第1讲 绝对值和绝对值不等式的解法

第1讲 绝对值和绝对值不等式的解法
第1讲 绝对值和绝对值不等式的解法

第1讲 绝对值和绝对值不等式的解法

5.1 绝对值的概念

定义:我们把数轴上表示一个数的点与原点的距离,叫做这个数的绝对值.

例如,2-到原点的距离等于2,所以22-=.这一定义说明了绝对值的几何定义,从这一定义中很容易得到绝对值的求法:,00,0,0a a a a a a >??==??-

5.1.1 绝对值的性质

【例1】到数轴原点的距离是2的点表示的数是( )

A .±2

B .2

C .-2

D .4

解:A

【例2】已知|x |=5,|y |=2,且xy >0,则x -y 的值等于( )

A .7或-7

B .7或3

C .3或-3

D .-7或-3

解:C

练习1:已知a b c ,,是非零整数,且0a b c ++=,求a b c abc

+++的值 解:由于0a b c ++=,且a b c ,

,是非零整数,则a b c ,,一正二负或一负二正, (1)当a b c ,

,一正二负时,不妨设000a b c ><<,,,原式11110=--+=; (2)当a b c ,

,一负二正时,不妨设000a b c <>>,,,原式11110=-++-=. 原式0=.

【例4】若42a b -=-+,则_______a b +=.

解:424204,2a b a b a b -=-+?-++=?==-,所以2a b +=.

结论:绝对值具有非负性,即若0a b c ++=,则必有0a =,0b =,0c =.

练习1:()2120a b ++-=, a =________;b =__________

解:1,2a b =-=.

练习2:若7322102

m n p ++-+-=,则23_______p n m +=+. 解:由题意,713,,22m n p =-==,所以13237922

p n m m +==+-=-+. 5.1.2 零点分段法去绝对值

对于绝对值,我们经常用到的一种方法是去绝对值,一般采用零点分段法,零点分段法的一般步骤:①找零点→②分区间→③定符号→④去绝对值符号.

【例5】阅读下列材料并解决相关问题: 我们知道()()()

0000x x x x x x >??==??-

x x ++-时,可令10x +=和20x -=,分别求得12x x =-=,(称12-,分别为1x +与2x -的零点值),在有理数范围内,

零点值1x =-和2x =可将全体有理数分成不重复且不易遗漏的如下3种情况:

⑴当1x ≤-时,原式()()1221x x x =-+--=-+

⑵当12x -<<时,原式()123x x =+--=

⑶当2x ≥时,原式1221x x x =++-=-

综上讨论,原式()()()

211312212x x x x x -+≤-??=-<

通过阅读上面的文字,请你解决下列的问题:

(1)别求出2x +和4x -的零点值

解:令20x +=,解得2x =-,所以2x =-是2x +的零点;令40x -=,解得4x =,所以4x =是4x -的零点.

(2)化简代数式24x x ++-

解:⑴当2x ≤-时,原式()()2422x x x =-+--=-+;

⑵当24x -<<时,原式()()246x x =+--=;

⑶当x ≥4时,原式2422x x x =++-=-.

综上讨论,原式()()()

222624224x x x x x -+≤-??=-<

(3)化简代数式122y x x =-+-

解:当1x ≤时,53y x =-;

当12x <<时,3y x =-;

当2x ≥时,35y x =-.

综上讨论,原式()()()

531312352x x x x x x -≤??=-<

5.1.3 绝对值函数 常见的绝对值函数是:,0,0x x y x x x ≥?==?-

,其图象是

绝对值函数学习时,要抓关键点,这里的关键点是0x =.思考如何画y x a =-的图象? 我们知道,x 表示x 轴上的点x 到原点的距离;x a -的几何意义是表示x 轴上的点x 到点a 的距离.

【例6】 画出1y x =-的图像

解:(1)关键点是1x =,此点又称为界点;

(2)接着是要去绝对值

当1x ≤时,1y x =-;当1x >时,1y x =-.

(3)图像如右图

说明:此题还可以考虑该图像可由y=|x|的图象向右平移一个单位后得到

练习1.(1)画出2y x =-的图像; (2)画出2y x =的图像

【例7】画出122y x x =-+-的图象

解:(1)关键点是1x =和2x =

(2)去绝对值

当1x ≤时,53y x =-;

当12x <<时,3y x =-;

当2x ≥时,35y x =-.

(3)图象如右图所示.

【例8】 画出函数223y x x =-++的图像

解:(1)关键点是0x =

(2)去绝对值:

当0x ≥时,223y x x =-++;

当0x <时,223y x x =--+

(3)可作出图像如右图

【例9】 画出函数232y x x =-+的图像

解:(1)关键点是1x =和2x =

(2)去绝对值:

当1x ≤或2x ≥时,232y x x =-+;

当12x <<时,232y x x =-+-

(3)可作出图像如右图

1.35

-=________;3π-=________;3.1415π-=_____; 2.2215x y -+-=,4x =,则y =__________.

3.若0a a +=,那么a 一定是( )

A .正数

B .负数

C .非正数

D .非负数

4.若x x >,那么x 是________数.

5.如图,化简22a b b c a c +------=_____________

6.已知2

(2)210x y -+-=,则2x y +=_______.

7.化简12x x +++,并画出12y x x =+++的图象

8.化简523x x ++-.

9.画出23y x =+的图像

10.画出223y x x =-++的图像

答案:

1.35

;3π-; 3.1415π- 2.2或1- 3.C 4.负 5.-4 6.3 7.23,21,2123,1x x y x x x --≤-??=-<<-??+≥-?,图象如下 8.32,538,52332,2

x x y x x x x ??--≤-??=--<

5.2 绝对值不等式

到了高中,绝对值不等式需要强调的有两点:一是由定义引出的绝对值的几何意义的应用;二是代数意义上的分类讨论,其中几何意义的应用主要涉及到有关绝对值不等式的解法,而分类讨论的思想就体现为去绝对值、画绝对值函数图象、解绝对值不等式.

【例1】 解方程:21x -=.

解:原方程变为21x -=±,∴3x =或1x =.

【例2】解不等式 1x <.

解:x 对应数轴上的一个点,由题意,x 到原点的距离小于1,很容易知道到原点距离等于1的点有两个:1-和1,自然只有在1-和1之间的点,到原点的距离才小于1,所以x 的解集是{|11}x x -<<.

练习1.解不等式:(1)3x <; (2)3x > (3)2x ≤

解:(1){|33}x x -<< (2){|33}x x x <->或 (3){|22}x x -≤≤

结论:(1)(0)x a a <>的解集是{|}x a x a -<<,如图1.

(2)(0)x a a >>的解集是{|}x x a x a <->或,如图2.

【例3】解不等式 21x -<. 解:由题意,121x -<-<,解得13x <<,所以原不等式的解集为{|13}x x <<.

结论:(1)(0)ax b c c c ax b c +<>?-<+<.

(2)(0)ax b c c ax b c +>>?+>或ax b c +<-

练习1:解不等式:(1)103x -<;(2)252x ->;(3)325x -≤;

解:(1)由题意,3103x -<-<,解得713x <<,所以原不等式的解集为{|713}x x <<.

(3)由题意,252x ->或252x -<-,解得72x >或32x <,,所以原不等式的解集为73{|}22

x x x ><或. (3)由题意,5325x -<-≤,解得14x -≤≤,所以原不等式的解集为{|14}x x -≤≤.

练习2:解不等式组2405132

x x ?--≤??-+>??. 解:由240x --≤,得424x -≤-≤,解得26x -≤≤,① 由5132x -+>,得133x +<,即3133x -<+<,解得4233

x -

<<,② 由①②得,4233x -<<,所以原不等式的解集为42{|}33x x -<<. 练习3:解不等式1215x ≤-<. 解:方法一:由215x -<,解得23x -<<;由121x ≤-得,0x ≤或1x ≥,

联立得2013x x -<<≤<或,所以原不等式的解集为{|2013}x x x -<<≤<或. 方法二:12151215x x ≤-

解:方法一:(零点分段法)

(1)当34

x ≤

时,原不等式变为:(43)21x x -->+,解得13x <,所以13x <; (2)当34

x >时,原不等式变为:4321x x ->+,解得2x >,所以2x >; 综上所述,原不等式的解集为1{|2}3

x x x <>或. 方法二:43214321x x x x ->+?->+或43(21)x x -<-+,解得13

x <或2x >,所以原不等式的解集为1{|2}3

x x x <>或. 结论:(1)()()()ax b f x f x ax b f x +?+>或()ax b f x +<-.

练习4:解不等式:431x x -≤+. 解:由431x x -≤+得(1)431x x x -+≤-≤+,解得

2453x ≤≤,原不等式的解集为24{|}53x x ≤≤.

【例5】解方程:(1)213x x ++-= (2)215x x ++-=

(3)314x x +--= (4)324x x +--=

【初中知识链接】在三角形中,三角形的两边之和大于第三边,两边之差小于第三边,这个结论反映在数轴上是这样的:

若a 和b 是数轴上的两个数,那么当a x b <<时,数x 到a 和b 的距离之和等于a 与b 的距离;当x a <或x b >时,数x 到a 和b 的距离之差的绝对值,等于a 与b 的距离.

以上所有问题都可以用此方法解决.

解:(1)等式左边式子21x x ++-的几何意义是,实数x 到2-和1的距离之和,而2-和1的距离之和也刚好是3,容易知道,当x 位于2-和1之间时,x 到2-和1的距离之和就刚好为3,所以x 的取值范围是21x -≤≤.

(2)等式左边式子的几何意义是,实数x 到2-和1的距离之和,由于2-和1的距离是3,所以x 一定在2-和1的两边,经过计算,可知当x 位于3-和2时,满足条件.

(3)等式左边式子的几何意义是,实数x 到3-和1的距离之差,由于3-和1的距离刚好是4,所以当x 位于3-到1的两边时,x 到3-和1的距离之差刚好为4,x 的取值范围是3x ≤-或1x ≥.

(4)等式左边式子的几何意义是,实数x 到3-和2的距离之差,由于3-和1的距离刚好是5,所以x 一定位于3-到2之间,可知当x 位于52-和32

时,满足条件.

方法1:利用零点分区间法(推荐)

分析:由01=-x ,02=+x ,得1=x 和2=x .2-和1把实数集合分成三个区间,即2-x ,按这三个区间可去绝对值,故可按这三个区间讨论.

解:当2x <-时,得2(1)(2)5

x x x <-??---+

当12≤≤-x 时,得21(1)(2)5x x x -≤≤??

--++x 时,得1(1)(2)5

x x x >??-++

说明:(1)原不等式的解集应为各种情况的并集;

(2)这种解法又叫“零点分区间法”,即通过令每一个绝对值为零求得零点,求解应注意边界值.

方法2:利用绝对值的几何意义 解:215x x ++-<的几何意义是数轴上的点x 到1和2-的距离之和小于5的点所对应的取值范围,由数轴可知,1(2)35--=<,易知当3x =-或2x =时,215x x ++-=,所以x 位于3-和2之间(不含端点),所以32x -<<,所以原不等式的解集为{}23<<-x x .

说明:选择题和填空题中,利用绝对值的几何意义解含有两个绝对值不等式优势明显.

练习1.217x x ++-<

解:{|43}x x -<<

练习2.解不等式:324x x +--≤ 解:3{|}2x x ≤

练习3.23228x x ++-≤ 解:97{|}44

x x -≤≤ 【例7】解不等式:123x x x -+->+

解:当1x <时,原不等式变为:312x x x -+->+,解得:0x <;

当12x ≤≤时,得312x x x -+->+,无解

当2x >时,得312x x x -+->+,解得:6x >.

综上,原不等式的解集为{|06}x x x <>或.

【例8】解关于x 的不等式231x a +-< 解:原不等式变为231x a +<+

(1)当1a ≤-时,10a +≤,原不等式无解;

(2)当1a >-时,(1)231a x a -+<+<+,解得2122

a a x --<<-. 综上所述,当1a ≤-时,原不等式无解;当1a >-时,原不等式的解集为21{|}22x a a x -

-<<-.

1.已知6a <-,化简6-( )

A. 6a -

B. 6a --

C. 6a +

D. 6a -

2.不等式23x +<的解是 ,不等式12

11<-

x 的解是______________. 3.不等式830x -≤的解是______________. 4.根据数轴表示,,a b c 三数的点的位置,化简a b a c b c +++--= ___ .

a 0b c

5.解不等式329x ≤-<

6.解不等式124x x ++-<

7.解下列关于x 的不等式:1235x ≤-<

8.解不等式3412x x ->+

9.解不等式:122x x x -+-<+

答案

1.B

2. {|51}x x -<<;{|04}x x <<

3. 3

{}8

4.0

5. {|71511}x x x -<≤-≤<或

6. 35{|}22

x x -<< 7. {|1124}x x x -<≤≤<或 8. 3{|5}5x x x <

>或 9.1{|

5}3x x <<

高中数学第一讲不等式和绝对值不等式1.2绝对值不等式1.2.2绝对值不等式的解法自我小测新人教A版选修4_5

1.2.2 绝对值不等式的解法 自我小测 1.不等式3≤|5-2x|<9的解集为( ). A.[-2,1)∪[4,7) B.(-2,1]∪(4,7] C.(-2,-1]∪[4,7) D.(-2,1]∪[4,7) 2.不等式|x+3|-|x-3|>3的解集是( ). A. B. C.{x|x≥3} D.{x|-3<x≤0} 3.已知y=log a(2-ax)在(0,1)上是增函数,则不等式log a|x+1|>log a|x-3|的解集为( ). A.{x|x<-1} B.{x|x<1} C.{x|x<1,且x≠-1} D.{x|x>1} 4.x2-2|x|-15>0的解集是____________. 5.不等式|x+3|-|x-2|≥3的解集为__________. 6.设函数f(x)=|2x-1|+x+3,则f(-2)=______;若f(x)≤5,则x的取值范围是______. 7.不等式4<|3x-2|<8的解集为______. 8.解不等式|x+1|+|x-1|≤1. 9.设函数f(x)=|x-1|+|x-a|.如果对任意x∈R,f(x)≥2,求a的取值范围. 10.设函数f(x)=|2x+1|-|x-4|. (1)解不等式f(x)>2; (2)求函数y=f(x)的最小值. 参考答案 1.答案:D

解析: 所以不等式的解集是(-2,1]∪[4,7). 2.答案:A 3.答案:C 解析:因为a>0,且a≠1,所以2-ax为减函数.又因为y=log a(2-ax)在[0,1]上是增函数, 所以0<a<1,则y=log a x为减函数. 所以|x+1|<|x-3|,且x+1≠0,x-3≠0. 由|x+1|<|x-3|,得(x+1)2<(x-3)2, 即x2+2x+1<x2-6x+9, 解得x<1.又x≠-1,且x≠3, 所以解集为{x|x<1,且x≠-1}. 4.答案:(-∞,-5)∪(5,+∞) 解析:∵x2-2|x|-15>0,即|x|2-2|x|-15>0,∴|x|>5,或|x|<-3(舍去). ∴x<-5,或x>5. 5.答案:{x|x≥1} 解析:原不等式可化为或 或 ∴x∈,或1≤x<2,或x≥2. ∴不等式的解集是{x|x≥1}. 6.答案:6 [-1,1] 解析:f(-2)=|2×(-2)-1|+(-2)+3=6. |2x-1|+x+3≤5,即|2x-1|≤2-x,

高考含绝对值不等式的解法

高考中常见的七种含有绝对值的不等式的解法 类型一:形如)()(,)(R a a x f a x f ∈><型不等式 解法:根据a 的符号,准确的去掉绝对值符号,再进一步求解.这也是其他类型的解题基础. 1、当0>a 时, a x f a a x f <<-?<)()( a x f a x f >?>)()(或a x f -<)( 2、当0=a a x f <)(,无解 ?>a x f )(使0)(≠x f 的解集 3、当0a x f )(使)(x f y =成立的x 的解集. 例1 (2008年四川高考文科卷)不等式22<-x x 的解集为( ) A.)2,1(- B.)1,1(- C.)1,2(- D.)2,2(- 解: 因为 22<-x x ,

所以 222<-<-x x . 即 ?????<-->+-0 20222x x x x , 解得: ? ??<<-∈21x R x , 所以 )2,1(-∈x ,故选A. 类型二:形如)0()(>><><<)()0()( 或a x f b -<<-)( 需要提醒一点的是,该类型的不等式容易错解为: b x f a a b b x f a <><<)()0()( 例2 (2004年高考全国卷)不等式311<+

含绝对值的不等式解法练习题及答案

含绝对值的不等式解法练习题及答案 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

例1 不等式|8-3x|>0的解集是 [ ]答选C. 例2 绝对值大于2且不大于5的最小整数是 [ ] A.3 B.2 C.-2 D.-5 分析列出不等式. 解根据题意得2<|x|≤5. 从而-5≤x<-2或2<x≤5,其中最小整数为-5, 答选D. 例3不等式4<|1-3x|≤7的解集为________. 分析利用所学知识对不等式实施同解变形. 解原不等式可化为4<|3x-1|≤7,即4<3x-1≤7或-7例4已知集合A={x|2<|6-2x|<5,x∈N},求A. 分析转化为解绝对值不等式. 解∵2<|6-2x|<5可化为 2<|2x-6|<5 因为x∈N,所以A={0,1,5}. 说明:注意元素的限制条件.

例5 实数a,b满足ab<0,那么 [ ] A.|a-b|<|a|+|b| B.|a+b|>|a-b| C.|a+b|<|a-b| D.|a-b|<||a|+|b|| 分析根据符号法则及绝对值的意义. 解∵a、b异号, ∴ |a+b|<|a-b|. 答选C. 例6 设不等式|x-a|<b的解集为{x|-1<x<2},则a,b 的值为 [ ] A.a=1,b=3 B.a=-1,b=3 C.a=-1,b=-3 分析解不等式后比较区间的端点. 解由题意知,b>0,原不等式的解集为{x|a-b<x<a+b},由于解集又为{x|-1<x<2}所以比较可得. 答选D. 说明:本题实际上是利用端点的位置关系构造新不等式组.例7 解关于x的不等式|2x-1|<2m-1(m∈R)

含参数不等式及绝对值不等式的解法

含参数不等式及绝对值不等式的解法 例1解关于x 的不等式:2(1)0x x a a ---> 0)(3 22<++-a x a a x 01)1(2<++-x a ax 02)12(2>++-x a ax 22+≥+ a x ax 11 +>-a x x 11<-x ax ()()02 21>----x a x a 0)2(≥--x x a x 01 2≥--x ax x a x x <- 0)2)(1(1≥----x x k kx 例2: 关于x 的不等式01)1(2 <-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围。

例3:若不等式210x ax ≥++对于一切1(0,)2 x ∈成立,则a 的取值范围. 例4:若对于任意a (]1,1-∈,函数()()a x a x x f 2442-+-+=的值恒大于0,求x 的 取值范围。 例5:已知19≤≤-a ,关于x 的不等式: 0452 <+-x ax 恒成立,求x 的范围。 例 6: 对于∈x (0,3)上的一切实数x,不等式()122-<-x m x 恒成立,求实数m 的 取值范围。 例7:2212<--+x x 1332+<-x x 321+<+x x x x 332≥- 例8、 若不等式a x x >-+-34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x >---34,对一切实数x 恒成立,求a 的取值范围 若不等式a x x <---34有解,求a 的取值范围 若不等式a x x <---34的解集为空集,求a 的取值范围 若不等式a x x <---34解集为R ,求a 的取值范围

第10课--绝对值不等式(经典例题练习、附答案)word版本

第10课 绝对值不等式 ◇考纲解读 ①理解不等式a b a b a b -≤+≤+ ②掌握解绝对值不等式等不等式的基本思路,会用分类、换元、数形结合的方法解不等式; ◇知识梳理 1.绝对值的意义 ①代数意义:___,(0)___,(0)___,(0)a a a a >??= =?? 时, |()|f x a >?____________; |()|f x a -

例2. 解不等式125x x -++> 变式1:12x x a -++<有解,求a 的取值范围 变式2:212x x a -++<有解,求a 的取值范围 变式3:12x x a -++>恒成立,求a 的取值范围 ◇能力提升 1.(2008湛江二模)若关于x 的不等式||2x a a -<-的解集为{}42|<-+对于一切非零实数x 均成立,则实数a 的取值范围是_________________。 5.(2008佛山二模)关于x 的不等式2121x x a a -+-≤++的解集为空集,则实数a 的取值范围是 ____. 6. 若关于x 的不等式a x x ≥-++12的解集为R ,则实数a 的取值范围是_____________.

第1讲-绝对值和绝对值不等式的解法

第1讲 绝对值和绝对值不等式的解法 5.1 绝对值的概念 定义:我们把数轴上表示一个数的点与原点的距离,叫做这个数的绝对值. 例如,2-到原点的距离等于2,所以22-=.这一定义说明了绝对值的几何定义,从这一定义中很容易得到绝对值的求法:,00,0,0a a a a a a >??==??-<<,,,原式11110=--+=; (2)当a b c ,,一负二正时,不妨设000a b c <>>,,,原式11110=-++-=. 原式0=.

【例4】若42a b -=-+,则_______a b +=. 解:424204,2a b a b a b -=-+?-++=?==-,所以2a b +=. 结论:绝对值具有非负性,即若0a b c ++=,则必有0a =,0b =,0c =. 练习1:()2120a b ++-=, a =________;b =__________ 解:1,2a b =-=. 练习2:若7322102 m n p ++-+-=,则23_______p n m +=+. 解:由题意,713,,22m n p =-==,所以13237922 p n m m +==+-=-+. 5.1.2 零点分段法去绝对值 对于绝对值,我们经常用到的一种方法是去绝对值,一般采用零点分段法,零点分段法的一般步骤:①找零 点→②分区间→③定符号→④去绝对值符号. 【例5】阅读下列材料并解决相关问题: 我们知道()()() 0000x x x x x x >??==??-

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与 c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{ } c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{}c b ax c x <+<-; 当0+的解集是{}R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略) (二)、定义法:即利用(0),0(0),(0).a a a a a a >??==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于 2 x x +<0?x(x+2)<0?-2<x <0。

含绝对值不等式的解法(含答案)

含绝对值的不等式的解法 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2 x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是{} a x a x <<-; 当0的解集是{} R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。 把 b ax + 看作一个整体时,可化为a x <与a x >型的不等式来求解。 当0>c 时,不等式c b ax >+的解集是{} c b ax c b ax x -<+>+或, 不等式c b ax <+的解集是{} c b ax c x <+<-; 当0+的解集是{} R x x ∈ 不等式c bx a <+的解集是?; 例1 解不等式32<-x 分析:这类题可直接利用上面的公式求解,这种解法还运用了整体思想,如把“2-x ” 看着一个整体。答案为{} 51<<-x x 。(解略)

(二)、定义法:即利用(0),0(0),(0).a a a a a a >?? ==??-++。 分析:由绝对值的意义知,a a =?a ≥0,a a =-?a ≤0。 解:原不等式等价于2 x x +<0?x(x+2)<0?-2<x <0。 (三)、平方法:解()()f x g x >型不等式。 例3、解不等式123x x ->-。 解:原不等式?22(1)(23)x x ->-?22(23)(1)0x x ---< ?(2x-3+x-1)(2x-3-x+1)<0?(3x-4)(x-2)<0 ? 4 23 x <<。 说明:求解中以平方后移项再用平方差公式分解因式为宜。 二、分类讨论法:即通过合理分类去绝对值后再求解。 例4 解不等式125x x -++<。 分析:由01=-x ,02=+x ,得1=x 和2=x 。2-和1把实数集合分成三个区间,即2-x ,按这三个区间可去绝对值,故可按这三个区间讨论。 解:当x <-2时,得2 (1)(2)5x x x <-??---+x 时,得1, (1)(2) 5.x x x >??-++

含绝对值的不等式解法·典型例题

含绝对值的不等式解法·典型例题 能力素质 例1 不等式|8-3x|>0的解集是 [ ] A B R C {x|x } D {83 }...≠.? 83 分析∵->,∴-≠,即≠. |83x|083x 0x 83 答 选C . 例2 绝对值大于2且不大于5的最小整数是 [ ] A .3 B .2 C .-2 D .-5 分析 列出不等式. 解 根据题意得2<|x|≤5. 从而-5≤x <-2或2<x ≤5,其中最小整数为-5, 答 选D . 例3 不等式4<|1-3x|≤7的解集为________. 分析 利用所学知识对不等式实施同解变形. 解 原不等式可化为4<|3x -1|≤7,即4<3x -1≤7或-7 ≤-<-解之得<≤或-≤<-,即所求不等式解集为-≤<-或<≤.3x 14x 2x 1{x|2x 1x }53835383 例4 已知集合A ={x|2<|6-2x|<5,x ∈N},求A . 分析 转化为解绝对值不等式. 解 ∵2<|6-2x|<5可化为 2<|2x -6|<5 即-<-<,->或-<-, 52x 652x 622x 62??? 即<<,>或<,12x 112x 82x 4???

解之得<<或<<.4x x 211212 因为x ∈N ,所以A ={0,1,5}. 说明:注意元素的限制条件. 例5 实数a ,b 满足ab <0,那么 [ ] A .|a -b|<|a|+|b| B .|a +b|>|a -b| C .|a +b|<|a -b| D .|a -b|<||a|+|b|| 分析 根据符号法则及绝对值的意义. 解 ∵a 、b 异号, ∴ |a +b|<|a -b|. 答 选C . 例6 设不等式|x -a|<b 的解集为{x|-1<x <2},则a ,b 的值为 [ ] A .a =1,b =3 B .a =-1,b =3 C .a =-1,b =-3 D a b .=,=1232 分析 解不等式后比较区间的端点. 解 由题意知,b >0,原不等式的解集为{x|a -b <x <a +b},由于解集又为{x|-1<x <2}所以比较可得. a b 1a b 2 a b -=-+=,解之得=,=.???1232 答 选D . 说明:本题实际上是利用端点的位置关系构造新不等式组. 例7 解关于x 的不等式|2x -1|<2m -1(m ∈R) 分析 分类讨论. 解若-≤即≤,则-<-恒不成立,此时原不等 2m 10m |2x 1|2m 112 式的解集为;? 若->即>,则--<-<-,所以-<2m 10m (2m 1)2x 12m 11m 12 x <m .

绝对值不等式讲义

解绝对值不等式 1、解不等式2 |55|1x x -+<. [思路]利用|f(x)|0) ?-a2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) ?f(x)>g(x)或f(x)<-g(x)去掉绝对值 3、解不等式(1)|x-x 2-2|>x 2-3x-4;(2) 234 x x -≤1 变形二 含两个绝对值的不等式 4、解不等式(1)|x -1|<|x +a |;(2)|x-2|+|x+3|>5. [思路](1)题由于两边均为非负数,因此可以利用|f(x)|〈|g(x)|?f 2(x)〈g 2(x)两边平方去掉绝对值符号。(2)题可采用零点分段法去绝对值求解。 5、 解关于x 的不等式|log (1)||log (1)|a a x x ->+(a >0且a ≠1) 6.不等式|x+3|-|2x-1|<2 x +1的解集为 。 7.求不等式13 31log log 13x x +≥-的解集.

变形三 解含参绝对值不等式 8、解关于x 的不等式 34422+>+-m m mx x [思路]本题若从表面现象看当含一个根号的无理根式不等式来解,运算理较大。若化简成3|2|+>-m m x ,则解题过程更简单。在解题过程中需根据绝对值定义对3m +的正负进行讨论。 2)形如|()f x |a (a R ∈)型不等式 此类不等式的简捷解法是等价命题法,即: ① 当a >0时,|()f x |a ?()f x >a 或()f x <-a ; ② 当a =0时,|()f x |a ?()f x ≠0 ③ 当a <0时,|()f x |a ?()f x 有意义。 9.解关于x 的不等式:()0922>≤-a a a x x 10.关于x 的不等式|kx -1|≤5的解集为{x |-3≤x ≤2},求k 的值。 变形4 含参绝对值不等式有解、解集为空与恒成立问题 11、若不等式|x -4|+|3-x |;()f x a <解集为空集()m i n a f x ?≤;这两者互补。()f x a <恒成立 ()m a x a f x ?>。 ()f x a ≥有解()m a x a f x ?≤;()f x a ≥解集为空集()max a f x ?>;这两者互补。()f x a ≥恒成立 ()min a f x ?≤。

人教版高数选修4-5第1讲:不等式的性质与绝对值不等式(学生版)

不等式的性质与绝对值不等式 __________________________________________________________________________________ __________________________________________________________________________________ 教学重点:掌握基本不等式的概念、性质;绝对值不等式及其解法; 教学难点: 理解绝对值不等式的解法 1、基本不等式2 b a ab +≤ (1)基本不等式成立的条件:_____________ (2)等号成立的条件:当且仅当b a =时取等号. 2、几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3、算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为________ ,几何平均数为______,基本不等式可叙述为:两个 正实数的算术平均数不小于它的几何平均数. 4、利用基本不等式求最值问题 已知,0,0>>y x 则

(1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). 5、若0x >,则12x x + ≥ (当且仅当1x =时取“=”) 若0x <,则12x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=”) 若R b a ∈,,则2 )2(222b a b a +≤+(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 6、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =) ()()()?? ???<-=>=0,0,00,a a a a a a 7、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即 ()a x a a a x <<-?><0 ()a x a x a a x -<>?>>或0 ()c b ax c c c b ax <+<-?><+0 ()c b ax c b ax c c b ax -<+>+?>>+或0 ()()()()()x g x f x g x g x f <<-?< ()()()()()()x g x f x g x f x g x f <>?>或 ()()()()a x f b b x f a a b b x f a -<<-<><<或0

解绝对值不等式的解法

解绝对值不等式题型探讨 题型一 解不等式2|55|1x x -+<. [题型1]解不等式2|55|1x x -+<. [思路]利用|f(x)|0) -a-??求解。 [解题]原不等式等价于21551x x -<-+<, 即22551(1)551 (2)x x x x ?-+-?? 由(1)得:14x <<;由(2)得:2x <或3x >, 所以,原不等式的解集为{|12x x <<或34}x <<. [收获]1)一元一次不等式、一元二次不等式的解法是我们解不等式的基础,无论是解高次不等式、绝对值不等式还是解无理根式不等式,最终是通过代数变形后,转化为一元一次不等式、一元二次不等式组来求解。 2)本题也可用数形结合法来求解。在同一坐标系中画出函数2551y x x y =-+=与的 [变题1]解下列不等式:(1)|x +1|>2-x ;(2)|2x -2x -6|<3x [思路]利用|f(x)|g(x) f(x)>g(x)或f(x)<-g(x)去掉绝对值后转化为我们熟悉的一元一次、一元二次不等式组来处理。 解:(1)原不等式等价于x +1>2-x 或x +1<-(2-x ) 解得x >12或无解,所以原不等式的解集是{x |x >1 2 } (2)原不等式等价于-3x <2x -2x -6<3x 即22 2226360(3)(2)032(1)(6)0 16263560x x x x x x x x x x x x x x x x x ??-->-+->+-><->???????????+-<-<<--<--()g x 型不等式 这类不等式的简捷解法是等价命题法,即: ①|()f x |<()g x ?-()g x <()f x <()g x ②|()f x |>()g x ?()f x >()g x 或()f x <-()g x [请你试试4—1] ???

专题一、含绝对值不等式的解法(含答案)

第三讲 含绝对值不等式与一元二次不等式 一、知识点回顾 1、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =) ()()()?? ? ??<-=>=0,0,00,a a a a a a 2、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法; (2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法; (5)不等式同解变形原理:即 ()a x a a a x <<-?><0 ()a x a x a a x -<>?>>或0 ()c b ax c c c b ax <+<-?><+0 ()c b ax c b ax c c b ax -<+>+?>>+或0 ()()()()()x g x f x g x g x f <<-?< ()()()()()()x g x f x g x f x g x f <>?>或 ()()()()a x f b b x f a a b b x f a -<<-<><<或0 3、不等式的解集都要用集合形式表示,不要使用不等式的形式。 4、二次函数、一元二次方程、一元两次不等式的联系。(见P8) 5、利用二次函数图象的直观性来研究一元二次方程根的性质和一元二次不等式解集及变化,以及含字母的有关问题的讨论,渗透数形结合思想。 6、解一元二次不等式的步骤: (1)将不等式化为标准形式()002≥>++c bx ax 或()002≤<++c bx ax (2)解方程02=++c bx ax (3)据二次函数c bx ax y ++=2的图象写出二次不等式的解集。 一、 基本解法与思想 解含绝对值的不等式的基本思想是等价转化,即采用正确的方法去掉绝对值符号转化为不含绝对值的不等式来解,常用的方法有公式法、定义法、平方法。 (一)、公式法:即利用a x >与a x <的解集求解。 主要知识: 1、绝对值的几何意义:x 是指数轴上点x 到原点的距离;21x x -是指数轴上1x ,2x 两点间的距离.。 2、a x >与a x <型的不等式的解法。 当0>a 时,不等式>x 的解集是{} a x a x x -<>或, 不等式a x <的解集是} a x a x <<-; 当0的解集是{}R x x ∈ 不等式a x <的解集是?; 3.c b ax >+与c b ax <+型的不等式的解法。

《含绝对值不等式的解法》导学案

《含绝对值不等式的解法》导学案 学习目标: 1.掌握一些简单的含绝对值的不等式的解法; 2.理解含绝对值不等式的解法思想:去掉绝对值符号,等价转化 学习重点:简单的含绝对值不等式的解法 学习难点:含参数的绝对值不等式的解法 一、课前准备(请在上课之前自主完成): 1.绝对值的定义:||a ??=??? 2. 绝对值的几何意义: (1)实数a 的绝对值||a ,表示数轴上坐标为a 的点A 到_____的距离. (2)任意的两个实数,a b ,它们在数轴上对应的点分别为,A B , 那么 || a b -的几何意义是 . 3.绝对值三角不等式: ①0a b ?>时, 如下图, 易得:||||||a b a b ++. ②0a b ?<时, 如下图, 易得:||||||a b a b ++. ③0=ab 时,易得|| |||| a b a b ++ 定理1 如果,a b R ∈, 那么b a b a ++___,当且仅当 时, 等号成立. 定理2 如果,,a b c R ∈, 那么c b b a c a -+--___,当且仅当 时,等号成立. 二、学习过程 知识点1:含绝对值不等式的解法 1.设a 为正数, 根据绝对值的意义,不等式a x <的解集是 它的几何意义就是数轴上到 的点的集合是开区间 ,如图所示. 2.设a 为正数, 根据绝对值的意义,不等式a x >的解集是 它的几何意义就是数轴上 的点的集合是开区间 ,如图所示. 3.设a 为正数, 则 (1).()f x a ? ; (3).设0b a >>, 则()a f x b ≤-213 例2:解不等式7324≤-+x x 变式演练:|2||1|x x -<+ (2)利分段讨论法(即零点分段法) 例4 解不等式512≥-+-x x 变式演练:解不等式52312≥-++x x ;

高一数学含绝对值不等式的解法练习题

含绝对值的不等式解法 一、选择题 1.已知a <-6,化简26a -得() +6 2.不等式|8-3x |≤0的解集是() A. C.{(1,-1)} D.? ?????38 3.绝对值大于2且不大于5的最小整数是() 4.设A ={x ||x -2|<3},B ={x ||x -1|≥1},则A ∩B 等于() A.{x |-1<x <5} B.{x |x ≤0或x ≥2} C.{x |-1<x ≤0} D.{x |-1<x ≤0或2≤x <5} 5.设集合}110 {-≤≤-∈=x Z x x A 且,}5 {≤∈=x Z x x B 且,则B A Y 中的元素个数是() 6.已知集合M ={R x x x y y ∈-+=,322},集合N ={y ︱32≤-y },则M ∩N () A.{4-≥y y }B.{51≤≤-y y }C.{14-≤≤-y y }D. 7.语句3≤x 或5>x 的否定是() 53<≥x x 或53≤>x x 或53<≥x x 且53≤>x x 且二、填空题 1.不等式|x +2|<3的解集是,不等式|2x -1|≥3的解集是. 2.不等式12 11<- x 的解集是_________________. 三、解答题 1.解不等式1.02122<--x x 2.解不等式x 2-2|x |-3>0 3.已知全集U =R ,A ={x |x 2-2x -8>0},B ={x ||x +3|<2},求: (1)A ∪B ,C u (A ∪B )(2)C u A ,C u B ,(C u A )∩(C u B ) 4.解不等式3≤|x -2|<97.解不等式|3x -4|>1+2x . 5.画出函数|21|x-||x y ++=的图象,并解不等式|x +1|+|x -2|<4.

第1讲绝对值不等式 (1)

第1讲 绝对值不等式 1.设函数f (x )=|2x +1|-|x -4|. (1)解不等式f (x )>2; (2)求函数y =f (x )的最小值. 解 (1)法一 令2x +1=0,x -4=0分别得x =-12,x =4. 原不等式可化为: ?????x <-12,-x -5>2或?????-12≤x <4,3x -3>2 或???x ≥4,x +5>2. 即?????x <-12,x <-7或?????-12≤x <4,x >53 或???x ≥4,x >-3, ∴x <-7或x >53. ∴原不等式的解集为???? ??x ???x <-7或x >53. 法二 f (x )=|2x +1|-|x -4|=?????-x -5 ? ?? ??x <-123x -3 ? ????-12≤x <4x +5 (x ≥4) 画出f (x )的图象,如图所示. 求得y =2与f (x )图象的交点为(-7,2),? ?? ??53,2. 由图象知f (x )>2的解集为??????x ???x <-7或x >53. (2)由(1)的法二图象知:当x =-12时, 知:f (x )min =-92. 2.(2017·长沙一模)设α,β,γ均为实数. (1)证明:|cos(α+β)|≤|cos α|+|sin β|,|sin(α+β)|≤|cos α|+|cos β|; (2)若α+β+γ=0,证明:|cos α|+|cos β|+|cos γ|≥1.

证明 (1)|cos(α+β)|=|cos αcos β-sin αsin β|≤ |cos αcos β|+|sin αsin β|≤|cos α|+|sin β|; |sin(α+β)|=|sin αcos β+cos αsin β|≤|sin αcos β|+ |cos αsin β|≤|cos α|+|cos β|. (2)由(1)知,|cos[α+(β+γ)]|≤|cos α|+|sin(β+γ)|≤|cos α|+|cos β|+ |cos γ|, 而α+β+γ=0,故|cos α|+|cos β|+|cos γ|≥1. 3.(2016·镇江模拟)已知a 和b 是任意非零实数. (1)求|2a +b |+|2a -b ||a | 的最小值; (2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,求实数x 的取值范围. 解 (1)∵|2a +b |+(2a -b )|a |≥|2a +b +2a -b ||a |=|4a ||a |=4,∴|2a +b |+|2a -b ||a | 的最小值为4. (2)若不等式|2a +b |+|2a -b |≥|a |(|2+x |+|2-x |)恒成立,即|2+x |+|2-x |≤|2a +b |+|2a -b ||a | 恒成立, 故|2+x |+|2-x |≤? ????|2a +b |+|2a -b ||a |min . 由(1)可知,|2a +b |+|2a -b ||a | 的最小值为4. ∴x 的取值范围即为不等式|2+x |+|2-x |≤4的解集. 解不等式得-2≤x ≤2. 故实数x 的取值范围为[-2,2]. 4.(2017·广州二测)已知函数f (x )=log 2(|x +1|+|x -2|-a ). (1)当a =7时,求函数f (x )的定义域; (2)若关于x 的不等式f (x )≥3的解集是R ,求实数a 的最大值. 解 (1)由题设知|x +1|+|x -2|>7, ①当x >2时,得x +1+x -2>7,解得x >4. ②当-1≤x ≤2时,得x +1+2-x >7,无解. ③当x <-1时,得-x -1-x +2>7,解得x <-3.

含绝对值不等式的解法

学科:数学 教学内容:含绝对值不等式的解法 【自学导引】 1.绝对值的意义是:? ? ?<-≥=)0x (x ) 0x (x x . 2.|x |<a (a >0)的解集是{x |-a <x <a }. |x |>a (a >0)的解集是{x |x <-a 或x >a }. 【思考导学】 1.|ax +b |<b (b >0)转化成-b <ax +b <b 的根据是什么? 答:含绝对值的不等式|ax +b |<b 转化-b <ax +b <b 的根据是由绝对值的意义确定. 2.解含有绝对值符号的不等式的基本思想是什么? 答:解含有绝对值符号的不等式的基本思想是去掉绝对值符号,使不等式变为不含绝对值符号的一般不等式,而后,其解法就与解一般不等式或不等式组相同. 【典例剖析】 [例1]解不等式2<|2x -5|≤7. 解法一:原不等式等价于???≤->-7|52|2 |52|x x ∴???≤-≤--<--7|5272522|52x x x 或即????? ≤≤-<>6 12327x x x 或 ∴原不等式的解集为{x |-1≤x < 23或2 7 <x ≤6} 解法二:原不等式的解集是下面两个不等式组解集的并集 (Ⅰ)???≤-<≥-7522052x x (Ⅱ)???≤-<<-7 252052x x

不等式组(Ⅰ)的解集为{x | 2 7 <x ≤6} 不等式组(Ⅱ)的解集是{x |-1≤x <23 } ∴原不等式的解集是{x |-1≤x <23或2 7 <x ≤6} 解法三:原不等式的解集是下面两个不等式解集的并集. (Ⅰ)2<2x -5≤7 (Ⅱ)2<5-2x ≤7 不等式(Ⅰ)的解集为{x | 2 7 <x ≤6} 不等式(Ⅱ)的解集是{x |-1≤x <23 } ∴原不等式的解集是{x |-1≤x <23或2 7 <x ≤6}. 点评:含绝对值的双向不等式的解法,关键是去绝对值号.其方法一是转 化为单向不等式组如解法一,再就是利用绝对值的定义如解法二、解法三. [例2]解关于x 的不等式: (1)|2x +3|-1<a (a ∈R ); (2)|2x +1|>x +1. 解:(1)原不等式可化为|2x +3|<a +1 当a +1>0,即a >-1时,由原不等式得-(a +1)<2x +3<a +1 - 24+a <x <2 2 -a 当a +1≤0,即a ≤-1时,原不等式的解集为?, 综上,当a >-1时,原不等式的解集是{x |-24+a <x < 2 2 -a } 当a ≤-1时,原不等式的解集是?. (2)原不等式可化为下面两个不等式组来解 (Ⅰ)???+>+≥+112012x x x 或(Ⅱ)? ??+>+-<+1)12(012x x x 不等式组(Ⅰ)的解为x >0 不等式组(Ⅱ)的解为x <- 3 2 ∴原不等式的解集为{x |x <- 3 2 或x >0} 点评:由于无论x 取何值,关于x 的代数式的绝对值均大于或等于0,即不可能小于0,故|f (x )|<a (a ≤0)的解集为?. 解不等式分情况讨论时,一定要注意是对参数分类还是对变量分类,对参数分类的解集一般不合并,如(1)对变量分类,解集必须合并如(2). [例3]解不等式|x -|2x +1||>1. 解:∵由|x -|2x +1||>1等价于(x -|2x +1|)>1或x -|2x +1|<-1 (1)由x -|2x +1|>1得|2x +1|<x -1

相关文档
最新文档