具有线性色散关系的表面/界面态。这些态受时间反演对称性保护,不会受到杂质和无序的影响,由无质量的狄拉克(Dirac)方程所描述。从广义上来说,拓扑绝缘体可以分为两大类:一类是破坏时间反演的量子霍尔体系,另一类是新近发现的时间反演不变的拓扑绝缘体,这些材料的奇特物理性质存在着很好的应用前景。理论上预言,拓扑绝缘体和磁性材料或超导材料的界面,还可能发现新的物质相和预言的Majorana费米子,它们在未来的自旋电子学和量子计算中将会有重要应用。拓扑绝缘体还与近年的研究热点如量子霍尔效应、量子自旋霍尔效应等领域紧密相连,其基本特征都是利用物质中电子能带的拓扑性质来实现各种新奇的物理性质。 关键词:拓扑绝缘体,量子霍尔效应,量子自旋霍尔效应,Majorana费米子

Abstract In recent years, one of the important frontiers in condensed matter physics, topological insulators are a new quantum state, which has attract many researchers attention. Topological insulators show some novel properties, although normal insulator has the same energy gap, but topological properties are different. Under the action of spin-orbit coupling interaction, on the surface or or with normal insulator interface will appear gapless, spin-splitting and with the linear dispersion relation of surface or interface states. These states are conserved by the time reversal symmetry and are not affected by the effect of the impurities and disorder, which is described by the massless Dirac equation. Broadly defined, topological insulators can be separated into two categories: a class is destroy time reversal of the quantum Hall system, another kind is the newly discovered time reversal invariant topological insulators, peculiar physical properties of these materials exist very good application prospect. Theoretically predicted, the interface of topological insulators and magnetic or superconducting material, may also find new material phase and the prophecy of Majorana fermion, they will have important applications in the future spintronics and quantum computing . Topological insulators also are closely linked with the research hotspot in recent years, such as the quantum Hall effect, quantum spin Hall effect and other fields. Its basic characteristics are to achieve a variety of novel physical properties by using the topological property of the material of the electronic band. Keywords:Topological insulator;quantum hall effect;quantum spin-Hall effect;Majorana fermion

光的自旋霍尔效应!(111109)

光的自旋霍尔效应(文双春博客,2011-11-9)https://www.360docs.net/doc/357928024.html,/home.php?mod=space&uid=412323&do=blog&id=506123 约132年前,美国物理学家霍尔(Edwin Hall,1855-1938)发现,当电流通过磁场中的导体时,在垂直于电流和磁场方向的导体两侧会出现电势差.这一现象后来被称为霍尔效应(Hall effect),本质上,它是运动的载流子在磁场中受到洛伦兹力的作用而产生横向运动的结果。经典霍尔效应被发现之后的100多年,反常霍尔效应、整数量子霍尔效应、分数量子霍尔效应、自旋霍尔效应和轨道霍尔效应等又相继被发现,它们构成了一个霍尔效应家族。霍尔效应家族因其极其重要的科学意义和应用价值而一直受到广泛关注,仅从有关霍尔效应的研究成果曾两度获得诺贝尔奖就可见一斑。1985和1998年诺贝尔物理学奖分别授与整数量子霍尔效应的发现者克利青(Klaus von Klitzing)和分数量子霍尔效应的发现者崔琦等人. 最近几年,一种新型的霍尔效应——自旋霍尔效应(Spin Hall Effect,SHE),引起人们的强烈兴趣,自2004年被美国加州大学圣巴巴拉分校Awschalom团队[1]首次在实验上观测到以来,已成为目前凝聚态物理中一个相当热门的研究方向.由于相对论效应自旋-轨道耦合作用的存在,人们发现在这样的体系中,在没有外加磁场条件下即使是在非磁性材料中,也存在类似的霍尔效应:自旋向上的电子和自旋向下的电子分别向两边运动从而分离开来.与以往跟电荷相关的霍尔效应完全不同,这种霍尔效应与电子的自旋密切相关.由于电子的自旋与电荷一样,可以用来储存和传递信息,而且自旋霍尔效应中的电流几乎没有能量损失,也就是说不会发热,因而引发了科学界对研制新的电子元器件的设想[2]. 如上所述的各种霍尔效应都是针对电子等带电粒子的.除了电子以外,其它粒子特别是中性粒子是否也有类似的霍尔效应?2004年,日本AIST的Onoda等人[3]从理论上明确提出,光子在介质分界面上反射或折射时同样存在类似于电子SHE的光自旋霍尔效应(Spin Hall Effect of Light,SHEL):在介质折射率梯度扮演的外场作用下,光束或波包沿垂直于折射率梯度方向发生自旋分裂.2008年,美国Illinois大学Hosten和Kwiat[4]利用弱测量(Weak Measurement)方法,首次从实验上证实了这一现象.与电子SHE引发科学界对研制新的电子元器件的设想一样,光子作为当今时代信息和能量的重要载体,人们完全有理由期待SHEL 的研究将导致新型光子学器件的产生,并可能衍生出一门类似于自旋电子学(Spintronics)的新学科——自旋光子学(Spin-optics) [5,6].这儿对SHEL作一简单介绍.电子SHE依赖于两个关键因素:电子的自旋-轨道角动量耦合及其导致这种耦合作用的纵向加载的电场.光子既有内在的自旋角动量(与圆偏振的手性相关),也有外在的轨道角动量(与螺旋相位有关).因此人们自然有理由推测,光子的自旋-轨道角动量耦合应该也能产生光的SHE.关键问题是:谁来扮演外场的角色以及如何产生光子的自旋-轨道角动量耦合作用? 光子有自旋但却因其为中性粒子而无磁矩,因此无法用外加场的方法去改变其自旋轴的方向.但由于光子自旋轴的方向与传播方向一致,因而使我们想到若改变光的传播方向将会改变光的自旋态,即自旋矢量在空间的指向;而改变光的传播方向最简单直接的方式是利用光的反射和折射,其本质是改变光在其中传播的介质的折射率.在Hosten和Kwiat[4]首次观测SHEL的实验中,正是介质分界面上折射率的阶跃变化(折射率梯度)充当了电子SHE中外加电场的角色,而圆偏振光的右旋和左旋分量分别充当了上旋和下旋电子的角色.因此,

拓扑绝缘体及其研究进展_叶飞

前沿进展 拓扑绝缘体及其研究进展* 叶 飞 1 苏 刚 2, (1 中国科学院研究生院材料科学与光电技术学院 北京 100049) (2 中国科学院研究生院物理科学学院 北京 100049) 摘 要 拓扑绝缘体是当前凝聚态物理领域中的一个热点问题.这类材料的典型特征是体内元激发存在能隙,但在边界上具有受拓扑保护的无能隙边缘激发.从广义上讲,拓扑绝缘体可以分两大类:一类是破坏时间反演的量子霍尔体系,另一类是新近发现的时间反演不变的拓扑绝缘体.这些新材料的奇特物理性质和潜在的应用前景,使其倍受人们关注.文章对这种新奇物态的物理性质和研究进展做了简要的介绍.关键词 拓扑绝缘体,量子霍尔效应,量子自旋霍尔效应,拓扑分类 Topological insulators YE Fei 1 SU Gang 2, (1 Colleg e of Materials S cience and Op toelectr onic T echnology ,Gr adu ated Univer sity of Chinese Academy of S ciences, Beij ing 100049,China ) (2 Colleg e of Phy sical S ciences,G rad uated University of Chinese Academy of S ciences, Beij ing 100049,China ) Abstract A new kind of insulat or has been proposed recently,w hich is fully gapped in the bulk but has a metallic edge or surface st at es t hat are prot ect ed topologically.T hese elect ronic mat erials are dubbed as t opological insulators (T Is).Generally speaking,T Is can be divided into two classes.One is the quant um Hall syst em which was found in t he 1980s t o show breaking of time reversal symmet ry (T RS),and another is t he new ly discovered type which does not demonstrate T RS breaking and has at -t ract ed much at tention recent ly.T his art icle present s a brief review of recent advances in t he development of T Is. Keywords topologic al insulator,quant um Hall effec t,quantum spin Hall effec t,topological c lassification * 国家自然科学基金(批准号:10904081)资助项目 2010-05-10收到 通讯联系人.Email:gsu @https://www.360docs.net/doc/357928024.html, 1) 其他类型的绝缘态,如莫特态、玻璃态以及安德森局域化态等, 本文将不涉及 1 引言 自然界的材料根据其电学输运性质,可分为导体、半导体和绝缘体.一般的导体中存在着费米面(如图1(a)所示),在其附近,电荷元激发只需要消耗无穷小的能量.因此当加上任意小的电场时,系统就会有电流响应,但这种电荷输运会受到杂质散射和声子散射等因素的影响.一般来说,随材料维数的降低,电荷输运的通道就会变少,从而导电性能也会变差. 半导体和绝缘体的费米面存在于禁带之中(如图1(b)所示),我们这里把它们归为一类.在此类材料中,任何电荷元激发都需要克服一个有限大小的能隙.因此在足够低的温度下,系统对弱电场不会有电流响应.对于能带绝缘体而言1),能隙大小是价带顶和导带底之间的禁带宽度.作为最简单的能带绝

相关文档
最新文档