二次函数专题复习

二次函数专题复习
二次函数专题复习

二次函数专题复习——平行四边形的存在性问题

一、课前预习

1、如图,线段AB平移得到线段A' B' ,已知点A (-2,2),B (-3,-1),B' (3,1),则点A'的坐标是________.

2、如图,平面直角坐标中,已知中A (-1,0),B (1,-2),C (3,1),点D是平面内一动点,若以点A 、B 、C、D为顶点的四边形是平行四边形,则点D的坐标是__________.

3、如图,已知点A (-2,1),B (4,3),则线段AB的中点P的坐标是________.

跟踪练习

二、精讲精练

如图,抛物线2

23y x x =--与x 轴交于A ,B 两点(点A 在点B 左侧),(23)D -,在抛物线上,连接AD .点M 在抛物线上,点N 在x 轴上,且以A ,D ,M ,N 为顶点的四边形是平行四边形,请求出点N 的坐标?

三、方法总结

分析不变特征:

从________入手,分析定点,动点,得到_______,考虑定线段在平行四边形中可以____________.

分析形成因素:

当定线段当边时,考虑与______________有关的平行四边形的判定,需要定线段与另一条线段__________;当定线段为对角线时,考虑与____________有关的平行四边形的判定,需要定线段与另一条线段__________.

画图、求解:

定线段当边时,考虑平行且相等,需要______,平移时注意在定直线上下两侧分别平移,平移找点之后,利用点的坐标平移规律确定所求点的坐标.

定线段作对角线时,考虑互相平分,需要______,旋转找点之后,利用中点坐标公式确定所求点的坐标.

四、变式训练

如图,抛物线223y x x =--+与x 轴交于A ,B 两点

(点A 在点B 左侧),与y 轴交于点C ,连接AC .点F

在抛物线上,点E 在对称轴上,且以A 、C 、E 、F 构成

平行四边形.

请求出点E 的坐标?

(完整版)二次函数复习课教学设计

二次函数复习课教学设计 和平中学任广香 一、教材分析 1.地位和作用: (1)二次函数是初中数学中最基本的概念之一,贯穿于整个初中数学体系之中,也是实际生活中数学建模的重要工具之一,二次函数在初中函数的教学中有重要地位,它不仅是初中代数内容的引申,也是初中数学教学的重点和难点之一,更为高中学习一元二次不等式和圆锥曲线奠定基础。在历届中考试题中,二次函数都是不可缺少的内容。 (2)二次函数的图像和性质体现了数形结合的数学思想,对学生基本数学思想和素养的形成起推动作用。 (3)二次函数与一元二次方程知识的联系,使学生能更好地将所学知识融会贯通。 2.课标要求: ①通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义。 ②会用描点法画出二次函数的图象,能从图象上认识二次函数的性质。 ③会根据公式确定图象的顶点、开口方向和对称轴,平移,并能解决简单的实际问题。 ④会利用二次函数的图象求与x、y轴的交点坐标。 3.学情分析 (1)九年级学生在新课的学习中已掌握二次函数的定义、图像及性质等基本知识。 (2)学生的分析、理解能力、学习新课时有明显提高。 (3)学生学习数学的热情很高,思维敏捷,具有一定的自主探究和合作学习的能力。 (4)学生能力差异较大,两极分化明显。 4.教学目标 认知目标: (1)掌握二次函数y=ax2+bx+c图像与系数符号之间的关系。 (2)通过复习,掌握各类形式的二次函数解析式求解方法和思路,能够一题多解,发散提高学生的创造思维能力. 能力目标:提高学生对知识的整体合作能力和分析能力。 情感目标:制作动画增加直观效果,激发学生兴趣,感受数学之美.在教学中渗透美的教育,渗透数形结合的思想,让学生在数学活动中学会与人相处,感受探索与创造,体验成功的喜悦。 5.教学重点与难点: 重点:(!)掌握二次函数y=ax2+bx+c图像与系数符号之间的关系。 (2) 各类形式的二次函数解析式的求解方法和思路. 难点:(1)已知二次函数的解析式说出函数性质 (2)运用数形结合思想,选用恰当的数学关系式解决问题. 二、教学方法: 1.师生互动探究式教学,以课标为依据,渗透新的教育理念,遵循教师为

中考数学专题训练---二次函数的综合题分类含详细答案

一、二次函数真题与模拟题分类汇编(难题易错题) 1.(10分)(2015?佛山)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=﹣x2+4x刻画,斜坡可以用一次函数y=x刻画. (1)请用配方法求二次函数图象的最高点P的坐标; (2)小球的落点是A,求点A的坐标; (3)连接抛物线的最高点P与点O、A得△POA,求△POA的面积; (4)在OA上方的抛物线上存在一点M(M与P不重合),△MOA的面积等于△POA的面积.请直接写出点M的坐标. 【答案】(1)(2,4);(2)(,);(3);(4)(,). 【解析】 试题分析:(1)利用配方法抛物线的一般式化为顶点式,即可求出二次函数图象的最高点P的坐标; (2)联立两解析式,可求出交点A的坐标; (3)作PQ⊥x轴于点Q,AB⊥x轴于点B.根据S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入数值计算即可求解; (4)过P作OA的平行线,交抛物线于点M,连结OM、AM,由于两平行线之间的距离相等,根据同底等高的两个三角形面积相等,可得△MOA的面积等于△POA的面积.设直 线PM的解析式为y=x+b,将P(2,4)代入,求出直线PM的解析式为y=x+3.再与抛 物线的解析式联立,得到方程组,解方程组即可求出点M的坐标. 试题解析:(1)由题意得,y=﹣x2+4x=﹣(x﹣2)2+4, 故二次函数图象的最高点P的坐标为(2,4); (2)联立两解析式可得:,解得:,或. 故可得点A的坐标为(,);

(3)如图,作PQ⊥x轴于点Q,AB⊥x轴于点B. S△POA=S△POQ+S△梯形PQBA﹣S△BOA =×2×4+×(+4)×(﹣2)﹣×× =4+﹣ =; (4)过P作OA的平行线,交抛物线于点M,连结OM、AM,则△MOA的面积等于△POA的面积. 设直线PM的解析式为y=x+b, ∵P的坐标为(2,4), ∴4=×2+b,解得b=3, ∴直线PM的解析式为y=x+3. 由,解得,, ∴点M的坐标为(,). 考点:二次函数的综合题

第8讲:二次函数(专题讲座).doc

(聚焦 2008 )第 8 讲:二次函数专题讲座 (一)二次函数的解析式的三种形式 (1)标准式: y=ax 2 +bx+c ( a≠0 ); (2)顶点式: y=a ( x+m )2 +n ( a≠0 ); (3)两根式: y=a ( x - x 1)( x- x 2)( a ≠ 0 ) 【例 1】已知二次函数y=f( x)同时满足条件:(1)f( 1+x)= f(1- x); (2) y=f ( x)的最大值是15;( 3) f ( x)=0的两根立方和等于1 7。求 y= f ( x)的解析式。 (二)二次函数的基本性质 ( 1)二次函数f( x)=a x2 +bx+c ( a ≠0)的图像是一条抛物线,对称 轴方程为 x =- b ,顶点坐标是(- b , 4ac b2 )。2a 2a 4ac 当 a > 0 时,抛物线开口向上,函数在(-∞,-b ] 上递减,在 [ - b ,2a 2a +∞ ) 上递增。 当 a < 0 时,抛物线开口向下,函数在(-∞,-b ] 上递增,在 [ - b ,2a 2a +∞ ) 上递减。 ( 2)直线与曲线的交点问题: ①二次函数f( x)=ax 2 +bx+c ( a ≠0),当= b2-4 ac>0 时,图像与 x 轴有两个交点M1(x1,0)M2(x2,0),于是 |M1M2|=| x1- x2|=。 | a | ②若抛物线y=ax 2 +bx+c(a≠0)与直线y=mx+n ,则其交点由二方程组成的方程组的解来决定,而方程组的解由一元二次方程ax 2 +bx+c =mx+n ,即 px 2 +qx+r=0的解来决定,从而将交点问题归结为判定一元二 次方程的判别式的符号决定。 特别地,抛物线与x 轴的交点情况由ax 2 +bx+c=0 的解的情况决定,于是也归结为判定一元二次方程ax 2 +bx+c = 0 的判别式的符号问题。

完整版公开课一等奖二次函数复习课教案.doc

《二次函数复习》教学案 班级:初三 18 班年级:九设计者:李玲时间: 2015 年 10 月 16 日课题二次函数课型复习课 知识技能掌握二次函数的图象及其性质,能灵活运用数形结合知识解一些实际问题. 数学思考通过观察、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力. 教学目标 解决问题学生亲自经历巩固二次函数相关知识点的过程,体会利用数形结合线索解决问题策略的多样性. 经历探索二次函数相关题目的过程,体会数形结合思想、化归思想 情感态度在数学中的广泛应用,同时感受数学知识来源于实际生活,反之,又服务于实际生活. 教学重点教学难点二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.二次函数性质的灵活运用,能把相关应用问题转化为数学问题. 课前准备 (教具、活制作课件 动准备等) 教学过程 教学步骤师生活动设计意图 如图是抛物线y ax2bx c a 0 的图像,通过一个具体二次函数, 请尽可能多的说出一些结论。请学生说出尽可能多的结论,主要让学生回忆二次函数有 基础知识之 关基础知识.同学们之间可以自我构建 相互补充,体现团结协作精 神.同时发展了学生的探究意 识,培养了学生思维的广阔 性. 二次函数是生活中最常 见的一类函数,它有着自己固 有的性质,反映的是轴对称性 和增减性; 我们要突出反映二次函数的 轴对称性、顶点坐标,我们就基础知识之可以把一般式改写成顶点式;基础演练如果想知道抛物线与 x 轴两 个交点的情况,我们可以把一 般式写出交点式; 刚刚我们回顾了二次函数的 性质,我们发现二次函数的图 像能够直观地反映函数的特 性,而数又能细致刻画函数图

(完整版)初中数学二次函数专题经典练习题(附答案)

二次函数总复习经典练习题 1.抛物线y=-3x2+2x-1 的图象与坐标轴的交点情况是( ) (A) 没有交点.(B) 只有一个交点. (C) 有且只有两个交点.(D) 有且只有三个交点. 2.已知直线y=x 与二次函数y=ax2-2x- 1 图象的一个交点的横坐标为1,则 a 的值为( ) (A)2 .(B)1 .(C)3 .(D)4 . 3.二次函数y=x2-4x+3的图象交x轴于A、B两点,交y 轴于点C,则△ ABC的面积为( ) (A)6 .(B)4 .(C)3 .(D)1 . 2 4.函数y=ax 2+bx+ c 中,若a> 0,b< 0,c<0,则这个函数图象与x 轴的交点情况是( ) (A) 没有交点. (B) 有两个交点,都在x 轴的正半轴. (C) 有两个交点,都在x 轴的负半轴. (D) 一个在x 轴的正半轴,另一个在x 轴的负半轴. 5.已知(2 ,5) 、(4 ,5)是抛物线y=ax2+bx+c 上的两点,则这个抛物线的对称轴方程是( ) a (A) x= .(B) x=2.(C) x=4.(D) x=3. b 6.已知函数y=ax2+bx+ c 的图象如图 1 所示,那么能正确反映函数y=ax+ b 图象的只可能是( ) 7.二次函数y=2x2-4x+5 的最小值是_____ . 2 8.某二次函数的图象与x轴交于点( -1,0) ,(4 ,0) ,且它的形状与y=-x2形状相同.则这个二次函数的解析式为_____ . 9.若函数y=-x2+4 的函数值y> 0,则自变量x 的取值范围是______ . 10.某品牌电饭锅成本价为70 元,销售商对其销量与定价的关系进行了调查,结果如下:

二次函数综合应用专题归纳训练一

二次函数综合应用专题归纳训练一 一、相似三角形的存在性问题 1.在平面直角坐标系中,一个二次函数的图像经过A(1,0)B(3,0)两点. (1)写出这个二次函数图像的对称轴; (2)设这个二次函数图像的顶点为D,与y轴交与点C,它的对称轴与x轴交与点E,连接AC、DE和DB.当△AOC与△DEB相似时,求这个二次函数的表达式. 二、等腰三角形的存在性问题 2.如图,直线3 y交x轴于A点,交y轴于B点,过A、B两点的抛物线交x =x 3+ 轴于另一点C(3,0). ⑴求抛物线的解析式 ⑵在抛物线的对称轴上是否存在点Q,使△ABQ 存在,求出符合条件的Q点坐标;若不存在,请说明理由.

3.已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l 是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P是直线L上的一个动点,当△PAC的周长最 小时,求点P的坐标; (3)在直线L上是否存在点M,使△MAC为等腰三角 形?若存在,直接写出所有符合条件的点M的坐标; 若不存在,请说明理由.

三、平行四边形的存在性问题 4.(2014年山东泰安)二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0). (1)求二次函数的表达式; (2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值; (3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标. 分析:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式; (2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N 的坐标,利用x表示出MN的长,利用二次函数的性质求解; (3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.

中考数学—二次函数的综合压轴题专题复习附答案

中考数学—二次函数的综合压轴题专题复习附答案 一、二次函数 1.已知二次函数223y ax ax =-+的最大值为4,且该抛物线与y 轴的交点为C ,顶点为D . (1)求该二次函数的解析式及点C ,D 的坐标; (2)点(,0)P t 是x 轴上的动点, ①求PC PD -的最大值及对应的点P 的坐标; ②设(0,2)Q t 是y 轴上的动点,若线段PQ 与函数2 ||23y a x a x =-+的图像只有一个公共点,求t 的取值范围. 【答案】(1)2y x 2x 3=-++,C 点坐标为(0,3),顶点D 的坐标为(1,4);(2)①最 ,P 的坐标为(3,0)-,②t 的取值范围为3t ≤-或 332t ≤<或72t =. 【解析】 【分析】 (1)先利用对称轴公式x=2a 12a --=,计算对称轴,即顶点坐标为(1,4),再将两点代入列二元一次方程组求出解析式; (2)根据三角形的三边关系:可知P 、C 、D 三点共线时|PC-PD|取得最大值,求出直线CD 与x 轴的交点坐标,就是此时点P 的坐标; (3)先把函数中的绝对值化去,可知22x 23,0,y x 23,0.x x x x ?-++≥=?--+

二次函数高考练习题

二次函数 **测试试卷 考试范围:xxx ;考试时间:100分钟;命题人:xxx 姓名:__________班级:__________考号:__________ 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 一、单项选择 1. 设函数f(x)=ax 5+bx 3+cx +7(a ,b ,c 为常数,x ∈R),若f(-7)=-17,则f(7)=( ). A .31 B .17 C .-31 D .24 【答案】A 2. 已知一次函数y ax b =+的图象过第一、二、四象限,且与x 轴交于点(2,0),则关于x 的不等式(1)0a x b -->的解集为( ) A .x <-1 B .x >-1 C . x >1 D .x <1 【答案】A 3. 已知()f x 是定义在R 上的偶函数, 且在[0,)+∞上是增函数, 则一定有( ) A .423()(1)4f f a a ->++ B .3()4f -≥42(1)f a a ++ C .423()(1)4f f a a -<++ D .3 ()4 f -≤42(1)f a a ++ 【答案】C 4. 已知函数f(x)=21 1 x x -+,则f(x)( ) A .在(-∞,0)上单调递增 B .在(0,+∞)上单调递增 C .在(-∞,0)上单调递递 D .在(0,+∞)上单调递减 【答案】B 5. 函数3 ()ln f x x x =-的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(3,)+∞ 【答案】B

6. 已知函数y =使函数值为5的x 的值是( ) A .-2或2 B .2或- C .-2 D .2或-2或- 【答案】C 7. 函数()f x =的定义域为 ( ) A .(-3,0] B .(-3,1] C .(,3)(3,0]-∞-- D .(,3)(3,1]-∞-- 【答案】A 8. 已知函数f(x)是定义在R 上的增函数,则函数y=f(|x-1|)-1的图象可能是 【答案】 B . 9. 下列说法中,不正确的是( ). A .图像关于原点成中心对称的函数一定是奇函数 B .奇函数的图像一定经过原点 C .偶函数的图像若不经过原点,则它与x 轴交点个数一定是偶数 D .图像关于y 轴对称的函数一定是偶函数 【答案】B 10. 函数1 ()ln (1)1 f x x x x =- >-的零点所在的区间为( ) A.3(1,)2 B.3(,2)2 C.5(2,)2 D.5 (,3) 2 【答案】C 11. 下列函数中,既是偶函数又在区间(0,+ ∞)上单调递减的是( ) A .1 y x = B .x y e -= C .21y x =-+ D .lg ||y x = 【答案】C 12. 抛物线3)2(2+-=x y 的顶点坐标是( ) A .(2,3) B .(–2,3) C .(2,–3) D .(–2,–3) 【答案】A 13. 函数f(x) 的定义域是( ).

秒杀二次函数综合问题(高考专题)

秒杀二次函数综合问题(高考专题) 二次函数是中学代数的基本内容之一,它既简单又具有丰富的内涵和外延. 作为最基本的初等函数,可以以它为素材来研究函数的单调性、奇偶性、最值等性质,还可建立起函数、方程、不等式之间的有机联系;作为抛物线,可以联系其它平面曲线讨论相互之间关系. 这些纵横联系,使得围绕二次函数可以编制出层出不穷、灵活多变的数学问题. 同时,有关二次函数的内容又与近、现代数学发展紧密联系,是学生进入高校继续深造的重要知识基础. 因此,从这个意义上说,有关二次函数的问题在高考中频繁出现,也就不足为奇了. 学习二次函数,可以从两个方面入手:一是解析式,二是图像特征. 从解析式出发,可以进行纯粹的代数推理,这种代数推理、论证的能力反映出一个人的基本数学素养;从图像特征出发,可以实现数与形的自然结合,这正是中学数学中一种非常重要的思想方法. 本文将从这两个方面研究涉及二次函数的一些综合问题. 1. 代数推理 由于二次函数的解析式简捷明了,易于变形(一般式、顶点式、零点式等),所以,在解决二次函数的问题时,常常借助其解析式,通过纯代数推理,进而导出二次函数的有关性质. 1.1 二次函数的一般式c bx ax y ++=2 )0(≠c 中有三个参数c b a ,,. 解题的关键在于:通过三个独立条件“确定”这三个参数. 例1 已知,满足1 且 ,求 的取值 范围. 分析:本题中,所给条件并不足以确定参数b a ,的值,但应该注意到:所要求的结论不是()2-f 的确定值,而是与条件相对应的“取值范围”,因此,我们可以把1 和 4)1(2≤≤f 当成两个独立条件,先用()1-f 和()1f 来表示b a ,. 解:由()b a f +=1,()b a f -=-1可解得: ))1()1((2 1 )),1()1((21--=-+= f f b f f a (*) 将以上二式代入 ,并整理得 ()()??? ? ??--+???? ??+=2)1(2122x x f x x f x f , ∴ ()()()1312-+=f f f . 又∵ ,2)1(1≤-≤f , ∴ ()1025≤≤f . 例2 设 ,若 ,,, 试证

三角函数与二次函数综合专题(含解析)

三角函数与二次函数综合卷2 1.如图,在矩形ABCD 中,点E 为AB 的中点,EF ⊥EC 交AD 于点F ,连接CF (AD >AE ),下列结论: ①∠AEF=∠BCE ; ②AF+BC >CF ; ③S △CEF =S △EAF +S △CBE ; ④若= ,则△CEF ≌△CDF . 其中正确的结论是 .(填写所有正确结论的序号) 2.已知:BD 是四边形 ABCD 的对角线,AB ⊥BC ,∠C=60°,AB=1, (1)求tan ∠ABD 的值; (2)求AD 的长. 3.海上有一小岛,为了测量小岛两端A 、B 的距离,测量人员设计了一种测量方法,如图所示,已知B 点是CD 的中点,E 是BA 延长线上的一点,测得AE = 10海里,DE =30海里,且DE ⊥EC ,cos ∠D (1)求小岛两端A 、B 的距离; (2)过点C 作CF ⊥AB 交AB 的延长线于点F ,求sin ∠BCF 的值. A B 4.如图,在△ABC 中,90ACB ∠=,AC BC =,点P 是△ABC 内一点,且135APB APC ∠=∠=.

A B C P (1)求证:△CPA ∽△APB ; (2)试求tan PCB ∠的值. 5.如图,在梯形A B CD 中,?=∠=∠ 90B A 点E 在AB 上,?=∠45AED ,6=DE ,7=CE . (1)求AE 的长; (2)求BCE ∠sin 的值. 6.如图,在△ABC 中, AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,AD=4. (1)求BC 的长; (2)求tan ∠DAE 的值. 7.如图,在Rt △ABC 中,∠ABO=90°,OB=4,AB=8内的图象分别交OA 、AB 于点C 和点D ,连结OD ,若4=?BOD S , (1)求反比例函数解析式; (2)求C 点坐标. 8.如图,在△ABC 中,BD ⊥AC 于点D , ,,并且. 求的长. AB =BD = 12 ABD CBD ∠=∠AC

二次函数的图像与性质专题讲座

二次函数的图像与性质 一、二次函数的概念: 一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.其中,x是自变量,a,b,c分别是表达函数表达式的二次项系数、一次项系数和常数项。 y=ax2+bx+c(a≠0)也叫做二次函数的一般形式。 例1、下列函数中,哪些是二次函数? (1)y=2x2(2)y=(x+2)(x-2)-(x-1)2 (3)y= 1 1-x2(4)y=x2+2x-3 (5)y=ax2+bx+c 变式1、下列函数中,哪些是二次函数? (1)y-x2=0(2)y=2x2-(x2+1)(3)y=x2+1 x 例2已知函数y=(m2-4)x2+(m2-3m+2)x-m-1 (1)当m为何值时,y是x的二次函数; (2)当m为何值时,y是x的一次函数。 (4)y=x2 变式2m取哪些值时,函数y=(m2-m)x2+mx+(m+1)是以x为自变量的二次函数?是以x为自变量的一次函数?

二、二次函数y=ax2的图像与性质: (1)开口方向: (2)对称轴: (3)增减性:当时,y随着x的增大而减小;当时,y随着x的增大而增大.(4)顶点:__________. (5)最值:a_______函数有最值,a_______函数有最值. 例3在同一直角坐标系中,画出下列函数的图象,并分别写出它们的开口方向、对称轴和顶点坐标. (1)y=3x2;(2)y=-3x2;(3)y=1 3 x2. 变式3(1)函数y=2 3 x2的开口,对称轴是,顶点坐标是;1 (2)函数y=-x2的开口,对称轴是,顶点坐标是. 4 例4已知y=(k+2)x k2+k-4是二次函数,且当x>0时,y随x的增大而增大. (1)求k的值;(2)求顶点坐标和对称轴. 变式4(1)已知抛物线y=kx k2+k-10中,当x>0时,y随x的增大而增大.则k=.(2)已知函数y=(k2+k)x k2-2k-1是二次函数,它的图象开口,当x时,y随x的增大而增大. (3)四个二次函数的图象中,分别对应的是:①y=ax2;②y=bx2;③y=cx2;④y=dx2则a、b、c、d的大小关系为

高考数学专题复习 二次函数、二次方程及二次不等式的关系

高考数学专题复习 二次函数、二次方程及二次不等式的关系 高考要求 三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个 “二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方 法 重难点归纳 1 二次函数的基本性质 (1)二次函数的三种表示法 y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n (2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0=2 1 (p +q ) 若- a b 2

?>->-=?0)(, 2,042r f a r a b ac b (3)二次方程f (x )=0在区间(p ,q )内有两根??????? ??>?>?<- <>-=??; 0)(,0)(,2, 042p f a q f a q a b p a c b (4)二次方程f (x )=0在区间(p ,q )内只有一根?f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验)检验另一根若在(p ,q )内成立 (5)方程f (x )=0两根的一根大于p ,另一根小于q (p ?0时,f (α)

二次函数专题讲座(完整资料).doc

【最新整理,下载后即可编辑】 二次函数专题讲座 一、定义型问题 1、小明在课外学习时遇到这样一个问题:定义:如果二次函数y=a 1x 2+b 1x+c 1(a 1≠0,a 1,b 1,c 1是常数)与y=a 2x 2+b 2x+c 2(a 2≠0,a 2,b 2,c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则称这两个函数互为“旋转函数”. 求函数y=﹣x 2+3x ﹣2的“旋转函数”. 小明是这样思考的:由函数y=﹣x 2+4x ﹣3可知,a 1=﹣1,b 1=4,c 1=﹣3,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2,就能确定这个函数的“旋转函数”. 请参考小明的方法解决下面问题: (1)直接写出函数y=﹣x 2+4x ﹣3的“旋转函数”; (2)若函数2335y x mx =-+-与23y x nx n =-+互为“旋转函数”,求2015415m n +() 的值; (3)设点A (m,n )在抛物线上L :2y ax bx c =++的图像上,证明:点A 关于原点的对称点在抛物线L 的“旋转函数”上。 (4)已知函数1142 y x x =-+()(﹣)的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1,B 1,C 1,试证明经过点A 1,B 1,C 1的二次函数与函数1142 y x x =-+()(﹣)互为“旋转函数”。 2、如果二次函数的二次项系数为l ,则此二次函数可表示为y=x2+px+q ,我们称 [p ,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3]. (1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标. (2)探究下列问题: ①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.

二次函数七大综合专题

二次函数七大综合专题 二次函数与三角形的综合题

函数中因动点产生的相似三角形问题一般有三个解题途径 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。根据未知三角形中已知边与已知三角形的可能对应边分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。 如图,已知抛物线与交于A(-1,0)、E(3,0)两点,与轴交于点B(0,3)。 (1) 求抛物线的解析式; (2) 设抛物线顶点为D ,求四边形AEDB 的面积; (3) △AOB 与△DBE 是否相似?如果相似,请给以证明;如果不相似,请说明理由。 (2016?益阳第21题) 如图,顶点为A 的抛物线经过坐标原点O ,与x 轴交于点B . (1)求抛物线对应的二次函数的表达式; (2)过B 作OA 的平行线交y 轴于点C ,交抛物线于点D ,求证:△OCD ≌△OAB ; (3)在x 轴上找一点P ,使得△PCD 的周长最小,求出P 点的坐标. x y

考点:考查二次函数,三角形的全等、三角形的相似。 解析:(1 )∵抛物线顶点为A , 设抛物线对应的二次函数的表达式为2(1y a x =+, 将原点坐标(0,0)代入表达式,得1 3a =-. ∴抛物线对应的二次函数的表达式为:213y x =-+ . (2)将0y = 代入213y x =-+ 中,得B 点坐标为:, 设直线OA 对应的一次函数的表达式为y kx =, 将A 代入表达式y kx = 中,得k = , ∴直线OA 对应的一次函数的表达式为y x =. ∵BD ∥AO ,设直线BD 对应的一次函数的表达式为y b =+, 将 B 代入y b = +中,得2b =- , ∴直线BD 对应的一次函数的表达式为2y x =-. 由2213y x y x ?= -????=-?? 得交点D 的坐标为(3)-, 将0x = 代入2y =-中,得C 点的坐标为(0,2)-, 由勾股定理,得:OA =2=OC ,AB =2=CD , OB OD ==. 在△OAB 与△OCD 中,OA OC AB CD OB OD =?? =??=? , ∴△OAB ≌△OCD . (3)点C 关于x 轴的对称点C '的坐标为(0,2),则C D '与x 轴的交点即为点P ,它使得△PCD 的周长最小. 过点D 作DQ ⊥y ,垂足为Q ,则PO ∥DQ .∴C PO '?∽C DQ '?. ∴ PO C O DQ C Q '=', 25 = ,∴PO =, ∴ 点P 的坐标为(. 二次函数与平行四边形的综合题 7

高中数学复习专题讲座二次函数、二次方程及二次不等式的关系

高中数学复习专题讲座二次函数、二次方程及二次不等 式的关系 高考要求 三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系,同时也是研究包含二次曲线在内的许多内容的工具高考试题中近一半的试题与这三个“二次”问题有关本节主要是帮助考生理解三者之间的区别及联系,掌握函数、方程及不等式的思想和方法 重难点归纳 1 二次函数的基本性质 (1)二次函数的三种表示法 y =ax 2+bx +c ;y =a (x -x 1)(x -x 2);y =a (x -x 0)2+n (2)当a >0,f (x )在区间[p ,q ]上的最大值M ,最小值m ,令x 0= 2 1 (p +q ) 若- a b 2

?>->-=?0)(, 2,042r f a r a b ac b (3)二次方程f (x )=0在区间(p ,q )内有两根??????? ??>?>?<- <>-=??; 0)(,0)(,2, 042p f a q f a q a b p a c b (4)二次方程f (x )=0在区间(p ,q )内只有一根?f (p )·f (q )<0,或f (p )=0(检验)或f (q )=0(检验) 检验另一根若在(p ,q )内成立 (5)方程f (x )=0两根的一根大于p ,另一根小于q (p ?

2021年高考数学大一轮复习 幂函数与二次函数 专题测验

幂函数与二次函数 1.(多选题)已知二次函数f(x)=x2-2ax+1在区间(2,3)上是单调函数,则实数a的取值范围可以是() A.(-∞,2] B.[2,3] C.[3,+∞) D.[-3,-2] 解析:f(x)图象的对称轴为x=a, 若f(x)在(2,3)上单调递增,则a≤2,若f(x)在(2,3)上单调递减,则a≥3, 因此选项A、C、D满足. 答案:ACD 2.已知p:|m+1|<1,q:幂函数y=(m2-m-1)x m在(0,+∞)上单调递减,则p是q 的() A.充分不必要条件B.必要不充分条件 C.充要条件D.既不充分也不必要条件 解析:p:由|m+1|<1得-2

二次函数综合题专题

二次函数专题一:二次函数与距离、角度的综合 1、已知抛物线y=x2?4x+1.将此抛物线沿x轴方向向左平移4个单位长度,得到一条新的抛物线。 (1)求平移后的抛物线解析式; (2)若直线y=m与这两条抛物线有且只有四个交点,求实数m的取值范围; (3)若将已知的抛物线解析式改为y=ax2+bx+c(a>0,b<0),并将此抛物线沿x轴方向向左平移?ba个单位长度,试探索问题(2). 2、如图,已知抛物线y=ax2+bx+c经过A(?3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H. (1)求该抛物线的解析式; (2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值; (3)如图(2),若E是线段AD上的一个动点(E与A. D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S. ①求S与m的函数关系式; ②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由。 3、如图,已知抛物线y=ax2+bx+2的图象经过点A和点B. (1)求该抛物线的解析式。 (2)把(1)中的抛物线先向左平移1个单位长度,再向上或向下平移多少个单位长度能使抛物线与直线AB只有

一个交点?写出此时抛物线的解析式。 (3)将(2)中的抛物线向右平移52个单位长度,再向下平移t个单位长度(t>0),此时,抛物线与x轴交于M、N 两点,直线AB与y轴交于点P.当t为何值时,过M、N、P三点的圆的面积最小?最小面积是多少? 4、已知抛物线y=ax2+bx+c的图象与x轴交于A. B两点(点A在点B的左边),与y轴交于点C(0,3),过点C作x轴的平行线与抛物线交于点D,抛物线的顶点为M,直线y=x+5经过D. M两点。 (1)求此抛物线的解析式; (2)连接AM、AC、BC,试比较∠MAB和∠ACB的大小,并说明你的理由。 5、在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点N(2,?5),过点N作x轴的平行线交此抛物线左侧于点M,MN=6. (1)求此抛物线的解析式; (2)点P(x,y)为此抛物线上一动点,连接MP交此抛物线的对称轴于点D,当△DMN为直角三角形时,求点P 的坐标;

中考数学重难点专题讲座 第四讲 一元二次方程与二次函数

中考数学重难点专题讲座 第四讲 一元二次方程与二次函数 【前言】 前三讲,笔者主要是和大家探讨中考中的几何综合问题,在这一类问题当中,尤以第三讲涉及的动态几何问题最为艰难。几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。所以在接下来的专题当中,我们将对代数综合问题进行仔细的探讨和分析。 一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合,所以我们继续通过真题来看看此类问题的一般解法。 第一部分 真题精讲 【例1】2010,西城,一模 已知:关于x 的方程23(1)230mx m x m --+-=. ⑴求证:m 取任何实数时,方程总有实数根; ⑵若二次函数213(1)21=--+-y mx m x m 的图象关于y 轴对称. ①求二次函数1y 的解析式; ②已知一次函数222=-y x ,证明:在实数范围内,对于x 的同一个值,这两个函数所对应的函数值12y y ≥均成立; ⑶在⑵条件下,若二次函数23y ax bx c =++的图象经过点(50)-,,且在实数范围内,对于x 的同一个值,这三个函数所对应的函数值132y y y ≥≥,均成立,求二次函数23=++y ax bx c 的解析式. 【思路分析】本题是一道典型的从方程转函数的问题,这是比较常见的关于一元二次方程与二次函数的考查方式。由于并未说明该方程是否是一元二次方程,所以需要讨论M=0和M ≠

(完整版)高考二次函数

二次函数 知识梳理 知识点1 二次函数的图象和性质 1.二次函数的定义与解析式 (1)二次函数的定义形如:f(x)=ax2+bx+c (a≠0)的函数叫做二次函数. (2)二次函数解析式的三种形式 ①一般式:f(x)=___ ax2+bx+c (a≠0)___ ___. ②顶点式:f(x)=__ a(x-m)2+n(a≠0)_____ __. ③零点式:f(x)=___ a(x-x1)(x-x2) (a≠0)_______________ _. 点评:.求二次函数解析式的方法:待定系数法.根据所给条件的特征,可选择一般式、顶点式或零点式中的一种来求. ①已知三个点的坐标时,宜用一般式. ②已知二次函数的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③已知二次函数与x轴有两个交点,且横坐标已知时,选用零点式求f(x)更方便. 2.二次函数的图象和性质 图象函数性质 a>0 定义域x∈R(个别题目有限制的,由解析式确定) 值域 a>0 a<0 y∈[ 4ac-b2 4a ,+∞)y∈(-∞, 4ac-b2 4a ] a<0 奇偶性 b=0时为偶函数,b≠0时既非奇函数也非偶函数单调性 x∈(-∞,- b 2a ]时递减, x∈[- b 2a ,+∞)时递增 x∈(-∞,- b 2a ] 时递增, x∈[- b 2a ,+∞) 时递减 图象特点①对称轴:x=- b 2a ;

3.二次函数f (x )=ax 2 +bx +c (a ≠0),当Δ=b 2 -4ac >0时,图象与x 轴有两个交点 M 1(x 1,0)、M 2(x 2,0),|M 1M 2|=|x 1-x 2|= Δ |a | . 知识点2 二次函数、一元二次方程及一元二次不等式之间的关系 当0?<的解集为?或者是R; 当0?=?()f x =2ax bx c ++的图像与x 轴相切?20ax bx c ++=有两个相等的实根?2 0(0)ax bx c ++><的解集为?或者是R; 当0?>?()f x =2ax bx c ++的图像与x 轴有两个不同的交点?20ax bx c ++=有两个不等的实根? 2 0(0)ax bx c ++><的解集为(,)αβ()αβ<或者是 (,)(,)αβ-∞+∞U 。 知识点3 一元二次方程20ax bx c ++=实根分布的充要条件 一般地对于含有字母的一元二次方程20ax bx c ++=的实根分布问题,用图象求解,有如下结论: 令()f x =2ax bx c ++(0a >)(同理讨论0a <的结论) (1) x 1<α, x 2<α ,则0/(2)()0b a f αα?≥?? -?; (2) x 1>α, x 2>α,则0 /(2)()0b a f αα?≥??->??>? (3) α>≥?β αβα)2/(0 )(0)(0 a b f f (4) x 1<α, x 2>β (α<β),则()0 ()0f f αβ

专题讲座 二次函数与线段的和差积商

专题讲座 二次函数与线段的和差积商 方法技巧 设点的坐标,直线的解析式,利用根与系数的关系,通过整体代入或消元求出定值。 题型一 等长线段 例1 如图1,抛物线C 1: y=1 8x 2+c 交轴于A ,B 两点,交y 轴于点C ,若OB=2OC (1)求c 的值 (2)如图2,若抛物线C 2: y=14x 2+c ,过点C 的直线l 分别交第一象限的抛物线C 1,C 2于M ,N 两点,求证:CN=MN 题型二 线段之和 例2 如用,直线y=-3 2x+6分交x 轴,y 轴于A ,B 两点,抛物y=-1 8x 2+c 与轴交于点D (0,8),点P 是地 物线在第一象限部分上的一动点。 (1)求点A 的坐标及抛物线的解析式 (2)若PC ⊥x 轴于点C ,求PB+PC 的值 题型三 线段之差 例3 抛物线y=-1 2x 2+2x 交x 轴的正半轴于点A ,对称轴交x 轴于点M 、点P 为第三象限抛物上的一动点, 直线PA ,PO 分别交抛物线的对称轴于点B ,点C ,求MC -MB 的值。

题型四 线段之积 例4 如图,抛物线y=-1 2x 2+x+2与y 轴交于点C ,点Q (2,t)为抛物线上一点,过点A(O ,4)的直线与x 轴左侧的抛物线交于点D ,E 两点,OD ,OE 分别交y 轴于点C ,求OG ?CH 的值 题型五 线段之比 例5 如图,抛物线过定点A(1,0),它的顶点M 是y 轴正半轴上一动点,点M 关于x 轴的对称点为点N , 过点N 作x 轴的平行线交抛物线于B ,C 两点,直线AB 交y 轴于点P ,直线AC 交y 轴于点Q ,求OP OQ 的值。

相关文档
最新文档