SNP基因分型的高通量方法

SNP基因分型的高通量方法
SNP基因分型的高通量方法

Chapter16

High-Throughput Methods for SNP Genotyping

Chunming Ding and Shengnan Jin

Abstract

Single nucleotide polymorphisms(SNPs)are ideal markers for identifying genes associated with complex diseases for two main reasons.Firstly,SNPs are densely located on the human genome at about one SNP per approximately500–1,000base pairs.Secondly,a large number of commercial platforms are available for semiautomated or fully automated SNP genotyping.These SNP genotyping platforms serve different purposes since they differ in SNP selection,reaction chemistry,signal detection,throughput,cost,and assay flexibility.This chapter aims to give an overview of some of these platforms by explaining the technologies behind each platform and identifying the best application scenarios for each platform through cross-comparison.The readers may delve into more technical details in the following chapters.

Key words:Whole genome association,fine mapping,single nucleotide polymorphism,copy number variation,haplotyping.

1.Introduction

Single nucleotide polymorphisms(SNPs)are best known as

genetic markers in disease-association studies to identify genes

associated with complex diseases(1,2).However,SNPs are also

used in many other clinically and biologically important applica-

tions(3).A large variety of commercial platforms are available for

semiautomated or fully automated SNP genotyping analysis.On

the basis of the purposes of the study,SNP genotyping can be

divided into two domains:whole genome association(WGA)and

fine mapping(Fig.16.1).Most of the genotyping platforms can

be classified accordingly.This chapter aims to briefly explain the

principles behind various platforms which lead to a comparison of

these platforms so that the readers will get a quick overview before

delving into the technical details of some of these methods in the

following chapters.

A.A.Komar(ed.),Single Nucleotide Polymorphisms,Methods in Molecular Biology578,

DOI10.1007/978-1-60327-411-1_16,aHumana Press,a part of Springer Science+Business Media,LLC2003,2009

245

2.Chemistries and Detection Methods for SNP Genotyping

Over the years,a number of chemistries were developed for dis-tinguishing two alleles of a SNP.The key for their adoption in high-throughput studies is dependent on the suitability for auto-mation.An ideal chemistry has to be universally applicable to any SNP (or to a substantial proportion of all human SNPs).Addi-tionally,high automation demands minimum steps in genotyping.

It may be fair to say that no single SNP genotyping platform is good enough to serve all purposes.

Generally,the chemistries for SNP genotyping can be roughly divided into two types based on the key reaction allowing for the SNP detection:(1)nonenzymatic differential hybridization (see Chapters 18and 19in this volume);(2)enzymatic reactions (see Chapter 23in this volume).Differential hybridization relies on different melting tempera-tures for matched and mismatched probes binding to the target DNA sequences.The Affymetrix SNP microarray employs this principle.For each SNP,four to six probes (25-mers each)are used.Affymetrix arrays can achieve very high density to accommodate millions of probes on a single chip.The newest Affymetrix Human SNP Array 6.0contains probes for 906,600SNPs and an additional 946,000probes for asses-sing copy number variations (CNVs).All the few million probes will be hybridized to their target sequences under the same temperature and buffer condition for the same amount of time,which is ideal for automated high-throughput SNP genotyping.However,the probes have to be effective in

1

10

100

100010000

SNP Number

Sample Size

Fig.16.1.An overview of platforms with regard to throughput of single nucleotide polymorphisms and sample size.Platforms are selected on the basis of reasonable running costs.

246Ding and Jin

High-Throughput Methods for SNP Genotyping247 differentiating matched and mismatched targets.The probe sequences are determined by the local SNP sequences.Con-sequently,certain SNPs with‘‘odd’’local sequences cannot be selected,even if they are crucial tagging SNPs,SNPs in reg-ulatory regions,or SNPs that can change protein coding sequences(see Note1).

Another example of differential hybridization is the Taq-Man SNP assay(see Chapters18and19for details).For each SNP,two TaqMan probes specific for each allele are used. These two probes carry different fluorescent dyes.The pre-sence of an allele(or both alleles for heterozygotes)is detected by the corresponding fluorescence signal(s)generated via5’-exonuclease cleavage of the probe(s).The main draw-back for the TaqMan SNP assay is its incapability to achieve even a very modest multiplex level.However,collaboration between Applied Biosystems and BioTrove(with their Open-Array platform)has enabled3,072TaqMan reactions(each reaction has a volume of only33nL)on a single slide.This platform may be particularly powerful when an extremely high number of samples is tested.Biomark(Fluidigm)is another system capable of miniaturized TaqMan assays to enable high throughput genotyping.

For SNP genotyping based on enzymatic selectivity,there are mainly two types of assays.The first one is the primer extension(or single base extension,or minisequencing;see Chapter23in this volume).An extension primer annealing to the50end of a SNP site is extended by one or just a few bases.SNP calling is based on either the incorporated fluorescent nucleotide(SNPstream)or the extension product molecular weight(MassArray iPlex Gold assay). These assays provide a low background noise since the enzymatic fidelity in incorporating the right nucleotide is extremely high. The second one is based on DNA ligation.Molecular inversion probe technology(4)developed by ParAllele Biosciences(now part of Affymetrix,and used in the Affymetrix GeneChip custom SNP kits)is one example.Another example is SNPlex(Applied Biosystems).SNPlex achieves up to48-plex by including a series of unique ZipCode TM sequences in the allele-specific probes.The corresponding ZipChute TM probes of different lengths hybridize to the ZipCode TM sequences,and are subsequently separated and detected by capillary electrophoresis.

In general,differential hybridization based platforms rely entirely on hybridization thermodynamic difference between matched and mismatched pairing of probes and targets.The selec-tion of analyzable SNPs is highly dependent on the local SNP sequence.Enzymatic selectivity based platforms are less dependent on SNP local sequences and are likely to be applicable to more SNPs.However,there are often more steps involved in SNP analysis,making full automation more complicated.

3.Genotyping Platforms

3.1.Genotyping Platforms for WGA Studies In earlier WGA studies,it was quite common that fewer than 100,000SNPs were analyzed,since the cost was too high to include more SNPs.However,the paradigm has shifted signifi-cantly,thanks to(1)detailed HapMap data guiding the selection of tagging SNPs,and(2)vastly improved ultrathroughput(in terms of SNP number,see Note2)genotyping platforms.At the moment,the Illumina BeadArray(newest version,High Density Human1M-Duo)and the Affymetrix SNP microarray(newest version,Human SNP Array6.0)are the most widely used plat-forms in WGA studies.

Although both are named as‘‘array’’and have similar through-put,these two platforms differ substantially in many aspects.First of all,they use different methods for discriminating the two alleles of a SNP.The Affymetrix microarray technology uses differential hybridization between a set of25-mer probes matching to one of the two SNP alleles.As discussed earlier,this may limit the selec-tion of SNPs.However,since the human genome contains over five million SNPs,the Affymetrix SNP array can still include close to one million SNPs.The Illumina BeadArray technology uses primer extension to distinguish the two SNP alleles.Theoretically, the enzymatic fidelity in primer extension to distinguish the two SNP alleles is extremely high,regardless of local SNP sequences. Thus,BeadArray may be less limited in SNP selection.However, extra steps of primer extension and staining must be carried out before signals can be detected.

Another important difference between the two platforms is the selection of SNPs.The Illumina system places more emphasis on tagging SNPs than the Affymetrix system.This may be due to the two constrains imposed on the Affymetrix system:(1)SNP local sequence content suitable for the universal hybridization condition;(2)a complexity-reduction step through selectively amplifying200–1,100-bp fragments generated by restriction enzyme digestion.However,whether a strictly tagging SNP based selection approach is superior to a hybrid selection approach (half tagging,half random SNPs)is still being debated.Rigorous comparison is not likely to be carried out given the prohibitive cost.Additionally,it is still not entirely clear how important are the SNPs that are not in the typical haplotype blocks for identifying genes associated with complex diseases.At any rate,with more SNPs detectable on a single chip,we may be able to analyze a sufficient number of tagging and random SNPs simultaneously.

There are other technical differences that may not be relevant to the end users.For example,the Illumina BeadArray layout is unique for each chip.A decoding step is needed to determine

248Ding and Jin

geometrically how the beads specific for the SNPs are arranged on the chip.The Affymetrix SNP array uses25-mers for SNP calling via differential hybridization,while the Illumina BeadArray uses 50-mers for target capture and primer extension via hybridization.

3.2.Genotyping Platforms for Fine Mapping Fine mapping here is defined as SNP genotyping analysis at a high density for selective genomic regions.Fine mapping often follows large-scale WGA studies to zoom into potential genes associated with the disease of interest.Fine mapping studies differ from WGA studies dramatically in many aspects,notably:

1.Many fewer SNPs(e.g.,fewer than1,000)are genotyped.

2.Such SNPs will be highly dependent on a particular disease of

interest.Although one SNP array(Illumina,Affymetrix,or others)can be used for WGA studies of any disease,SNPs selected for fine mapping of one disease are likely to be mostly different from those selected for fine mapping of another disease

3.Fine mapping may involve a larger sample size.

In summary,fine mapping will require the genotyping of fewer (fewer than1,000)SNPs highly specific for each disease for a larger sample size.

Once a WGA study has been done and potential targets have been identified,fine mapping should be performed immediately. Additionally,since potentially any SNP can be directly disease causing,it is essential to achieve a high call rate(call rate is defined as the success rate for correctly genotyping the entire SNP panel). Additionally,cost is also an issue to consider(see Note3).For these reasons,a good genotyping platform for fine mapping should achieve a high call rate for all selected SNPs,without time-consuming assay optimization processes,and at a relatively high multiplex level(e.g.,more than24SNPs for each individual reaction).

SNP calling based entirely on differential hybridization is unli-kely to be highly successful in fine mapping.It may be very difficult if one needs to design discriminating probes for all1,000selected SNPs as the local sequences of these SNPs may have very different thermodynamic profiles(see Note4).Possibly for this reason, Affymetrix acquired ParAllele Biosciences for its molecular inver-sion probe technology for custom SNP genotyping arrays.The custom SNP genotyping arrays do not rely on differential hybridi-zation for SNP calling.

Primer extension and allele-specific ligation-based platforms are more suitable for fine mapping applications.A number of commercial platforms are available(Table16.1).Since systematic and direct comparison of these platforms is not available,we will have to rely on company application notes and publications report-ing use of each technology for a rough comparison.

High-Throughput Methods for SNP Genotyping249

T a b l e 16.1C o m p a r i s o n o f f i n e -m a p p i n g g e n o t y p i n g p l a t f o r m s

P l a t f o r m

P r o v i d e r C h e m i s t r y D e t e c t i o n N u m b e r o f S N P s

N u m b e r o f s a m p l e s

N o t e

U R L

S N P s i n g l e n u c l e o t i d e p o l y m o r p h i s m a

N o t t r u e m u l t i p l e x i n g ,64u n i p l e x T a q M a n S N P a s s a y s i n 64d i f f e r e n t n a n o h o l e s .

250

Ding and Jin

High-Throughput Methods for SNP Genotyping251

Two platforms actually significantly surpass the arbitrary

1,000SNPs cutoff mentioned earlier.The Illumina iSelect

BeadArray uses single base extension,the same underlying chem-

istry and detection as the High Density Human1M-Duo array,

for genotyping up to60,800user-selected SNPs from12samples

on a single chip.The Affymetrix GeneChip custom SNP kits use

the molecular inversion probe technology acquired from ParAllele

Biosciences.These custom arrays can analyze3,000,5,000,or

10,000user-selected SNPs for a single sample.One drawback for

these two platforms is the turnaround time,since at least3months

is required for assay designs and array delivery.

For a typical fine mapping project following a WGA study,it

might not be necessary to analyze tens of thousands of SNPs.Thus,

a higher sample number throughput at a reasonable SNP number

throughput(fewer than1,000SNPs)may be preferred.To this end,

a few platforms are great choices for fine mapping,including the

MassArray system(Sequenom)(see Chapter20in this volume),

SNPlex(Applied Biosystems),and SNPstream(Beckman Coulter,

in collaboration with Orchid Cellmark).These platforms can all

achieve multiplex genotyping at20-plex or more routinely for96

or384different reactions on a single plate.They are highly flexible

in several ways.Firstly,the throughput of SNP number and sample

size can be balanced at the users’discretion.Secondly,the turn-

around time for assay design and delivery of reagents is much faster

than the custom arrays from Illumina and Affymetrix(Table16.1).

Failed SNP assays can be redesigned and reordered quickly.Unless

the SNP number to be analyzed is well above1,000,these platforms

may be the first choices.

4.New Advances

and Other

Outstanding Issues

There are at least two exciting features about genomic research.

One is the constant development of better and more affordable

technologies(just like personal computers).The other feature is

the acquisition of new insights into gene structure and func-

tion.One such example is the https://www.360docs.net/doc/3e12079721.html,Vs are much less

frequently found in the human genome than SNPs,with prob-

ably around a few thousand to tens of thousand CNVs in the

entire human genome.However,these variations involve much

larger DNA segments,ranging from a few kilobases to a few

megabases(5).Their importance in human health is manifested

by a number of diseases,such as CHARGE syndrome(6)and

Parkinson’s disease(7).

252Ding and Jin

The platform suppliers have taken notice of the importance of

CNVs.Both the Affymetrix Human SNP Array6.0and the Illumina

High Density Human1M-Duo offer good coverage for CNV analy-

sis.For example,the Human SNP Array6.0targets3,182distinct,

nonoverlapping segments with on average61probe sets per region.

Earlier versions of these platforms have been used for CNV analysis(8–

11).It is foreseeable that CNV analysis will be part of most,if not all,

WGA studies.

Other platforms are likely to follow the trend.Given the

limited number of CNVs in the human genome,fine mapping

genotyping platforms may also be useful for validation studies.For

example,the MassArray iPlex platform will launch the CNV gen-

otyping application by2008.

Serious limitations in SNP genotyping are still present though.At

least two of them are worth mentioning.The first one is SNP coverage

for different ethnic groups.The statistics provided by the best WGA

platforms are based on a very limited number of ethnic groups.For

example,CHB(Han Chinese in Beijing)is not likely to represent all

people in China,given that there are56distinct ethnic groups in

China.It may be necessary to include more SNPs for better coverage

of other ethnic groups.Another limitation is on haplotype analysis.All

the platforms mentioned in this chapter,when used in their standard

format,cannot achieve direct molecular haplotyping.Instead,statis-

tical methods are used to infer haplotype information.

Ultimately,the best solution to all the issues mentioned above,

especially related to better and robust identification of the genes

associated with complex diseases,may come from the fourth-

generation(see Note5and Chapter5in this volume),probably

single molecule based,capable of sequencing the human genome for

less than US$1,000.

5.Summary

Scientists and engineers have come a long way developing a wide

selection of SNP genotyping platforms.It is now prime time to

carry out WGA studies to identify genes associated with complex

diseases,potentially yielding biomarkers for disease diagnosis and

prognosis,and targets for drug development.Both a WGA plat-

form and a fine mapping platform may be needed for a compre-

hensive study.The technology will continue to be improved to

include more SNPs.New technology(e.g.,for whole genome

sequencing at low cost;see also Chapters5and6in this volume)

will likely appear in the next5–10years and a paradigm shift in

WGA studies may happen then.

6.Notes

1.At a fixed hybridization temperature,robust differential hybridi-

zation may not be achieved for matched and mismatched targets

if a local SNP sequence has very high or very low GC content.

2.Throughput is often defined by the number of SNPs that can be

genotyped in one run,but this might not be entirely accurate as in

many situations(particularly when SNPs are served as biomarkers

for molecular diagnosis)DNA sample throughput may be more

important.

3.Genotyping1,000SNPs for2,000samples(a total of two

million SNP genotyping assays)is a lot more costly than

genotyping one million SNPs for two samples.In addition,

since the1,000SNPs are highly dependent on the disease of

interest,custom designs and even assay optimization are

needed,which further adds to the cost and time.

4.To design a hybridization-based SNP microarray for the selected

1,000SNPs is a lot more difficult than for a panel of any1,000

SNPs.For the latter,the designer can choose any1,000SNPs

from more than five million SNPs available by selecting those

SNPs located in sequences with similar thermodynamic profiles.

5.We consider the slab gel sequencing the first generation,

capillary sequencing the second generation,and the Roche

454,Illumina Genome Analyzer,and Applied Biosystems

SOLiD platforms as the third generation. Acknowledgements

C.D.is supported by the Stanley Ho Centre for Emerging Infec-

tious Diseases and the Li Ka Shing Institute of Health Sciences. References

1.Glazier,A.M.,Nadeau,J.H.and Aitman,

T.J.(2002)Finding genes that underlie complex traits.Science298,2345–2349. 2.Becker,K.G.,Barnes,K.C.,Bright,T.J.

and Wang,S.A.(2004)The genetic associa-tion database.Nat.Genet.36,431–432. 3.Ding,C.(2007)’Other’applications of sin-

gle nucleotide polymorphisms.Trends Bio-technol.25,279–283.4.Hardenbol,P.,Baner,J.,Jain,M.,Nilsson,

M.,Namsaraev, E. A.,Karlin-Neumann,

G.A.,Fakhrai-Rad,H.,Ronaghi,M.,Willis,

T.D.,Landegren,U.and Davis,R.W.

(2003)Multiplexed genotyping with sequence-tagged molecular inversion probes.Nat.Biotechnol.21,673–678.

5.Iafrate, A.J.,Feuk,L.,Rivera,M.N.,

Listewnik,M.L.,Donahoe,P.K.,Qi,Y.,

High-Throughput Methods for SNP Genotyping253

Scherer,S.W.and Lee,C.(2004)Detection of large-scale variation in the human gen-ome.Nat.Genet.36,949–951.

6.Jongmans,M.C.,Admiraal,R.J.,van der

Donk,K.P.,Vissers,L.E.,Baas,A.F., Kapusta,L.,van Hagen,J.M.,Donnai,D., de Ravel,T.J.,Veltman,J.A.,Geurts van Kessel,A.,De Vries,B.B.,Brunner,H.G., Hoefsloot,L.H.and van Ravenswaaij,C.

M.(2006)CHARGE syndrome:the pheno-typic spectrum of mutations in the CHD7 gene.J.Med.Genet.43,306–314.

7.Singleton, A. B.,Farrer,M.,Johnson,J.,

Singleton,A.,Hague,S.,Kachergus,J.,Huli-han,M.,Peuralinna,T.,Dutra,A.,Nussbaum, R.,Lincoln,S.,Crawley,A.,Hanson,M., Maraganore,D.,Adler,C.,Cookson,M.R., Muenter,M.,Baptista,M.,Miller,D.,Blan-cato,J.,Hardy,J.and Gwinn-Hardy,K.

(2003)alpha-Synuclein locus triplication causes Parkinson’s disease.Science302,841.

8.Redon,R.,Ishikawa,S.,Fitch,K.R.,Feuk,

L.,Perry,G.H.,Andrews,T.D.,Fiegler,H., Shapero,M.H.,Carson,A.R.,Chen,W., Cho,E.K.,Dallaire,S.,Freeman,J.L., Gonzalez,J.R.,Gratacos,M.,Huang,J., Kalaitzopoulos,D.,Komura,D.,MacDonald, J.R.,Marshall,C.R.,Mei,R.,Montgomery, L.,Nishimura,K.,Okamura,K.,Shen,F., Somerville,M.J.,Tchinda,J.,Valsesia,A., Woodwark,C.,Yang,F.,Zhang,J.,Zerjal, T.,Armengol,L.,Conrad,D.F.,Estivill,X., Tyler-Smith,C.,Carter,N.P.,Aburatani,H.,

Lee,C.,Jones,K.W.,Scherer,S.W.and

Hurles,M.E.(2006)Global variation in

copy number in the human genome.Nature

444,444–454.

9.Bae,J.S.,Cheong,H.S.,Kim,J.O.,Lee,S.

O.,Kim,E.M.,Lee,H.W.,Kim,S.,Kim,J.

W.,Cui,T.,Inoue I.,and Shin,H.D.

(2008)Identification of SNP markers for

common CNV regions and association ana-

lysis of risk of subarachnoid aneurysmal

hemorrhage in Japanese population.Bio-

https://www.360docs.net/doc/3e12079721.html,mun.373,

593–596.

10.Blauw,H.M.,Veldink,J.H.,van Es,M.A.,

van Vught,P.W.,Saris,C.G.,van der

Zwaag, B.,Franke,L.,Burbach,J.P.,

Wokke,J.H.,Ophoff,R.A.and van den

Berg,L.H.(2008)Copy-number variation

in sporadic amyotrophic lateral sclerosis:a

genome-wide https://www.360docs.net/doc/3e12079721.html,ncet Neurol.7,

319–326.

11.Gunnarsson,R.,Staaf,J.,Jansson,M.,Ottesen,

A.M.,Goransson,H.,Liljedahl,U.,

Ralfkiaer,U.,Mansouri,M.,Buhl,A.M.,

Smedby,K. E.,Hjalgrim,H.,Syvanen,

A.C.,Borg,A.,Isaksson,A.,Jurlander,J.,

Juliusson,G.and Rosenquist,R.(2008)

Screening for copy-number alterations and

loss of heterozygosity in chronic lympho-

cytic leukemia–a comparative study of four

differently designed,high resolution

microarray platforms.Genes Chromosomes

Cancer47,697–711.

254Ding and Jin

高通量测序基础知识

高通量测序基础知识简介 陆桂 什么是高通量测序? 高通量测序技术(High-throughput sequencing,HTS)是对传统Sanger测序(称为一代测序技术)革命性的改变,一次对几十万到几百万条核酸分子进行序列测定, 因此在有些文献中称其为下一代测序技术(next generation sequencing,NGS )足见其划时代的改变, 同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能, 所以又被称为深度测序(Deep sequencing)。 什么是Sanger法测序(一代测序) Sanger法测序利用一种DNA聚合酶来延伸结合在待定序列模板上的引物。直到掺入一种链终止核苷酸为止。每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-OH基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止。终止点由反应中相应的双脱氧而定。每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可用X-光胶片放射自显影或非同位素标记进行检测。 什么是基因组重测序(Genome Re-sequencing) 全基因组重测序是对基因组序列已知的个体进行基因组测序,并在个体或群体水平上进行差异性分析的方法。随着基因组测序成本的不断降低,人类疾病的致病突变研究由外显子区域扩大到全基因组范围。通过构建不同长度的插入片段文库和短序列、双末端测序相结合的策略进行高通量测序,实现在全基因组水平上检测疾病关联的常见、低频、甚至是罕见的突变位点,以及结构变异等,具有重大的科研和产业价值。 什么是de novo测序 de novo测序也称为从头测序:其不需要任何现有的序列资料就可以对某个物种进行测序,利用生物信息学分析手段对序列进行拼接,组装,从而获得该物种的基因组图谱。获得一个物种的全基因组序列是加快对此物种了解的重要捷径。随着新一代测序技术的飞速发展,基因组测序所需的成本和时间较传统技术都大大降低,大规模基因组测序渐入佳境,基因组学研究也迎来新的发展契机和革命性突破。利用新一代高通量、高效率测序技术以及强大的生物信息分析能力,可以高效、低成本地测定并分析所有生物的基因组序列。 什么是外显子测序(whole exon sequencing) 外显子组测序是指利用序列捕获技术将全基因组外显子区域DNA捕捉并富集后进行高通量测序的基因组分析方法。外显子测序相对于基因组重测序成本较低,对研究已知基因的SNP、Indel等具有较大的优势,但无法研究基因组结构变异如染色体断裂重组等。

转录组测序(RNA-seq)技术

转录组测序(RNA-seq)技术 转录组是某个物种或者特定细胞类型产生的所有转录本的集合。转录组研究能够从整体水平研究基因功能以及基因结构,揭示特定生物学过程以及疾病发生过程中的分子机理,已广泛应用于基础研究、临床诊断和药物研发等领域。基于Illumina高通量测序平台的转录组测序技术使能够在单核苷酸水平对任意物种的整体转录活动进行检测,在分析转录本的结构和表达水平的同时,还能发现未知转录本和稀有转录本,精确地识别可变剪切位点以及cSNP(编码序列单核苷酸多态性),提供最全面的转录组信息。相对于传统的芯片杂交平台,转录组测序无需预先针对已知序列设计探针,即可对任意物种的整体转录活动进行检测,提供更精确的数字化信号,更高的检测通量以及更广泛的检测范围,是目前深入研究转录组复杂性的强大工具。 技术优势: ?数字化信号:直接测定每个转录本片段序列,单核苷酸分辨率的精确度,同时不存在传统微阵列杂交的荧光模拟信号带来的交叉反应和背景噪音问题。 ?高灵敏度:能够检测到细胞中少至几个拷贝的稀有转录本。 ?任意物种的全基因组分析:无需预先设计特异性探针,因此无需了解物种基因信息,能够直接对任何物种进行转录组分析。同时能够检测未知基因,发现新的转录本,并精确地识别可变剪切位点及cSNP,UTR区域。 ?更广的检测范围:高于6个数量级的动态检测范围,能够同时鉴定和定量稀有转录本和正常转录本。 应用领域:转录本结构研究(基因边界鉴定、可变剪切研究等),转录本变异研究(如基因融合、编码区SNP研究),非编码区域功能研究(Non-coding RNA研究、microRNA前体研究等),基因表达水平研究以及全新转录本发现。 图1 RNA-seq获得的数据能够进行全面的数据挖掘,既能够进行基因结构分析,鉴定UTR、可变剪切位点,也能够发现新的转录本及非编码RNA,比较样本间的表达水平差异

转录组高通量测序

转录组高通量测序 2010-11-22 09:48 (第二代高通量测序技术-454) 转录组即特定细胞在某一功能状态下所能转录出来的所有RNA的总和,是研究细胞表型和功能的一个重要手段。与基因组不同的是,转录组的定义中包含了时间和空间的限定。同一细胞在不同的生长时期及生长环境下,其基因表达情况是不完全相同的。罗氏GS-FLX-Titanium第二代高通量测序仪平均读长超过 400bp,在测序读长上遥遥领先于其它第二代高通量测序仪,使其成为转录组学研究的首选测序平台,已被广泛应用于基础研究、临床诊断和药物研发等领域。 一、罗氏454测序技术在环境微生物生态多样性研究中的突出优势体现在:(1)测序序列长,便于聚类拼接,可以对转录本进行从头组装(de novo assembly)。 (2)测序通量高,可以检测到低丰度转录本信息。 (3)可以对无基因组参考序列的新物种进行转录组测序,发现新的转录本和亚型。 (4)实验操作简单、结果稳定,可重复性强。无需进行克隆的文库构建,双链cDNA连接454接头后可以直接进行测序,实验周期短。 (5)测序数据便于进行生物信息分析,可以进行基因差异表达分析、鉴定基因的可变剪切以及预测新基因。 二、美吉公司在环境微生物生态多样性研究中的突出优势体现在: (1)拥有自主实验室和高通量测序平台,可以根据客户要求灵活安排实验,实验周期短,取样方便,质量可靠。 (2)技术人员经验丰富,可以稳定地进行总RNA的提取和双链cDNA的合成,可以根据顾客要求第一时间提供实验方案。 (3)有专业的生物信息团队和大型计算机,可以为客户提供个性化的生物信息分析服务。 (4)开放式实验室,参与式服务。客户不但可以参与整个实验过程,而且可以参与生物信息分析,提供最为增值的售后服务。 三、服务流程 (1)客户提供样本背景信息、实验目的和实验预期。 (2)美吉公司设计实验方案,提供测序深度建议和生物信息分析建议。 (3)客户认可实验方案,双方签订项目合作协议。 (4)项目开始运作,美吉公司指定专人和客户保持无障碍沟通。 (5)项目结束,美吉公司提供标准结题报告。 (6)客户可以和美吉公司签订长期合作协议,享受折扣和VIP服务。 四、送样要求 (1)动物、植物、微生物组织: > 请提供足量的新鲜样品,样品量≥5g;植物材料应避免过老的组织,尽量用柔嫩部位。 > 新鲜程度要求:采样后将样品立即液氮速冻-80℃保存(保存期不超过1个月),干冰运输,运输时间不超过72h。 > 样本保存期间切忌反复冻融。

植物基因克隆技术的研究进展

植物基因克隆技术的研究进展 随着科学技术的不断发展,人类基因组计划的不断实施,世界生命科技工作者对于植物基因克隆技术的研究不断进步,近年来,我国在基因克隆技术领域也有了长足的进步,在玉米,小麦,大豆,水稻,拟南芥等植物中,已经克隆了许许多多与植物的产量、品质、抗性及农艺性状等相关的基因。文章主要从基因芯片技术,功能克隆、定位克隆、同源序列克隆、PCR擴增技术分别介绍基因克隆技术的现状以及研究进展。 标签:植物;基因克隆技术;研究 植物基因克隆技术在生命科学技术中扮演着越来越重要的角色,而植物基因克隆技术从传统意义上来讲可分为两种不同的方式。正向以及反向的遗传学方式,正向遗传学途径是一种很早的经典的克隆方法,通过研究突变表型性状进行克隆,包括了功能以及表型克隆等较为基本的克隆的方式;反向遗传学途径和正向遗传学途径截然不同,它是通过一些特殊的方法,获得遗传基因片段,然后经过一系列的定位,将之后所研究的基因逆向研究。如定位克隆,同源序列克隆等。除了这两种克隆技术外,随着社会发展,也有一些新的克隆技术产生。 1 基因芯片技术 基因芯片技术是电子克隆技术的典型代表,基因芯片又称DNA芯片、DNA 微阵列,是以预先设计的方式将大量的基因探针固定在玻片、硅片等固相载体上组成的密集分子阵列。基因芯片技术类似于计算机的电子芯片技术,其具有高通量、微型化、连续化、自动化、快速和准确等特点。是一种随着人类基因组计划的进行而发展出的产物,这一发展使得人类对越来越多的微生物和动植物基因组取得了更长远的认识,对其的研究,是全人类对于基因组认识做出的不断地努力的成果,其中不乏许多典型的实例,用cDNA芯片技术对草莓、矮牵牛其基因是如何进行表达的进行研究,进而实现对转基因植物进行形状的观察及控制,可以更好的获悉分子对于基因表达是如何作用以及影响的也有利于获得更为优异更为良好的作物[1]。 基因芯片技术是一种新型的克隆技术,是科技创新和生命科学的很好的结合,代表着人类在基因的克隆方面进展和成就,解决了很多传统克隆不能解决的问题,也讲基因克隆技术引向一种新的思维模式。 2 功能克隆 功能克隆是人类采用最早的基因克隆策略,功能克隆技术从已知蛋白质的功能着手进行研究,其方法原理是先测知基因的编码蛋白质,利用它的信使RNA 进行反转录成cRNA,再利用cDNA做探针,从基因组中获取基因本身,进而完成克隆。

高通量测序 名词解释

高通量测序基础知识汇总 一代测序技术:即传统的Sanger测序法,Sanger法是根据核苷酸在待定序列模板上的引物点开始,随机在某一个特定的碱基处终止,并且在每个碱基后面进行荧光标记,产生以A、T、C、G结束的四组不同长度的一系列核苷酸,每一次序列测定由一套四个单独的反应构成,每个反应含有所有四种脱氧核苷酸三磷酸(dNTP),并混入限量的一种不同的双脱氧核苷三磷酸(ddNTP)。由于ddNTP缺乏延伸所需要的3-OH 基团,使延长的寡聚核苷酸选择性地在G、A、T或C处终止,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,通过检测得到DNA碱基序列。 二代测序技术:next generation sequencing(NGS)又称为高通量测序技术,与传统测序相比,二代测序技术可以一次对几十万到几百万条核酸分子同时进行序列测定,从而使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(Deep sequencing)。NGS主要的平台有Roche(454 & 454+),Illumina(HiSeq 2000/2500、GA IIx、MiSeq),ABI SOLiD等。 基因:Gene,是遗传的物质基础,是DNA或RNA分子上具有遗传信息的特定核苷酸序列。基因通过复制把遗传信息传递给下一代,使后代出现与亲代相似的性状。 DNA:Deoxyribonucleic acid,脱氧核糖核酸,一个脱氧核苷酸分子由三部分组成:含氮碱基、脱氧核糖、磷酸。脱氧核糖核酸通过3',5'-磷酸二酯键按一定的顺序彼此相连构成长链,即DNA链,DNA链上特定的核苷酸序列包含有生物的遗传信息,是绝大部分生物遗传信息的载体。

转录组测序技术的应用及发展综述

转录组测序技术的应用及发展综述 摘要:转录组测序(RNA-Seq)作为一种新的高效、快捷的转录组研究手段正在改变着人们对转录组的认识。RNA-Seq利用高通量测序技术对组织或细胞中所有RNA 反转录而成cDNA文库进行测序,通过统计相关读段(reads)数计算出不同RNA的表达量,发现新的转录本;如果有基因组参考序列,可以把转录本映射回基因组,确定转录本位置、剪切情况等更为全面的遗传信息,已广泛应用于生物学研究、医学研究、临床研究和药物研发等。文章主要比较近年来转录组研究的几种方法和几种RNA-Seq的研究平台,着重介绍RNA-Seq的原理、用途、步骤和生物信息学分析,并就RNA-Seq技术面临的挑战和未来发展前景进行了讨论及在相关领域的应用等内容,为今后该技术的研究与应用提供参考。 关键词: RNA-Seq;原理应用;方法;挑战;发展前景 Abstract:Transcriptome sequencing (RNA-Seq) is a kind of high efficiency, quick transcriptome research methods are changing our understanding of transcriptome. RNA-Seq to use high-throughput sequencing of tissues or cells of all RNA reverse transcription into cDNA library were sequenced, through statistical correlation read paragraph (reads) numbers were calculated from the expression of different RNA transcripts, find new; if the genome reference sequence, the transcripts mapped to genomic, determine the position of the transcription shear condition, more genetic information, has been widely used in biological research, medical research, clinical research and drug development. This paper compared several methods of platform transcriptome studies and several kinds of RNA-Seq in recent years, RNA-Seq focuses on the principle, purpose, steps and bioinformatics analysis, and discusses the RNA-Seq technology challenges and future development prospect and the application in related field and other content, provide the reference for the research and application of the technology future. Key word:RNA-Seq ;application; principle; method; challenge; development prospects

高通量测序:第二代测序技术详细介绍

高通量测序:第二代测序技 术详细介绍 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

在过去几年里,新一代DNA 测序技术平台在那些大型测序实验室中迅猛发展,各种新技术犹如雨后春笋般涌现。之所以将它们称之为新一代测序技术(next-generation sequencing),是相对于传统Sanger 测序而言的。Sanger 测序法一直以来因可靠、准确,可以产生长的读长而被广泛应用,但是它的致命缺陷是相当慢。十三年,一个人类基因组,这显然不是理想的速度,我们需要更高通量的测序平台。此时,新一代测序技术应运而生,它们利用大量并行处理的能力读取多个短DNA 片段,然后拼接成一幅完整的图画。 Sanger 测序大家都比较了解,是先将基因组DNA 片断化,然后克隆到质粒载体上,再转化大肠杆菌。对于每个测序反应,挑出单克隆,并纯化质粒DNA。每个循环测序反应产生以ddNTP 终止的,荧光标记的产物梯度,在测序仪的96 或384 毛细管中进行高分辨率的电泳分离。当不同分子量的荧光标记片断通过检测器时,四通道发射光谱就构成了测序轨迹。 在新一代测序技术中,片断化的基因组DNA 两侧连上接头,随后运用不同的步骤来产生几百万个空间固定的PCR 克隆阵列(polony)。每个克隆由单个文库片段的多个拷贝组成。之后进行引物杂交和酶延伸反应。由于所有的克隆都是系在同一平面上,这些反应就能够大规模平行进行。同样地,每个延伸所掺入的荧光标记的成像检测也能同时进行,来获取测序数据。酶拷问和成像的持续反复构成了相邻的测序阅读片段。

Solexa 高通量测序原理 --采用大规模并行合成测序法(SBS, Sequencing-By-Synthesis)和可逆性末端终结技术(Reversible Terminator Chemistry) --可减少因二级结构造成的一段区域的缺失。 --具有高精确度、高通量、高灵敏度和低成本等突出优势 --可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究 ----将接头连接到片段上,经 PCR 扩增后制成 Library 。 ----随后在含有接头(单链引物)的芯片( flow cell )上将已加入接头的 DNA 片段变成单链后通过与单链引物互补配对绑定在芯片上,另一端和附近的另外一个引物互补也被固定,形成“桥” ----经30伦扩增反应,形成单克隆DNA簇 ----边合成边测序(Sequencing By Synthesis)的原理,加入改造过的DNA 聚合酶和带有4 种荧光标记的dNTP。这些dNTP是“可逆终止子”,其3’羟基末端带有可化学切割的基团,使得每个循环只能掺入单个碱基。此时,用激光扫描反应板表面,读取每条模板序列第一轮反应所聚合上去的核苷酸种类。之后,将这些基团化学切割,恢复3'端粘性,继续聚合第二个核苷酸。如此继续下去,直到每条模板序列都完全被聚合为双链。这样,统计每轮收集到的荧光信号结果,就可以得知每个模板DNA 片段的序列。目前的配对末端读长可达到2×50 bp,更长的读长也能实现,但错误率会增高。读长会受到多个引起信号衰减的因素所影响,如荧光标记的不完全切割。 Roche 454 测序技术 “一个片段 = 一个磁珠 = 一条读长(One fragment =One bead = One read)”

植物基因克隆

来自dxy 22003luocong 植物基因全长克隆几种方法的比较 基因是遗传物质基本的功能单位,分离和克隆目的基因是研究基因结构、揭示基因功能及表达的基础,因此,克隆某个功能基因是生物工程及分子生物学研究的一个重点。经典克隆未知基因的方法比如通过筛选文库等有个共同的弊病, 即实验操作繁琐, 周期较长、工作量繁重,且不易得到全长序列。又由于在不同植物中目的基因mRNA丰度不同,所以获得目的基因的难易程度又不一样,特别是对于丰度比较低的目的基因即使使用不用的方法也不一定能获得成功。近年来随着PCR技术的快速发展和成熟.已经有多种方法可以获得基因的全长序列, 比如经典的RACE技术,染色体步移法和同源克隆法等,本文主要综述几种重要的克隆方法的原理和运用,并且比较分析这几种方法的优缺点,为你的实验节约时间和成本。 1 RACE技术 1985年由美国PE-Cetus公司的科学家Mulis等[1]发明的PCR技术使生命科学得到了飞跃性的发展。1988年Frohman等[2] 在PCR技术的基础上发明了一项新技术, 即cDNA末端快速扩增技术( rapid amplification of cDNA ends, RACE), 其实质是长距PCR( long distance, PCR)。通过PCR由已知的部分cDNA 序列, 获得5′端和3′端完整的cDNA, 该方法也被称为锚定PCR ( anchored PCR) [3] 和单边PCR( one-sidePCR) [4]。RACE技术又分为3?RACE和5?端RACE。3′RACE 的原理是利用mRNA 的3′端天然的poly(A) 尾巴作为一个引物结合位点进行PCR, 以Oligo( dT) 和一个接头组成的接头引物( adaptor primer, AP)反转录mRNA得到加接头的第一链cDNA。然后用一个正向的基因特异性引物( gene-specific primer, GSP) 和一个含有接头序列的引物分别与已知序列区和poly(A) 尾区退火, 经PCR扩增位于已知序列区域和poly( A) 尾区之间的未知序列,若为了防止非特异性条带的产生, 可采用巢式引物( nested primer) 进行第二轮扩增, 即巢式PCR( nested PCR) [5,6]。5?RACE 跟3?RACE原理基本一样,但是相对于3?RACE来说难度较大。 5'-RACE受到诸多因素的影响而常常不能获取全长,因此研究者都着手改进它。这些措施主要是通过逆转录酶、5'接头引物等的改变来实现的,因此出现了包括基于“模板跳转反转录”的SMART RACE技术( switching mechanism at 5′ end of RNA transcript) [7] , 基于5′脱帽和RNA酶连接技术的RLM-RACE技术(RNA ligase mediated RACE)[8], 利用RNA连接酶为cDNA第一链接上寡聚核苷酸接头的SLC RACE技术(single strand ligation to single-stranded cDNA)[9] , 以及以内部环化的cDNA第一链为模板进行扩增的自连接或环化RACE技术(self-ligation RACE or circular RACE)[10],和通过末端脱氧核苷酸转移酶( TdT)加尾后引入锚定引物的锚定RACE技术( anchored RACE)[11]。 笔者主要介绍两种比较新的RACE技术,基于…模板跳转?的SMART RACE 技术和末端脱氧核苷酸转移酶( TdT)加尾技术。 1.1基于‘模板跳转’的SMART RACE技术[7,12]

高通量测序技术

高通量测序技术(High-throughput sequencing)又称“下一代”测序技术 ("Next-generation" sequencing technology),以能一次并行对几十万到几百万条DNA分子进行序列测定和一般读长较短等为标志。 根据发展历史、影响力、测序原理和技术不同等,主要有以下几种:大规模平行签名测序(Massively Parallel Signature Sequencing, MPSS)、聚合酶克隆(Polony Sequencing)、454焦磷酸测序(454 pyrosequencing)、Illumina (Solexa) sequencing、ABI SOLiD sequencing、离子半导体测序(Ion semiconductor sequencing)、DNA 纳米球测序(DNA nanoball sequencing)等。 高通量测序技术是对传统测序一次革命性的改变,一次对几十万到几百万条DNA分子进行序列测定,因此在有些文献中称其为下一代测序技术(next generation sequencing)足见其划时代的改变,同时高通量测序使得对一个物种的转录组和基因组进行细致全貌的分析成为可能,所以又被称为深度测序(deep sequencing)。 实验过程 1.样本准备(sample fragmentation) 2.文库构建(library preparation) 3.测序反应(sequencing reaction) 4.数据分析(data analysis) 测序平台 自从2005年454 Life Sciences公司(2007年该公司被Roche正式收购)推出了454 FLX焦磷酸测序平台(454 FLX pyrosequencing platform)以来,因为他们的拳头产品毛细管阵列电泳测序仪系列(series capillary array electrophoresis sequencing machines)遇到了两个强有力的竞争对手,曾推出过3730xl DNA测序仪(3730xl DNA Analyzer)的Applied BioSystem(ABI)这家一直占据着测序市场最大份额的公司的领先地位就开始动摇了,一个就是罗氏公司(Roche)的454 测序仪(Roch GS FLX sequencer),,另一个就是2006年美国Illumina公司推出的Solexa基因组分析平台(Genome Analyzer platform),为此,2007年ABI公司推出了自主研发的SOLiD 测序仪(ABI SOLiD sequencer)。这三个测序平台即为目前高通量测序平台的代表。(见表一) 公司名称技术原理技术开发者 Apply Biosystems(ABI) 基于磁珠的大规模并行克隆连接 DNA测序法 美国Agencourt私人基因组学公司(APG) Illumina 合成测序法英国Solexa公司首席科学家David Bentley Roche 大规模并行焦磷酸合成测序法 美国454 Life Sciences公司的创始人Jonathan Rothberg Helicos 大规模并行单分子合成测序法美国斯坦福大学生物工程学家Stephen Quake Complete Genomics DNA纳米阵列与组合探针锚定连接 测序法 美国Complete Genomics公司首席科学家radoje drmanac 表一:主流测序平台一览 Roche 454焦磷酸测序 (pyrophosphate sequencing) Illumina Solexa 合成测序 (sequence by synthesize) Illumina Genome AnalyzerIIx测序原理 Illumina公司的新一代测序仪Hiseq 2000和Hiseq 2500具有高准确性,高通量,高灵敏度,和低运行成本等突出优势,可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究。Hiseq是一种基于单分子簇的边合成边测序技术,基于专有的可逆终止化学反应原理。测序时将基因组DNA的随机片段附着到光学透明

植物基因克隆的策略与方法

植物基因克隆的策略与方法 基因的克隆就是利用体外重组技术,将特定的基因和其它DNA顺序插入到载体分子中。基因克隆的主要目标是识别、分离特异基因并获得基因的完整的全序列,确定染色体定位,阐明基因的生化功能,明确其对特定性状的遗传控制关系。通过几十年的努力由于植物发育,生理生化,分子遗传等学科的迅速发展,使人们掌握了大量有关植物优良性状基因的生物学和遗传学知识,再运用先进的酶学和生物学技术已经克隆出了与植物抗病、抗虫、抗除草剂、抗逆,育性、高蛋白质及与植物发育有关的许多基因。我们实验室对天麻抗真菌蛋白基因作了功能克隆的研究(舒群芳等,1995;舒群芳等,1997),为了克隆植物基因也探讨了其它克隆方法,本文论述基因克隆的策略、方法及取得的一些进展。 1 功能克隆(functional Cloning) 功能克隆就是根据性状的基本生化特性这一功能信息,在鉴定和已知基因的功能后克隆(Collis,1995)。其具体作法是:在纯化相应的编码蛋白后构建cDNA文库或基因组文库,DNA文库中基因的筛选根据情况主要可用二种办法进行,(1)将纯化的蛋白质进行氨基酸测序,据此合成寡核苷酸探针从cDNA库或基因组文库中筛选编码基因,(2)将相应的编码蛋白制成相应抗体探针,从cDNA入载体表达库中筛选相应克隆。功能克隆是一种经典的基因克隆策略,很多基因的分离利用这种策略。 Hain等从葡萄中克隆了两个编码白藜芦醇合成的二苯乙烯合成酶基因(Vst1和Vst2),葡萄中抗菌化合物白藜芦醇的存在,可以提高对灰质葡萄孢(Botrytis cinerce)的抗性,在烟草和其它一些植物中无二苯乙烯合成酶,因此

植物基因克隆技术及其发展方向

植物基因克隆技术及其发展方向 摘要:基因是染色体上具有一定座位的遗传单位,是DNA分子中一定长度的核苷酸序列。植物的生长发育是在多种代谢和生理过程基础上所发生的基因在时空上表达的综合现象,开发和分离潜在的各种有价值的基因并深入研究其表达机理,对作物品种的改良具有重要意义。因此对植物基因的克隆并发展与之相关的技术已引起人们的日益关注和投入,近年来其研究方法不断改进,新技术不断涌现,这为进一步研究诸如各种调节植物生长发育的基因、逆境与防御反应的基因、植物细胞凋亡的基因等提供了新的途径。 关键词:植物基因克隆基因植物基因转化 正文: 植物基因的克隆技术是生命科学研究的重要组成部分,是现代生命科学技术中最核心的内容,它是随着20世纪70年代初DNA体外重组技术的发明而发展起来的,其目标是识别和分离特异基因并获得基因完整序列,确定其在染色体上的位置,阐明其生化功能,并利用生物工程手段应用到生产实践中。 一、常用的目的基因克隆技术 1、1、通过已知基因产物的分析和鉴定 这类技术主要通过生物化学和病理学研究分离鉴定有关基因的蛋白产物,并对蛋白质氨基酸顺序进行分析,推断出编码该蛋白质的基因序列,然后通过抗体、寡聚核苷酸探针或PCR制备的探针对文库进行筛选来分离目的基因。如植物抗病虫基因工程中常用的苏云金杆菌杀虫晶体蛋白基因(Bt基因)、豇豆胰蛋白酶抑制基因(CpTI 基因)、病毒外壳蛋白基因(CP基因)等。当其他植物的同类基因已分离到并且核苷酸序列保守性较高时,也可直接用这些已知的基因片段作探针对未克隆到该基因的植物基因文库进行筛选,也可分离到未知的新基因。 2、通过遗传表型分析 (1)基因标鉴法。该法是利用转座子或T-DNA插入植物的基因组中引起某一基因失活产生一些突变体,然后用相应转座子或T-DNA 对突变体文库进行筛选,以选到的阳性克隆片段为探针,再筛选野生型植物因文库分离目的基因。如将一株带有功能的转位因子系统的植物与另一株在遗传上有差异的同种植物杂交,在杂交后代中筛选由于转位因子插入到某一特定基因序列中导致表型破坏或改变的突变株,用该纯合突变株构建基因文库,然后将转位因子用同位素标记作探针,从该文库中筛选出带有同源转位因子的目的基因。该法主要限于

高通量测序:第二代测序技术详细介绍

在过去几年里,新一代DNA 测序技术平台在那些大型测序实验室中迅猛发展,各种新技术犹如雨后春笋般涌现。之所以将它们称之为新一代测序技术(next-generation sequencing),是相对于传统Sanger 测序而言的。Sanger 测序法一直以来因可靠、准确,可以产生长的读长而被广泛应用,但是它的致命缺陷是相当慢。十三年,一个人类基因组,这显然不是理想的速度,我们需要更高通量的测序平台。此时,新一代测序技术应运而生,它们利用大量并行处理的能力读取多个短DNA 片段,然后拼接成一幅完整的图画。 Sanger 测序大家都比较了解,是先将基因组DNA 片断化,然后克隆到质粒载体上,再转化大肠杆菌。对于每个测序反应,挑出单克隆,并纯化质粒DNA。每个循环测序反应产生以ddNTP 终止的,荧光标记的产物梯度,在测序仪的96或384 毛细管中进行高分辨率的电泳分离。当不同分子量的荧光标记片断通过检测器时,四通道发射光谱就构成了测序轨迹。 在新一代测序技术中,片断化的基因组DNA 两侧连上接头,随后运用不同的步骤来产生几百万个空间固定的PCR 克隆阵列(polony)。每个克隆由单个文库片段的多个拷贝组成。之后进行引物杂交和酶延伸反应。由于所有的克隆都是系在同一平面上,这些反应就能够大规模平行进行。同样地,每个延伸所掺入的荧光标记的成像检测也能同时进行,来获取测序数据。酶拷问和成像的持续反复构成了相邻的测序阅读片段。

Solexa高通量测序原理 --采用大规模并行合成测序法(SBS,Sequencing-By-Synthesis)和可逆性末端终结技术(ReversibleTerminatorChemistry) --可减少因二级结构造成的一段区域的缺失。 --具有高精确度、高通量、高灵敏度和低成本等突出优势 --可以同时完成传统基因组学研究(测序和注释)以及功能基因组学(基因表达及调控,基因功能,蛋白/核酸相互作用)研究 ----将接头连接到片段上,经PCR扩增后制成Library。 ----随后在含有接头(单链引物)的芯片(flowcell)上将已加入接头的DNA片段变成单链后通过与单链引物互补配对绑定在芯片上,另一端和附近的另外一个引物互补也被固定,形成“桥” ----经30伦扩增反应,形成单克隆DNA簇 ----边合成边测序(Sequencing By Synthesis)的原理,加入改造过的DNA 聚合酶和带有4 种荧光标记的dNTP。这些dNTP是“可逆终止子”,其3’羟基末端带有可化学切割的基团,使得每个循环只能掺入单个碱基。此时,用激光扫描反应板表面,读取每条模板序列第一轮反应所聚合上去的核苷酸种类。之后,将这些基团化学切割,恢复3'端粘性,继续聚合第二个核苷酸。如此继续下去,直到每条模板序列都完全被聚合为双链。这样,统计每轮收集到的荧光信号结果,就可以得知每个模板DNA 片段的序列。目前的配对末端读长可达到2×50 bp,更长的读长也能实现,但错误率会增高。读长会受到多个引起信号衰减的因素所影响,如荧光标记的不完全切割。 Roche 454 测序技术 “一个片段= 一个磁珠= 一条读长(One fragment =One bead = One read)”

高通量基因测序植入前胚胎遗传学诊断和筛查技术规范

高通量基因测序植入前胚胎遗传学诊断和筛查技术规范 根据国家卫生和计划生育委员会发布的《关于辅助生殖机构开展高通量基因测序植入前胚胎遗传学诊断临床应用试点工作的通知》要求,特制定《高通量基因测序植入前胚胎遗传学诊断技术规范(试行)》(以下简称“本规范”)。本规范针对“高通量基因测序技术在人类胚胎植入前遗传学诊断(pre-im-plantation genetic diagnosis,PGD)和植入前遗传学筛查(pre-implantation genetic screening,PGS)的临床应用”(以下简称“本项技术”),明确开展本项技术的基本条件、组织管理、临床流程与质量控制等方面的基本要求。在人类PGD/PGS 的临床应用中采用高通量基因测序技术(以下称本项检测)的机构须遵守本规范。 基本条件 一、机构设置条件 1.本项技术须在医疗机构实施; 2.该医疗机构必须是经省级医疗行政管理部门批准正式并规范运行体外受精-胚胎移植技术、卵胞浆内单精子注射技术和植入前遗传学

诊断技术且是实施本项技术的试点或正式运行单位(以下简称“机构”); 3.机构须具有省级临床检验行政管理部门审批核发的临床基因扩增检验实验室资质,相关工作开展符合《临床基因扩增检验实验室工作规范》的规定。 二、设备条件 机构须具备细胞遗传学实验诊断的设备和上述第一部分第一条第3款所要求的相应设备。在此基础上,机构应同时具备专业的高通量测序技术相应的核心设备(如与第三方合作可由第三方提供),该设备由经卫生行政管理部门批准试点或正式开展高通量测序技术临床应用的单位生产。各种设备的种类、数量须与实际开展的项目及工作规模相匹配。 三、人员条件 1.实施本项技术的医疗机构必须建立与本项检测工作相适应的专业技术人员团队。其中包括:具备从事产前诊断技术资质的副高职称以上的临床医师2名以上(含2名,下同);具备临床检验资质的中级职称以上的实验室技术人员1名以上;具备医学、生物学或遗传学本科及以上学历的专业技术人员3名以上;

新一代高通量测序技术SOLiD简介

新一代高通量测序技术SOLiD简介 目前市场上有四种高通量测序仪,分别是Solexa,454 (GS-FLX),SOLiD和Polonator。根据测序原理,它们可以被分为两大类:使用合成法测序(Sequencing by Synthesis)的Solexa和454,及使用连接法测序(Sequencing by Ligation)的Polonator和SOLiD。这些高通量测序仪的共同点是不需要大肠杆菌系统进行DNA模板扩增,且测序所得序列较短:其中的454序列最长,为200~300个碱基,其余三种序列都只有几十个碱基。测序原理及序列长度的差异决定了各种高通量测序仪具有不同的应用领域。这就要求我们在熟悉各种高通量测序仪内在技术特点的基础上进行选择。 基因组所引进的SOLiD (Sequencing by Oligonucleotide Ligation and Detection)是ABI(Applied Biosystems)公司生产的高通量测序仪。目前这台SOLiD运行稳定,SOLiD实验及数据分析小组也可以为大家提供专业的技术服务。所以接下来的关键是如何把SOLiD测序仪应用到符合其技术特点的科研项目中。本短文将简单介绍SOLiD测序流程,双碱基编码原理及数据分析原理,以帮助大家了解SOLiD测序仪的技术特点和应用范围。 1.SOLiD关键技术及其原理 SOLiD使用连接法测序获得基于“双碱基编码原理”的SOLiD颜色编码序列,随后的数据分析比较原始颜色序列与转换成颜色编码的reference序列,把SOLiD颜色序列定位到reference上,同时校正测序错误,并可结合原始颜色序列的质量信息发现潜在SNP位点。 1.1. SOLiD文库构建 使用SOLiD测序时,可根据实际需要,制备片段文库(fragment library)或末端配对文库(mate-paired library)。简单地说,制备片段文库就是在短DNA片段(60~110 bp)两端加上SOLiD 接头(P1、P2 adapter)。而制备末端配对文库,先通过DNA环化、Ecop15I酶切等步骤截取长DNA片段(600bp到10kb)两末端各25 bp进行连接,然后在该连接产物两端加上SOLiD接头。两种文库的最终产物都是两端分别带有P1、P2 adapter的DNA双链,插入片段及测序接头总长为120~180 bp。 1.2:油包水PCR 我们知道,文库制备得到大量末端带P1、P2 adapter但内部插入序列不同的DNA双链模板。和普通PCR一样,油包水PCR也是在水溶液进行反应,该水相含PCR所需试剂,DNA模板及可分别与P1、P2 adapter结合的P1、P2 PCR引物。但与普通PCR不同的是,P1引物固定在P1磁珠球形表面(SOLiD将这种表面固定着大量P1引物的磁珠称为P1磁珠)。PCR反应过程中磁珠表面的P1引物可以和变性模板的P1 adapter负链结合,引导模板合成,这样一来,P1引物引导合成的DNA链也就被固定到P1磁珠表面了。 油包水PCR最大的特点是可以形成数目庞大的独立反应空间以进行DNA扩增。其关键技术是“注水到油”,基本过程是在PCR反应前,将包含PCR所有反应成分的水溶液注入到高速旋转的矿物油表面,水溶液瞬间形成无数个被矿物油包裹的小水滴。这些小水滴就构成了独立的PCR 反应空间。理想状态下,每个小水滴只含一个DNA模板和一个P1磁珠,由于水相中的P2引物和磁珠表面的P1引物所介导的PCR反应,这个DNA模板的拷贝数量呈指数级增加,PCR反应结束后,P1磁珠表面就固定有拷贝数目巨大的同来源DNA模板扩增产物。A BI公司提供的SOLiD 实验手册已经把小水滴体积及水相中DNA模板和磁珠的个数比等重要参数进行了技术优化和流程固定,尽可能提高“优质小水滴”(水滴中只含一个DNA模板一个P1磁珠)的数量,为后续SOLiD 测序提供只含有一种DNA模板扩增产物的高质量P1磁珠。

植物基因克隆技术的发展与展望

植物基因克隆技术的发展与展望 摘要:基因克隆技术是生命科学技术领域里非常重要的部分,为了纵览植物基因克隆的理论和技术的发展创新历程.对各种技术体系、正向遗传学途径、反向遗传学途径(包含定位克隆和同源序列克隆及随后发展起来的电子克隆)进行了综述。随着后基因组时代的到来,植物基因克隆技术将发挥更加重要的作用。 关键词:基因克隆、定位克隆、转座子标簦法、基因芯片电子克隆 植物基因的克隆技术是生命科学研究的重要组成部分,是现代生命科学技术巾最核心的内容,它是随着20世纪70年代初DNA体外囊组技术的发明而发展起来的,其目标是识别和分离特异基因并获得基因完整序列,确定其在染色体上的位置,阐明其生化功能,并利用生物T程手段应用到生产实践巾去。一般来讲,基因克隆的策略町分为两种途径:正向遗传学途径和反向遗传学途径。现对在植物基因克隆过程巾运用的主要技术进行综述.以把握植物基因克隆技术的发展历程,并对未来的发展趋势进行展望。 1、定位克隆 定位克隆技术(positional cloning)又叫图位克隆(map—based cloning).是枞据目标基因在染色体上的位置进行基因克隆的一种方法,适合于克隆编码产物未知的基因、其基本原理是根据功能基因在基因组巾存在相对较稳定的基因座,在利用分子标记技术对目的基因进行精确定位的基础上,用与目标基因两侧紧密连锁的分子标记筛选含有大的插入片段的基因组义库(如BAC和YAC).用筛选到的阳性克隆构建目的基因区域的跨叠群,再通过染色体步行(chromosomewalking)逐步逼近候选区域或通过染色体登陆(chro—lnosolne landing)的方法获得含有目标基因的大片段克隆,将含有目标基因的大片段克隆进行亚克隆.或以大片段克隆作探针筛选cDNA义库:从而将目标基因确定在一个较小的DNA片段上并进行序列分析.通过遗传转化和功能互补试验分析,签定获得目的基因【1】。 植物巾运用图位克隆技术,从拟南芥、水稻、番茄、大麦、小麦、甜菜、马铃薯等植物巾分离了几十个重要的基因,并以抗病基因的克隆居多.如番茄的埘基因121.Hero基因;马铃薯的Cpa2基因?,拟南芥的RPW8基因?、PBSI基因?、Rppl3基因?和水稻的Pita、Xal、Pi —b等基因。随着比较基因组研究的兴起.利用同科异种植物问染色体的共线性进行比较作图.如以拟南芥、番茄和水稻为巾介来克隆其他十字花科、茄科和禾本科植物的基因,将成为一个新的发展方向 2、转座子标签法 转座子(Transposon)是口J从染色体的一个位置转移到另一位置的DNA片段,最早在玉米巾发现的.随后的研究表明,在生物界巾转座子是普遍存在的.并在生物的遗传进化方面有重要作用。转座子标签技术克隆基因的基本原理是.利用转座子插入到基因内部或邻近位点,会引起相火表型突变的特点.以转座子的已知序列为标签,克隆因转座子捕入而功能失活的基因,如果某基因的突变是巾于转座子插入而造成的,那么以转座子序列为探针就nr从变异株的基因组巾筛选出带有此转座子的部分基因.再以突变基因的部分序列作探针,即口J从野生型义库巾克隆m完整的基因,在植物中利用转座子的有玉米的Ac/Ds.En/Spm和金鱼草的Tn3等,其中应用最多的是AciDs双因子系统【2】。 利用转座子标记技术目前已克隆y-0的植物抗病基因有玉米抗网斑病基因Hml、Hm2“.番船抗叶霉病基因a之、a4d、cf巧、Cf-9、C}9B及cf一磁P型“。1?.烟草抗花叶病毒病基因

相关文档
最新文档