matlab 数字图像处理_频域滤波[2]

matlab 数字图像处理_频域滤波[2]
matlab 数字图像处理_频域滤波[2]

数字图像处理

频域滤波

1.实验目的

1.掌握MATLAB 的基本操作。

2.了解数字图像处理在MATLAB中的基本处理过程。

3.学习频域滤波的原理,观察算法处理结果

2.实验设备

2.1.PC 兼容机一台;操作系统为WindowsWindowsXP。

2.2.数字图像处理开发环境:MATLAB软件

3.实验原理

见教材上二阶巴特沃斯(Butterworth)低,高通滤波器

4.实验步骤

.1 打开MA TLAB开发环境

.2点击MA TLAB窗口上File菜单,选择New-〉M—File,在弹出的Edit编辑器内输入如下程序:

I=imread('pout.tif');

figure(1);

subplot(2,2,1),imshow(I);title('愿图');

J1=imnoise(I,'salt & pepper',0.05); % 叠加椒盐噪声

subplot(2,2,2),imshow(J1);title('加噪图');

f=double(J1); % 数据类型转换,MATLAB不支持图像的无符号整型的计算

g=fft2(f); % 傅立叶变换

g=fftshift(g); % 转换数据矩阵

[M,N]=size(g);

nn=2; % 二阶巴特沃斯(Butterworth)低通滤波器

d0=50;

m=fix(M/2); n=fix(N/2);

for i=1:M

for j=1:N

d=sqrt((i-m)^2+(j-n)^2);

h1=1/(1+0.414*(d/d0)^(2*nn)); % 计算低通滤波器传递函数

result1(i,j)=h1*g(i,j);

end

end

result1=ifftshift(result1);

J2=ifft2(result1);

J3=uint8(real(J2));

subplot(2,2,3),imshow(J3);title('低通滤波图'); % 显示滤波处理后的图像

f=double(I); % 数据类型转换,MATLAB不支持图像的无符号整型的计算

g=fft2(f); % 傅立叶变换

g=fftshift(g); % 转换数据矩阵

[M,N]=size(g);

nn=2; % 二阶巴特沃斯(Butterworth)高通滤波器

d0=5;

m=fix(M/2);

n=fix(N/2);

for i=1:M

for j=1:N

d=sqrt((i-m)^2+(j-n)^2);

if (d==0)

h2=0;

else

h2=1/(1+0.414*(d0/d)^(2*nn));% 计算传递函数

end

result2(i,j)=h2*g(i,j);

end

end

result2=ifftshift(result2);

J4=ifft2(result2);

J5=uint8(real(J4));

subplot(2,2,4),imshow(J5); title('高通滤波图'); % 滤波后图像显示

.3将该程序保存,并点击工具栏中Run按钮,程序会自动运行,并显示出结果。

.4 观察处理结果

5.实验结果

低通滤波后图像中的噪声被抑制,高通滤波效果不明显

愿图加噪图

低通滤波图高通滤波图

6.问题与思考

总结MATLAB开发环境在使用上的特点,掌握其在实验中使用方法。改变程序中的模板参数,重新运行程序,观察会是什么结果。

思考模板操作进行滤波的原理。

非常全非常详细的MATLAB数字图像处理技术

MATLAB数字图像处理 1 概述 BW=dither(I)灰度转成二值图; X=dither(RGB,map)RGB转成灰度图,用户需要提供一个Colormap; [X,map]=gray2ind(I,n)灰度到索引; [X,map]=gray2ind(BW,n)二值图到索引,map可由gray(n)产生。灰度图n默认64,二值图默认2; X=graylice(I,n)灰度图到索引图,门限1/n,2/n,…,(n-1)/n,X=graylice(I,v)给定门限向量v; BW=im2bw(I,level)灰度图I到二值图; BW=im2bw(X,map,level)索引图X到二值图;level是阈值门限,超过像素为1,其余置0,level在[0,1]之间。 BW=im2bw(RGB,level)RGB到二值图; I=ind2gray(X,map)索引图到灰度图; RGB=ind2rgb(X,map)索引图到RGB; I=rgb2gray(RGB)RGB到灰度图。 2 图像运算 2.1 图像的读写 MATLAB支持的图像格式有bmp,gif,ico,jpg,png,cur,pcx,xwd和tif。 读取(imread): [1] A=imread(filename,fmt) [2] [X,map]=imread(filename,fmt) [3] […]=imread(filename) [4] […]=imread(URL,…) 说明:filename是图像文件名,如果不在搜索路径下应是图像的全路径,fmt是图像文件扩展名字符串。前者可读入二值图、灰度图、彩图(主要是RGB);第二个读入索引图,map 为索引图对应的Colormap,即其相关联的颜色映射表,若不是索引图则map为空。URL表示引自Internet URL中的图像。 写入(imwrite): [1] R=imwrite(A,filename,fmt); [2] R=imwrite(X,map,filename,fmt); [3] R=imwrite(…,filename); [4] R=imwrite(…,Param1,V al1,Param2,Val2) 说明:针对第四个,该语句用于指定HDF,JPEG,PBM,PGM,PNG,PPM,TIFF等类型输出文件的不同参数。例如HDF的Quality,Compression,WriteMode;JPEG的BitDepth,Comment:Empty or not,Mode:lossy or lossless,Quality等。 2.2 图像的显示 方法1:使用Image Viewer(图像浏览器),即运用imview函数。 同时显示多帧图像的所有帧,可用到montage函数。

图像的傅立叶变换与频域滤波

实验四 图像的傅立叶变换与频域滤波 一、 实验目的 1了解图像变换的意义和手段; 2熟悉傅里叶变换的基本性质; 3熟练掌握FFT 方法的应用; 4通过实验了解二维频谱的分布特点; 5通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。 6、掌握怎样利用傅立叶变换进行频域滤波 7、掌握频域滤波的概念及方法 8、熟练掌握频域空间的各类滤波器 9、利用MATLAB 程序进行频域滤波 二、 实验原理 1应用傅立叶变换进行图像处理 傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。 2傅立叶(Fourier )变换的定义 对于二维信号,二维Fourier 变换定义为 : ??∞ ∞ -+-==dxdy e y x f v u F y x f F vy ux j )(2),(),()},({π

二维离散傅立叶变换为: ∑ ∑-=+--==10)(21 01 ),(),(N y N y u M x u j M x MN e y x f v u F π 图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。 3利用MATLAB 软件实现数字图像傅立叶变换的程序: I=imread(‘原图像名.gif’); %读入原图像文件 imshow(I); %显示原图像 fftI=fft2(I); %二维离散傅立叶变换 sfftI=fftshift(fftI); %直流分量移到频谱中心 RR=real(sfftI); %取傅立叶变换的实部 II=imag(sfftI); %取傅立叶变换的虚部 A=sqrt(RR.^2+II.^2);%计算频谱幅值 A=(A-min(min(A)))/(max(max(A))-min(min(A)))*225; %归一化 figure; %设定窗口 imshow(A); %显示原图像的频谱 域滤波分为低通滤波和高通滤波两类,对应的滤波器分别为低通滤波器和 高通滤波器。频域低通过滤的基本思想: G(u,v)=F(u,v)H(u,v) F(u,v)是需要钝化图像的傅立叶变换形式,H(u,v)是选取的一个低通过滤

数字图像处理实验程序MATLAB.

实验一 内容(一) (1)彩色图像变灰度图像 A=imread('1.jpg'); B=rgb2gray(A); figure subplot(1,2,1), imshow(A) title('原图') subplot(1,2,2), imshow(B) title('原图灰度图像') (2)彩色图像变索引图像 A=imread('1.jpg'); figure subplot(1,2,1), imshow(A) title('原图') [X,map]=rgb2ind(A,128); subplot(1,2,2), imshow(X,map) title('原图索引图像') (3)彩色图像变二值图像 A=imread('1.jpg'); figure subplot(1,2,1), imshow(A) title('原图') C=im2bw(A,0.2); subplot(1,2,2), imshow(C) title('原图二值图像') (4)灰度图像变索引图像(一) A=imread('1.jpg'); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title('灰度图像') C=grayslice(B,39); subplot(1,2,2), imshow(C) title('灰度变索引图像')

(5)灰度图像变索引图像(二) A=imread('1.jpg'); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title('灰度图像') [X,map]=gray2ind(B,63); subplot(1,2,2), imshow(X,map) title('灰度变索引图像') (6)灰度图像变彩色图像 A=imread('1.jpg'); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title('灰度图像') C=gray2rgb(B,map); subplot(1,2,2), imshow(C) title('灰度变彩色图像') 内容(二) (1)灰度平均值 A=imread('1.jpg'); figure B=rgb2gray(A); subplot(1,2,1), imshow(B) title('灰度图像') B=double(B); [m,n]=size(B); sumg=0.0; for i=1:m; for j=1:n; sumg=sumg+B(i,j); end end avg=sumg/(m*n) % 均值 maxg=max(max(B)) % 区域最大灰度ming=min(min(B)) % 区域最小灰度 (2)彩色平均值

实验一图像变换及频域滤波7页

实验一 图像变换及频域滤波 1. 实验任务 (1)编写快速傅里叶变换算法程序,验证二维傅里叶变换的平移性和旋转不变性; (2)实现图像频域滤波,加深对频域图像增强的理解; (3)总结实验过程(实验报告,左侧装订):方案、编程、调试、结果、分析、结论。 2. 实验环境 Windws2000/XP 3. 开发工具 (1)MATLAB 6.x (2)Visual C++、Visual Basic 或其它 4. 实验内容及步骤 (1)产生如图3.1所示图像),(1y x f (128×128大小,暗处=0,亮处=255),用MATLAB 中的fft2函数对其进行FFT : 源程序: clc a=zeros(128,128) for y=54:74 for x=34:94 a(x,y)=1; end

end figure(1) a1=fft2(a); subplot(1,2,1); imshow(a); subplot(1,2,2); a2=abs(a1); mesh(a2); for x=1:128 for y=1:128 b(x,y)=(-1).^(x+y).*a(x,y); end end figure(2) b1=fft2(b); subplot(1,2,1); imshow(b); subplot(1,2,2); b2=abs(b1); mesh(b2); figure(3) t=imrotate(a,315,'nearest','crop')

t1=fft2(t); subplot(1,2,1); imshow(t); subplot(1,2,2); t2=abs(t1); surf(t2); ① 同屏显示原图1f 和)(FFT 1f 的幅度谱图; 图1.1 ② 若令 ),()1(),(12y x f y x f y x +-=,重复以上过程,比较二者幅度谱的异同,简述理 由; 图1.2 ③ 若将),(2y x f 顺时针旋转45度得到),(3y x f ,试显示)(FFT 3f 的幅度谱,并与)(FFT 2f 的幅度谱进行比较。 图1.3 结论:将图1.3与图1.1比较可知,将原图移动旋转45度以后,幅度谱图仍然没的改变,图象能量依然集中在4个角. (2)对如图3.2所示的数字图像lena.img (256×256大小、256级灰度)进行频域的理想低通、高通滤波,同屏显示原图、幅度谱图和低通、高通滤波的结果图。 源程序: clc a=fopen('lena.img','r'); 图3.1 实验图象

非常全非常详细的MATLAB数字图像处理技术

MATLAB数字图像处理 1 概述 BW=dither(I)灰度转成二值图; X=dither(RGB,map)RGB转成灰度图,用户需要提供一个Colormap; [X,map]=gray2ind(I,n)灰度到索引; [X,map]=gray2ind(BW,n)二值图到索引,map可由gray(n)产生。灰度图n 默认64,二值图默认2; X=graylice(I,n)灰度图到索引图,门限1/n,2/n,…,(n-1)/n,X=graylice(I,v)给定门限向量v; BW=im2bw(I,level)灰度图I到二值图; BW=im2bw(X,map,level)索引图X到二值图;level是阈值门限,超过像素为1,其余置0,level在[0,1]之间。 BW=im2bw(RGB,level)RGB到二值图; I=ind2gray(X,map)索引图到灰度图; RGB=ind2rgb(X,map)索引图到RGB; I=rgb2gray(RGB)RGB到灰度图。 2 图像运算 2.1图像的读写 MATLAB支持的图像格式有bmp,gif,ico,jpg,png,cur,pcx,xwd和tif。 读取(imread): [1]A=imread(filename,fmt) [2] [X,map]=imread(filename,fmt) [3] […]=imread(filename) [4] […]=imread(URL,…) 说明:filename是图像文件名,如果不在搜索路径下应是图像的全路径,fmt是图像文件扩展名字符串。前者可读入二值图、灰度图、彩图(主要是RGB);第二个读入索引图,map 为索引图对应的Colormap,即其相关联的颜色映射表,若不是索引图则map为空。URL表示引自Internet URL中的图像。 写入(imwrite): [1] R=imwrite(A,filename,fmt); [2] R=imwrite(X,map,filename,fmt); [3] R=imwrite(…,filename); [4] R=imwrite(…,Param1,Val1,Param2,Val2) 说明:针对第四个,该语句用于指定HDF,JPEG,PBM,PGM,PNG,PPM,TIFF等类型输出文件的不同参数。例如HDF的Quality,Compression,WriteMode;JPEG的BitDepth,Comment:Emptyor not,Mode:lossy orlossless,Quality等。 2.2 图像的显示 方法1:使用Image Viewer(图像浏览器),即运用imview函数。

图像的傅立叶变换与频域滤波

实验四图像的傅立叶变换与频域滤波 一、实验目的 1 了解图像变换的意义和手段; 2 熟悉傅里叶变换的基本性质; 3 熟练掌握FFT 方法的应用; 4 通过实验了解二维频谱的分布特点; 5 通过本实验掌握利用MATLAB 编程实现数字图像的傅立叶变换。 6、掌握怎样利用傅立叶变换进行频域滤波 7、掌握频域滤波的概念及方法 8、熟练掌握频域空间的各类滤波器 9、利用MATLAB 程序进行频域滤波 二、实验原理 1 应用傅立叶变换进行图像处理 傅里叶变换是线性系统分析的一个有力工具,它能够定量地分析诸如数字化系统、采样点、电子放大器、卷积滤波器、噪音和显示点等的作用。通过实验培养这项技能,将有助于解决大多数图像处理问题。对任何想在工作中有效应用数字图像处理技术的人来说,把时间用在学习和掌握博里叶变换上是很有必要的。 2 傅立叶( Fourier )变换的定义

对于二维信号,二维Fourier 变换定义为: F{ f (x, y)} F(u,v) f (x,y)e j2 (ux vy)dxdy 二维离散傅立叶变换为: F(u,v) MINI 侖 f (x,y)e j2 (uxM uyN) x 0 y 0 图像的傅立叶变换与一维信号的傅立叶变换变换一样,有快速算法,具体参见参考书目,有关傅立叶变换的快速算法的程序不难找到。实际上,现在有实现傅立叶变换的芯片,可以实时实现傅立叶变换。 3利用MATLAB软件实现数字图像傅立叶变换的程序: 匸imread( '原图像名.gif ' ); % 读入原图像文件 imshow(l); % 显示原图像 fftl=fft2(l); % 二维离散傅立叶变换 sfftl=fftshift(fftl); % 直流分量移到频谱中心 RR=real(sfftl); % 取傅立叶变换的实部 ll=imag(sfftl); % 取傅立叶变换的虚部 A=sqrt(RR.A2+ll.A2);% 计算频谱幅值 A= ( A-min(min(A)) )/(max(max(A))-min(min(A)))*225; %归一化 figure; %设定窗口 imshow(A); %显示原图像的频谱

(完整版)数字图像处理MATLAB程序【完整版】

第一部分数字图像处理

实验一图像的点运算 实验1.1 直方图 一.实验目的 1.熟悉matlab图像处理工具箱及直方图函数的使用; 2.理解和掌握直方图原理和方法; 二.实验设备 1.PC机一台; 2.软件matlab。 三.程序设计 在matlab环境中,程序首先读取图像,然后调用直方图函数,设置相关参数,再输出处理后的图像。 I=imread('cameraman.tif');%读取图像 subplot(1,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(1,2,2),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题 四.实验步骤 1. 启动matlab 双击桌面matlab图标启动matlab环境; 2. 在matlab命令窗口中输入相应程序。书写程序时,首先读取图像,一般调用matlab自带的图像, 如:cameraman图像;再调用相应的直方图函数,设置参数;最后输出处理后的图像; 3.浏览源程序并理解含义; 4.运行,观察显示结果; 5.结束运行,退出; 五.实验结果 观察图像matlab环境下的直方图分布。 (a)原始图像 (b)原始图像直方图 六.实验报告要求 1、给出实验原理过程及实现代码; 2、输入一幅灰度图像,给出其灰度直方图结果,并进行灰度直方图分布原理分析。

实验1.2 灰度均衡 一.实验目的 1.熟悉matlab图像处理工具箱中灰度均衡函数的使用; 2.理解和掌握灰度均衡原理和实现方法; 二.实验设备 1.PC机一台; 2.软件matlab; 三.程序设计 在matlab环境中,程序首先读取图像,然后调用灰度均衡函数,设置相关参数,再输出处理后的图像。 I=imread('cameraman.tif');%读取图像 subplot(2,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(2,2,3),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题 a=histeq(I,256); %直方图均衡化,灰度级为256 subplot(2,2,2),imshow(a) %输出均衡化后图像 title('均衡化后图像') %在均衡化后图像中加标题 subplot(2,2,4),imhist(a) %输出均衡化后直方图 title('均衡化后图像直方图') %在均衡化后直方图上加标题 四.实验步骤 1. 启动matlab 双击桌面matlab图标启动matlab环境; 2. 在matlab命令窗口中输入相应程序。书写程序时,首先读取图像,一般调用matlab自带的图像, 如:cameraman图像;再调用相应的灰度均衡函数,设置参数;最后输出处理后的图像; 3.浏览源程序并理解含义; 4.运行,观察显示结果; 5.结束运行,退出; 五.实验结果 观察matlab环境下图像灰度均衡结果及直方图分布。 (a)原始图像 (b)均衡化后图像

图像的频域滤波

实验六:图像的频域滤波 姓名:朱永祥学号20171170238 得分: 一、实验目的: 1、掌握傅立叶变换及逆变换的基本原理方法。 2、理解频域滤波的基本原理及方法。 3、掌握进行图像的频域滤波的方法。 二、实验内容与要求: 1、傅立叶变换 (1)读出woman.tif这幅图像,对其进行快速傅立叶变换,分别显示其幅度图像和相位图像。仅对相位部分进行傅立叶反变换后查看结果图像。 (2)仅对幅度部分进行傅立叶反变换后查看结果图像。 (3)将图像的傅立叶变换F置为其共轭后进行反变换,比较新生成图像与原始图像的差异。 2、平滑频域滤波 (1)设计理想低通滤波器、巴特沃斯低通滤波器和高斯低通滤波器,截至频率自选,分别给出各种滤波器的透视图。 (2)读出test_pattern.tif这幅图像,分别采用理想低通滤波器、巴特沃斯低通滤波器和高斯低通滤波器对其进行滤波(截至频率自选),再做反变换,观察不同的截止频率下采用不同低通滤波器得到的图像与原图像的区别,特别注意振铃效应。(提示:1)在频率域滤波同样要注意到填充问题;2)注意到(-1)x+y;) 3、锐化频域滤波 (1)设计理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器,截至频率自选,分别给出各种滤波器的透视图。 (2)读出test_pattern.tif这幅图像,分别采用理想高通滤波器、巴特沃斯高通滤波器和高斯高通滤波器对其进行滤波(截至频率自选),再做反变换,观察不同的截止频率下采用不同高通滤波器得到的图像与原图像的区别。 三、实验代码及结果: 1、(1)a、实验代码: >> img=imread('C:\Users\xxdn\Desktop\图片1.png'); >> img=rgb2gray(img); >> f1=fft2(img); >> f2=log(1+abs(f1)); >> f3=fftshift(f1); >> f4=angle(f1); >>figure,subplot(1,3,1),imshow(img),title('Original Image'); subplot(1,3,2),imshow(log(1+abs(f3)),[]),title('amplitude spectrum'); subplot(1,3,3),imshow(f4),title('phase spectrum'); >> i=sqrt(-1);

matlab数字图像处理源代码

数字图像去噪典型算法及matlab实现 希望得到大家的指点和帮助 图像去噪是数字图像处理中的重要环节和步骤。去噪效果的好坏直接影响 到后续的图像处理工作如图像分割、边缘检测等。图像信号在产生、传输过程中都可能会受到噪声的污染,一般数字图像系统中的常见噪声主要有:高斯噪声(主要由阻性元器件内部产生)、椒盐噪声(主要是图像切割引起的黑图像上的白点噪声或光电转换过程中产生的泊松噪声)等; 目前比较经典的图像去噪算法主要有以下三种: 均值滤波算法:也称线性滤波,主要思想为邻域平均法,即用几个像素灰度 的平均值来代替每个像素的灰度。有效抑制加性噪声,但容易引起图像模糊, 可以对其进行改进,主要避开对景物边缘的平滑处理。 中值滤波:基于排序统计理论的一种能有效抑制噪声的非线性平滑滤波信号处理技术。中值滤波的特点即是首先确定一个以某个像素为中心点的邻域,一般为方形邻域,也可以为圆形、十字形等等,然后将邻域中各像素的灰度值排序,取其中间值作为中心像素灰度的新值,这里领域被称为窗口,当窗口移动时,利用中值滤波可以对图像进行平滑处理。其算法简单,时间复杂度低,但其对点、线和尖顶多的图像不宜采用中值滤波。很容易自适应化。 Wiener维纳滤波:使原始图像和其恢复图像之间的均方误差最小的复原方法,是一种自适应滤波器,根据局部方差来调整滤波器效果。对于去除高斯噪声效果明显。 实验一:均值滤波对高斯噪声的效果 l=imread('C:\Documents and 桌面\1.gif');% 读取图像

J=imnoise(l,'gaussian',0,0.005);% 加入均值为0 ,方差为 0.005 的高斯噪声subplot(2,3,1);imshow(l); title(' 原始图像'); subplot(2,3,2); imshow(J); ti tle('加入高斯噪声之后的图像’); %采用MATLAB 中的函数filter2 对受噪声干扰的图像进行均值滤波 K1=filter2(fspecial('average',3),J)/255; % 模板尺寸为3 K2=filter2(fspecial('average',5),J)/255;% 模板尺寸为5 K3=filter2(fspecial('average',7),J)/255; % 模板尺寸为7 K4= filter2(fspecial('average',9),J)/255; % 模板尺寸为9 subplot(2,3,3);imshow(K1); ti tle(' 改进后的图像1'); subplot(2,3,4); imshow(K2); title(' 改进后的图像2'); subplot(2,3,5);imshow(K3); title(' 改进后的图像3'); subplot(2,3,6);imshow(K4); title(' 改进后的图像4');

基于Matlab的数字图像处理系统设计设计

论文(设计)题目: 基于MATLAB的数字图像处理系统设计

基于MATLAB的数字图像处理系统设计 摘要 MATLAB 作为国内外流行的数字计算软件,具有强大的图像处理功能,界面简洁,操作直观,容易上手,而且是图像处理系统的理想开发工具。矚慫润厲钐瘗睞枥庑赖。 笔者阐述了一种基于MATLAB的数字图像处理系统设计,其中包括图像处理领域的大部分算法,运用MATLAB 的图像处理工具箱对算法进行了实现,论述了利用系统进行图像显示、图形表换及图像处理过程,系统支持索引图像、灰度图像、二值图像、RGB 图像等图像类型;支持BMP、GIF、JPEG、TIFF、PNG 等图像文件格式的读,写和显示。聞創沟燴鐺險爱氇谴净。 上述功能均是在MA TLAB 语言的基础上,编写代码实现的。这些功能在日常生活中有很强的应用价值,对于运算量大、过程复杂、速度慢的功能,利用MATLAB 可以既能快速得到数据结果,又能得到比较直观的图示。残骛楼諍锩瀨濟溆塹籟。 关键词:MATLAB 数字图像处理图像处理工具箱图像变换

第一章绪论 1.1 研究目的及意义 图像信息是人类获得外界信息的主要来源,近代科学研究、军事技术、工农业生产、医学、气象及天文学等领域中,人们越来越多地利用图像信息来认识和判断事物,解决实际问题,由此可见图像信息的重要性,数字图像处理技术将会伴随着未来信息领域技术的发展,更加深入到生产和科研活动中,成为人类生产和生活中必不可少的内容。酽锕极額閉镇桧猪訣锥。 MATLAB 软件不断吸收各学科领域权威人士所编写的实用程序,经过多年的逐步发展与不断完善,是近几年来在国内外广泛流行的一种可视化科学计算软件。MATLAB 语言是一种面向科学与工程计算的高级语言,允许用数学形式的语言来编写程序,比Basic、Fortan、C 等高级语言更加接近我们书写计算公式的思维方式,用MATLAB 编写程序犹如在演算纸上排列出公式与求解问题一样。它编写简单、编程效率高并且通俗易懂。彈贸摄尔霁毙攬砖卤庑。 1.2 国内外研究现状 1.2.1 国内研究现状 国内在此领域的研究中具有代表性的是清华大学研制的数字图像处理实验开发系统TDB-IDK 和南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件。謀荞抟箧飆鐸怼类蒋薔。 TDB-IDK 系列产品是一款基于TMS320C6000 DSP 数字信号处理器的高级视频和图像系统,也是一套DSP 的完整的视频、图像解决方案,该系统适合院校、研究所和企业进行视频、图像方面的实验与开发。该软件能够完成图像采集输入程序、图像输出程序、图像基本算法程序。可实现对图像信号的实时分析,图像数据相对DSP独立方便开发人员对图像进行处理,该产品融合DSP 和FPGA/CPLD 两个高端技术,可以根据用户的具体需求合理改动,可以分析黑白和彩色信号,可以完成图形显示功能。厦礴恳蹒骈時盡继價骚。 南京东大互联技术有限公司研制的数字图像采集传输与处理实验软件可实现数字图像的采集、传输与处理。可利用软件及图像采集与传输设备,采集图像并实现点对点的数字图像传输,可以观察理解多种图像处理技术的效果和差别,

实验五 傅立叶变换与频率域滤波

实验五傅立叶变换与频率域滤波 一、实验目的 1.理解傅立叶变换; 2.熟悉MATLAB中各种傅立叶变换相关的函数; 3.掌握频域滤波的步骤以及MATLAB的实现方法; 4.理解频域滤波器与空域滤波器的关系。 二、实验内容及步骤 1、傅立叶变换及傅立叶反变换 (1)傅立叶变换相关函数 MATLAB提供了几个和傅立叶变换相关的函数。其说明如下: F=fft2(f); 二维傅立叶变换 real(F); 傅立叶变换的实部 imag(F); 傅立叶变换的虚部 abs(F); 获得傅立叶频谱 fftshift(F); 将变换的原点移至频率矩形的中心 ifft2(F); 二维傅立叶反变换 iffshift(F); 反中心平移 (2)傅立叶频谱 傅立叶频谱反映了图像的频率成分。幅值谱的能量往往集中于中低频部分,并且中低频部分的能量反映了图像的实体。图像的噪声往往集中于高频部分。 下面的例子对课本中123页的图Fig4.03(a).jpg进行傅立叶变换,得到傅立叶频谱。 例:x=imread('Fig4.03(a).jpg'); F=fft2(x); %二维傅立叶变换 FP=sqrt(real(F).^2+imag(F).^2); %计算傅立叶频谱,或者使用abs()函数 imshow(uint8(FP)) %显示傅立叶频谱,直流成分分布在四个边角 figure(2); imshow(uint8(fftshift(FP))) % 中心平移的频谱图

思考题1:对课本125页的图Fig4.04(a).jpg进行傅立叶变换,得到傅立 叶频谱,为清楚地显示该谱,将其进行对数变换处理,增强其灰度细节。结果类似于图5_1。 图5_1 Fig4.04(a)的傅立叶谱 x=imread('Fig4.04(a).jpg'); F=fft2(x); FP=sqrt(real(F).^2+imag(F).^2); Image=log(1+double(fftshift(FP))); imshow(x); figure(2);imshow(Image,[]); (3)傅立叶变换对

频域图像处理和图像恢复(MATLAB实验)

实验项目名称:频域图像处理和图像恢复 (所属课程:图像和视频处理) 学院:专业班级:姓名:学号:实验日期:实验地点:指导教师: 本实验项目成绩:教师签字:日期:__________________ 1.实验目的 (1) 掌握频域图像处理的基本方法。 (2) 掌握图像的傅里叶变换。 (3) 掌握空域和频域图像处理的联系与区别。 (4) 掌握图像恢复的相关理论和方法。 2.实验内容 (1)显示图像’’和’’傅立叶变换的傅立叶谱图像。 I=imread(''); Id=im2double(I); I_dft=fft2(Id); figure,imshow(Id),title('Original Image'); figure,imshow(log(1+abs(fftshift(I_dft))),[]),... title('FT of original image');

I=imread(''); Id=im2double(I); I_dft=fft2(Id); figure,imshow(Id),title('Original Image'); figure,imshow(log(1+abs(fftshift(I_dft))),[]),... title('FT of original image');

(2) 对图像’’采用理想低通滤波器和理想高通滤波器进行处理,分析不同的滤波器得到的结果; 低通R1=35: I=imread(''); Id=im2double(I); I_dft=fft2(Id); [M,N]=size(I);

dist=distmatrix(M,N); figure,mesh(fftshift(dist)),title('Distance Matrix'); H=zeros(M,N); radius=35; ind=dist<=radius; H(ind)=1; Hd=double(H); DFT_filt=Hd .* I_dft; I2=real(ifft2(DFT_filt)); figure,imshow(log(1+abs(fftshift(DFT_filt))),[]),... title('Filtered FT'); figure,imshow(I2),title('Filtered Image'); R2=80:

用matlab数字图像处理四个实验

数字图像处理 实验指导书

目录 实验一MATLAB数字图像处理初步实验二图像的代数运算 实验三图像增强-空间滤波 实验四图像分割 3

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。 图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: ?亮度图像(Intensity images)

数字图像处理 matlab代码

MATLAB实用源代码 图像读取及灰度变换 I=imread('cameraman.tif');%读取图像 subplot(1,2,1),imshow(I) %输出图像 title('原始图像') %在原始图像中加标题 subplot(1,2,2),imhist(I) %输出原图直方图 title('原始图像直方图') %在原图直方图上加标题 图像旋转 I = imread('cameraman.tif'); figure,imshow(I); theta = 30; K = imrotate(I,theta); % Try varying the angle, theta. figure, imshow(K) 边缘检测 I = imread('cameraman.tif'); J1=edge(I,'sobel'); J2=edge(I,'prewitt'); J3=edge(I,'log'); subplot(1,4,1),imshow(I); subplot(1,4,2),imshow(J1); subplot(1,4,3),imshow(J2); subplot(1,4,4),imshow(J3); 1.图像反转 MATLAB 程序实现如下: I=imread('xian.bmp'); J=double(I); J=-J+(256-1); %图像反转线性变换 H=uint8(J); subplot(1,2,1),imshow(I); subplot(1,2,2),imshow(H); 2.灰度线性变换 MATLAB 程序实现如下: I=imread('xian.bmp'); subplot(2,2,1),imshow(I); title('原始图像'); axis([50,250,50,200]); axis on; %显示坐标系 I1=rgb2gray(I); subplot(2,2,2),imshow(I1); title('灰度图像'); axis([50,250,50,200]);

(实验四)数字图像 DFT 及频域滤波

实验报告 实验课程:光电图像处理 姓名: 学号: 实验地点:信软楼309 指导老师: 实验时间:2016年 4 月 7日

一.实验名称:(实验四)数字图像DFT及频域滤波 二.实验目的 1. 了解数字图像各种正交变换的概念、原理和用途。 2. 熟练掌握数字图像的 DFT/DCT 的原理、方法和实现流程,熟悉两种变换的性质,并能对数字图像 DFT 及 DCT 的结果进行必要解释。 3.熟悉和掌握利用 MATLAB 工具进行数字图像 FFT 及 DCT 的基本步骤、MATLAB函数使用及具体变换的处理流程,并能根据需要进行必要的频谱分析和可视化显示。 4. 熟悉利用空域滤波器构建对应的频域滤波器的方法和关键步骤。 5. 熟悉和掌握几种典型的频域低通滤波器及高通滤波器的原理、特性和作用。 6. 搞清空域图像处理与频域图像处理的异同,包括处理流程、各自的优势等。掌握频域滤波的基本原理和基本流程,并能编写出相应的程序代码。 三.实验原理 1.模型图像的FFT 实验: 原理:傅里叶变换提供了另外一个角度来观察图像,可以将图像从灰度分布转化为频率分布来观察图像的特征。FFT主要是应用公式: 进行空间域与频率域的相互转换. 程序流程图:

2.实际图像的FFT 实验: 原理:傅里叶变换提供了另外一个角度来观察图像,可以将图像从灰度分布转化为频率分布来观察图像的特征。其中对于频谱反中心化的处理是通过 I=fftshift(I)来实现的,FFT主要是应用公式: 进行空域与频域的转换. 程序流程图: 3.数字图像的频域滤波处理: 原理:图像的频域表征了图像中灰度变化剧烈程度的指标,是灰度在平面空间上 的梯度。图像的边缘部分是突变部分,变化较快,因此反映在频域上是高频 分量;图像的大部分噪声是高频部分;而图像中大部分平缓的灰度变化部分 则为低频分量,再通过构建的高通与低通滤波器与FFT变换后的频谱函数乘 积的滤波处理,显示出处理后的图像. 程序流程图: (1)

用逆滤波和维纳滤波进行图像复原

用逆滤波和维纳滤波进行图像复原 在图像的获取、传输以及记录保存过程中,由于各种因素,如成像设备与目标物体的相对运动,大气的湍流效应,光学系统的相差,成像系统的非线性畸变,环境的随机噪声等原因都会使图像产生一定程度的退化,图像退化的典型表现是图像出现模糊、失真,出现附加噪声等。由于图像的退化,使得最终获取的图像不再是原始图像,图像效果明显变差。为此,要较好地显示原始图像,必须对退化后的图像进行处理,恢复出真实的原始图像,这一过程就称为图像复原. 图像复原技术是图像处理领域一类非常重要的处理技术,主要目的就是消除或减轻在图像获取及传输过程中造成的图像质量下降即退化现象,恢复图像的本来面目. 图像复原的过程是首先利用退化现象的某种先验知识,建立退化现象的数学模型,然后再根据退化模型进行反向的推演运算,以恢复原来的景物图像. 一、 实验目的 1了解图像复原模型 2了解逆滤波复原和维纳滤波复原 3掌握维纳滤波复原、逆滤波的Matlab 实现 二、实验原理 1、逆滤波复原 如果退化图像为(),g x y ,原始图像为(),f x y ,在不考虑噪声的情况下,其退化模型可用下式表示 ()()(),,,g x y f x y d d αβδαβαβ +∞+∞ -∞ -∞ =--? ? (12-25) 由傅立叶变换的卷积定理可知有下式成立 ()()(),,,G u v H u v F u v = (12-26) 式中,(),G u v 、(),H u v 、(),F u v 分别是退化图像(),g x y 、点扩散函数(),h x y 、原始图像(),f x y 的傅立叶变换。所以 ()()()()11,,,,G u v f x y F F u v F H u v --??==???????? (12—27) 由此可见,如果已知退化图像的傅立叶变换和系统冲激响应函数(“滤被”传递函数),则可以求得原图像的傅立叶变换,经傅立叶反变换就可以求得原始图像 (),f x y ,其中(),G u v 除以(),H u v 起到了反向滤波的作用。这就是逆滤波复原的

(整理)实验一 MATLAB数字图像处理初步.

实验一 MATLAB数字图像处理初步 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像间如何转化。 6. 了解图像的算术运算在数字图像处理中的初步应用。 7.体会图像算术运算处理的过程和处理前后图像的变化。 二、实验原理及知识点 1、数字图像的表示和类别 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。 图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 作为MATLAB基本数据类型的数值数组本身十分适于表达图像,矩阵的元素和图像的像素之间有着十分自然的对应关系。

图1 图像的采样和量化 根据图像数据矩阵解释方法的不同,MA TLAB把其处理为4类: 亮度图像(Intensity images) 二值图像(Binary images) 索引图像(Indexed images) RGB图像(RGB images) (1) 亮度图像 一幅亮度图像是一个数据矩阵,其归一化的取值表示亮度。若亮度图像的像素都是uint8类或uint16类,则它们的整数值范围分别是[0,255]和[0,65536]。若图像是double类,则像素取值就是浮点数。规定双精度型归一化亮度图像的取值范围是[0,1] (2) 二值图像 一幅二值图像是一个取值只有0和1的逻辑数组。而一幅取值只包含0和1的uint8类数组,在MA TLAB中并不认为是二值图像。使用logical函数可以把数值数组转化为二值数组或逻辑数组。创建一个逻辑图像,其语法为: B=logical(A) 其中,B是由0和1构成的数值数组。 要测试一个数组是否为逻辑数组,可以使用函数: islogical(c) 若C是逻辑数组,则该函数返回1;否则,返回0。 (3) 索引图像 索引颜色通常也称为映射颜色,在这种模式下,颜色都是预先定义的,并且可供选用的一组颜色也很有限,索引颜色的图像最多只能显示256种颜色。 一幅索引颜色图像在图像文件里定义,当打开该文件时,构成该图像具体颜色的索引值就被读入程序里,然后根据索引值找到最终的颜色。 (4) RGB图像 一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色相似点都是在特定空间位置的彩色图像相对应的红、绿、蓝三个分量。按照惯例,形成一幅RGB彩色图像的三个图像常称为红、绿或蓝分量图像。 令fR,fG和fB分别代表三种RGB分量图像。一幅RGB图像就利用cat(级联)操作将这些分量图像组合成彩色图像: rgb_image=cat(3,fR,fG,fB) 在操作中,图像按顺序放置。 2、数据类和图像类型间的转化 表1中列出了MATLAB和IPT为表示像素所支持的各种数据类。表中的前8项称为数值数据类,第9项称为字符类,最后一项称为逻辑数据类。 工具箱中提供了执行必要缩放的函数(见表2)。以在图像类和类型间进行转化。

相关文档
最新文档