备战2012高中物理竞赛讲义第09部分 稳恒电流

备战2012高中物理竞赛讲义第09部分 稳恒电流
备战2012高中物理竞赛讲义第09部分 稳恒电流

备战2012高中物理竞赛讲义

第九部分稳恒电流

第一讲基本知识介绍

第八部分《稳恒电流》包括两大块:一是“恒定电流”,二是“物质的导电性”。前者是对于电路的外部计算,后者则是深入微观空间,去解释电流的成因和比较不同种类的物质导电的情形有什么区别。

应该说,第一块的知识和高考考纲对应得比较好,深化的部分是对复杂电路的计算(引入了一些新的处理手段)。第二块虽是全新的内容,但近几年的考试已经很少涉及,以至于很多奥赛培训资料都把它删掉了。鉴于在奥赛考纲中这部分内容还保留着,我们还是想粗略地介绍一下。

一、欧姆定律

1、电阻定律

l

a、电阻定律R = ρ

S

b、金属的电阻率ρ = ρ0(1 + αt)

2、欧姆定律

a、外电路欧姆定律U = IR ,顺着电流方向电势降落

b、含源电路欧姆定律

在如图8-1所示的含源电路中,从A点到B点,遵照原则:①遇电阻,顺电流方向电势降落(逆电流方向电势升高)②遇电源,正极到负极电势降落,负

极到正极电势升高(与电流方向无关),可以得到以下关系

U A? IR ?ε? Ir = U B

这就是含源电路欧姆定律。

c、闭合电路欧姆定律

在图8-1中,若将A、B两点短接,则电流方向只可能向左,含源电路欧姆定律成为

U A + IR ?ε + Ir = U B = U A

ε

即ε = IR + Ir ,或I =

r

R+

这就是闭合电路欧姆定律。值得注意的的是:①对于复杂电路,“干路电流I”不能做绝对的理解(任何要考察的一条路均可视为干路);②电源的概念也是相对的,它可以是多个电源的串、并联,也可以是电源和电阻组成的系统;③外电阻R可以是多个电阻的串、并联或混联,但不能包含电源。

二、复杂电路的计算

1、戴维南定理:一个由独立源、线性电阻、线性受控源组成的二端网络,可以用一个电压源和电阻串联的二端网络来等效。(事实上,也可等效为“电流源和电阻并联的的二端网络”——这

就成了诺顿定理。)

应用方法:其等效电路的电压源的电动势等于网络的开路电压,其串联电阻等于从端钮看进去该网络中所有独立源为零值...时的等效电阻。 2、基尔霍夫(克希科夫)定律

a 、基尔霍夫第一定律:在任一时刻流入电路中某一分节

点的电流强度的总和,等于从该点流出的电流强度的总和。

例如,在图8-2中,针对节点P ,有 I 2 + I 3 = I 1

基尔霍夫第一定律也被称为“节点电流定律”,它是电荷受恒定律在电路中的具体体现。

对于基尔霍夫第一定律的理解,近来已经拓展为:流入电路中某一“包容块”的电流强度的总和,等于从该“包容块”流出的电流强度的总和。

b 、基尔霍夫第二定律:在电路中任取一闭合回路,并规

定正的绕行方向,其中电动势的代数和,等于各部分电阻(在交流电路中为阻抗)与电流强度乘积的代数和。

例如,在图8-2中,针对闭合回路① ,有 ε3 ? ε2 = I 3 ( r 3 + R 2 + r 2 ) ? I 2R 2

基尔霍夫第二定律事实上是含源部分电路欧姆定律的变体(☆同学们可以列方程 U P = … = U P 得到和上面完全相同的式子)。

3、Y ?Δ变换

在难以看清串、并联关系的电路中,进行“Y 型?Δ型”的相互转换常常是必要的。在图8-3所示的电路中

☆同学们可以证明Δ→ Y 的结论…

R c = 3213

1R R R R R ++

R b = 3213

2R R R R R ++

R a =

3

212

1R R R R R ++

Y →Δ的变换稍稍复杂一些,但我们仍然可以得到

R 1 = b a

c c b b a R R R R R R R ++

R 2 = c a

c c b b a R R R R R R R ++

R 3 =

a

a

c c b b a R R R R R R R ++

三、电功和电功率

1、电源

使其他形式的能量转变为电能的装置。如发电机、电池等。发电机是将机械能转变为电能;干电池、蓄电池是将化学能转变为电能;光电池是将光能转变为电能;原子电池是将原子核放射能转变为电能;在电子设备中,有时也把变换电能形式的装置,如整流器等,作为电源看待。

电源电动势定义为电源的开路电压,内阻则定义为没有电动势时电路通过电源所遇到的电阻。据此不难推出相同电源串联、并联,甚至不同电源串联、并联的时的电动势和内阻的值。

例如,电动势、内阻分别为ε1 、r 1和ε2 、r 2的电源并联,构成的新电源的电动势ε和内阻r 分别为(☆师生共同推导…)

ε = 211

221r r r r +ε+ε r =

2

12

1r r r r + 2、电功、电功率

电流通过电路时,电场力对电荷作的功叫做电功W 。单位时间内电场力所作的功叫做电功率P 。

计算时,只有W = UIt 和P = UI 是完全没有条件的,对于不含源的纯电阻,电功和焦耳热重合,

电功率则和热功率重合,有W = I 2

Rt = R U 2t 和P = I 2R =R

U 2 。

对非纯电阻电路,电功和电热的关系依据能量守恒定律求解。 四、物质的导电性

在不同的物质中,电荷定向移动形成电流的规律并不是完全相同的。 1、金属中的电流

即通常所谓的不含源纯电阻中的电流,规律遵从“外电路欧姆定律”。 2、液体导电

能够导电的液体叫电解液(不包括液态金属)。电解液中离解出的正负离子导电是液体导电的特点(如:硫酸铜分子在通常情况下是电中性的,但它在溶液里受水分子的作用就会离解成铜离

子Cu 2+和硫酸根离子S -

24O ,它们在电场力的作用下定向移动形成电流)。 在电解液中加电场时,在两个电极上(或电极旁)同时产生化学反应的过程叫作“电解”。电解的结果是在两个极板上(或电极旁)生成新的物质。

液体导电遵从法拉第电解定律—— 法拉第电解第一定律:电解时在电极上析出或溶解的物质的质量和电流强度、跟通电时间成正比。表达式:m = kIt = KQ (式中Q 为析出质量为m 的物质所需要的电量;K 为电化当量,电化当量的数值随着被析出的物质种类而不同,某种物质的电化当量在数值上等于通过1C 电量时析出的该种物质的质量,其单位为kg/C 。)

法拉第电解第二定律:物质的电化当量K 和它的化学当量成正比。某种物质的化学当量是该物质的摩尔质量M (克原子量)和它的化合价n 的比值,即 K = Fn

M

,而F 为法拉第常数,对任何物质都相同,F = 9.65×104C/mol 。

M Q 。

将两个定律联立可得:m =

Fn

3、气体导电

气体导电是很不容易的,它的前提是气体中必须出现可以定向移动的离子或电子。按照“载流子”出现方式的不同,可以把气体放电分为两大类——

a、被激放电

在地面放射性元素的辐照以及紫外线和宇宙射线等的作用下,会有少量气体分子或原子被电离,或在有些灯管内,通电的灯丝也会发射电子,这些“载流子”均会在电场力作用下产生定向移动形成电流。这种情况下的电流一般比较微弱,且遵从欧姆定律。典型的被激放电情形有

b、自激放电

但是,当电场足够强,电子动能足够大,它们和中性气体相碰撞时,可以使中性分子电离,即所谓碰撞电离。同时,在正离子向阴极运动时,由于以很大的速度撞到阴极上,还可能从阴极表面上打出电子来,这种现象称为二次电子发射。碰撞电离和二次电子发射使气体中在很短的时间内出现了大量的电子和正离子,电流亦迅速增大。这种现象被称为自激放电。自激放电不遵从欧姆定律。

常见的自激放电有四大类:辉光放电、弧光放电、火花放电、电晕放电。

4、超导现象

据金属电阻率和温度的关系,电阻率会随着温度的降低和降低。当电阻率降为零时,称为超导现象。电阻率为零时对应的温度称为临界温度。超导现象首先是荷兰物理学家昂尼斯发现的。

超导的应用前景是显而易见且相当广阔的。但由于一般金属的临界温度一般都非常低,故产业化的价值不大,为了解决这个矛盾,科学家们致力于寻找或合成临界温度比较切合实际的材料就成了当今前沿科技的一个热门领域。当前人们的研究主要是集中在合成材料方面,临界温度已经超过100K,当然,这个温度距产业化的期望值还很远。

5、半导体

半导体的电阻率界于导体和绝缘体之间,且ρ值随温度的变化呈现“反常”规律。

组成半导体的纯净物质这些物质的化学键一般都是共价键,其稳固程度界于离子键和金属键之间,这样,价电子从外界获得能量后,比较容易克服共价键的束缚而成为自由电子。当有外电场存在时,价电子移动,同时造成“空穴”(正电)的反向移动,我们通常说,半导体导电时,存在两种载流子。只是在常态下,半导体中的载流子浓度非常低。

半导体一般是四价的,如果在半导体掺入三价元素,共价键中将形成电子缺乏的局面,使“空穴”载流子显著增多,形成P型半导体。典型的P型半导体是硅中掺入微量的硼。如果掺入五价元素,共价键中将形成电子多余的局面,使电子载流子显著增多,形成N型半导体。典型的N型半导体是硅中掺入微量的磷。

如果将P型半导体和N型半导体烧结,由于它们导电的载流子类型不同,将会随着组合形式的不同而出现一些非常独特的物理性质,如二极管的单向导电性和三极管的放大性。

第二讲重要模型和专题

一、纯电阻电路的简化和等效

1、等势缩点法

将电路中电势相等的点缩为一点,是电路简化的途径之一。至于哪些点的电势相等,则需要具体问题具体分析——

【物理情形1】在图8-4甲所示的电路中,R 1 = R 2 = R 3 = R 4 = R 5 = R ,试求A 、B 两端的等效电阻R AB 。

【模型分析】这是一个基本的等势缩点的事例,用到的是物理常识是:导线是等势体,用导线相连的点可以缩为一点。将图8-4甲图中的A 、D 缩为一点A 后,成为图8-4乙图

对于图8-4的乙图,求R AB 就容易了。 【答案】R AB =

8

3

R 。 【物理情形2】在图8-5甲所示的电路中,R 1 = 1Ω ,R 2 = 4Ω ,R 3 = 3Ω ,R 4 = 12Ω ,R 5 = 10Ω ,试求A 、B 两端的等效电阻R AB 。

【模型分析】这就是所谓的桥式电路,这里先介绍简单的情形:将A 、B 两端接入电源,并假设R 5不存在,C 、D 两点的电势有什么关系?

☆学员判断…→结论:相等。

因此,将C 、D 缩为一点C 后,电路等效为图8-5乙

对于图8-5的乙图,求R AB 是非常容易的。事实上,只要满足21R R =4

3

R R 的关系,我们把桥式电路称为“平衡电桥”。

【答案】R AB =

4

15

Ω 。

〖相关介绍〗英国物理学家惠斯登曾将图8-5中的R 5换成灵敏电流计○G ,将R 1 、R 2中的某一个电阻换成待测电阻、将R 3 、R 4换成带触头的电阻丝,通过调节触头P 的位置,观察电流计示数

为零来测量带测电阻R x 的值,这种测量电阻的方案几乎没有系统误差,历史上称之为“惠斯登电桥”。

请学员们参照图8-6思考惠斯登电桥测量电阻的原理,并写出R x 的表达式(触头两端的电阻丝长度L AC 和L CB 是可以通过设置好的标尺读出的)。

☆学员思考、计算…

【答案】R x =

AC

CB

L L R 0 。 【物理情形3】在图8-7甲所示的有限网络中,每一小段导体的电阻均为R ,试求A 、B 两点之间的等效电阻R AB 。

【模型分析】在本模型中,我们介绍“对称等势”的思想。当我们将A 、B 两端接入电源,电流从A 流向B 时,相对A 、B 连线对称的点电流流动的情形必然是完全相同的,即:在图8-7乙图中标号为1的点电势彼此相等,标号为2的点电势彼此相等…。将它们缩点后,1点和B 点之间的等效电路如图8-7丙所示。

不难求出,R 1B = 14

5

R ,而R AB = 2R 1B 。 【答案】R AB =

7

5

R 。 2、△→Y 型变换

【物理情形】在图8-5甲所示的电路中,将R 1换成2Ω的电阻,其它条件不变,再求A 、B 两端的等效电阻R AB 。

【模型分析】此时的电桥已经不再“平衡”,故不能采取等势缩点法简化电路。这里可以将电路的左边或右边看成△型电路,然后进行△→Y 型变换,具体操作如图8-8所示。

根据前面介绍的定式,有

R a = 5

3131R R R R R ++ = 103232++? = 52

Ω

R b = 5

3151R R R R R ++ = 1032102++? = 34Ω

R c =

5

3153R R R R R ++ = 1032103++? = 2Ω

再求R AB 就容易了。 【答案】R AB =

145

618

Ω 。 3、电流注入法

【物理情形】对图8-9所示无限网络,求A 、B 两点间的电阻R AB 。

【模型分析】显然,等势缩点和△→Y 型变换均不适用这种网络的计算。这里介绍“电流注入法”的应用。

应用电流注入法的依据是:对于任何一个等效电阻R ,欧姆定律都是适用的,而且,对于每一段导体,欧姆定律也是适用的。

现在,当我们将无穷远接地,A 点接电源正极,从A 点注入电流I 时,AB 小段导体的电流必为I/3 ;

当我们将无穷远接地,B 点接电源负极,从B 点抽出电流I 时,AB 小段导体的电流必为I/3 ;

那么,当上面“注入”和“抽出”的过程同时进行时,AB 小段导体的电流必为2I/3 。

最后,分别对导体和整个网络应用欧姆定律,即不难求出R AB 。

【答案】R AB =3

2R 。

〖相关介绍〗事实上,电流注入法是一个解复杂电路的基本工具,而不是仅仅可以适用于无限网络。下面介绍用电流注入法解图8-8中桥式电路(不

平衡)的R AB 。

从A 端注入电流I ,并设流过R 1和R 2的电流分别为I 1和I 2 ,则根据基尔霍夫第一定律,其它三个电

阻的电流可以表示为如图8-10所示。

然后对左边回路用基尔霍夫第二定律,有 I 1R 1 + (I 1 ? I 2)R 5 ? (I ? I 1)R 3 = 0 即 2I 1 + 10(I 1 ? I 2) ? 3(I ? I 1) = 0

整理后得 15I 1 ? 10I 2 = 3I ① 对左边回路用基尔霍夫第二定律,有 I 2R 2 ? (I ? I 2)R 4 ? (I 1 ? I 2)R 5 = 0 即 4I 2 ? 12(I ? I 2) ? 10(I 1 ? I 2) = 0

整理后得 ?5I 1 + 13I 2 = 6I ②

解①②两式,得 I 1 =

14599I ,I 2 = 29

21

I 很显然 U A ? I 1R 1 ? I 2R 2 = U B 即 U AB = 2×

14599I + 4×2921I = 145

618

I 最后对整块电路用欧姆定律,有 R AB =

I

U AB = 145618

Ω 。

4、添加等效法

【物理情形】在图8-11甲所示无限网络中,每个电阻的阻值均为R ,试求A 、B 两点间的电阻R AB 。

【模型分析】解这类问题,我们要用到一种数学思想,那就是:无穷大和有限数的和仍为无穷大。在此模型中,我们可以将“并联一个R 再串联一个R ”作为电路的一级,总电路是这样无穷级的叠加。在图8-11乙图中,虚线部分右边可以看成原有无限网络,当它添加一级后,仍为无限网络,即

R AB ∥R + R = R AB

解这个方程就得出了R AB 的值。

【答案】R AB =

2

5

1 R 。

〖学员思考〗本题是否可以用“电流注入法”求解? 〖解说〗可以,在A 端注入电流I 后,设第一级的并联电阻分流为I 1 ,则结合基尔霍夫第一定律和应有的比例关系,可以得出相应的电流值如图8-12所示

对图中的中间回路,应用基尔霍夫第二定律,有 (I ? I 1)R + (I ? I 1)I

I 1

R ? I 1R = 0 解得 I 1 =

2

1

5-I 很显然 U A ? IR ? I 1R = U B 即 U AB = IR + 2

1

5-IR = 251+I R

最后,R AB =

I U AB = 2

5

1+R 。 【综合应用】在图8-13甲所示的三维无限网络中,每两个节点之间的导体电阻均为R ,试求

A 、

B 两点间的等效电阻R AB 。

【解说】当A 、B 两端接入电源时,根据“对称等势”的思想可知,C 、D 、E …各点的电势是彼此相等的,电势相等的点可以缩为一点,它们之间的电阻也可以看成不存在。这里取后一中思想,将CD 间的导体、DE 间的导体…取走后,电路可以等效为图8-13乙所示的二维无限网络。

对于这个二维无限网络,不难求出 R ′= 3

21

3+R 显然,R AB = R ′∥3

R

2∥R ′ 【答案】R AB =

21

2R 。

二、含源电路的简化和计算

1、戴维南定理的应用

【物理情形】在如图8-14甲所示电路中,电源ε = 1.4V ,内阻不计,R 1 = R 4 = 2Ω,R 2 = R 3 = R 5 = 1Ω,试用戴维南定理解流过电阻R 5的电流。

【模型分析】用戴维南定理的目的是将电源系统或与电源相关联的部分电路等效为一个电源,然后方便直接应用闭合电路欧姆定律。此电路中的电源只有一个,我们可以援用后一种思路,将除R 5之外的电阻均看成“与电源相关联的”部分,于是——

将电路做“拓扑”变换,成图8-14乙图。这时候,P 、Q 两点可看成“新电源”的两极,设新电源的电动势为ε′,内阻为r ′,则

r ′= R 1∥R 2 + R 3∥R 4 =

3

4Ω ε′为P 、Q 开路时的电压。开路时,R 1的电流I 1和R 3的电流I 3相等,I 1 = I 3 =

)

R R ()R R 4321++ε

(21?

= 157A ,令“老电源”的负极接地,则U P = I 1R 2 = 157V ,U Q = I 3R 4 = 15

14V ,所以 ε′= U QP =

15

7V 最后电路演化成图8-14丙时,R 5的电流就好求了。

【答案】R 5上电流大小为0.20A ,方向(在甲图中)向上。 2、基尔霍夫定律的应用

基尔霍夫定律的内容已经介绍,而且在(不含源)部分电路中已经做过了应用。但是在比较复杂的电路中,基尔霍夫第一定律和第二定律的独立方程究竟有几个?这里需要补充一个法则,那就是——

基尔霍夫第一定律的独立方程个数为节点总数减一;

基尔霍夫第二定律的独立方程个数则为独立回路的个数。而且,独立回路的个数m 应该这样计算

m = p ? n + 1

其中p 为支路数目(不同电流值的数目),n 为节点个数。譬如,在图8-15所示的三个电路中,m 应该这样计算

甲图,p = 3 ,n = 2 ,m = 3 ?2 + 1 = 2

乙图,p = 6 ,n = 4 ,m = 6 ?4 + 1 = 3

丙图,p = 8 ,n = 5 ,m = 8 ?5 + 1 = 4

以上的数目也就是三个电路中基尔霍夫第二定律的独立方程个数。

思考启发:学员观察上面三个电路中m的结论和电路的外部特征,能得到什么结果?

☆学员:m事实上就是“不重叠”的回路个数!(可在丙图的基础上添加一支路验证…)

【物理情形1】在图8-16所示的电路中,ε1 = 32V,ε2 = 24V,两电源的内阻均不计,R1 = 5Ω,R2 = 6Ω,R3 = 54Ω,求各支路的电流。

【模型分析】这是一个基尔霍夫定律的基本应用,第一定律的方程个数为n ? 1 = 2 ,第二方程的个数为p ? n + 1 = 2

由第一定律,有I3 = I1 + I2

由第二定律,左回路有ε1?ε2 = I1R1? I2R2

左回路有ε2 = I2R2 + I3R3

代入数字后,从这三个方程不难解出

I1 = 1.0A ,I2 = ?0.5A ,I3 = 0.5A

这里I2的负号表明实际电流方向和假定方向相反。

【答案】R1的电流大小为1.0A,方向向上,R2的电流大小为

0.5A,方向向下,R3的电流大小为0.5A,方向向下。

【物理情形2】用基尔霍夫定律解图8-14甲所示电路中R5的电流(所有已知条件不变)。

【模型分析】此电路p = 6 ,n = 4 ,故基尔霍夫

第一定律方程个数为3 ,第二定律方程个数为3 。

为了方便,将独立回路编号为Ⅰ、Ⅱ和Ⅲ,电流

只设了三个未知量I1、I2和I3,其它三个电流则直

接用三个第一定律方程表达出来,见图8-17 。这样,

我们只要解三个基尔霍夫第二定律方程就可以了。

对Ⅰ回路,有I2R1 + I1R5? I3R3 = 0

即2I2 + 1I1? 1I3 = 0 ①

对Ⅱ回路,有(I2? I1)R2? (I1 + I3)R4? I1R5 = 0

即 1(I 2 ? I 1) ? 2(I 1 + I 3) ? 1I 1 = 0 ② 对Ⅲ回路,有 ε = I 3R 3 + (I 1 + I 3)R 4

即 1.4 = 1I 3 + 2(I 1 + I 3) ③ 解①②③式不难得出 I 1 = ?0.2A 。(I 2 = 0.4A ,I 3 = 0.6A ) 【答案】略。

【物理情形3】求解图8-18所示电路中流过30Ω电阻的电流。 【模型分析】基尔霍夫第一定律方程2个,已在图中体现 基尔霍夫第二定律方程3个,分别为——

对Ⅰ回路,有 100 = (I 2 ? I 1) + I 2·10 ① 对Ⅱ回路,有 40 = I 2·10 + I 1·30 ? I 3·10 ② 对Ⅲ回路,有 100 = I 3·10 + (I 1 + I 3) ·10 ③ 解①②③式不难得出 I 1 = 1.0A 。(I 2 = 5.5A ,I 3 = 4.5A ) 【答案】大小为1.0A ,方向向左。

〖小结〗解含源电路我们引进了戴维南定理和基尔霍夫定律两个工具。原则上,对任何一个问题,两种方法都可以用。但是,当我们面临的只是求某一条支路的电流,则用戴维南定理较好,如果要求求出多个(或所有)支路的电流,则用基尔霍夫定律较好。而且我们还必须看到,随着独立回路个数的增多,基尔霍夫第二定律的方程随之增多,解题的麻烦程度随之增大。

三、液体导电及其它

【物理情形】已知法拉第恒量F = 9.65×104C/mol ,金的摩尔质量为0.1972kg/mol ,金的化合价为 3 ,要想在电解池中析出1g 金,需要通过多少电量?金是在电解池的正极板还是在负极板析出?

【解说】法拉第电解定律(综合形式)的按部就班应用,即 Q =

M

mFn

,代入相关数据(其中m = 1.0×10?3kg ,n = 3)即可。

【答案】需要1.47×103C 电量,金在负极板析出。

【相关应用】在图8-19所示的装置中,如果在120分钟内淀积3.0×1022个银原子,银的化合价为1 。在电流表中显示的示数

是多少?若将阿弗伽德罗常数视为已知量,试求法拉第恒量。

【解说】第一问根据电流定义即可求得;

第二问 F =

mn

QM = M

1002.6100.3M 106.1100.323

221922?????-

【答案】0.667A ;9.63×104C/mol 。 四、问题补遗——欧姆表

图8-20展示了欧姆表的基本原理图(未包括换档电路),

虚线方框内是欧姆表的内部结构,它包含表头G 、直流电源ε(常用干电池)及电阻R Ω 。

当被测电阻R x 接入电路时,表头G 电流

I =

x

g R R r R +++ε

Ω

可以看出,对给定的欧姆表,I 与R x 有一一对应的关系,所以由表头指针的位置可以知道R x 的大小。为了读数方便,事先在刻度盘上直接标出欧姆值。

考查I (R x )函数,不难得出欧姆表的刻度特点有三:①大值在左边、小值在右边;②不均匀,小值区域稀疏、大值区域密集;③没有明确的量程,最右边为零,最左边为∞ 。

欧姆表虽然没有明确的量程,并不以为着测量任何电阻都是准确的,因为大值区域的刻度线太密,难以读出准确读数。这里就有一个档位选择问题。欧姆表上备有“×1”、“×10”、“×100”、“×1k ”不同档位,它们的意义是:表盘的读数乘以这个倍数就是最后的测量结果。比如,一个待测电阻阻值越20k Ω,选择“×10”档,指针将指在2k 附近(密集区),不准,选择“×1k ”档,指针将指在20附近(稀疏区),读数就准确了。

不同的档位是因为欧姆表的中值电阻可以选择造成的。当R x =(R g + r + R Ω)时,表头电流I =

2

1

I g ,指针指在表盘的几何中心,故称此时的R x ——即(R g + r + R Ω)——为中值电阻,它就是表盘正中刻度的那个数字乘以档位倍数。很显然,对于一个给定的欧姆档,中值电阻(简称R 中)应该是固定不变的。

由于欧姆表必须保证R x = 0时,指针指到最右边(0Ω刻度),即

Ω

++ε

R r R g = I g

这个式子当中,只有R g 和I g 是一成不变的,ε 、r 均会随着电池的用旧而改变(ε↓、r ↑),为了保证方程继续成立,有必要调整R Ω的值,这就是欧姆表在使用时的一个必不可少的步骤:欧姆调零,即将两表笔短接,观察指针指到最右边(0Ω刻度)即可。

所以,在使用欧姆表时,选档和调零是必不可少的步骤,而且换档后,必须重新调零。

【相关问题1】当欧姆表的电池用旧了之后,在操作规范的前提下,它的测值会 (填“偏大”、“偏小”或“继续准确”)。

【解说】这里的操作规范是指档位选择合适、已正确调零。电池用旧后,ε↓、r ↑,但调零时,务必要使R Ω↓,但R g + r + R Ω = R 中 =

g

I ↓

ε,故R 中↓,形成系统误差是必然的。 设新电池状态下电源电动势为ε 、中值电阻为R 中 ,用旧状态下电源电动势为ε′、中值电阻为R 中′,则针对同一个R x ,有

新电池状态 I =

x

R R +ε

中 = x g R I +εε = ε+x g g R I 1I

旧电池状态 I ′=

x

R R +''

ε中 = x g R I +'ε'ε = '

ε+x g g R I 1I

两式比较后,不难得出 I ′< I ,而表盘的刻度没有改变,故欧姆示数增大。

【答案】偏大。

【相关问题2】用万用表之欧姆档测某二极管极性时,发现指针偏转极小,则与红表笔相连接的应为二极管的极。

【解说】欧姆档指针偏转极小,表明电阻示数很大;欧姆表的红表笔是和内部电源的负极相连的。

【答案】正。

☆第八部分完☆

高中物理竞赛训练题:奥赛训练《稳恒电流C》(含答案)

稳恒电流 C 13、电解硝酸银溶液时,在阴极上1分钟内析出67.08毫克银,银的原子量为107.9 ,求电路中的电流。已知法拉第恒量F =9.68×104C/mol 。 14、一铜导线横截面积为4毫升2,20秒内有80库仑的电量通过该导线的某一截面。已知铜内自由电子密度为8.5×1022厘米?3,每个电子的电量为1.6×10?19库仑,求电子的定向移动的平均速率。 15、通常气体是不导电的,为了使之能够导电,首先必须使之;产生持续的自激放电的条件是和;通常气体自激放电现象可分为四大类:、、和,如雷电现象属,霓虹灯光属,高压水银灯发光属。 16、一个电动势为ε、内阻为r的电池给不同的灯泡供电。试证:灯泡电阻R =r时亮度最大,且最大功率P m=ε2/4r 。 17、用万用表的欧姆档测量晶体二极管的正向电阻时,会出现用不同档测出的阻值不相同的情况,试解释这种现象。 18、某金属材料,其内自由电子相继两次碰撞的时间间隔平均值为τ,其单位体积内自由电子个数为n ,设电子电量为e,质量为m ,试推出此导体的电阻率表达式。 19、用戴维南定理判断:当惠斯登电桥中电流计与电源互换位置后的电流计读数关系(自己作图)。视电流计内阻趋于无穷小,电源内阻不计。 20、图示为电位差计测电池内阻的电路图。实际的电位差计在标准电阻RAB上直接刻度的不是阻值,也不是长度,而是各长度所对应的电位差值,RM为被测电池的负载电阻,其值为100Ω。实验开始时,K2打开,K1拨在1处,调节R N使流过R AB的电流准确地达到某标定值,然后将K1拨至2处,滑动C,当检流计指针 指零时,读得UAC= 1.5025V;再闭合K 2 ,滑动C,检流计指针再指零时读得U AC′= 1.4455V,试据以上数据计算电池 内阻r 。

高中物理竞赛辅导(2)

高中物理竞赛辅导(2) 静力学力和运动 共点力的平衡 n个力同时作用在物体上,若各力的作用线相交于一点,则称为 共点力,如图1所示。 作用在刚体上的力可沿作用线前、后滑移而不改变其力 学效应。当刚体受共点力作用时,可把这些力沿各自的作用 线滑移,使都交于一点,于是刚体在共点力作用下处于平衡 状态的条件是:合力为零。 (1) 用分量式表示: (2) [例1]半径为R的刚性球固定在水 平桌面上,有一质量为M的圆环状均匀 弹性细绳圈,原长为,绳 圈的弹性系数为k。将圈从球的正上方 轻放到球上,并用手扶着绳圈使其保持 水平,最后停留在平衡位置。考虑重力, 不计摩擦。①设平衡时绳圈长 ,求k值。②若 ,求绳圈的平衡位置。

分析:设平衡时绳圈位于球面上相应于θ角的纬线上。在绳圈上任取一小元段, 长为,质量为,今将这元段作为隔离体,侧视图和俯视图分别由图示(a)和(b)表示。 元段受到三个力作用:重力方向竖直向下;球面的支力N方向沿半径R 指向球外;两端张力,张力的合力为 位于绳圈平面内,指向绳圈中心。这三个力都在经 线所在平面内,如图示(c)所示。将它们沿经线的切向和法向分 解,则切向力决定绳圈沿球面的运动。 解:(1)由力图(c)知:合张力沿经线切向分力为: 重力沿径线切向分力为: (2-2) 当绳圈在球面上平衡时,即切向合力为零。 (2-3) 由以上三式得 (2-4) 式中

由题设:。把这些数据代入(2-4)式得。于是。 (2)若时,C=2,而。此时(2-4)式变成 tgθ=2sinθ-1, 即 sinθ+cosθ=sin2θ, 平方后得。 在的范围内,上式无解,即此时在球面上不存在平衡位置。这时由于k值太小,绳圈在重力作用下,套过球体落在桌面上。 [例2]四个相同的球静止在光滑的球形碗内,它们的中心同在一水平面内,今以另一相同的球放以四球之上。若碗的半径大于球的半径k倍时,则四球将互相分离。试求k值。 分析:设每个球的质量为m,半径为r ,下面四个球的相互作用力为N,如图示(a)所示。 又设球形碗的半径为R,O' 为球形碗的球心,过下面四球的 球心联成的正方形的一条对角线 AB作铅直剖面。如图3(b)所示。 当系统平衡时,每个球所受的合 力为零。由于所有的接触都是光 滑的,所以作用在每一个球上的 力必通过该球球心。 上面的一个球在平衡时,其 重力与下面四个球对它的支力相平衡。由于分布是对称的,它们之间的相互作用力N, 大小相等以表示,方向均与铅垂线成角。

高中物理稳恒电流技巧和方法完整版及练习题含解析

高中物理稳恒电流技巧和方法完整版及练习题含解析 一、稳恒电流专项训练 1.要描绘某电学元件(最大电流不超过6mA,最大电压不超过7V)的伏安特性曲线,设计电路如图,图中定值电阻R为1KΩ,用于限流;电流表量程为10mA,内阻约为5Ω;电压表(未画出)量程为10V,内阻约为10KΩ;电源电动势E为12V,内阻不计。 (1)实验时有两个滑动变阻器可供选择: a、阻值0到200Ω,额定电流 b、阻值0到20Ω,额定电流 本实验应选的滑动变阻器是(填“a”或“b”) (2)正确接线后,测得数据如下表 12345678910U(V)0.00 3.00 6.00 6.16 6.28 6.32 6.36 6.38 6.39 6.40 0.000.000.000.060.50 1.00 2.00 3.00 4.00 5.50I(m A) a)根据以上数据,电压表是并联在M与之间的(填“O”或“P”) b)画出待测元件两端电压UMO随MN间电压UMN变化的示意图为(无需数值) 【答案】(1) a (2) a) P b)

【解析】(1)选择分压滑动变阻器时,要尽量选择电阻较小的,测量时电压变化影响小,但要保证仪器的安全。B 电阻的额定电流为 ,加在它上面的最大电压为10V ,所以仪 器不能正常使用,而选择a 。(2)电压表并联在M 与P 之间。因为电压表加电压后一定有电流通过,但这时没有电流流过电流表,所以电流表不测量电压表的电流,这样电压表应该接在P 点。 视频 2.在如图所示的电路中,电源内电阻r=1Ω,当开关S 闭合后电路正常工作,电压表的读数U=8.5V ,电流表的读数I=0.5A .求: ①电阻R ; ②电源电动势E ; ③电源的输出功率P . 【答案】(1)17R =Ω;(2)9E V =;(3) 4.25P w = 【解析】 【分析】 【详解】 (1)由部分电路的欧姆定律,可得电阻为:5U R I = =Ω (2)根据闭合电路欧姆定律得电源电动势为E =U +Ir =12V (3)电源的输出功率为P =UI =20W 【点睛】 部分电路欧姆定律U =IR 和闭合电路欧姆定律E =U +Ir 是电路的重点,也是考试的热点,要熟练掌握. 3.一电路如图所示,电源电动势E=28v ,内阻r=2Ω,电阻R1=4Ω,R2=8Ω,R3=4Ω,C 为平行板电容器,其电容C=3.0pF ,虚线到两极板距离相等,极板长L=0.20m ,两极板的间距d=1.0×10-2m . (1)闭合开关S 稳定后,求电容器所带的电荷量为多少?

新版高一物理竞赛讲义

高中物理《竞赛辅导》力学部分 目录 :力学中的三种力 【知识要点】 (一)重力 重力大小G=mg,方向竖直向下。一般来说,重力是万有引力的一个分力,静止在地球表面的物体,其万有引力的另一个分力充当物体随地球自转的向心力,但向心力极小。 (二)弹力 1.弹力产生在直接接触又发生非永久性形变的物体之间(或发生非永久性形变的物体一部分和另一部分之间),两物体间的弹力的方向和接触面的法线方向平行,作用点在两物体的接触面上.2.弹力的方向确定要根据实际情况而定. 3.弹力的大小一般情况下不能计算,只能根据平衡法或动力学方法求得.但弹簧弹力的大小可用.f=kx(k 为弹簧劲度系数,x为弹簧的拉伸或压缩量)来计算. 在高考中,弹簧弹力的计算往往是一根弹簧,而竞赛中经常扩展到弹簧组.例如:当劲度系数分别为k1,k2,…的若干个弹簧串联使用时.等效弹簧的劲度系数的倒数为:,即弹簧变软;反之.若

以上弹簧并联使用时,弹簧的劲度系数为:k=k 1+…k n ,即弹簧变硬.(k=k 1+…k n 适用于所有并联弹簧的原长相等;弹簧原长不相等时,应具体考虑) 长为 的弹簧的劲度系数为k ,则剪去一半后,剩余 的弹簧的劲度系数为2k (三)摩擦力 1.摩擦力 一个物体在另一物体表面有相对运动或相对运动趋势时,产生的阻碍物体相对运动或相对运动趋势的力叫摩擦力。方向沿接触面的切线且阻碍物体间相对运动或相对运动趋势。 2.滑动摩擦力的大小由公式f=μN 计算。 3.静摩擦力的大小是可变化的,无特定计算式,一般根据物体运动性质和受力情况分析求解。其大小范围在0<f≤f m 之间,式中f m 为最大静摩擦力,其值为f m =μs N ,这里μs 为最大静摩擦因数,一般情况下μs 略大于μ,在没有特别指明的情况下可以认为μs =μ。 4.摩擦角 将摩擦力f 和接触面对物体的正压力N 合成一个力F ,合力F 称为全反力。在滑动摩擦情况下定义tgφ=μ=f/N ,则角φ为滑动摩擦角;在静摩擦力达到临界状态时,定义tgφ0=μs =f m /N ,则称φ0为静摩擦角。由于静摩擦力f 0属于范围0<f≤f m ,故接触面作用于物体的全反力同接触面法线 的夹角≤φ0,这就是判断物体不发生滑动的条件。换句话说,只要全反力的作用线落在(0,φ0)范围时,无穷大的力也不能推动木块,这种现象称为自锁。 本节主要内容是力学中常见三种力的性质。在竞赛中以弹力和摩擦力尤为重要,且易出错。弹力和摩擦力都是被动力,其大小和方向是不确定的,总是随物体运动性质变化而变化。弹力中特别注意轻绳、轻杆及胡克弹力特点;摩擦力方向总是与物体发生相对运动或相对运动趋势方向相反。另外很重要的一点是关于摩擦角的概念,及由摩擦角表述的物体平衡条件在竞赛中应用很多,充分利用摩擦角及几何知识的关系是处理有摩擦力存在平衡问题的一种典型方法。 【典型例题】 【例题1】如图所示,一质量为m 的小木块静止在滑动摩擦因数为μ=的水平面上,用一个与水平方 向成θ角度的力F 拉着小木块做匀速直线运动,当θ角为多大时力F 最小? 【例题2】如图所示,有四块相同的滑块叠放起来置于水平桌面上,通过细绳和定滑轮相互联接起来.如果所有的接触面间的摩擦系数均为μ,每一滑块的质量均为 m ,不计滑轮的摩擦.那么要拉动最上面一块滑块至少需要多大的水平拉力?如果有n 块这样的滑块叠放起 来,那么要拉动最上面的滑块,至少需多大的拉力? 【例题3】如图所示,一质量为m=1㎏的小物块P 静止在倾角为θ=30°的斜面 上,用平行于斜面底边的力F=5N 推小物块,使小物块恰好在斜面上匀速运动,试求小物块与斜面间的滑 动摩擦因数(g 取10m/s 2 )。 【练习】 1、如图所示,C 是水平地面,A 、B 是两个长方形物块,F 是作用在物块B 上沿水平方向的力,物块A 和B 以相同的速度作匀速直线运动,由此可知, A 、 B 间的滑动 θ F P θ F A B F C N F f m f 0 α φ

高中物理竞赛辅导讲义-7.1简谐振动

7.1简谐振动 一、简谐运动的定义 1、平衡位置:物体受合力为0的位置 2、回复力F :物体受到的合力,由于其总是指向平衡位置,所以叫回复力 3、简谐运动:回复力大小与相对于平衡位置的位移成正比,方向相反 F k x =- 二、简谐运动的性质 F kx =- ''mx kx =- 取试探解(解微分方程的一种重要方法) cos()x A t ω?=+ 代回微分方程得: 2m x kx ω-=- 解得: 22T π ω== 对位移函数对时间求导,可得速度和加速度的函数 cos()x A t ω?=+ sin()v A t ωω?=-+ 2cos()a A t ωω?=-+ 由以上三个方程还可推导出: 222()v x A ω += 2a x ω=- 三、简谐运动的几何表述 一个做匀速圆周运动的物体在一条直径 上的投影所做的运动即为简谐运动。 因此ω叫做振动的角频率或圆频率, ωt +φ为t 时刻质点位置对应的圆心角,也叫 做相位,φ为初始时刻质点位置对应的圆心 角,也叫做初相位。

四、常见的简谐运动 1、弹簧振子 (1)水平弹簧振子 (2)竖直弹簧振子 2、单摆(摆角很小) sin F mg mg θθ=-≈- x l θ≈ 因此: F k x =- 其中: mg k l = 周期为:222T π ω=== 例1、北京和南京的重力加速度分别为g 1=9.801m/s 2和g 2=9.795m/s 2,把在北京走时准确的摆钟拿到南京,它是快了还是慢了?一昼夜差多少秒?怎样调整? 例2、三根长度均为l=2.00m 、质量均匀的直杆,构成一正三角彤框架 ABC .C 点悬挂在一光滑水平转轴上,整个框架可绕转轴转动.杆AB 是一导轨,一电动玩具松鼠可在导轨运动,如图所示.现观察到松鼠正在导轨上运动,而框架却静止不动,试论证松鼠的运动是一种什么样的运动?

高中物理稳恒电流专项练习

高中物理稳恒电流专项练习 一、稳恒电流专项训练 1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大? 【答案】(1)238mg B L (2)1238mgr B B dL 【解析】 试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =3 4 I ① I dc = 1 4 I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③ 由①~③,解得I ab = 2234mg B L ④ (2)由(1)可得I =22 mg B L ⑤ 设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥ 设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =3 4 r ⑦ 根据闭合电路欧姆定律,有I = E R ⑧ 由⑤~⑧,解得v = 1212 34mgr B B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.

高中物理竞赛辅导讲义 第 篇 运动学

高中物理竞赛辅导讲义 第2篇 运动学 【知识梳理】 一、匀变速直线运动 二、运动的合成与分解 运动的合成包括位移、速度和加速度的合成,遵从矢量合成法则(平行四边形法则或三角形法则)。 我们一般把质点对地或对地面上静止物体的运动称为绝对运动,质点对运动参考照系的运动称为相对运动,而运动参照系对地的运动称为牵连运动。以速度为例,这三种速度分别称为绝对速度、相对速度、牵连速度,则 v 绝对 = v 相对 + v 牵连 或 v 甲对乙 = v 甲对丙 + v 丙对乙 位移、加速度之间也存在类似关系。 三、物系相关速度 正确分析物体(质点)的运动,除可以用运动的合成知识外,还可充分利用物系相关速度之间的关系简捷求解。以下三个结论在实际解题中十分有用。 1.刚性杆、绳上各点在同一时刻具有相同的沿杆、绳的分速度(速度投影定理)。 2.接触物系在接触面法线方向的分速度相同,切向分速度在无相对滑动时亦相同。 3.线状交叉物系交叉点的速度,是相交物系双方运动速度沿双方切向分解后,在对方切向运动分速度的矢量和。 四、抛体运动: 1.平抛运动。 2.斜抛运动。 五、圆周运动: 1.匀速圆周运动。 2.变速圆周运动: 线速度的大小在不断改变的圆周运动叫变速圆周运动,它的角速度方向不变,大小在不断改变,它的加速度为a = a n + a τ,其中a n 为法向加速度,大小为2 n v a r =,方向指向圆心;a τ为切向加速度,大小为0lim t v a t τ?→?=?,方向指向切线方向。 六、一般的曲线运动 一般的曲线运动可以分为很多小段,每小段都可以看做圆 周运动的一部分。在分析质点经过曲线上某位置的运动时,可 以采用圆周运动的分析方法来处理。对于一般的曲线运动,向心加速度为2n v a ρ =,ρ为点所在曲线处的曲率半径。 七、刚体的平动和绕定轴的转动 1.刚体 所谓刚体指在外力作用下,大小、形状等都保持不变的物体或组成物体的所有质点之间的距离始终保持不变。刚体的基本运动包括刚体的平动和刚体绕定轴的转动。刚体的任

高中物理稳恒电流试题(有答案和解析)

高中物理稳恒电流试题(有答案和解析) 一、稳恒电流专项训练 1.如图10所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,相距为L 1 ,处在竖直向下、磁感应强度大小为B 1的匀强磁场中.一导体杆ef 垂直于P 、Q 放在导轨上,在外力作用下向左做匀速直线运动.质量为m 、每边电阻均为r 、边长为L 2的正方形金属框abcd 置于倾斜角θ=30°的光滑绝缘斜面上(ad ∥MN ,bc ∥FG ,ab ∥MG, dc ∥FN),两顶点a 、d 通过细软导线与导轨P 、Q 相连,磁感应强度大小为B 2的匀强磁场垂直斜面向下,金属框恰好处于静止状态.不计其余电阻和细导线对a 、d 点的作用力. (1)通过ad 边的电流I ad 是多大? (2)导体杆ef 的运动速度v 是多大? 【答案】(1)238mg B L (2)1238mgr B B dL 【解析】 试题分析:(1)设通过正方形金属框的总电流为I ,ab 边的电流为I ab ,dc 边的电流为I dc , 有I ab =3 4 I ① I dc = 1 4 I ② 金属框受重力和安培力,处于静止状态,有mg =B 2I ab L 2+B 2I dc L 2 ③ 由①~③,解得I ab = 2234mg B L ④ (2)由(1)可得I =22 mg B L ⑤ 设导体杆切割磁感线产生的电动势为E ,有E =B 1L 1v ⑥ 设ad 、dc 、cb 三边电阻串联后与ab 边电阻并联的总电阻为R ,则R =3 4 r ⑦ 根据闭合电路欧姆定律,有I = E R ⑧ 由⑤~⑧,解得v = 1212 34mgr B B L L ⑨ 考点:受力分析,安培力,感应电动势,欧姆定律等.

高中物理竞赛辅导讲义 静力学

高中物理竞赛辅导讲义 第1篇 静力学 【知识梳理】 一、力和力矩 1.力与力系 (1)力:物体间的的相互作用 (2)力系:作用在物体上的一群力 ①共点力系 ②平行力系 ③力偶 2.重力和重心 (1)重力:地球对物体的引力(物体各部分所受引力的合力) (2)重心:重力的等效作用点(在地面附近重心与质心重合) 3.力矩 (1)力的作用线:力的方向所在的直线 (2)力臂:转动轴到力的作用线的距离 (3)力矩 ①大小:力矩=力×力臂,M =FL ②方向:右手螺旋法则确定。 右手握住转动轴,四指指向转动方向,母指指向就是力矩的方向。 ③矢量表达形式:M r F =? (矢量的叉乘),||||||sin M r F θ=? 。 4.力偶矩 (1)力偶:一对大小相等、方向相反但不共线的力。 (2)力偶臂:两力作用线间的距离。 (3)力偶矩:力和力偶臂的乘积。 二、物体平衡条件 1.共点力系作用下物体平衡条件: 合外力为零。 (1)直角坐标下的分量表示 ΣF ix = 0,ΣF iy = 0,ΣF iz = 0 (2)矢量表示 各个力矢量首尾相接必形成封闭折线。 (3)三力平衡特性 ①三力必共面、共点;②三个力矢量构成封闭三角形。 2.有固定转动轴物体的平衡条件:

3.一般物体的平衡条件: (1)合外力为零。 (2)合力矩为零。 4.摩擦角及其应用 (1)摩擦力 ①滑动摩擦力:f k = μk N(μk-动摩擦因数) ②静摩擦力:f s ≤μs N(μs-静摩擦因数) ③滑动摩擦力方向:与相对运动方向相反 (2)摩擦角:正压力与正压力和摩擦力的合力之间夹角。 ①滑动摩擦角:tanθk=μ ②最大静摩擦角:tanθsm=μ ③静摩擦角:θs≤θsm (3)自锁现象 三、平衡的种类 1.稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使之回到平衡位置,这样的平衡叫稳定平衡。2.不稳定平衡: 当物体稍稍偏离平衡位置时,有一个力或力矩使它的偏离继续增大,这样的平衡叫不稳定平衡。 3.随遇平衡: 当物体稍稍偏离平衡位置时,它所受的力或力矩不发生变化,它能在新的位置上再次平衡,这样的平衡叫随遇平衡。 【例题选讲】 1.如图所示,两相同的光滑球分别用等长绳子悬于同一点,此两球同时又支撑着一个等重、等大的光滑球而处于平衡状态,求图中α(悬线与竖直线的夹角)与β(球心连线与竖直线的夹角)的关系。 面圆柱体不致分开,则圆弧曲面的半径R最大是多少?(所有摩擦均不计) R

高中物理竞赛辅导讲义:原子物理

原 子 物 理 自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。本章简单介绍一些关于原子和原子核的基本知识。 §1.1 原子 1.1.1、原子的核式结构 1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。 1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。 1、1. 2、氢原子的玻尔理论 1、核式结论模型的局限性 通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。由此可得两点结论: ①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。 为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。 2、玻尔理论的内容: 一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。 二、原子从一种定态(设能量为E 2)跃迁到另一种定态(设能量为E 1)时,它辐射或吸收一定频率的光子,光子的能量由这种定态的能量差决定,即 γh =E 2-E 1 三、氢原子中电子轨道量子优化条件:氢原子中,电子运动轨道的圆半径r 和运动初速率v 需满足下述关系: π2h n rmv =,n=1、2…… 其中m 为电子质量,h 为普朗克常量,这一条件表明,电子绕核的轨道半径是不连

高中物理竞赛——稳恒电流习题

高中物理竞赛——稳恒电流习题 一、纯电阻电路的简化和等效 1、等势缩点法 将电路中电势相等的点缩为一点,是电路简化的途径之一。至于哪些点的电势相等,则需要具体问题具体分析—— 【物理情形1】在图8-4甲所示的电路中,R 1 = R 2 = R 3 = R 4 = R 5 = R ,试求A 、B 两端的等效电阻R AB 。 【模型分析】这是一个基本的等势缩点的事例,用到的是物理常识是:导线是等势体,用导线相连的点可以缩为一点。将图8-4甲图中的A 、D 缩为一点A 后,成为图8-4乙图 对于图8-4的乙图,求R AB 就容易了。 【答案】R AB = 8 3R 。 【物理情形2】在图8-5甲所示的电路中,R 1 = 1Ω ,R 2 = 4Ω ,R 3 = 3Ω ,R 4 = 12Ω ,R 5 = 10Ω ,试求A 、B 两端的等效电阻R AB 。 【模型分析】这就是所谓的桥式电路,这里先介绍简单的情形:将A 、B 两端接入电源,并假设R 5不存在,C 、D 两点的电势有什么关系? ☆学员判断…→结论:相等。 因此,将C 、D 缩为一点C 后,电路等效为图8-5乙 对于图8-5的乙图,求R AB 是非常容易的。事实上,只要满足2 1R R =4 3R R 的关系, 我们把桥式电路称为“平衡电桥”。

【答案】R AB = 4 15Ω 。 〖相关介绍〗英国物理学家惠斯登曾将图8-5中的R 5换成灵敏电流计○G ,将R 1 、R 2中的某一个电阻换成待测电阻、将R 3 、R 4换成带触头的电阻丝,通过调节触头P 的位置,观察电流计示数为零来测量带测电阻R x 的值,这种测量电阻的方案几乎没有系统误差,历史上称之为“惠斯登电桥”。 请学员们参照图8-6思考惠斯登电桥测量电阻的原理,并写出R x 的表达式(触头两端的电阻丝长度L AC 和L CB 是可以通过设置好的标尺读出的)。 ☆学员思考、计算… 【答案】R x =AC CB L L R 0 。 【物理情形3】在图8-7甲所示的有限网络中,每一小段导体的电阻均为R ,试求A 、B 两点之间的等效电阻R AB 。 【模型分析】在本模型中,我们介绍“对称等势”的思想。当我们将A 、B 两端接入电源,电流从A 流向B 时,相对A 、B 连线对称的点电流流动的情形必然是完全相同的,即:在图8-7乙图中标号为1的点电势彼此相等,标号为2的点电势彼此相等…。将它们缩点后,1点和B 点之间的等效电路如图8-7丙所示。 不难求出,R 1B = 14 5R ,而R AB = 2R 1B 。 【答案】R AB = 75R 。 2、△→Y 型变换 【物理情形】在图8-5甲所示的电路中,将R 1换成2Ω的电阻,其它条件不变,再求A 、B 两端的等效电阻R AB 。 【模型分析】此时的电桥已经不再“平衡”,故不能采取等势缩点法简化电路。这里可以将电路的左边或右边看成△型电路,然后进行△→Y 型变换,具体操作如图8-8所示。 根据前面介绍的定式,有

物理竞赛课件-奥赛训练稳恒电流A

稳恒电流 A 编号:971017 1、令每段导体的电阻为R ,求R AB。 2、对不平衡的桥式电路,求等效电阻R AB。 3、给无穷网络的一端加上U AB = 10V的电压,求R2消耗的功率。已知奇数号电阻均为5Ω,偶数号电阻均为10Ω。 4、试求平面无穷网络的等效电阻R AB,已知每一小段导体的电阻均为R 。 5、右图电路中,R1 = 40Ω,R2 = R3 = 60Ω,ε1 = 5V ,ε2 = 2V ,电源内阻忽略不计,试求电源ε2的输出功率。 6、右图电路中,ε1 = 20V ,ε2 = 24V ,ε3 = 10V ,R1 = 10Ω,R2 = 3Ω,R3 = 2Ω,R4 = 28Ω,R5 = 17Ω,C1 = C2 = 20μF ,C3 = 10μF ,试求A、B两点的电势、以及三个电容器的的带电量。

稳恒电流A答案与提示 1、等势缩点法。设图中最高节点为C 、最低节点为D ,则U C = U D… 答案:7R/15 。 2、法一:“Δ→Y”变换; 法二:基尔霍夫定律,基尔霍夫方 程两个…解得I1 = 9I/15 ,I2 = 6I/15 , 进而得U AB = 21IR/15 。 答案:1.4R 。 3、先解R AB = R右= 10Ω 答案:2.5W 。 4、电流注入、抽出…叠加法 求U AB表达式。 答案:左图R/2 ;右图R 。 5、设R3的电流为I(方向向 左),用戴维南定理解得I = 0 。 答案:零。 6、设电路正中间节点为P点,接地点为O点,求A、B电势后令U P大于U A而小于U B,则三电容器靠近P点的极板的电性分别是+、?、+ ,据电荷守恒,应有Q1 + Q2 = Q3… 答案:U A = 7V ,U B = 26V ;Q1 = 124μC(A板负电),Q2 = 256μC(B板正电),Q3 = 132μC (O板负电)。

高中物理竞赛讲义:恒定电流.

专题十二 恒定电流 【扩展知识】 1.电流 (1)电流的分类 传导电流:电子(离子)在导体中形成的电流。 运流电流:电子(离子)于宏观带电体在空间的机械运动形成的电流。 (2)欧姆定律的微观解释 (3)液体中的电流 (4)气体中的电流 2.非线性元件 (1)晶体二极管的单向导电特性 (2)晶体三极管的放大作用 3.一段含源电路的欧姆定律 在一段含源电路中,顺着电流的流向来看电源是顺接的(参与放电),则经过电源后,电路该点电势升高ε;电源若反接的(被充电的),则经过电源后,该点电势将降低ε。不论电源怎样连接,在电源内阻r 和其他电阻R 上都存在电势降低,降低量为I (R+r )如图则有: b a U Ir Ir IR U =-+---2211εε 4.欧姆表 能直接测量电阻阻值的仪表叫欧姆表,其内部结构如图所示,待测电阻的值由:)(0R r R I R g x ++-=ε 决定,可由表盘上直接读出。在正式测电阻前先要使红、黑表笔短接,即:

中R r R R I g g ε ε =++=0。 如果被测电阻阻值恰好等于R 中,易知回路中电流减半,指针指表盘中央。而表盘最左边刻度对应于∞=2x R ,最右边刻度对应于03=x R ,对任一电阻有R x ,有:x g R R n I I +== 中ε, 则中R n R x )1(-=。 由上式可看出,欧姆表的刻度是不均匀的。 【典型例题】 1、两电解池串联着,一电解池在镀银,一电解池在电解水,在某一段时间内,析出的银是0.5394g ,析出的氧气应该是多少克? 2、用多用电表欧姆档测量晶体二极管的正向电阻时,用100?R 档和用k R 1?档,测量结果不同,这是为什么?用哪档测得的电阻值大?

高中物理竞赛辅导讲义-第8篇-稳恒电流

高中物理竞赛辅导讲义 第8篇 稳恒电流 【知识梳理】 一、基尔霍夫定律(适用于任何复杂电路) 1. 基尔霍夫第一定律(节点电流定律) 流入电路任一节点(三条以上支路汇合点)的电流强度之和等于流出该节点的电流强度之和。即∑I =0。 若某复杂电路有n 个节点,但只有(n ?1)个独立的方程式。 2. 基尔霍夫第二定律(回路电压定律) 对于电路中任一回路,沿回路环绕一周,电势降落的代数和为零。即∑U =0。 若某复杂电路有m 个独立回路,就可写出m 个独立方程式。 二、等效电源定理 1. 等效电压源定理(戴维宁定理) 两端有源网络可以等效于一个电压源,其电动势等于网络的开路端电压,其内阻等于从网络两端看除源(将电动势短路,内阻仍保留在网络中)网络的电阻。 2. 等效电流源定理(诺尔顿定理) 两端有源网络可等效于一个电流源,电流源的电流I 0等于网络两端短路时流经两端点的电流,内阻等于从网络两端看除源网络的电阻。 三、叠加原理 若电路中有多个电源,则通过电路中任一支路的电流等于各个电动势单独存在时,在该支路产生的电流之和(代数和)。 四、Y?△电路的等效代换 如图所示的(a )(b )分别为Y 网络和△网络,两个网络中的6个电阻满足一定关系 时完全等效。 1. Y 网络变换为△网络 12 2331 123 R R R R R R R R ++=, 122331 231R R R R R R R R ++= 122331 312 R R R R R R R R ++= 2. △网络变换为Y 网络 12311122331R R R R R R = ++,23122122331R R R R R R =++,3123 3122331 R R R R R R =++

高中物理竞赛辅导讲义_微积分初步

微积分初步 一、微积分的基本概念 1、极限 极限指无限趋近于一个固定的数值 两个常见的极限公式 0sin lim 1x x x →= *1lim 11x x x →∞??+= ??? 2、导数 当自变量的增量趋于零时,因变量的增量与自变量的增量之商的极限叫做导数。 0'lim x dy y y dx x ?→?==? 导数含义,简单来说就是y 随x 变化的变化率。 导数的几何意义是该点切线的斜率。 3、原函数和导函数 对原函数上每点都求出导数,作为新函数的函数值,这个新的函数就是导函数。 00()()'()lim lim x x y y x x y x y x x x ?→?→?+?-==?? 4、微分和积分 由原函数求导函数:微分 由导函数求原函数:积分 微分和积分互为逆运算。 例1、根据导函数的定义,推导下列函数的导函数 (1)2y x = (2) (0)n y x n =≠ (3)sin y x = 二、微分 1、基本的求导公式 (1)()'0 ()C C =为常数 (2)()1' (0)n n x nx n -=≠ (3)()'x x e e = *(4)()'ln x x a a a = (5)()1ln 'x x = *(6)()1log 'ln a x x a =

(7)()sin 'cos x x = (8)()cos 'sin x x =- (9)()21tan 'cos x x = (10)()21cot 'sin x x = **(11)() arcsin 'x = **(12)()arccos 'x = **(13)()21arctan '1x x =+ **(14)()2 1arccot '1x x =-+ 2、函数四则运算的求导法则 设u =u (x ),v =v (x ) (1)()'''u v u v ±=± (2)()'''uv u v uv =+ (3)2'''u u v uv v v -??= ??? 例2、求y=tan x 的导数 3、复合函数求导 对于函数y =f (x ),可以用复合函数的观点看成y =f [g (x)],即y=f (u ),u =g (x ) 'dy dy du y dx du dx == 即:'''u x y y u = 例3、求28(12)y x =+的导数 例4、求ln tan y x =的导数 三、积分 1、基本的不定积分公式 下列各式中C 为积分常数 (1) ()kdx kx C k =+?为常数 (2)1 (1)1n n x x dx C n n +=+≠-+?

高二物理竞赛(6)静电场、稳恒电流和物质的导电性

高二物理竞赛(6)静电场、稳恒电流和物质的导电性 班级:_____________ 姓名:_________________ 座号:_____________ 一、如图1所示,电阻R1=R2=1kΩ,电动势E=6V,两个相同的二极管D串联在电路中,二 极管D的I D-U D特性曲线如图2所示。试求:(1)通过二极管D的电流; (2)电阻R1消耗的功率。 二、某些非电磁量的测量是可以通过一些相应的装置转化为电磁量来测量的。一平板电容器的两个极扳竖直放置在光滑的水平平台上,极板的面积为S,极板间的距离为d。极板1固定不动,与周围绝缘;极板2接地,且可在水平平台上滑动并始终与极板1保持平行。极板2的两个侧边与劲度系数为k、自然长度为L 的两个完全相同的弹簧相连,两弹簧的另一端固定。图1是这一装置的俯视图。先将电容器充电至电压U后即与电源断开,再在极板2的右侧的整个表面上施以均匀的向左的待测压强P;使两极板之间的距离发生微小的变化,如图2所示。测得此时电容器的电压改变量为ΔU。设作用在电容器极板2上的静电作用力不致引起弹簧的可测量到的形变,试求待测压强P。 图1 图 2 图1 图2

三、两块竖直放置的平行金属大平板A 、B ,相距d ,两极间的电压为U 。一带正电的质点从两板间的M 点开始以竖直向上的初速度v 0运动,当它到达电场中某点N 点时,速度变为水平方向,大小仍为v 0,如图所示。求M 、N 两点问的电势差。(忽略带电质点对金属板上电荷均匀分布的影响) 四、测定电子荷质比(电荷q 与质量m 之比q /m )的实验装置如图所示。真空玻璃管内,阴极K 发出的电子,经阳极A 与阴极K 之间的高电压加速后,形成一束很细的电子流,电子流以平行于平板电容器极板的速度进入两极板C 、D 间的区域。若两极板C 、D 间无电压,则离开极板区域的电子将打在荧光屏上的O 点;若在两极板间加上电压U ,则离开极板区域的电子将打在荧光屏上的P 点;若再在极板间加一方向垂直于纸面向外、磁感应强度为B 的匀强磁场,则打到荧光屏上的电子产生的光点又回到O 点。现已知极板的长度l =5.00cm ,C 、D 间的距离d =1.50cm ,极板区的中点M 到荧光屏中点O 的距离为L =12.50cm ,U =200V , P 点到O 点的距离cm 0.3==OP y ,B =6.3×10-4 T 。试求电子的荷质比。(不计重力影响) P

物理竞赛讲义(三)力矩、定轴转动物体的平衡条件、重心

郑梁梅高级中学高一物理竞赛辅导讲义 第三讲:力矩、定轴转动物体的平衡条件、重心 【知识要点】 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:物体所受重力的作用点叫重心。 计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。 3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系, 其重心C 位置由如下公式求得: i i i C m x m x ∑∑= i i i C m y m y ∑∑= i i i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 【典型例题】 【例题1】如图所示,光滑圆弧形环上套有两个质量不同的小球A 和B 两球之间连有弹簧,平衡时圆心O 与球所在位置的连线与竖直方向的夹角分别为α和β,求两球质量之比。 y y y 12C α β A B O

高二物理竞赛辅导-恒定电流

江苏省射阳中学竞赛辅导 稳恒电流 主讲:孙琦 一、电阻定律 1、电阻定律 a、电阻定律R = ρ b、金属的电阻率ρ = ρ0(1 + αt) 2、欧姆定律 a、外电路欧姆定律U = IR ,顺着电流方向电势降落 b、含源电路欧姆定律 在如图所示的含源电路中,从A点到B点,遵照原则:①遇电阻,顺电流方向电势降落(逆电流方向电势升高)②遇电源,正极到负极电势降落,负极到正极电势升高(与电流方向无关),可以得到以下关系。 c、闭合电路欧姆定律 二、电功和电功率 1、电源 使其他形式的能量转变为电能的装置。如发电机、电池等。发电机是将机械能转变为电能;干电池、蓄电池是将化学能转变为电能;光电池是将光能转变为电能;原子电池是将原子核放射能转变为电能;在电子设备中,有时也把变换电能形式的装置,如整流器等,作为电源看待。 电源电动势定义为电源的开路电压,内阻则定义为没有电动势时电路通过电源所遇到的电阻。据此不难推出相同电源串联、并联,甚至不同电源串联、并联的时的电动势和内阻的值。 2、电功、电功率 对非纯电阻电路,电功和电热的关系依据能量守恒定律求解。 三、黑盒子问题 所谓黑盒子问题就是题目中已告知一些盒外端口的测量结果(如果是实验题则要求学生自己测量),要判断盒中的元件种类的连接方式。 例题1.有一根导线长L=1m,横截面积为0.001m2,它是由电阻率不均匀的材料组成,从一端到 另一端,电阻率的变化规律为ρ=ρ 0+KL(ρ =1Ω.m,K=0.5)。试求这段导线的电阻。

例题2.如图所示电路中,当ε1、ε2 、ε3、R 1、R 2和R 3都已知时(电源内阻忽略),试求: Uab 、Ubc 和Uac 的值。 学生练习:如图所示电路,已知R 1=2Ω,R 2=4Ω,R 3=R 5=8Ω,R 4=1.5Ω,E 1=4V ,E 2=3V ,E 3=E 4=E 5=1.5V 。是源内阻均不计,求R 5的电流I 5。 例题 如图给出一个四端盒4个阻值相同的电阻,每两端之间只有一个电阻,测得 R 24=0,R 13=2R 14=2R 23=2R 34,要求画出盒内的电路图。 学生练习:黑盒子有1、2、3、4四个端口,用一节干电池和一个电流表串联(内阻皆不计)分别与与两个端口相连,测得结果如下:I 13=3I 12=3I 14,I 13=2I 23=2I 24=2I 34,若黑盒子内由完全相同的电阻所组成,试画出盒内电路图。 3 4 2 3 4 2

2013年浙江大学物理竞赛讲义——恒定电流

稳恒电流讲义 一、电路的基本概念及规律 1.电流强度 电荷的定向运动形成电流,电流强度即单位时间内通过导体任一截面的电量。设在时间间隔△t 通过某一截面的电量为△Q ,则电流强度为Q I t ?= ? 电流的微观表达式 :υnes I =(其中n 为电荷的数密度,S 为导体的横截面积,v 为电荷定向移动的速度) 2.电流密度 在通常情况的电路问题中,通过导线截面的电流用电流强度描述就 可以了,但在讨论大块导体中的电流的流动时,用电流强度描述就过于粗糙了,这是因为电流在截面上将会有一个强弱不同的分布,而且各点的电流方向可能并不一致。为此需引入电流密度j ,电流密度的定义,考虑导体中某一给定点P ,在该点沿电流方向作一单位矢量n ,并取一面元△S 与n 垂直,设通过△S 的电流强度为△I ,则定义P 点处电流密度的大小为 nev =??= S I j 电流密度的单位为安培/米2(A·m - 2)。 通过导体任一有限截面△S 的电流强度为: ∑ =∞ →??=n i i i n S j I 1 lim 3.电动势 正电荷在电场力的作用下从高电势处移到低电势处,而一非静电力把正电荷从低电势处搬运 到高电势处,提供非静电力的装置称为电源.电源内的非静电力克服电源内静电力作用,把流到负极的正电荷从负极移到正极.若正电荷q 受到非静电力f → 非,则电源内有非静电场,非静电场的强 度E 非也类似电场强度的定义:k f E q = 非 将非静电场把单位正电荷从负极通过电源内部移到正极时所做的功定义为电源的电动势,即 W E l q ε=??=∑ 非 非 4.欧姆定律 通过一段导体的电流强度与导体两端的电压成正比,与电阻R 成反比,即 R U I = 这条定律,只适用于金属和电解液,即R 为常数的情形。满足欧姆定律的元件的电阻称为线性电阻,对于非线性元件,欧姆定律不适用,但仍可定义电阻 I U R /= ,只是R 还与工作状态下的电压、电流有关。

相关文档
最新文档